NMR CAPIBarA: proof of principle of a low-field unilateral magnetic resonance system for monitoring of the placenta during pregnancy

Morris, R.H. ORCID: 0000-0001-5511-3457, Almazrouei, N.K., Trabi, C.L. and Newton, M.I. ORCID: 0000-0003-4231-1002, 2019. NMR CAPIBarA: proof of principle of a low-field unilateral magnetic resonance system for monitoring of the placenta during pregnancy. Applied Sciences, 10 (1): 162. ISSN 2076-3417

[img]
Preview
Text
1261673_Newton.pdf - Published version

Download (2MB) | Preview

Abstract

A growing body of literature shows that the transverse relaxation times of the placenta change during pregnancy and may be an early indicator of disease. Magnetic resonance imaging (MRI) of pregnant women is not, however, currently used frequently despite this evidence. One significant barrier to adoption is the cost of undertaking an MRI scan and the over utilization of existing equipment. Low-field nuclear magnetic resonance (NMR) offers a low-cost alternative, capable of measuring transverse relaxation in a single point in space. Ultrasound imaging (US) is routinely used at several points during pregnancy but is not capable of early detection of pre-eclampsia, for example. It does, however, provide a technique that is capable of locating the placenta with ease. In combination with a single point low-field measurement, localised with ultrasound imaging allows access to this exciting technique without the need for an expensive traditional MRI. In this work, we present a unilateral system (NMR CAPIBarA), operating at a magnetic field of only 18mT, which measures transverse relaxation times at distances from its surface equivalent to the positioning of a human placenta. Data are presented to characterise the system using relation time standards covering the full transverse relaxation time range relevant for the developing placenta, which are also measured on a 1.5 T clinical MRI scanner.

Item Type: Journal article
Publication Title: Applied Sciences
Creators: Morris, R.H., Almazrouei, N.K., Trabi, C.L. and Newton, M.I.
Publisher: MDPI AG
Date: 2019
Volume: 10
Number: 1
ISSN: 2076-3417
Identifiers:
NumberType
10.3390/app10010162DOI
1261673Other
Rights: © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Divisions: Schools > School of Science and Technology
Depositing User: Linda Sullivan
Date Added: 03 Jan 2020 11:13
Last Modified: 03 Jan 2020 11:13
URI: http://irep.ntu.ac.uk/id/eprint/38916

Actions (login required)

Edit View Edit View

Views

Views per month over past year

Downloads

Downloads per month over past year