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Diverse structure and reactivity of
pentamethylcyclopentadienyl
antimony(III) cations†

OmarQ3 Coughlin, a Tobias Krämer b and Sophie L. Benjamin *a

The pentamethylcyclopentadienyl (Cp*) antimony(III) cations

[Cp*2Sb][B(C6F5)4], [Cp2*Sb][OTf], [Cp*SbCl][B(C6F5)4] and

[Cp*Sb][OTf]2 have been isolated and structurally characterised.

[Cp*SbCl]+ forms dimers in the solid state via an intermolecular

Sb–Cl interaction. Initial screening shows that [Cp*SbCl][B(C6F5)4]

is significantly Lewis acidic and can catalyse the dimerisation of

1,1-diphenylethylene; [Cp2*Sb][B(C6F5)4] exhibits negligible Lewis

acidity. Highly unstable [Cp*SbF][B(C6F5)4] could not be isolated,

but stabilisation with the IMes ligand allowed isolation of [Cp*SbF

(IMes)][B(C6F5)4]. Fluorodechlorination of CH2Cl2 and PhCCl3 was

observed in the presence of crude [Cp*SbF][B(C6F5)4] in solution. A

computational mechanistic investigation suggests that the latter

proceeds via a carbocation intermediate.

There is an increasing recognition that main group reagents
have the potential to replace transition metals in synthetic
applications, giving advantages in cost and broadening the
scope of available reactivity.1–3 Organo-group 15 cations have
recently been identified as potent and versatile Lewis acid cata-
lysts. The majority of attention has focused on electrophilic
P(V) cations as catalysts for a varied and growing range of trans-
formations, including hydrosilylation, hydrodefluorination,
and arylation of benzyl fluorides.4–6 Lewis acid catalysis also
been demonstrated in several preliminary studies with anti-
mony(V) cations.7–9 A recent investigation into the use of pnic-
togen, chalcogen and halogen bonding for anion binding cata-
lysis demonstrated that neutral Sb(III) centres were by far the
most active compared with P, As, Se, Te, Br and I analogues,
giving a strong imperative for the further study of this behav-
iour.10 Introduction of halogen substituents at Sb has been
shown to increase the strength of pnictogen bonding,11 and
acceptor behaviour could be further enhanced by the introduc-

tion of a positive charge. Despite the renewed interest in Sb(V)
cations, little investigation has been made into the reactivity of
Sb(III) cations. Reported examples commonly feature stabilis-
ation from Lewis bases.12–14 We hypothesised that inclusion of
Cp* ligands would allow the isolation of Sb(III) cations without
the need for additional stabilisation, yielding significant Lewis
acidity at the Sb centre and making them ideal targets in the
search for novel, tuneable main group reagents.

Metallocenes are ubiquitous in transition metal chemistry.
First discovered serendipitously in 1951,15 ferrocene and its
derivatives now find diverse applications as catalysts,16 ligand
scaffolds17,18 and redox reagents.19 Main group ‘metallocenes’,
or more broadly main group complexes with cyclopentadienyl
(Cp) or substituted Cp′ ligands, have more variation in metal–
ligand binding modes, giving rise to greater structural diversity
than their transition metal counterparts.20–22 Intermolecular
interactions are prevalent, leading to the observation of
dimers, oligomers and polymers in the solid state.20 The
absence of available d-orbitals for bonding means that M–Cp′
bonds are often fairly labile and, unlike traditional metallo-
cenes, they show significant reactivity at both the metal centre
and the ligands. While there has been considerable research
into the properties of s-block and group 14 metallocenes,
reports of group 15 metallocenes are relatively uncommon,
and until recently have been limited to synthetic and structural
investigations.23–25 Very recently the dicationic [Cp*M]
[B(C6F5)4]2 (M = P, As) and [Cp*B(Mes)][B(C6F5)4]2 have been
reported, all of which are potent Lewis acids (Fig. 1) Q5.26–28

Fig. 1 Examples of neutral, monocationic and dicationic group
15 metallocenes reported in the literature.25–27,29

†Electronic supplementary information (ESI) available. CCDC 1967954–1967959.
For ESI and crystallographic data in CIF or other electronic format see DOI:
10.1039/d0dt00024hQ2

aDepartment of Chemistry and Forensics, Nottingham Trent University, Clifton Lane,

NG11 8NS Nottingham, UKQ4
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Equimolar addition of [(Et3Si)C7H8][B(C6F5)4] to Cp*2SbCl
in toluene led to the formation of the dark red sandwich ‘sti-
bocenium’ complex [Cp*2Sb][B(C6F5)4] (1) (Scheme 1).Q6 The
X-ray structure of 1 demonstrates that the Cp* ligands coordi-
nate to Sb with η4/η3 hapticity in the solid state (Fig. 2a). The
sandwich is somewhat bent with a Cp*centroid–Sb–Cp*centroid
angle of 158.08°. The lone pair in group 15 metallocenes tend
to be lower in energy and of greater s-character than other
organopnictogen(III) compounds; deviation from linear struc-
tures in main group metallocenes are prevalent and has been
attributed a combination of through space coupling effect and
some degree of s/p mixing for lone pair orbitals.22,30 Two alu-
minate salts of the same cation, [Cp*2Sb][AlX4] (X = Cl, I), have
previously been reported as well as with a BF4

−.23,25,31 Unlike
1, their structures contain Sb–anion interactions, with some-
what different bond lengths and angles in the cation com-
pared to 1 (Table 7, ESI†). Thus 1 is the first example of a truly
‘naked’ stibocenium cation. To probe the influence of elec-
tronic vs. packing effects on the structure, [Cp*2Sb][OTf] (1a)
was also synthesised and structurally characterised. 1a was

also found to have no Sb–anion interactions, providing a direct
comparison for 1 with a unique packing environment.
Structural parameters in the cationic [Cp*2Sb]

+ fragment in 1
and 1a were remarkably similar, suggesting that electronic
effects are predominant in determining the structural para-
meters of [Cp*2Sb]

+ in the solid state.
Equimolar addition of [(Et3Si)C7H8][B(C6F5)4] to Cp*SbCl2

in toluene yielded light yellow crystals of the half-sandwich
complex [Cp*SbCl][B(C6F5)4] (2). The [Cp*SbCl]+ cation forms
dimers in the solid state (Fig. 2b) through an intermolecular
Sb–Cl interaction (2.553(2) Å), indicating significant Lewis
acidity at the Sb centre. The Cp* ligand adopts η3 hapticity,
with a Cp*centroid–Sb distance of 2.142 Å and a Cp*centroid–Sb–
Clintra angle of 122.23°. This deviation from trigonal pyramidal
geometry suggests that the formal lone pair on the Sb is isotro-
pic, as is commonly observed in main group metallocenes.20 If
left to stand over a period of days in aromatic solvent, reaction
solutions of 2 have been found to decompose into a mixture of
products, including a significant quantity of 1. This type of
substituent scrambling is common in organoantimony chem-
istry and demonstrates the lability of the Sb–Cp* bonding.

With 1 and 2 in hand, we sought to investigate their coordi-
nation chemistry and reactivity. The 31P NMR spectrum
obtained from an equimolar solution of 2 and Et3PO in CD2Cl2
give a signal at 75 ppm (vs. 52 ppm for free Et3PO). The

1H
NMR spectrum obtained from an equimolar solution of 2 and
pyridine in CD2Cl2 also suggests the formation of an adduct,
indicated by a strong shift downfield of the pyridine protons
and a weak shift upfield on the Cp*methyl protons. The same
experiment with 1 gave a 1H NMR spectrum which was equi-
valent to the sum of the spectra of 1 and pyridine, suggesting
no adduct formation.

Initial reactivity studies were performed to evaluate the cata-
lytic potential of the new cations. The half-sandwich 2 cata-
lysed the dimerisation of 1,1-diphenylethylene to 1-methyl-
1,3,3-triphenyl-2,3-dihydro-1H-indene with 86% conversion
after 2 hours at room temperature at 5% loading. Under the
same conditions the sandwich complex 1 failed to yield any of
the dimerised product. 2 also shows some catalytic activity in
the Mukaiyama-aldol addition of methyl trimethylsilyl di-
methylketene acetal to benzaldehyde yielding methyl-2,2-
dimethyl-3-phenyl-3-trimethylsilyloxypropionate with 14% con-
version after 2 hours.

In order to modulate the electronic environment at Sb, tar-
geting an increase in Lewis acidity, we chose to pursue the syn-
thesis of the [Cp*SbF]+ cation, using an analogous strategy to
that employed in the synthesis of 2. We first developed a route
to the previously unreported neutral precursor Cp*SbF2 (3),
which was isolated following the reaction of SbF3 with one
equivalent of Cp*Li. X-ray analysis of the resultant oxygen sen-
sitive yellow crystals demonstrates that 3 is isostructural with
Cp*SbCl2 in the solid state, comprising molecular units with
η3 Cp* coordination, associated into chains via an inter-
molecular Sb–Cp* interaction (Fig. 33, ESI†).29

Reacting 3 with one equivalent of [(Et3Si)C7H8][B(C6F5)4] in
toluene at −78 °C results initially in isolation of a yellow oil

Scheme 1 Synthesis of 1 (top) and 2 (bottom). Conditions: Toluene,
room temperature (1 and 2), dichloromethane, room temperature (1a).

Fig. 2 (a) Solid state structure of the cation in 1. Ellipsoids are shown at
50% probability. Hydrogen atoms are omitted for clarity. The hapticity of
both Cp* rings is η4/η3. (b) Solid structure of the cation in 2. Ellipsoids
are shown at 50% probability. Hydrogen atoms are omitted for clarity.
The hapticity of the Cp* ring is η3.
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identified spectroscopically as [Cp*SbF][B(C6F5)4] (4). However,
this species is thermally unstable and all attempts to purify it
in the absence of chlorinated solvent resulted in isolation of
the sandwich complex 1 (74% by Cp*) and formation of an
intractable black solid. When dichloromethane is used in the
workup of 4, a light yellow solid is isolated which was identi-
fied as a mixture of 2 and a small amount of [Cp*H2][B(C6F5)4]
by NMR spectroscopy. Decomposition to [Cp*H2][B(C6F5)4] has
also been observed for the As analogue [Cp*AsF][B(C6F5)4]

27

and as a product of the reaction between Cp*H and [Ph3C][B
(C6F5)4].

32–34 In no case has the H source been identified. The
generation of the chloride derivative 2 is most easily rational-
ised as the result of a chloride/fluoride exchange between 4
and the dichloromethane solvent. Only a small number of pre-
vious studies report fluorodechloroination of dichloromethane
at room temperature,35,36 meriting further investigation of this
Swarts type reactivity. A crude sample of 4 was dissolved in
PhCCl3, generating PhCCl2F slowly as identified by 19F NMR
spectroscopy (Fig. 17–19, ESI†). No exchange was observed
upon addition of PhCCl3 to the decomposition products
obtained after workup of 4, suggesting it is the unstable fluor-
ostibocenium which is responsible.

In order to establish the identity of 4 unambiguously, we
sought to trap the reactive Cp*SbF+ fragment by forming a
stable Lewis base adduct. Addition of the NHC ligand IMes
(1,3-dimesitylimidazol-2-ylidene) to 3 followed by addition of
[(Et3Si)C7H8][B(C6F5)4] yielded [Cp*SbF(IMes)][B(C6F5)4] (5) on
workup. The structure of the cation in 5 shows one IMes ligand
co-ordinated to the Cp*SbF+ fragment normally, giving a highly
distorted trigonal pyramidal Sb centre (Fig. 3a). Crystals of 5
appear thermally stable under a N2 atmosphere, though they
decompose rapidly in air. 5 is a rare example of an NHC
complex with a main group metallocene fragment.37–39

Attempts to isolate the [Cp*Sb]2+ dication by the treatment
of either Cp*SbCl2 or 3 with two equivalents of [(Et3Si)C7H8]
[B(C6F5)4] failed, though recrystallization of the crude products
from the latter reaction in CH2Cl2 resulted in the isolation of
co-crystallised 2/4 (Fig. 34, ESI†), giving further proof of the

existence of the elusive 4. However, treatment of Cp*SbCl2 with
two equivalents of [Me3Si][OTf] yielded the extremely sensitive
pink solid [Cp*Sb][OTf]2 (6) (Scheme 2).

X-ray structure analysis reveals that the triflate anions are
strongly co-coordinated to the Sb centre (mean Sb–O = 2.47 Å).
The structure consists of two pseudo-square pyramidal Sb moi-
eties (τ5 = 0.15) associated via a total of four longer inter-
molecular Sb⋯OTf contacts (Fig. 3b).40

The Sb–Cp*centroid distance (2.092 Å) is contracted in com-
parison to the other compounds reported here (cf. 2.294 Å and
2.142 Å for 1 and 2 respectively), suggestive of an increased
positive charge at Sb.

DFT calculations were used to gain further insight into the
electronic structures and reactivities of the stibocenium
species described above. The geometries of 1, 2 and 4 were
optimised at the M062X/def2SVP level of theory in conjunction
with the D3 empirical dispersion correction. Their Lewis
acidities were probed using calculated fluoride ion affinities
(FIAs). The FIAs (Table 8, ESI†) suggested the Lewis acidity
increases in the order Cp*2Sb

+ (628 kJ mol−1) < Cp*SbCl+

(733 kJ mol−1) < Cp*SbF+ (741 kJ mol−1). All have higher FIAs
than SbF5 (532 kJ mol−1) when calculated at the same level of
theory. When FIAs are calculated with a solvent correction (di-
chloromethane), the FIAs of these cations retain the same
trend but are no longer higher than that of SbF5. This suggests
that absence of any observable Lewis acidic reactivity in 1
could be a consequence of steric hindrance at the Sb centre
(Fig. 31, ESI†). In 1, the LUMO and LUMO+1 are virtually
degenerate orbitals of Py and Pz character respectively. The
HOMO is primarily of Cp* π system character and the lone pair
is pacified to HOMO−2. The primary Sb–Cp* bonding inter-
action is encompassed in the HOMO−3 (Fig. 37, ESI†). The
electronic structures of 2 and 4 are qualitatively equivalent

Fig. 3 (a) Solid state structure of the cation in 5. Ellipsoids are shown at
50% probability. Hydrogen atoms and disordered solvent are omitted for
clarity. The hapticity of the Cp* ring is η3. (b) Solid structure of 6.
Ellipsoids are shown at 50% probability. Intermolecular Sb–O inter-
actions are shown as a dotted line. Hydrogen atoms are omitted for
clarity. The hapticity of the Cp* ring is η5.

Scheme 2 Synthesis and in situ reactivity of 4 and synthesis of 5 and 6.
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(Fig. 38 and 39, ESI†). The LUMO and LUMO+1 are non-degen-
erate orbitals of Py and Pz character respectively. The HOMO−1
incorporates the Sb–Cp* bonding interaction and the lone pair
is pacified to HOMO−4.

Both 2 and 4 are dimeric in the solid state. To probe
whether this dimerisation is retained in solution, their struc-
tures were modelled in benzyl chloride using a polarizable
continuum model, which predicts that the 2 and 4 are mostly
monomeric in solution (Fig. 41, ESI†). The mechanism for flu-
oride/chloride exchange was also probed computationally
(Fig. 40, ESI†). In the case of exchange between PhCCl3 and 4,
the most plausible mechanism is initiated by chloride abstrac-
tion from PhCCl3 by Cp*SbF+, generating a carbocation inter-
mediate (via TS1, ΔG = 18.0 kcal mol−1), which then abstracts
fluoride from Cp*SbFCl (TS2, ΔG = 6.8 kcal mol−1). The reac-
tion is exergonic overall (ΔG = −9.0 kcal mol−1). Attempts to
model exchange between CH2Cl2 and Cp*SbF+ suggest that
this proceeds by a different mechanism which could not be
elucidated.

In conclusion, we have synthesised a series of stibocenium
cations Cp*2−nSbXn

+ (X = F, Cl; n = 0, 1) and Cp*3−nSb(OTf)n
and investigated the relationship between their structure and
reactivity. Replacement of a Cp* ligand with a halide yields sig-
nificant Lewis acidity. The reactive fluorostibocenium species
(Cp*SbF+) carries out an unprecedented Swarts type fluorode-
chloroination under ambient conditions. We are currently
further investigating the reactivity of these cations.
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