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Abstract—Cloud of Things (CoT) is increasingly viewed as a
paradigm that can satisfy the diverse requirements of emerging
IoT applications. The potential of CoT is not yet realised due
to challenges in sharing and reusing IoT physical resources
across multiple applications. Existing approaches provide small-
scale and hardware-dependent shared access to IoT resources.
This paper considers using market mechanisms to commoditise
CoT resources as the approach to enable shared access to CoT
resources and to improve their reusability. In order to achieve
this, the requirements for trading CoT resources are discussed
to conceptualise the proposed approach. A generic description
model for CoT resource is introduced to quantify the value of
CoT resources. In this paper, a marketplace architecture for
trading CoT resources referred to as AMACoT is proposed. By
formulating the trading of CoT resources as an optimisation
problem, the proposed approach is experimentally validated.
The evaluation measures the system performance and verifies
the optimisation problem using three evolutionary algorithms.
The evaluation of the optimisation algorithms demonstrates the
optimality of trading CoT resources solutions in terms of resource
cost, resource utilisation, provider lock-in and provider profit.

Index Terms—Cloud of Things, IoT, Marketplace, Optimisa-
tion

I. INTRODUCTION

Cloud of Things (CoT) integrates Cloud Computing and
Internet of Things (IoT) to complement each other. It aims
to address the requirements of emerging IoT applications
where either technology alone does not work. This includes
applications that require Cloud resources but also interact with
real-world objects/events that are far away from Cloud data-
centres. The adoption of CoT is hindered by many challenges
despite its benefits. These include latency, security [2] and
resource management of IoT physical resources [3], [4].

Challenges in CoT resource management include load bal-
ancing, resource allocation and scheduling [5]. The complexity
of resource allocation in CoT comes from the following. The
heterogeneity of IoT resources, the constrained capacities of
IoT resources, the scalability of IoT systems and the dynamism
of IoT resources. These challenges lead to missing/limiting
shared access to the IoT physical resources and consequently
lessen the reusability of the resources across multiple applica-
tions. These also result in over-provisioned IoT infrastructure
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to meet the unpredictable application requirements in which
resources may be significantly underutilised.

This paper aims to improve shared access to CoT resources
by proposing a marketplace architecture which can provide
efficient resource allocation and deal with the complex issues
present in the CoT. The solution re-imagines CoT resources as
commodities rather than as organisational assets. It considers
the business model of a marketplace whereby consumers re-
quest access (lease) to providers’ resources. A marketplace that
potentially can automate the trading between CoT resources
and CoT applications. The proposed approach is motivated
as follows. The deployments of IoT remain costly despite
the increasing demand for IoT applications, the reduction in
software and hardware costs [6]. This makes IoT adoption in-
feasible to many prospective users and emerging applications.
Commoditisation of CoT enables the development of IoT ap-
plications independently from the infrastructure deployments.
It also enables shared access to IoT physical resources. These
likely lead to cost reduction in IoT resources and management
as well as empowering new IoT applications and services.

There are various use cases for the CoT marketplace. For
instance, an event management agency manages event facilities
in a metropolitan area where it aims to improve its operational
efficiency. The agency wants to develop an application that
performs the following tasks. Find the least congested routes to
an exhibition centre leavers. Crowd monitoring of fans attend-
ing games in a nearby stadium for better incidents response.
Waste monitoring to efficiently automate the waste collection
after organised events if needed. Having a dedicated CoT
infrastructure for this application may require a significant
upfront investment. In CoT marketplace, the agency would
request a bundle of CoT resources to perform the tasks. For
instance, footfall sensors and motion detection cameras around
event facilities to guide people to the least congested tracks.
The bundle may include sensors, actuators, cameras and other
resources. The application consumes the required resources for
a specific time and then releases them back to the marketplace
when lease-time elapses. In this case, the application utilises
the required resources without considerable investment nor
dedicated infrastructure. Similarly, providers deploy their CoT
resources without being tied-up to particular applications.

The remainder of this paper is organised as follows. The
related work is reviewed in Section II. Section III describes
the trading requirements of CoT resources followed by the
description of the proposed marketplace architecture in Section
IV. Section V analyses the security threats to AMACoT. The
experimental setup and evaluation are presented in Section VI.
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Section VII concludes this paper and describes the planned
future work.

II. RELATED WORK

Market-based mechanisms for trading Cloud and IoT re-
sources are intensively studied. Cloud-based approaches are
more mature than the ones dedicated to IoT that are still
emerging. As CoT relies heavily on IoT resources, this section
focuses on IoT related market-based mechanisms. It reviews
the recent literature and categorises them into one of the two
categories described in the following sections.

A. IoT Marketplace Architectures

The concept of a marketplace for IoT-related resource is
gaining prominence. A marketplace architecture for trading
IoT data in real-time is proposed in [7]. The architecture en-
ables providers to offer their IoT data streams for consumption
by IoT applications. The proposed work differs from others by
implementing the architecture and addressing various aspects,
including scalability and compatibility. A generic Cloud-based
marketplace architecture is proposed in [8] to enable trading
of IoT deployments. The architecture addresses the Cloud-
IoT integration and vendor lock-in issues. A marketplace for
IoT resources is introduced as part of the broader architecture
of the IoT ecosystem in [9]. The trading model of IoT
information and functions is presented as a solution to five
IoT interoperability issues.

A different approach is taken by [10] to establish a de-
centralised marketplace for IoT data based on blockchain
technology. The proposed marketplace architecture uses sim-
ple contracts to simplify the trading of IoT data among
participants. IDMoB is another decentralised marketplace for
IoT data built on blockchain [11]. The marketplace enables
trading of IoT data for none time-sensitive IoT applications.
DataBroker DAO is another blockchain-based marketplace
implemented to trade IoT data [12]. IoT generated data is
traded using smart contracts among buyers and sellers via the
Ethereum network.

A decentralised peer-to-peer marketplace for IoT data is pre-
sented in [13]. The proposed architecture differs from others
by adopting fog computing model and blockchain technology.
IoT data is prepared (e.g. filtered, processed) at a fog nodes
layer while traded directly among the marketplace participants
at the application layer. Another decentralised architecture is
designed in [14] with the focus of IoT traffic metering and
contract compliance. The presented system aims to improve
transparency, fairness and interoperability while reducing the
cost. The study also conceptualises a tracking model for the
traded IoT data flows between IoT and Cloud Computing.

B. IoT Trading Mechanisms

Several market-based approaches are depicted and discussed
in [15]. The study also proposes a game-theory based model to
study the pricing of two IoT sensing services. Another set of
market-based mechanisms is studied in [16]. This includes an
analysis of IoT marketplace incentives, service patterns, infor-
mation timeliness and social impacts. Two bidding algorithms

to support IoT resource trading are introduced in [17]. The
first algorithm aims to maximise the provider’s revenue while
the second is to lock the highest bid in the recurrent auction.
Both algorithms are intended to protect the marketplace from
collapse in certain trading scenarios.

A semantic matching model for IoT marketplace is pre-
sented in [18]. The model facilitates the matching process
between providers’ offerings and consumers’ queries in a
marketplace of the BIG IoT project [19]. A composition mech-
anism for IoT offerings is presented in [20]. The approach is
based on a web-semantic model to describe IoT things and
services for trading.

A feedback mechanism is proposed in [21] to support IoT
data marketplaces. The blockchain-based approach enables
consumers to rate the providers who have to maintain and
improve their reputation based on feedback received. A mar-
ketplace model is also proposed in [22] to support the quality
of trading. It introduces a credibility rating mechanism for
providers based on the quality of their data. Another IoT
marketplace model based on Stackelberg game is presented in
[23] to model the trading processes in IoT environments. The
model aims to minimise the complexities for IoT consumers
while trading with IoT providers.

To support automation in IoT trading, a blockchain-based
automated payment system is proposed in [24]. The system
uses Ethereum contracts to automate payments without a
need to intermediaries. An architecture is presented in [25]
to support service level agreements (SLAs) while trading IoT
data. The architecture uses three criteria model to improve
satisfaction, payment and the SLA. Security mechanisms for
protecting the IoT data marketplace is studied in [26]. The
study also proposes authentication and authorisation model to
control access to the traded resources.

C. Gap Analysis

The related work presented above shows it is merely focused
on commoditising IoT data-sets/streams but not on IoT phys-
ical devices. Further limitations of the existing work are sur-
veyed in [27]. This includes limited IoT resources integration,
resource sharing and interoperability. Further limitations of
existing shared access to IoT resources revolve around small-
scale and hardware-specific support mechanisms [28], [6]. Our
approach fills that gap by proposing a generic description
model for CoT resources and a scalable architecture for trading
them. To the best of authors’ knowledge, these are the first
dedicated to trading CoT resources.

III. TRADING COT RESOURCES

Trading CoT resources is a multifaceted process. It involves
mapping resources to applications, optimising the proposed
maps, performing resource allocation and scheduling of the
optimal map. To shape this approach, the following consider-
ations are taken into account.

1) CoT resources and applications are heterogeneous. To
decompose this complexity and improve interoperability,
resource deployment and application development are
considered distinct from each other. This lowers the
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Figure 1. CoT marketplace concept.

investment required for infrastructure deployments, accel-
erate application prototyping and enable efficient trading.

2) CoT systems are large-scale and their commoditisation
mechanisms, therefore, have to be scalable. In particular,
having the ability to handle significant large numbers of
resources and application requests simultaneously.

3) CoT resources are naturally constrained in terms of
computing and power capabilities. Due to such challenge,
concurrent shared access to those resources may not be
possible but has to be resolved.

Based on the above-mentioned considerations, the following
requirements of the proposed approach are identified.

A. The marketplace system

CoT marketplace concept is illustrated in Figure 1. The idea
is to have a marketplace - denoted by M - where providers
offer their deployed CoT resources and applications request
access to the offered resources. The marketplace matches
requests to resources by forming a bundle of resources from
multiple providers based on the application requirements.
More details about the marketplace architecture are provided
in the proceeding Section IV. Table II provides trading vocab-
ularies used with their description.

B. The marketplace participants

The marketplace consists of two categories of partici-
pants namely providers and consumers. Providers are CoT
infrastructure owners/deployers and are denoted by P =
(p1, . . . , pm). pm represents an individual, organisation or a
broker who manages resources on behalf of others. P submit
their resources R = (r1, . . . , rj) to M.

Consumers are application owners/developers and are set
to C = (c1, . . . , cn). cn represents an individual, organisation
or a broker who manages applications on behalf of others.
C submit requests RQ = (rq1, . . . , rqi) to M for their CoT
applications A = (a1, . . . , az) to access and utilise a set of R.

C. A multi-attribute description model for CoT resource

The heterogeneity of CoT resources poses a challenge in
defining and describing what a resource is? How can a wide
range of heterogeneous resources be described generically?
How can the value of CoT resources be quantified to enable

monetising them? The solution to these challenges is to pro-
pose a description model to 1) define CoT resource, 2) provide
a generic description of their properties and 3) quantify the
resources based on their described properties. The model is
described as follows.

CoT resources can be defined generically based on their
main physical components and functionalities. A CoT re-
source/node/device/thing is defined as a device with one
or more basic computing functionalities (I/O, Processing,
Storage) that interacts with its surrounding (using Sensor(s),
Camera(s), Actuator(s)) and communicates with other entities
of a network (using Communication unit(s)).

The model uses a multi-attribute description of the resources
based on their physical and functional properties. Each re-
source rj has a set of attributes RA = (ra1, . . . , rat) that
contributes to its monetary value when traded as a commodity.
This includes multi-attributes of physical components (e.g.
processing, actuating, sensing, power) and non-physical func-
tions or features (e.g. security, location, redundancy). Each
property or feature can be expanded into a multilevel sub-
attributes to improve the presence of the commodity resource
in the marketplace. A snapshot of a single resource description
is provided in Table I.

The value of the multi-attributes presented in the previous
step can be quantified by assigning corresponding numerical
values. This is a vital step to monetise heterogeneous resources
generically and to enable them to be traded. This can be
achieved by assigning lower numerical values to attributes
representing low resource specification and vice versa. Zero
is a corresponding value for a missing resource component
while a positive number corresponds to an attribute. This can
be formulated as follows.

ra =

{
> 0, if raj can be described from rj

0, otherwise
(1)

For instance, a power capacity attribute of rj can be quan-
tified as either [Power = [Permanent, 2]] or [Power =

Table I
SNAPSHOT OF COT RESOURCE DESCRIPTION.

Components Attributes
Properties Example Values

Processor Clock speed 320MHz

Memory RAM
Flash

256KB
1MB

Sensor(s)

Type(s)
Sensing Range
Max. Transmission Power
Num. of sensors
accuracy

Footfall, light
20 meter
13.5dBm
4
+/- 0.2 meter

Actuator(s) Type(s)
Num. of Actuator

Light
1

Camera Type(s)
Num. of cameras

Motion detection
1

Communication
Type(s)
Protocols
Bandwidth

WiFi
IEEE 802.11b/g/n
16Mbps

Power Mode
capacity

Permanent
5V

Security Not available 0
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[Battery, 1]]. In this case, a resource with permanent power
supply is assigned a higher value than the one operates
by a battery and is likely to have a better monetary value
when commoditised. This offers the flexibility required in
quantifying the value of heterogeneous CoT resources before
the trading process starts.

D. The optimisation model

After CoT resources being described and their value quan-
tified, resources can be matched with the application requests.
This paper takes a unique approach to perform the matching
by using gradient-free optimisation algorithms as a mapper for
resources/requests. Using this type of optimisation algorithms
(a.k.a. derivative-free algorithms) is justified as follows. This
type of optimisation does not require the calculation of the
gradient or derivative to find the optimal solution. The com-
putation of the gradient can be impractical or computationally
costly for large-scale optimisation problems such as trading
CoT resources. This approach provides the following advan-
tages that justify the use of optimisation algorithms.

1) Using optimisation algorithms provides improved archi-
tectural flexibility over a specially designed component
(e.g. auctioneer, mapper). This means there is minimal or
no need to change the optimisation algorithm to support
any changes in other marketplace system components or
CoT resources/requests.

2) Optimisation algorithms are known to find optimal solu-
tions to NP-hard problems similar in complexity and scal-
ability to the trading CoT resources problem presented in
this paper.

3) The speed of many optimisation algorithms meets well
with the requirements of the CoT marketplace in trading
CoT resources promptly.

The optimisation model is presented in Figure 2 and de-
scribed as follows. The optimiser receives resources from the
providers and requests from the consuming applications. Both
resources and requests are filtered to generate a potential map
of matched resources to requests. Once the map is formed,
the optimiser evaluates the map by minimising or maximising
one or more trading objectives to find the most optimal set
of requests matched to resources. The evaluation process
continues till either the maximum number of iterations reached
or specific criteria met (e.g. time elapsed, no improvement
in finding optimal solutions for many iterations). Further
description of the optimisation model is presented in Section
IV.

E. Trading objectives

Trading objectives represent the goals of providers P and
consumers C from participating in trading CoT resources.
These goals are formulated as objective functions to pro-
vide significant flexibility for the trading model. Using this
approach minimises the re-development effort of the system
components that may be required in case of resource changes.
Changes can be implemented as a new objective function
without or with minimal changes in the system side.

Optimiser

Generate
a map

Termination 
criteria met?

Optimal map 
allocated

Map
Evaluation

Filters

ApplicationsResources

Potential
map?

Yes

No

No

Yes

Figure 2. The optimisation model.

Table II
TRADING VOCABULARIES USED

Vocabulary Description
M the marketplace
P providers (p1, ..., pm) in M
R traded resources (r1, ..., rj) in M
C consumers (c1, ..., cn) in M
RQ requests (rq1, ..., rqi) submitted by C
A applications (a1, ..., az) of C to utilise R
RA resource attributes quantified numerically
csj cost of a resource
bi a bid from consumer
ti utilisation time of resource requested by consumer
tqij estimated transmission and delay time b/w a resource and application
rpj reputation of a provider
pui requested utilisation time of a resource
acj available resource components
uci utilised components of a resource
pyj provider policy
ptj proprietary technologies of a provider
mcj the marketplace charges
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The trading of CoT resources is presented as a multi-
objective optimisation problem as follows:

Minimise CS =
n∑

i=1

m∑
j=1

rcj · (ti + tqij) · rpj (2)

Maximise RU =
n∑

i=1

m∑
j=1

pui · (acj − uci) (3)

Minimise Plock =
m∑
j=1

pyj + ptj (4)

Maximise PR =
n∑

i=1

m∑
j=1

rcj · (ti + tqij)−mcj (5)

subject to 0 < csj ≤ bi (6)
0 < Eri ≤ Epj (7)
sei ≥ sej (8)
rpi ≥ rpj (9)
rai ≥ raj (10)

where i = 1, ..., n; j = 1, ...,m for Constraints 6, 7, 8, 9 and
10. Descriptions of the objectives and constraints are provided
below:

Objective 1. Minimising the resource cost is one of the
usual motivations of the consumers. Consumers are likely to
bid for minimal cost resources. The cost objective function
is presented in Function 2. The following contributors to the
total cost CS are considered when minimising the cost of
requested resources. Let bi be the bid from a consumer and
csj the provider’s cost. The initial cost rcj can be calculated as
rcj = (bi − csj). The requested utilisation time of a resource
is set to ti while tqij denotes the estimated transmission
and delay time. Provider reputation rpj is set based on
the credibility measures of the marketplace to determine the
trustworthiness of the provider. The reputation is assumed
as part of the resource cost for two reasons. 1) It enables
the marketplace to use any feedback mechanism that allows
consumers to rate their providers’ trustworthiness. 2) The
reputation of the provider has an indirect effect on the cost
of resources. A provider with a higher reputation is enabled
to offer its resources with better cost than a low-rated provider.

Objective 2. CoT applications are assumed to monopolise
access to a set of resources for a given time[29]. This can cause
low utilisation of the allocated resources due to the light re-
quirements of some applications. For trading CoT resources to
be efficient, resource utilisation has to be optimised. Resource
utilisation objective function is presented in Equation 3. The
objective considers the requested resource utilisation time pui,
the available resource components acj and the actually utilised
components of a resource uci.

Objective 3. Function 4 presents the objective of minimis-
ing provider lock-in. Vendor lock-in is a common challenge
for commoditised computing services. It describes the situation
where consumers can not migrate their data or applications to
different providers due to various reasons. This objective aims
to minimise the lock-in by considering the provider policy
pyj that enables consumers to migrate and the proprietary
technologies of the provider ptj . Both factors are rated from

1 − 5, where 1 is the most flexible policy towards consumer
migration and lowest proprietary technologies that may hinder
consumers from migrating to different providers.

Objective 4. Providers always aim to maximise their profit
PR. Equation 5 presents the profit objective function. This can
be achieved by maximising the cost of resources rcj and their
utilisation time ti while considering the marketplace charges
mcj as expenses.

In addition to the objectives, constraints are used to iden-
tify feasible solutions to the resource trading problem. This
significantly minimises the search space of such scalable and
complex set of candidate solutions. Constraint 6 illustrates that
costs and bids have to be positive, and bids are always greater
than or equal resource costs. The energy constraint presented
in Constraint 7 ensures the required energy Eri to perform
application tasks does not exceed the available resource energy
Epj . Constraint 8 specifies the security requirements of the
application sei to be satisfied by the security capabilities of
the resource sej . Constraint 9 provides credibility insurance
to the marketplace participants based on their performance.
Providers have to maintain a certain reputation level rpj
in the marketplace while consumers specify their providers’
credibility requirements rpi. Constraint 10 enable participants
to specify participant-specific requirements or limitations in
responding to some applications or resources attributes. This
constraint is part of this approach genuineness and flexibility
to handle heterogeneous CoT resources and applications.

F. Other requirements

Other requirements of the marketplace can be implemented
based on its design and operational goals. This paper justifies
those requirements as follows.

Scalability. A marketplace for CoT resources is expected
to handle a considerable number of consumer requests and
provider resources simultaneously. This can impact system
performance and consequently fail to trade CoT resources. The
marketplace system should have the ability to handle various
scales of consumer requests and provider resources.

Security. Security is vital for any marketplace architecture.
Security analysis is performed in Section V to address the
potential security threats to the proposed system.

Multiple Business Models. To satisfy the requirements of
different CoT applications, the marketplace should support dif-
ferent business models. This includes consumer-to-consumer,
provider-to-consumer and provider-to-provider. It may also
consider implementing the system to support one or more
of the following market structures: broker system, monopoly
market, oligopoly market, single-side auction and double-side
auction.

Multiple Participant Objectives. Marketplace participants
have different requirements/goals. For instance, consumers are
likely to bid for the lowest cost possible while providers aim
to maximise their revenues. Consumers may have conflicting
objectives at the same time (e.g. maximising resource coverage
while minimising the response time). The marketplace system
should provide a mechanism to maintain the balance among
conflict objectives.
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Figure 3. CoT Marketplace Architecture (AMACoT)

IV. THE MARKETPLACE ARCHITECTURE

The proposed marketplace architecture is illustrated in
Figure 3. The architecture is structured into four functional
layers as follows. Submission layer represents the marketplace
entry point where participants are authenticated and granted
authorised access to trade.

The mapping layer consists of resource and request man-
agers. Resource manager provides interfaces that enable re-
source providers to submit, update and remove their resource
specifications. Resources are described and quantified based
on the description model discussed in Section III-C. Resource
descriptions include connectivity options and resources are
assumed to be connected already to the Internet via IoT
gateways. Similarly, the request manager’s interfaces receive
application requirements from consumers. Application require-
ments are high-level descriptions of the computing and budget
needs as illustrated in Table III. Consumers can also update
and remove their applications using the request manager.
Mapping libraries of both resource and request managers
provide early local coordination to turn resource specifications
and application requirements into bids.

Optimisation layer represents the operational tier of the

system. Applications can discover resources that are already
stored in the resource manager. Bids flow from resource and
request managers to multiplexers where they are selected to
form bundles. Resource bundles represent a set of resources
from multiple providers that can potentially be utilised by
multiple applications. Whilst being forwarded to the optimiser,
resource bundles and application requests are filtered. Plug-
gable filters include a wide range of filtering criteria such as
location, resource coverage, computing and energy require-
ments. Filtered resource bundles and application requests are
forwarded to the optimiser. The optimiser performs a two-stage
process as follows; 1) construct optimal maps that consist of
resource bundles and application requests ready for allocation,
2) evaluate the optimal maps based on the participants’ goals
using utility functions presented in Section III-E. One optimal
map is forwarded to the resource allocation manager for
resources to be allocated to the applications.

Allocation layer consists mainly of the resource allocation
manager. The scheduler manages the utilisation time of the
resources based on the application requirements. It also coordi-
nates with the allocator to enable resources joining the applica-
tion network and dis-joining when the lease-time elapses. The
monitor captures resource allocation events in real-time and
provides interfaces where consumers and providers oversee
their transactions.

V. THREAT ANALYSIS

The marketplace system should enforce different security
measures to secure its operations. Security threats are analysed
using STRIDE model [1] to help the design of the architecture
by identifying potential threats. STRIDE model is used due
to its maturity among other threat modelling techniques and
due to its simplicity. Table IV illustrates the STRIDE threats,
security propriety violated and the impacted layers of the
proposed architecture.

As Table IV shows, each layer of AMACoT components
may be impacted by one or more type of threats. At submission
layer, an attacker can illegally gain access and use a con-
sumer’s or a provider’s credentials to access the marketplace.
AMACoT can mitigate this threat by using authentication pro-
tocols that do not require a password or use signed certificates
to verify the authenticity of consumers/providers. The attacker
can also tamper at the submission layer by maliciously modify
a consumer’s request or a provider’s offerings. These types

Table III
SNAPSHOT OF COT APPLICATION REQUIREMENTS.

Requirements Example Value
Processing ≥ 1GHz
Memory ≥ 1GB
Storage Any
Network Heterogeneous
Energy Battery/Permanent
Sensing Environmental
Actuator 0
Security ≥ Basic
Location [52.95610793607633, -1.1453494058431906]
Provider’s Rating ≥ 3/5
Budget ≤ $10 per hour
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of threats may occur using bit-flipping or injection attacks.
AMACoT can mitigate these attacks by integrating adequate
users’ input/output validation tools for proper data integrity
validation. Submission layer is also susceptible to denial of
service (DoS) attacks where the attacker aims to interrupt the
marketplace making it unavailable or unstable to providers/-
consumers. This can occur when the system is flooded with
a large number of concurrent requests. The security manager
can alleviate DoS attacks by employing requests/offers limiter
to maintain the number of submissions at an acceptable level.

The mapping layer can be vulnerable to the threats of
information disclosure and elevation of privileges. Information
disclosure threats the confidentiality of marketplace users
when the attacker maliciously gets hold of the users’ sen-
sitive data stored in the resource manager and/or the request
manager. AMACoT can use a common practice to mitigate
this threat by encrypting users’ sensitive data. Elevation of
privileges also poses a considerable risk at the mapping
layer. An attacker can attempt to gain some privileges that
enable him to perform some actions that he cannot achieve.
This may include manipulating bids at either resource or
requests manager or both. The system should implement robust
authorisation techniques and operate the components at the
mapping layer using non-root users. The optimisation layer
can also be vulnerable to both threats, in addition to the DoS
attacks. AMACoT can prevent such attacks using the same
mitigating mechanisms discussed earlier for the submission
and mapping layers.

The resource allocation manager is vulnerable to data tam-
pering. This may occur when a user tries to manipulate a
schedule before resources are allocated to take advantage of
other users. Mitigation may include validating users’ input/out-
put to detect and prevent data tampering.

Although the security aspects are crucial to the marketplace
architecture, the focus of this paper is on demonstrating the
feasibility and performance of AMACoT in CoT resource
allocation using optimisation algorithms. For deployment of
this architecture if it is important to take security as the
aim of the study. It would be necessary to take standard
IoT security precautions such as those identified in [36]
Those precautions and any deployment of specific security
mechanisms, therefore, fall out of this paper’s scope.

VI. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of the
proposed work. After the experimental setup explanation in
Section VI-A, Section VI-B provides system verification aim-
ing to evaluate the system footprint and Section VI-C presents
algorithmic evaluation of proposed approach using different
optimisation algorithms.

A. Experimental Setup

The architecture is developed using Python in a computer
with 2.3 GHz Xeon processor, a 125GB memory and Linux
OS. In order to simulate the behaviour of distributed systems,
Python Remote Object (Pyro4) is used to connect the main
components of the system as well as consumers and providers.

The optimisation engine of AMACoT integrates optimisa-
tion algorithms to map requests to resources and to evaluate
the optimal resource allocation. The following optimisation
algorithms are implemented as follows.

NSGAII. Non-dominated Sorting Genetic Algorithm II
[30] is an improved genetic algorithm that is widely used
in real-world multi-objective optimisation applications. The
population size is set to 200 with a maximum number of 200
iterations for all experiments.

NSGAIII. This algorithm is an extension of the NSGAII
that uses reference points to diversify the Pareto points during
the search[31]. Besides the same settings used for NSGAII,
the number of divisions is set to 12.

SPEA2. Strength Pareto Evolutionary Algorithm 2 [32] is
designed and used to optimise combinatorial problems. The
population size is set to 200 with a maximum number of 200
iterations for all experiments.

B. Implementation Verification

Stress tests are performed to evaluate the footprint of
the system components when they interact with each other
as well as interacting with providers and consumers. Three
experiments are performed using three different scale factors
as shown in Table V. The scale factors aim to evaluate the
scalability of AMACoT system and measure the overheads
generated. In these three experiments, SPEA2 algorithm is
used to minimise the resource cost while maximising the
provider profit. This evaluation measures the following system
footprints; 1) CPU usage, 2) Memory usage, 3) Latency that is
measured from the time of request submission to the time of
resource allocation confirmation and 4) Throughput to measure
the number of requests/resources handled by AMACoT over
the trading time.

Experiment 1. 10, 000 requests and 200, 000 resources are
submitted to AMACoT by 100 consumers and 100 providers
respectively. Experiment 1 requires 10% of CPU, 3GB of
memory and 57 second to produce an optimal resource alloca-
tion. AMACoT handles 175 requests and over 3500 resources
per second.

Experiment 2. 20, 000 requests and 400, 000 resources are
submitted to AMACoT by 200 consumers and 200 providers
respectively. Experiment 2 consumes 11% of CPU, 7GB of
memory and 119 second to produce an optimal resource
allocation. The maximum throughput of this experiment is 168
requests and 3361 resources per second.

Experiment 3. 30, 000 requests and 600, 000 resources are
submitted to AMACoT by 300 consumers and 300 providers
respectively. The peak CPU load of Experiment 3 is 13%
while 11GB of memory used. Producing an optimal resource
allocation requires 185 second for experiment 3. AMACoT
processed 162 requests and 3243 resources per second.

The results of the verification tests are summarised in
Table VI. Results show that CPU usage increases from 10%
in experiment 1 to 11% in experiment 2 when experiment
2 scales up by 100%. The CPU load also increases from
11% in experiment 2 to 13% in experiment 3 that scales
up by 100%. This implies a reasonable CPU usage when
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Table IV
STRIDE MODEL OF AMACOT

Impacted LayerThreat Property Violated Submission Mapping Optimisation Allocation
S Spoofing identity Authentication •
T Tampering with data Integrity • •
R Repudiation Nonrepudiation
I Information disclosure Confidentiality • •
D Denial of service Avaiability • •
E Elevation of privilege Authorisation • •

marketplace participants increase significantly. Memory usage
is also measured for the three experiments as follows. Ex-
periment 1 requires 3GB of memory, 7GB for experiment 2
and 11GB for experiment 3. Memory consumption increases
from 3GB in experiment 1 to 7GB in experiment 2 when
the marketplace participants rise by 100%. In experiment 3,
the memory consumption increases up to 11GB when the
experiment scales up by further 100%. Results indicate a fair
memory usage across the three experiments when different
scale factors are considered.

Latency relies significantly on three aspects as follows.
1) The optimisation algorithm used, 2) The complexity of
optimised objectives and 3) The number of optimised ob-
jectives. The latency results presented are obtained from
SPEA2 algorithm optimising two objectives. The latency of
experiment 2 is about 2 times the latency of experiment 1
while the latency of experiment 3 is about 1.5 times the latency
of experiment 2. This implies that the latency is doubled as
the experiment scales up by 100%. The throughput results
show that request throughput decreases 4% only when the
marketplace participants rise by 100% in experiment 2 from
experiment 1. The request throughput declines 3.5% further in
experiment 3 when compared to experiment 2. The resource
throughput in experiment 2 shows 4% reduction in comparison
to experiment 1 while it decreases 3.5% in experiment 3
when compared to experiment 2. The overall evaluation of
throughput shows sensible throughput variations across the
three experiments.

Table V
SIMULATED MARKETPLACE PARTICIPANTS.

Parameter Experiment 1
(scale factor 1)

Experiment 2
(scale factor 2)

Experiment 3
(scale factor 3)

Number of Requests 10K 20K 30K
Number of Resources 200K 400K 600k
Number of Consumers 100 200 300
Number of Providers 100 200 300

Table VI
PERFORMANCE COMPARISON.

Parameter Experiment 1 Experiment 2 Experiment 3
Peak CPU(%) 10 11 13
Peak memory(GB) 3 7 11
Latency(sec) 57 119 185
Throughput(Request/sec) 175 168 162
Throughput(Resource/sec) 3508 3361 3243

Figure 4. Optimising the resource cost at the end of each iteration.

C. Algorithmic Evaluation

In order to evaluate the performance of the optimisation
algorithms used and the quality of their optimal solutions, a
set of ten experiments are performed using the same scale
factor of experiment 3. The following experiments optimise a
single objective and compare the results of the three algorithms
used.

Experiment 4. This experiment minimises the resource cost
as presented in Function 2. Figure 4 shows the comparative
evaluation results for resource cost optimality. All algorithms
compete towards optimal solutions but NSGAIII and SPEA2
find better cost than NSGAII.

Experiment 5. This aims to minimise the possibility of
provider lock-in as presented in Function 4. Figure 5 illustrates
that NSGAII and NSGAIII algorithms converged into an
optimal solution that is approximately 24% lower than the
solution of SPEA2.

Experiment 6. This experiment is intended to maximise
the provider profit as described in Function 5. Figure 6
demonstrates the competition between NSGAII and SPEA2 in
which both algorithms take approximately the same direction
to the optimal profit. In contrast, NSGAIII improves its solu-
tions significantly during early iterations and maintain steady
improvements towards the last iteration. NSGAII and NSGAIII
provide slightly better profit for providers than SPEA2.

Experiment 7. Resource optimisation is performed in this
experiment to maximise the resource utilisation by consumers
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Figure 5. Optimising the provider lock-in utility at the end of each iteration.
The provider lock-in rate is minimised, so consumers avoid being locked-in
using resources from a single or very few providers.

Figure 6. Optimising the provider profit at the end of each iteration.

as presented in Function 3. Figure 7 illustrates NSGAII
outperforms other algorithms in maximising the resource util-
isation. In contrast to the other algorithms, NSGAIII shows
insignificant changes throughout the process.

Experiments 4-7 perform the standard optimisation of a
single objective that may not be practical for many real-world
CoT applications. CoT applications often involve multiple
objectives and therefore require multi-objective optimisation
to find optimal solutions for two or more objectives including
conflicting ones (e.g. min. resource cost while max. resource
utilisation). This conflict is commonly addressed by using
Pareto approach [33] to evaluate a set of trade-off solutions.
The following experiments show the progression of optimising
multiple objectives using different approaches.

Experiment 8. This experiment optimises resource cost and
provider profit as presented in Functions 2 and 5, respectively.

Figure 7. Optimising the resource utilisation at the end of each iteration.

Figure 8. Optimising the aggregated utility of resource cost and provider
profit.

A way of performing this is to aggregate both objectives into
a single one using weight factors as follows.

Minimise
RQ,R

AU = w1CS − w2PR (11)

subject to 6, 7, 8, 9, 10 (12)

where w1 and w2 are the weights for resource cost and
provider profit respectively. Weighting factors are used to
prioritise objectives. To maintain the balance between the two
objectives, the value of w1 and w2 is equally set to 0.5 where
w1 + w2 = 1. Figure 8 shows that NSGAII and SPEA2
outperforms NSGAIII despite the lower start of NSGAIII.

Prioritising objectives for CoT applications is challenging
for the following reasons. First, it requires prior knowledge of
the problem to assign appropriate weights. This prior knowl-
edge may not always be available to CoT applications. Second,
optimisation objectives are application-specific and therefore
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(a) NSGAII (b) NSGAIII (c) SPEA2

Figure 9. Optimising the resource cost and the provider profit. NSGAII produces the largest set of solutions, the lowest resource cost and the lowest provider
profit. NSGAIII provides lowest set of solutions, the highest resource cost and the highest provider profit. SPEA2 yields various optimal solutions that maintain
the balance when compared to the bi-objective optimality of the other algorithms.

(a) NSGAII (b) NSGAIII (c) SPEA2

Figure 10. Optimising resource cost and the resource utilisation. NSGAII generates the lowest resource utilisation and the most expensive resource cost.
NSGAIII produces the maximum resource utilisation while SPEA2 yields the minimum resource cost.

need re-prioritisation more frequently using weighting factors.
Third, this approach yields one optimal solution only. This
gives the decision-maker no other solutions to the problem.
Although this method may benefit specific applications with
prior knowledge about the problem, the following experiments
consider using Pareto approach [33] to evaluate a set of
optimal solutions rather than one solution only. Experiments
9-12 evaluate conflicting bi-objectives that reflect real-world
business requirements. Using the Pareto approach produces a
set of optimal solutions for both objectives where an optimal
solution of an objective does not worsen the solution of
the other objective. Using this approach aims to maintain
the balance among conflicting objectives of consumers and
providers.

The challenge is how to measure the quality of Pareto-
generated solutions of different optimisation algorithms. To
overcome this shortcoming, each set of optimal solutions
produced in the following experiments is evaluated using the
hypervolume indicator (HV) [34]. HV measures the size of
the covered space by the generated set of Pareto solutions.
A higher value of HV indicates the better distribution of the
Pareto solutions and approximately closer to the optimality.

Experiment 9. This experiment optimises resource cost and
provider profit as presented in Functions 2 and 5, respectively.
Figure 9 shows there is an insignificant difference among

the optimal solutions of the three algorithms. The HV values
of NSGAII, NSGAIII and SPEA2 are 0.57, 0.56 and 0.62,
respectively as shown in Figure 14. This implies that SPEA2
generates slightly better optimal solutions for minimising
resource cost and maximising provider profit.

Experiment 10. Another business requirement for CoT ap-
plications is to optimise resource cost and resource utilisation
benefiting the resource consumers. Experiment 10 is intended
to minimise the resource cost and maximise the resource
utilisation as described in Function 2 and 3, respectively.
As illustrated in Figure 10, all algorithms provide multiple
solutions that maintain the balance between minimising the
cost and maximising the resource utilisation. It can also be
noted that the resource cost increases as the resource utilisation
increases. This implies there is a trad-off between resource
cost and utilisation as resource providers may enable higher
resource utilisation with higher cost. Figure 14 shows an
overall high HV indicator for the three algorithms with slight
differences among them.

Experiment 11. This experiment optimises provider profit
and provider lock-in as presented in Functions 5 and 4,
respectively. It aims to benefit both providers and consumers
by maximising the provider profit while minimising the chance
of consumers being locked in one or very few providers’
infrastructures. Figure 11 shows that NSGAII and SPEA2
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(a) NSGAII (b) NSGAIII (c) SPEA2

Figure 11. Optimising provider profit and provider lock-in. NSGAII provides the largest set of solutions, the the maximum provider profit and the highest
provider lock-in. NSGAIII produces the smallest set of solutions and the minimum provider lock-in. SPEA2 maintans the balance between the number of
generated solutions, the minimum provider lock-in and the maximum provider profit.

(a) NSGAII (b) NSGAIII (c) SPEA2

Figure 12. Optimising resource utilisation and provider lock-in. NSGAIII provides the smallest set of solutions, the lowest resource utilisation and the
minimum provider lock-in. SPEA2 produces the largest set of solutions, the maximum resource utilisation and the highest rate of provider lock-in.

provide numbers of solutions that are approximately twice
as NSGAIII does. NSGAIII, however, generates a similar
distribution of Pareto-generated solutions. Figure 11a and 11c,
respectively, illustrate that NSGAII and SPEA2 find over 50%
of the solutions with provider lock-in rate of 40% or more.
This may indicate providers’ preference of locking consumers
to maximise the profit. Figure 14 shows that NSGAII outper-
forms NSGAIII by 7% and SPEA2 by approximately 10%.

Experiment 12. This experiment addresses the require-
ment of CoT applications to optimise resource utilisation and
provider lock-in as presented in Function 3 and 4. Figure
12 shows that all algorithms produce over 60% over their
solutions with provider lock-in rate of 30% or more. This may
imply that resources with high utilisation rates are associated
with high chances of provider lock-in. Figure 14 illustrates
that all algorithms attain similar HV values. This suggests a
similar performance of the algorithms in finding the optimality
of resource utilisation and provider lock-in utility.

Experiment 13. This experiment aims to optimise resource
cost, resource utilisation, provider lock-in and provider profit
and as described in Function 2, 3, 4 and 5. It explores the
potential optimality of multiple conflicting objectives as well
as the performance of the optimisation algorithms. Visualising
the Pareto fronts of large-dimensional multi-objective optimi-
sation problems is known to be a challenge [35]. One of the

ways to visualise the results of this experiment is to use the
scatter plot matrix as illustrated in Figure 13.

In this experiment, Pareto fronts can be identified as shown
in Figure 13d, 13e and 13f. Figures 13a, 13b and 13c show
the solutions scattered across the solution space while Pareto
fronts are not typically formed yet. This can be clearly seen
in Figure 13b as a typical front should be formed towards the
left side of both axes when both objectives are minimised.
This may imply the following. 1) Generating Pareto optimal
solutions is possible in the case of a high-dimensional optimi-
sation problem. 2) The optimiser parameters may need to be
improved to address the increase in the number of objectives.
The number of iterations and the population size have not
been changed in this experiment to be consistent with other
experiments performed with the same parameters.

Experiments presented in this section demonstrate the pro-
gression of optimising various objectives. Experiments 4-7
optimise single objective, Experiment 8 optimises multiple
objectives using the weighted sum method while Experiments
9-12 optimise multiple objectives using Pareto approach. Ex-
periment 13 optimises all functions presented earlier using
Pareto approach. Experiments 4-8 generate one optimal so-
lution each while Experiments 9-13 provide a set of optimal
solutions each. The evaluation of Experiments’ results using
HV indicator suggests the following. Experiment 8 (weighted
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Figure 13. Scatter plot matrix showing Pareto solutions of all bi-objective combinations of Experiment 13.

Figure 14. Evaluating the Pareto-generated solutions using HV indicator.

sum approach) produces the lowest HV score. This is likely
because the approach produces one optimal solution only that
cannot contribute to the volume calculation. In Experiments
9-13, HV values indicate that NSGAII performs better than
the other algorithms on three experiments while SPEA2 out-
performs others on two experiments.

D. Discussion

The performance results presented in Section VI-B show
reasonable system overheads and demonstrate good scalability.

AMACoT incurs insignificant CPU and memory overheads
when marketplace participants are doubled in Experiment 2
and tripled in Experiment 3. AMACoT also maintains a good
level of throughput with a minimal reduction below 5% across
all the three experiments. The overall stress results imply the
advantage of reducing the architectural complexity in CoT by
using an optimisation algorithm as the core of the trading
manager rather than a specific-purpose system component.

Latency becomes a limitation for AMACoT performance
with respect to scalability. The latency increases by approxi-
mately two-fold when resources and requests are doubled. This
may imply the dependency of optimisation algorithms on the
hardware setup. Performing the same experiments in higher
hardware specifications may reduce the latency of the system
significantly. Running the optimiser on multi-processing setup
can also provide further improvement to the system latency.

The evaluation of optimisation algorithms presented in
Section VI-C provide comparative results of the algorithms
performance and the optimality of their solutions. The evalua-
tion validates the use of objective functions in quantifying the
value of CoT resources. This implies the heterogeneity of CoT
resources and the dynamic requirements of CoT consumers
can be formulated as objective functions that are likely to be
optimised. It can be concluded that using optimisation-based
approaches as market mechanisms for CoT resource is feasible
and promising.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes a trading approach for CoT resources
consisting of a multi-attribute description model for CoT
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resources, the trading objectives and the marketplace architec-
ture. In contrast to other approaches, the proposed approach
separates between CoT application development and hardware
deployment considering CoT resources as commodities. Ex-
perimental evaluation validates the system and algorithmic per-
formance. AMACoT generates optimal solutions using single
optimisation, weighted sum and Pareto fronts approaches. The
optimality of resource cost, provider lock-in, resource utilisa-
tion and provider profit is evaluated. HV indicator is used to
measure the performance of the optimisation algorithms and
the quality of the optimal solutions they produced.

In order to address the limitations of this work, the fol-
lowing future work is planned. The adaptivity requirements
of trading CoT resources will be investigated. Improving the
system latency by potentially performing the optimisation on
multiprocessor setup and exploring further trading objectives
to address more consumer and provider requirements (e.g. QoS
attributes).
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[9] A. Bröring, S. Schmid, C.-K. Schindhelm, A. Khelil, S. Kabisch,
D. Kramer, D. Le Phuoc, J. Mitic, D. Anicic, and E. Teniente López,
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