Supplementary information: A materials-based approach for interrogating human prostate cancer cell adhesion and migratory potential using a fluoroalkylsilica (FS) culture surface.

Matthew Nicklin^{1, 2}, Graham J. Hickman¹, A. Graham Pockley² & Carole C. Perry^{1*}

¹Biomolecular & Materials Interface Research Group, and the ²John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton campus, Clifton Lane, Nottingham, NG11 8NS, UK

*Corresponding author. Email: carole.perry@ntu.ac.uk Tel: +44 (0)115 848 6695

Table of Contents

1.0 – RT-PCR primer information	Page S-3
1.A RNA isolation and reverse transcription conditions	Page S-3
1.B RT-PCR reaction conditions and data analysis	Page S-3
2.0 – Immunofluorescence	Page S-4
3.0 – Flow cytometry gating	Page S-5
4.0 – Live cell imaging	Page S-11
5.0 References	Page S-12

1.0 – RT-PCR primer information

1.A RNA isolation and reverse transcription conditions

RNA was isolated into RNase free water (ThermoFisher AM9932) using the RNeasyTM Mini kit (Qiagen 74104) following the manufacturer's protocol. RNA concentration for each sample was quantified using a NanoDropTM 8000. Reverse transcription (RT) of samples was performed in a volume of 10 μ L, consisting of 2 μ g RNA, 1 μ L Oligo(dt)15 primer (Promega, C110A) and the remaining volume RNase free water. Samples were heated at 70°C for 5 min and placed on ice for 5 min. To each sample was added 15 μ L of RT solution comprising 5 μ L RT buffer (Promega, M531A), 1 μ L RT enzyme (Promega, M170A), 0.7 μ L RNasinTM (Promega, N2111), 1 μ L dNTP (Sigma, D4788) and 7.3 μ L of RNase free water. Tubes were incubated at 38°C for 90 min after which the reaction was stopped by heating to 95°C for 5 min. The cDNA was stored at -20°C until use.

1.B RT-PCR reaction conditions and data analysis

RT-PCR was conducted using the SYBR™ Green (Bio-Rad cat#172-5124), conducting 40 cycles per run with a Qiagen rotor gene Q thermocycler. Reactions were conducted in 13 μ L, consisting of 1 μ L of cDNA template (~40 ng/reaction) or H₂O for no template controls, 0.2 µM of forward and reverse primer and 6.75 µL SYBR™ Green Master mix. Cycling followed a hold period of 5 min at 95°C and was as follows: 95°C for 20 sec, 62°C for 20 sec and 72°C for 20 sec. Melt curve analysis was conducted from 62°C – 95°C. Data were analysed using the PFAFFL equation. [Pfaffl, 2001] The relative expression ratio was calculated from RT-PCR efficiencies and the crossing point of an unknown sample (target gene) vs. the control (reference gene). A 5-fold serial dilution of cDNA was conducted to determine the amplification efficiency of each primer pair, with each dilution being used as a template for PCR. The slope of the standard curve was used to calculate efficiency values through Rotor gene Q software (Table A.1.). Pooled cDNA derived from OPCT-1, P4B6B and P5B3 was used to determine efficiency and specificity. For each primer pair, the following acceptance criteria were defined: efficiency \geq 80%, single product detected on melt curve, single band detected through agarose gel electrophoresis (Fig. A1) and a Ct value \leq 35. In the case of gene induction (i.e. a sample produced a Ct value >35 under condition 1 but \leq 35 under condition 2), the data from both samples was incorporated if the all other acceptance criteria were met for both samples under comparison.

Table S1. EMT panel and reference RT-PCR primers.					
Primer pair	Forward/reverse sequence	Tm (°C)	GC content (%)	Efficiency (%)	
E-cadherin	5'-TGCCCAGAAAATGAAAAAGG-3'	53.2	40.0	99	
	5'-GTGTATGTGGCAATGCGTTC-3'	57.3	50.0		
Vimentin	5'-GAGAACTTTGCCGTTGAAGC-3'	57.3	50.0	102	
	5'-GCTTCCTGTAGGTGGCAATC-3'	59.4	55.0		
Fibronectin	5'-CAGTGGGAGACCTCGAGAAG-3'	61.4	60.0	83	
	5'-TCCCTCGGAACATCAGAAAC-3'	57.3	50.0		
N-cadherin	5'-ACAGTGGCCACCTACAAAGG-3'	59.4	55.0	95	
	5'-CCGAGATGGGGTTGATAATG-3'	57.3	50.0		
ZEB1	5'-GGCATACACCTACTCAACTACGG-3'	62.4	52.2	99	
	5'-TGGGCGGTGTAGAATCAGAGTC-3'	62.1	54.5		
Slug	5'-GGGGAGAAGCCTTTTTCTTG-3'	57.3	50.0	92	
	5'-TCCTCATGTTTGTGCAGGAG-3'	57.3	50.0		
HPRT	5'-TGACACTGGCAAAACAATGCA-3'	55.9	42.9	93	
	5'-GGTCCTTTTCACCAGCAAGCT-3'	59.8	52.4		
YWHAZ	5'-ACCGTTACTTGGCTGAGGTTGC-3'	63.2	54.6	98	
	5'-CCCAGTCTGATAGGATGTGTTGG-3'	61.0	52.2		
M 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24					
				en de la composition	
1517 bp					
1517 bp					
300 bp					
100 bp					
	A DESCRIPTION OF A DESC				

2.0 – Immunofluorescence

OPCT-1, P5B3 and P4B6B cells (1x10⁴) were seeded upon fluorescence compatible 96-well plates (BD Biosciences cat #353219) in 200 µL of medium. Plates were incubated for 24 h under SC, after which wells were washed x3 with 300 µL of PBS. Cells were fixed for 15 min with 200 µL of 4% w/v formaldehyde (Sigma cat #F8775) in PBS. Cells were washed x3 with 250 µL of PBS supplemented with 0.1% v/v Tween 20 and then blocked in wash buffer supplemented 10% v/v FCS for 1 h at RT. Primary staining was conducted with 200 µL/well in blocking buffer, overnight at 4°C. Cells were stained for the expression of fibronectin (FN) using a polyclonal rabbit anti-human fibronectin primary antibody (Sigma cat #F3648, 1:400 dilution) and for E-cadherin, vimentin and β-catenin using

monoclonal rabbit antibodies (Abs) from the Cell Signalling Technology EMT Ab sampler kit (cat #9782), all at the recommended dilution.

Wells were washed x3 with wash buffer and detection binding of primary antibody detected using an FITC-conjugated polyclonal swine anti-rabbit immunoglobulin secondary antibody (Dako cat #F005401-2, now Agilent, 1:40 dilution (in blocking buffer) for 2 h at RT). Plates were washed once prior to the addition of DAPI (VECTASHIELDTM, VECTOR Laboratories cat #H-1200) and imaged using a Leica TCS SP5 LSCM. Z-stacks were prepared for each sample (2 µM steps) with the same laser power/gain between samples. Background signal was assessed by excluding the primary antibody from the staining protocol for each condition (Fig. B.1).

Figure S3. No primary control micrographs for OPCT-1, P4B6B and P5B3. Cells were stained with an FITC-conjugated polyclonal swine anti-rabbit immunoglobulin secondary antibody (Dako cat #F005401-2, now Agilent, 1:40 dilution (in blocking buffer) and DAPI only. Fluorescence micrographs were taken at the maximum 488 nm laser gain used for FITC detection.

3.0 – Flow cytometry gating

The presence of CD44⁺CD24^{-/low} cells was determined by washing OPCT-1, P5B3 and P4B6B cells x2 with PBS, after which they were disassociated using Accutase[®] (Sigma cat #A6964). Cells (1x10⁶) were washed twice with 1 mL of PBS, pelleted and suspended in 100 μ L of PBS. The presence of viable cells was detected by incubating cells for 15 min with 1 mL of Invitrogen LIVE/DEAD[®] Fixable Violet Dead Cell Stain (ThermoFisher Scientific cat#L34955), after which cells were washed x2 with 1 mL of PBS, suspended in 100 μ L of PBS and incubated for 1 h at RT with 5 μ L of an FITC-conjugated rat anti-human CD44 monoclonal antibody (mAb) (clone IM7, ThermoFisher cat# eBioscience, 11-0441-82)

and an APC-conjugated mouse anti-human CD24 mAb (clone eBioSN3 (SN3 A5-2H10), ThermoFisher cat# 17-0247-41). Cells were washed with 2 mL of PBS and suspended in 500 µL of Beckman Coulter ISOTONTM II diluent prior to analysis using a Beckman Coulter GalliosTM flow cytometer. Individuals cells were identified using forward and side light scatter (FSc, SSc) and gated upon based on unstained samples, LIVE/DEADTM only, LIVE/DEADTM + CD44, LIVE/DEADTM + CD24 and LIVE/DEADTM + CD44 + CD24 (Fig. C.1, C.2, C.3). Data were acquired, analysed and presented using Beckman Coulter KaluzaTM acquisition and analysis software.

Figure S4. Representative gating strategy for determining CD44/CD24 expression by OPCT-1. Plots illustrate show forward/side scatter, LIVE/DEADTM and CD44/CD24 staining for no stain, LIVE/DEADTM stained, LIVE/DEADTM + CD44, LIVE/DEADTM + CD24 samples and samples with all stains.

Figure S5. Representative gating strategy for determining CD44/CD24 expression by P4B6B. Plots illustrate show forward/side scatter, LIVE/DEADTM and CD44/CD24 staining for no stain, LIVE/DEADTM stained, LIVE/DEADTM + CD44, LIVE/DEADTM + CD24 samples and samples with all stains.

Figure S6. Representative gating strategy for determining CD44/CD24 expression by P5B3. Plots illustrate show forward/side scatter, LIVE/DEADTM and CD44/CD24 staining for no stain, LIVE/DEADTM stained, LIVE/DEADTM + CD44, LIVE/DEADTM + CD24 samples and samples with all stains.

For determining vimentin expression, OPCT-1, P5B3 and P4B6B cultures were washed twice with PBS and disassociated using Accutase[®]. Cells (1x10⁶) were incubated with LIVE/DEAD[®] Fixable Violet Dead Cell Stain as described above. Cells were washed twice with 1 mL of PBS and fixed by resuspending in 2% v/v formaldehyde solution (Sigma cat# F8775) for 15 min at RT. Cells were washed in 2 mL of PBS and permeabilised by suspending in 100 µL of 0.5% v/v TweenTM 20 in PBS (Sigma cat# P9416). Cells were washed in 2 mL of 0.1% v/v TweenTM 20, in 100 µL of which they were then resuspended. Cells were then incubated with 10 µL PE-conjugated murine anti-human vimentin mAb

(clone RV202, BD Biosciences cat# 562337) for 1 h at RT. Cells were washed in 2 mL of PBS and suspended in 500 μ L ISOTONTM II diluent prior to analysis, as described. Gating was based on unstained samples, LIVE/DEADTM only and LIVE/DEADTM + vimentin (Fig. C.4, C.5 and C.6).

Figure S7. Representative gating strategy for determining Vimentin expression by OPCT-1. Plots illustrate show forward/side scatter, LIVE/DEADTM and CD44/CD24 staining for no stain, LIVE/DEADTM stained, LIVE/DEADTM + CD44, LIVE/DEADTM + CD24 samples and samples with all stains.

Figure S8. Representative gating strategy for determining Vimentin expression by P4B6B. Plots illustrate show forward/side scatter, LIVE/DEADTM and CD44/CD24 staining for no stain, LIVE/DEADTM stained, LIVE/DEADTM + CD44, LIVE/DEADTM + CD24 samples and samples with all stains.

Figure S9. Representative gating strategy for determining Vimentin expression by P5B3. Plots illustrate show forward/side scatter, LIVE/DEADTM and CD44/CD24 staining for no stain, LIVE/DEADTM stained, LIVE/DEADTM + CD44, LIVE/DEADTM + CD24 samples and samples with all stains.

4.0 – Live cell imaging

OPCT-1, P5B3 and P4B6B cells (1x10⁶) were seeded separately onto TCP and FS (6-well format) in 7 mL of medium. Cultures maintained under standard conditions and plates were imaged using a Leica TCS SP5 inverted laser scanning confocal microscope (LSCM). Bright-field micrographs were taken every 30 min for 96 h, videos were compiled from each point of interest using LAS-AF (Leica). For coculture experiments interrogating the cross-regulation of responses, this process was performed for 72 h of using P5B3 cells (1x10⁶), P4B6B cells (1x10⁶) and a 1:1 mixture (1x10⁶ total) of these lines. **Video S10:** Composition of cell imaging of OPCT-1 on TCP with a data interval of 0.5 h. **Video S11:** Composition of cell imaging of P5B3 on TCP with a data interval of 0.5 h. **Video S13:** Composition of cell imaging of P5B3 on FS with a data interval of 0.5 h. **Video S14:** Composition of cell imaging of P4B6B on TCP with a data interval of 0.5 h. **Video S16:** Composition of cell imaging of a 1:1 mixture of P5B3 and P4B6B on TCP with a data interval of 0.5 h.

Video S17: Composition of cell imaging of a 1:1 mixture of P5B3 and P4B6B on FS with a data interval of 0.5 h.

5.0 References

Pfaffl, M.W.. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29 (2001) e45.