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Abstract: To investigate the effects of brassinosteroids on plant growth and nitrogen metabolism in
pepper seedlings under chilling stress, pepper seedlings with three true leaves were foliar pretreated
with 0.1 µM exogenous 24-epibrassinolide (EBR) before carrying out chilling stress for 7 days.
The results showed that perapplication of EBR mitigated the chill-induced decrease in plant growth
via maintenance of a high net photosynthetic rate (Anet), maximum quantum efficiency (Fv/Fm),
and photochemical quenching coefficient (qP). Exogenous EBR markedly increased the levels of partial
free amino acids (proline, arginine, aspartic acid, and glycine) and promoted nitrogen metabolism
through increasing the activities of nitrate reductase (NR), glutamine synthase (GS), glutamate
synthase (GOGAT), and glutamate dehydrogenase (GDH) in the leaves of pepper seedlings under
chilling stress. The effect of exogenous EBR on the content of reactive oxygen species was also
investigated. Pretreatment with EBR reduced the accumulation of hydrogen peroxide (H2O2) and
superoxide anion (O2

−·), and concomitantly alleviated membrane lipid peroxidation of pepper leaves
under chilling stress. These results suggest that foliar pretreatment of EBR has a positive effect on
improving the chilling tolerance of pepper seedlings via maintaining a high photosynthetic capability
and enhancing the nitrogen metabolism.

Keywords: amino acids; ammonium nitrogen; Capsicum annuum L.; nitrate metabolism enzymes;
photosynthesis; reactive oxygen species

1. Introduction

In winter and early spring, chilling stress is a critical threat restricting the growth and nutrition
quality improvement of vegetables produced in protected facilities [1,2]. To feed an ever-increasing global
population, it is important to develop an adaptive way to enhance the chilling stress tolerance of crops,
thereby minimizing the chill-induced yield loss [3]. It is well known that the damage caused by chilling
stress has given rise to the disturbance of many physiological metabolic processes of plants, particularly
photosynthesis [4]. Furthermore, nitrogen metabolism is another important physiological process that
is sensitive to low temperature stress [5,6]. In plants, there is a closed relationship between nitrogen
metabolism and photosynthetic capability [7]. Photosynthesis not only provides carbon skeletons but
also supplies reduction energy for nitrogen metabolism [8]. Approximately 25% of the energy generated
by photosynthesis can be used for nitrate reduction [9]. Thus, nitrate is mainly assimilated in plant leaves.
In addition, the key enzyme activity of nitrate reduction-nitrate reductase (NR) activity is modulated by
the photosynthetic electron transport chain [10]. Therefore, maintaining high photosynthetic capability
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under chilling stress will have a profound effect on nitrogen metabolism and the improvement of
nutrition quality in vegetables under chilling stress.

Reactive oxygen species (ROS) play a vital role in plant growth, development, and interaction
with biotic and abiotic stresses. As an important regulatory and signaling element in a variety of
cellular processes, ROS are constantly produced during the course of photosynthesis and respiration [11].
Chilling stress disrupts plant photosynthesis and induces the overproduction of ROS, including hydrogen
peroxide (H2O2) and superoxide radicals (O2

−). In general, the excessive accumulation of ROS is the main
cause of lipid peroxidation, the death of plant cells [12] and the inhibition of photosynthesis and nitrogen
assimilation [13]. Brassinosteroids (BRs), as a new type of plant hormone, play a vital role in regulating
plant growth and development. This class of phytohormones is represented by more than 60 compounds
that have been isolated or detected from more than 100 plant species, from algae to angiosperms, revealing
their ubiquitous distribution in the plant kingdom. Since being discovered in 1970, extensive research
has proved that BRs modulate a broad range of plant developmental and physiological responses,
such as the elongation and division of plant cells, the regulation of photosynthesis, and tolerance to
biotic and abiotic stresses [2,14,15]. Exogenous application of 24-epibrassinolide (EBR) could alleviate the
inhibition of photosynthesis induced by drought [16], salty stress [17], and low temperature stress [18].
We previously reported that exogenous EBR mitigates chilling stress by enhancing the autoxidation
system [19]. Furthermore, exogenous EBR reduces the content of ROS in suspension cells of alpine
mustard under chilling stress, protects the integrity of the cytoplasmic membrane, and mitigates the
damage caused by chilling stress [20,21]. In plants, light-responsive carbon fixation strongly coordinates
with nitrogen assimilation, which enables homeostatic maintenance of the carbon–nitrogen balance
in different environments [22]. However, the responses of EBR-induced chilling tolerance concerning
photosynthesis and nitrogen metabolism remain to be fully understood.

Therefore, the aim of this study was to investigate the response of the photosynthetic system
and nitrogen metabolism in pepper (Capsicum annuum L.) seedlings to exogenous EBR under chilling
stress. The results of this study could provide guidance for increasing the yield and quality of peppers
produced during the cold season.

2. Materials and Methods

2.1. Growth Conditions and Treatment

Pepper (Capsicum annuum L. var. Xiangyan 16#) seeds were sown in seedling trays with commercial
substrate and grown in an environment-controlled growth chamber. The light intensity, photoperiod,
and day/night temperature were 300 µmol m−2 s−1, 12 h, and 28/18 ◦C, respectively. The light sources
were delivered by cool fluorescent lamps (Philips T5). After full development of the three leaves,
similarly sized pepper seedlings were transplanted into plastic pots (10 cm in diameter, one plant per
pot) containing a mixture of peat and vermiculite (2:1, v/v) and grown in the same growth chamber
for another 7 days. Prior to being treated with different temperatures (28/18 ◦C or 15/5 ◦C) and under
different light conditions, these seedlings were sprayed with 0.1 µM EBR (Sigma-Aldrich, St. Louis,
MO, USA) or with the solution used for preparing the EBR working solution (double-distilled water
containing 0.05% Tween-20 as a surfactant) according to our previous studies [23]. These plants were
presprayed 3 times with an interval of 24 h. The spray volume was 2 mL per plant each time. To prepare
a 0.1 µM EBR working solution, EBR was dissolved using ethanol and then diluted using distilled
water containing 0.05% Tween-20. There were four treatments in the present study. In the first two
treatments, plants were grown in a growth chamber with a light intensity and day/night temperature
of 300 µmol m−2 s−1 and 28/18 ◦C, respectively. In this growth chamber, these plants, presprayed with
distilled water containing the same concentration of ethanol, 0.05% Tween-20 and 0.1 µM EBR, were
used as controls (Contr), while plants sprayed with 0.1 µM EBR were referred to as Contr + EBR. For the
other two treatments, plants were grown in another growth chamber with a day/night temperature of
15/5 ◦C (day/night) to carry out chilling stress. In the two chilling stress treatments, plants presprayed
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with distilled water containing the same concentration of ethanol and 0.05% Tween-20 and with 0.1 µM
EBR were represented as Chill and Chill + EBR, respectively. To eliminate the excess light energy
accumulation caused by high light intensity under low temperature conditions, the light intensity for
chill-treated plants was decreased from 300 to 100 µmol m−2 s−1 as described by Hu et al. [24] and
Shu et al. [6]. The details of these treatments are summarized in Table S1.

2.2. Plant Growth and Biomass Measurement

After being treated for 7 days, nine plants were randomly selected from each treatment to
determine the plant height, stem diameter, and biomass determination. To measure fresh weight (FW),
plants were weighed after being washed with distilled water. After FW measurement, plants were
dried in an oven at 85 ◦C for 72 h before dry weight (DW) determination. The method described by
Dickson et al. [25] was used to calculate the index of seedling quality as QI = (stem diameter/plant
height) × DW.

2.3. Gas Exchange and Chlorophyll Fluorescence Measurement

After being treated for 7 days, the third youngest and fully expanded leaves of plants from each
treatment were used to determine gas exchange using a portable photosynthesis system (Li-6400,
Li-COR Company, USA). The rapid light response curve was measured by 13 light intensities
(corresponding to the following light intensities: 1800; 1500; 1200; 1000; 800; 500; 300; 200; 150; 100; 50;
25; and 0 µmol m−2 s−1). The temperature and CO2 concentration in the leaf chamber were set at 25 ◦C
and 380 µmol mol−1, respectively. The actinic light of the leaf chamber was supplied by a red and blue
LED light source (10% blue, 90% red). The light response curve data were fitted using a nonrectangular
hyperbola of Thornley [26] by the nonlinear fitting procedure NLIN in the Sigmaplot software (Version
12.3, Systat Software Inc., San Jose, CA, USA) to calculate dark respiration (Rd) and the maximum
gross photosynthetic rate (Amax):

Anet =
α·PPFD + Amax −

√
(α·PPFD + Amax)

2
− 4·θ·PPFD·Amax

2·θ
−Rd (1)

where α is the light-limited quantum efficiency and θ is the scaling constant for the curvature.
The CO2 response (A-Ci) curve was conducted as described by Trouwborst et al. [27]. A modified

version of the Farquhar, von Caemmerer, and Berry (FvCB) model [28] was employed to fit the A-Ci
data. The method described by Sharkey et al. [24] and Trouwborst et al. [29] was used to estimate the
potential rate of electron transport under saturating light (Jmax) and the maximum velocity of Rubisco
for carboxylation (Vcmax).

After gas exchange measurement, the same leaves were used to monitor chlorophyll fluorescence
using a pulse-modulated fluorometer (FMS-2, Hansatech, Norfolk, UK). The maximum quantum
efficiency in the dark (Fv/Fm) was monitored after these leaves were dark-adapted in the leaf chamber
for at least 30 min. An actinic light source (600 µmol m−2 s−1) was applied to obtain Fs (steady-state
fluorescence yield), followed by a second saturation pulse that was applied for 0.7 s to obtain Fm’
(light-adapted maximum fluorescence). The minimal fluorescence in the light (Fo’) was measured
when the actinic light was turned off in the presence of far-red light. The photosystem II (PSII) quantum
yield (ΦPSII) and the efficiency of excitation capture by open PSII centers at a steady state (Fv’/Fm’)
were determined according to the method of Genty et al. [30], while the photochemical quenching
coefficient (qP) was calculated according to the method of Kramer et al. [31]. The methods described
by Hussain and Reigosa [32] and Bian et al. [33] were employed to calculate excessive energy that had
accumulated in PSII as:

E = (1− qP) × F′V/F′m (2)
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The relative deviation from full balance between both photosystems, β/α − 1, was calculated from
the equation (1 − f)/f according to Li et al. [34]. β and α, representing the photon activity distribution
coefficients of PSII and PSI, were determined as:

β = 1/(1 + f) (3)

α = f/(1 + f), (4)

where f is defined as the degree of openness of the PSII reaction center and was calculated from the
following equation:

f = (Fm − Fs)/(Fm − Fo) (5)

2.4. Chlorophyll Content Determination

The chlorophyll content of pepper leaves under different treatments was spectrophotometrically
determined [35]. Briefly, leaf samples (100 mg) were extracted in 10 mL of 80% (v/v) acetone in
a dark environment at 4 ◦C until the leaf tissues turned white. The absorbance monitored at 470,
645, and 663 nm was used to measure the contents of chlorophyll a (Chl a), chlorophyll b (Chl b),
and carotenoids.

2.5. Determination and Histochemical Localization of H2O2, O2
−· and Lipid Peroxidation

The lipid peroxidation in plant leaves was represented as the accumulation of malondialdehyde
(MDA) according to the method of Yang et al. [36]. Briefly, leaf tissue was ground using thiobarbituric acid
and boiled at 100 ◦C for 20 min. The extracts were centrifuged at 15,000 g for 10 min after being cooled
at room temperature. The absorbance of the extracts determined at 450, 532, and 600 nm was used to
calculate the MDA content. The contents of H2O2 and O2

−· in plant leaves were spectrophotometrically
determined as described by Alexieva et al. [37] and Elstner and Heupel [38]. The absorption coefficient
of 0.28 µM−1 cm−1 was used to calculate the H2O2 content. The rate of O2

−· in leaves was calculated
according to the standard NaNO2 concentration gradient.

Nitroblue tetrazolium (NBT) staining and 3, 3-diaminobenzidine (DAB) staining were used to
conduct histochemical localization of H2O2 and O2

−· as described by Khokon et al. [39]. The detection
of lipid peroxidation was performed by staining fresh collected leaves in Schiff’s reagent for 60 min
until a pink color appeared according to the method of Pompella et al. [40].

2.6. Determination of Nitrate Nitrogen and Ammonium Nitrogen Concentrations

The concentration of NO3
− was measured spectrophotometrically [41]. Leaf tissue (0.5 g) was

ground with 10 mL of Millipore-filtered water and then boiled in a water bath for 30 min. After being
centrifuged at 2000× g for 15 min, 0.1 mL of the supernatant was mixed with 0.4 mL of 5% salicylic-H2SO4

and left to react for 20 min before 9.5 mL of 8% NaOH was added. The absorbance monitored at 410 nm
was used to calculate the NO3

− concentration with respect to the standard curve. NH4
+ was extracted

and analyzed by the ninhydrin hydrate (NIN) method described by Solorzano [42]. Briefly, 1.0 g of tissue
was ground in 10 mL of 10% acetic acid and then diluted to 25 mL with distilled water. The reaction
mixture contained 2 mL supernatant, 3 mL NIN, and 0.1 mL ascorbic acid. The mixture was boiled for
15 min and then cooled on ice. The absorbance of the mixture measured at 580 nm was used to calculate
the NH4

+ concentration.

2.7. Determination of Nitrogen Metabolism Enzyme Activity and Free Amino Acids

The NR activity in the pepper leaves was determined using the method of Gangwar and Singh [43].
The method of Jiao et al. [44] was used for the determination of glutamate synthase (GOGAT) activity.
The activities of glutamine synthase (GS) and glutamate dehydrogenase (GDH) were measured as
described by Shapiro and Stadtman [45] and Majerowicz et al. [46], respectively.
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Free amino acids were assayed according to Aurisano et al. [47]. Briefly, 100 mg of dry leaves
was used for the extraction of free amino acids by the addition of HCl to the hydrolysis tube before
being vacuum infiltrated, sealed, and finally hydrolyzed at 110 ◦C for 24 h. The extracts were diluted
to 25 mL with cooled hydrolysate and then filtered. The filtrate was dissolved in deionized water and
then dried by vacuum evaporation. The final dry matter dissolved in citrate buffer (67 mM, pH 2.2)
was used to determine the content of free amino acids by an amino acid analyzer (L-8900, Hitachi
High-Technologies Corporation, Tokyo, Japan).

2.8. Statistical Analyses

All the data were subjected to one-way ANOVA using the SAS 8.1 software (SAS Institute, Inc.,
Cary, NC, USA). The significant differences among treatments were assayed by Duncan’s multiple
range test at p < 0.05. The data were expressed as the mean ±S.E.

3. Results

3.1. Effects of Exogenous EBR on the Plant Growth and Foliar Pigment Contents of Pepper Seedlings

The plant growth and pigment contents were significantly decreased by chilling stress compared
with their respective controls. However, the foliar preapplication of EBR markedly promoted the plant
growth and QI of the pepper seedlings (Figure 1 and Table 1). Moreover, when the chilling-stressed
plants were pretreated with EBR, the plant height, stem diameter, fresh weight, dry weight, and QI
were significantly increased by 17.3%, 6.1%, 74.7%, 84.6%, and 63.6%, respectively, compared with
their controls (Table 1). Furthermore, preapplication of EBR counteracted chilling-induced decreases in
chlorophyll and carotenoid contents in the leaves of the pepper seedlings (Table 2).

Figure 1. The phenotypes of pepper seedlings under different temperature conditions treated with
or without 24-epibrassinolide (EBR). Contr, Control; Contr + EBR, Control with 0.1 µM EBR; Chill,
Chilling stress; Chill + EBR, Chilling stress with 0.1 µM EBR.
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Table 1. The effects of exogenous 24-epibrassinolide (EBR) on the plant growth of pepper seedlings
under different temperature conditions.

Treatment Plant Height
(cm)

Stem Diameter
(cm)

Fresh Weight
(FW, g)

Dry Weight
(DW, g)

Index of Seedling
Quality (QI)

Contr 11.80 ± 0.20 a 2.45 ± 0.05 b 2.07 ± 0.13 a 0.22 ± 0.01 a 0.045 ± 0.004 b
Contr + EBR 12.23 ± 0.25 a 2.77 ± 0.02 a 2.34 ± 0.31 a 0.24 ± 0.05 a 0.057 ± 0.003 a

Chill 9.03 ± 0.46 d 2.22 ± 0.07 c 0.96 ± 0.18 c 0.09 ± 0.02 c 0.022 ± 0.007 d
Chill + EBR 10.60 ± 0.26 c 2.36 ± 0.02 b 1.67 ± 0.17 b 0.16 ± 0.02 d 0.036 ± 0.002 c

Data represent the mean ±S.E. (n = 9). Values with different letters in the same column indicate significant difference
at p < 0.05 according to Duncan’s multiply range test.

Table 2. Effect of EBR on the chlorophyll and carotenoid contents of pepper seedlings under
chilling stress.

Treatment Chl a
(mg g−1 FW)

Chl b
(mg g−1 FW)

Chl a + b
(mg g−1 FW)

Chl a/b Carotenoids
(mg g−1 FW)

Contr 1.17 ± 0.0713 a 0.28 ± 0.0406 ab 1.48 ± 0.3041 a 4.22 ± 0.8569 a 0.28 ± 0.0180 ab
Contr + EBR 1.20 ± 0.1541 a 0.33 ± 0.0224 a 1.50 ± 0.0936 a 3.64 ± 0.4828 a 0.30 ± 0.0197 a

Chill 0.82 ± 0.0378 b 0.21 ± 0.0053 c 1.05 ± 0.0613 b 3.70 ± 0.2729 a 0.22 ± 0.0053 c
Chill + EBR 1.12 ± 0.0343 a 0.27 ± 0.0127 b 1.40 ± 0.0499 a 4.58 ± 0.8391 a 0.27 ± 0.0127 b

Data represent the mean ±S.E. (n = 3). Values with different letters in the same column indicate significant difference
at p < 0.05 according to Duncan’s multiply range test.

3.2. Exogenous EBR Enhances Photosynthesis of Pepper Leaves under Chilling Stress

Under normal temperature conditions, the values of Anet, gs, and Tr under Contr + EBR were
higher than those under Contr. Chilling stress led to significant decreases in those photosynthetic
parameters (except Ci). However, when chilling-stressed plants were pretreated with EBR, the values
of Anet, gs, and Tr were markedly increased by 66.7%, 53.5%, and 45.7%, respectively, compared with
those under chilling stress (Figure 2A,B,D). Notably, exogenous EBR had little effect on the value of Ci,
as shown by the comparable values of plants between EBR-treated and non-EBR-treated plants under
both normal temperatures and chilling stress conditions (Figure 2C).

Figure 2. Effect of exogenous EBR on gas exchange parameters of pepper seedlings. (A) The net rate
of photosynthesis; (B) stomatal conductance (gs); (C) the concentration of intercellular CO2 (Ci); (D)
transpiration rate (Tr). Contr, Control; Contr + EBR, Control with 0.1 µM EBR; Chill, Chilling stress;
Chill + EBR, Chilling stress with 0.1 µM EBR. Values are the means with standard errors, shown by the
vertical bars (n = 3). Different letters indicate significant differences among treatments at p < 0.05.
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3.3. Exogenous EBR Maintains High Photosynthesis Capability and Photosystem Balance in Pepper Leaves
under Chilling Stress

Foliar spray of EBR significantly affected Anet under different light intensities and intercellular
carbon dioxides. The enhanced effects of EBR on Anet became increasingly greater with the increase of
light intensity and intercellular carbon dioxide (Figure 3). Under normal growth conditions, foliar
spraying of EBR had little effect on the chlorophyll fluorescence parameters, as shown by the comparable
values of Fv/Fm, ΦPSII, qP, and Fv’/Fm’ between Contr and Contr + EBR. However, pretreated with EBR
significantly increased these fitting parameters of Amax and Vmax. Under chilling stress conditions,
the values of Fv/Fm, ΦPSII, qP, Fv’/Fm’, and these fitting parameters (except Rd) under Chill + EBR
were markedly higher than those under Chill (Table 3). Furthermore, the values of E and β/α − 1
under Chill were higher than those under Contr, indicating that chilling stress led to excessive energy
accumulation and imbalance between PSII and PSI in the leaves of the pepper seedlings. However,
pretreatment with EBR alleviated the chilling-stress-induced accumulation of excessive energy and
imbalance of photosystems, as shown by the lower E and β/α − 1 under Chill + EBR compared with
those under Chill (Table 3). These results indicate that the preapplication of EBR could enhance the
chilling tolerance of pepper seedlings in terms of the photosynthetic activity.

Figure 3. Effects of exogenous EBR on photosynthetic response curves of pepper seedlings under
chilling stress. (A) The response of the net rate of photosynthesis (Anet) to light irradiance; (B) the
response of Anet to intercellular carbon dioxide (Ci). Contr, Control; Contr + EBR, Control with 0.1 µM
EBR; Chill, Chilling stress; Chill + EBR, Chilling stress with 0.1 µM EBR. Values are the means with
standard errors, shown by the vertical bars (n = 3 or 4).

Table 3. The effects of exogenous EBR on different chlorophyll fluorescence and energy distribution
parameters measured or calculated for pepper leaves under chilling stress.

Contr Contr + EBR Chill Chill + EBR

Measured parameters

Fv/Fm 0.84 ± 0.021 a 0.85 ± 0.017 a 0.79 ± 0.010 c 0.81 ± 0.006 b
ΦPSII 0.74 ± 0.009 a 0.74 ± 0.008 a 0.58 ± 0.005 c 0.66 ± 0.004 b

qP 0.97 ± 0.002 a 0.97 ± 0.009 a 0.83 ± 0.013 c 0.88 ± 0.014 b
Fv
′/Fm

′ 0.76 ± 0.009 a 0.76 ± 0.003 a 0.70 ± 0.008 c 0.73 ± 0.006 b
E 0.021 ± 0.001 c 0.022 ± 0.007 c 0.12 ± 0.010 a 0.092 ± 0.012 b

β/α − 1 0.028 ± 0.002 c 0.029 ± 0.009 c 0.20 ± 0.019 a 0.14 ± 0.018 b

Fitting parameters

Amax 14.0 ± 0.25 b 15.7 ± 0.37 a 10.6 ± 0.15 d 11.9 ± 0.10 c
Rd 1.95 ± 12.9 ab 1.98 ± 4.65 a 1.38 ± 6.22 c 1.60 ± 0.67 bc

Jmax 82.3 ± 0.83 a 85.1 ± 1.33 a 71.1 ± 3.42 c 76.2 ± 1.02 b
Vmax 47.5 ± 0.87 b 51.4 ± 0.87 a 38.8 ± 1.32 d 44.3 ± 0.76 c

Data represent the mean ±S.E. (n = 3). Values with different letters in the same row indicate significant difference at
p < 0.05 according to Duncan’s multiply range test.
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3.4. Exogenous EBR Reduces ROS Accumulation and Mitigates Lipid Peroxidation in Pepper Leaves under
Chilling Stress

Compared with normal growth conditions, chilling stress led to significant increases in the content
of H2O2, the rate of O2

−·, and the MDA content by 134.6%, 79.6%, and 32.1%, respectively. Exogenous
EBR alleviated the chilling-stress-induced accumulation of ROS and membrane lipid peroxidation,
with the content of H2O2, the rate of O2

−· and the MDA content under Chill + EBR decreasing by 24.3%,
20.0%, and 13.9%, respectively. However, EBR application had little effect on ROS accumulation and
lipid peroxidation under normal growth conditions (Table 4). The positive effects of EBR on alleviating
chilling-induced injury were further verified by histochemical localization staining of H2O2, O2

−· and
lipid peroxidation in leaves of pepper seedlings (Figure 4A–C).

Table 4. Effect of exogenous EBR on reactive oxygen species (ROS) and membrane lipid peroxidation
of pepper seedlings.

Treatment. H2O2 (µmol g−1, FW) O2−· (µmol min−1 g−1, FW) MDA (µmol g−1, FW)

Contr 0.34 ± 0.017 c 0.22 ± 0.011 c 0.32 ± 0.009 c
Contr + EBR 0.33 ± 0.021 c 0.21 ± 0.025 c 0.32 ± 0.008 c

Chill 0.78 ± 0.025 a 0.40 ± 0.027 a 0.43 ± 0.011 a
Chill + EBR 0.59 ± 0.010 b 0.31 ± 0.017 b 0.36 ± 0.005 b

Data represent the mean ±S.E. (n = 3). Values with different letters in the same column indicate significant difference
at p < 0.05 according to Duncan’s multiply range test.

Figure 4. Exogenous EBR effects on levels of reactive oxygen species (ROS) and equivalents of
malondialdehyde (MDA). (A) Histochemical localization of H2O2 by DAB staining after 7 days of
chilling treatment; (B) histochemical localization of O2

−· by NBT staining; (C) histochemical localization
of MDA by Schiff’s reagent staining. Contr, Control; Contr + EBR, Control with 0.1 µM EBR; Chill,
Chilling stress; Chill + EBR, Chilling stress with 0.1 µM EBR.

3.5. Exogenous EBR Promotes Nitrogen Metabolism via Increasing the Activities of NR, GS, GOGAT, and
GDH in the Leaves of Pepper Seedlings

Nitrogen assimilation in pepper seedlings was significantly affected by exogenous EBR (Figure 5).
Under normal growth conditions, foliar pretreatment with EBR enhanced NO3

− accumulation but
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showed little effect on NH4
+ content. Similarly, exogenous EBR also increased the NO3

− content in
pepper leaves under chilling stress but led to a significant decrease in the content of NH4

+, as shown
by the higher NO3

− and concomitantly lower NH4
+ under Chill + EBR than those under Chill

(Figure 5A,B). Pretreatment with EBR showed little effects on the activities of NR, GS, GOGAT, and
GDH in pepper leaves under normal growth conditions. However, exogenous EBR alleviated the
negative effect of chilling stress on the activities of those nitrogen enzymes, with the activities of NR,
GS, GOGAT, and GDH under Chill + EBR increasing by 21.3%, 44.6%, 43.4%, and 58.3%, respectively,
compared with those under Chill (Figure 6).

Figure 5. Effect of exogenous EBR on the content of nitrate (A) and ammonium nitrogen (B) in pepper
seedlings. Contr, Control; Contr + EBR, Control with 0.1 µM EBR; Chill, Chilling stress; Chill + EBR,
Chilling stress with 0.1 µM EBR. Values are the means with standard errors, shown by the vertical bars
(n = 3). Different letters indicate significant differences among treatments at p < 0.05.

Figure 6. Effect of exogenous EBR on the enzyme activities of nitrogen metabolism in pepper seedlings
under chilling stress. (A) Nitrate reductase (NR) activity; (B) glutamine synthase (GS) activity; (C)
glutamate synthase (GOGAT) activity; (D) glutamate dehydrogenase (GDH) activity. Contr, Control;
Contr + EBR, Control with 0.1 µM EBR; Chill, Chilling stress; Chill + EBR, Chilling stress with 0.1 µM
EBR. Values are the means with standard errors, shown by the vertical bars (n = 3). Different letters
indicate significant differences among treatments at p < 0.05.
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3.6. Exogenous EBR Results in an Increase in Amino Acid Accumulation in the Leaves of Pepper Seedlings
under Chilling Stress

The accumulation of free amino acids was significantly affected by pretreatment with EBR
(Figure 7). Under normal growth conditions, the values of cysteine, lysine, threonine, tyrosine, valine,
and total free amino acids under Contr + EBR were higher than those under Contr. Under chilling
stress, exogenous EBR significantly improved the content of arginine, aspartic acid, glutamic acid,
glycine, and proline in the pepper leaves, with the values increasing by 10.2%, 4.6%, 8.7%, 11.9%, and
13.4%, respectively, but led to the contents of alanine, lysine, threonine, tyrosine, and valine decreasing
by 10.6%, 28.7%, 16.5%, 21.4%, and 12.3%, respectively (Figure. 7).

Figure 7. Effect of exogenous EBR on the amino acid content of pepper seedlings under low temperature
stress (%DW). Contr, Control; Contr + EBR, Control with 0.1 µM EBR; Chill, Chilling stress; Chill +

EBR, Chilling stress with 0.1 µM EBR. Values are the means with standard errors, shown by the vertical
bars (n = 3). Different letters indicate significant differences among treatments at p < 0.05.

4. Discussion

Brassinosteroids (BRs), as polyhydroxylated steroidal plant hormones, are involved in plant
physiological processes [14,48]. This present study extends our previous work on EBR in the regulation
of chilling tolerance from hormone metabolism, calcium signaling transduction, and cellular redox
homeostasis [19,49]. Here, we have demonstrated the positive role of EBR in enhancing plant growth
and development through maintaining higher photosynthetic capability and nitrogen metabolism
(Figure 8). However, these positive effects were more significant under chilling stress than under
normal growth conditions. Similar results were reported in tomatoes grown under different temperature
conditions [50]. This may lie in the fact that EBR-induced plant growth and development responses
are strictly concentration dependent and the optimal concentration for improving growth and nitrogen
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metabolism vary depending on the plant species, developmental stages, and growth conditions as well [51].
However, the in-depth mechanisms of BRs-induced stress tolerance still remain largely unknown.

Figure 8. Schematic representation of exogenous EBR effects on photosynthetic capability and nitrogen
metabolism in pepper seedlings under chilling stress.

In nature, the first reaction of plants to biotic or/and abiotic stress is a decrease in photosynthesis,
followed by plant growth retardation and loss of yield [52]. In the present study, exogenous application
of EBR alleviated chilling-stress-induced decreases in plant growth (Table 1). This phenomenon can
be explained by the higher photosynthetic capability after EBR application, as shown by the higher
photosynthetic parameters (e.g., Anet, Amax, and Jmax) under EBR treatments (Table 2). Similar results
were also reported in BR-treated tomato seedlings [6]. In plant leaves, Fv/Fm, qP, and Fv’/Fm’ are
important fluorescence parameters that reflect the status of photochemical quenching [53]. Fv/Fm is
also an indicator of photoinhibition, and the level of this parameter reflects the rate of damage to
PSII under stress conditions [32,34]. Under chilling stress conditions, the significantly higher Fv/Fm,
qP, and Fv’/Fm’ and concomitantly lower E and β/α − 1 in EBR-pretreated leaves (Table 3) indicate
that EBR mitigated the chilling-stress-induced inactivation of and damage to the photosynthetic
apparatus [35,54]. Together with the higher-fitted photosynthetic parameters observed under Chill
+ EBR (Table 3), these results confirmed the positive role of EBR in protecting photosystem stability,
thereby alleviating the chilling-stress-induced decrease in photosynthetic capability [18]. In this study,
foliar preapplication of EBR had little effect on Ci. Similar results were also reported in melon under
heat stress [55]. The increase or decrease in gs of pepper seedlings pretreated with EBR under chilling
or nonchilling conditions could not relate to the changes in Ci, indicating that gs was not the sole
factor for EBR-induced photosynthetic changes under different temperature conditions. Under stress
conditions, the reduced Anet can result from stomata or nonstomata limitations in higher plants [56].
The stomatal conductance (gs) and mesophyll conductance are two major constraints of Anet [57], and
there are revealing tradeoffs between mesophyll and stomatal conductance in response of different
stress [58]. Thus, the changes in Anet in the pepper seedlings under chilling stress are likely due to
the decrease in photosynthetic activity in mesophyll cells rather than reflecting a change in stomatal
behavior. This view could be further supported by the study of wheat treated with/without EBR under
salt stress [17].
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Under stress conditions, the reduction in photosynthetic capability caused by the decrease in the
process of photochemical quenching will lead to excessive accumulation of absorbed energy in PSII,
which will be used to generate ROS in plant leaves [59]. The light intensity and light spectra play
inevitable roles in chilling-induced photoinhibition, and high light intensity aggravates the negative
effects of chilling stress on plant growth and development [18]. In off-season cultivation facilities,
the chilling stress is always accompanied by low light conditions. Thus, when performing chilling
stress treatment, we reduced the light intensity to minimize the potentially negative effects of light
intensity on the photosystem under chilling stress. Therefore, the results of this study could more
realistically reveal the function of EBR in regulating plant chilling tolerance in protected facilities
during cold season. The results of this study confirmed the positive role of EBR in enhancing the
plant tolerance to chilling stress, as assayed by the lower content of MDA and ROS under Chill + EBR
(Table 4 and Figure 4).

Exogenous EBR has been shown to be involved in nitrogen metabolism, which plays a positive
role in nitrogen starvation tolerance in tomatoes [60]. In the present study, the exogenous EBR-induced
increases in the activities of nitrogen metabolism enzymes were observed only under chilling stress.
This is consistent with results of EBR on nitrogen metabolism in chill-stressed tomato seedlings
under [50] and in hypoxia-stressed cucumber seedlings [61]. In addition, exogenous EBR increased
NR activity and photosynthesis in plant leaves under chilling stress but led to NO3

− accumulation
in plant leaves. Similar results of EBR on nitrate metabolism were also reported by He et al. [41].
These results indicate that EBR not only plays a positive role in enhancing NO3

− assimilation but
may also be involved in regulating NO3

− absorption and transport in plants. The NH4
+ generated

from NO3
− assimilation, along with absorption from the soil, will be proportionately assimilated by

the GS/GOGAT pathway and GDH pathway [62,63]. It was speculated that GDH plays a unique
physiological role in the release of large amounts of ammonium in plants under abiotic stress [36,62].
In this study, foliar spraying of EBR reduced the potential toxicity induced by excess accumulation of
NH4

+ via improving the activity of nitrogen-ammonia anabolic enzymes (Figure 6), thereby increasing
the plant chilling tolerance.

The assimilation of nitrogen is directly responsible for biomass accumulation and crop yield [64].
Glutamine and glutamic acid produced via the GS/GOGAT pathway are the preconditions for the
synthesis of nitrogenous organics such as amino acids, nucleic acids, chlorophyll, and polyamines in
plants. The application of EBR increased the content of some soluble amino acids (Figure 7). Among
soluble amino acids, proline was regarded not only as a stabilizer of plant membranes under unfavorable
environmental conditions, but also as a free radical scavenger to enhance the anti-stress ability of
plants [65]. In the present study, the positive effects of EBR on mitigating the chilling-induced negative
effects on pepper seedlings could partly be attributed to the increase in free proline content after EBR
application. This view was supported by the study of Vidya Vardhini and Seeta Ram Rao [66], who found
that EBR enhances resistance to osmotic stress via increasing the proline levels.

Taken together, exogenous application of EBR enhanced the chilling tolerance of pepper seedlings
by maintaining higher photosynthetic capability and enhancing nitrogen metabolism. In addition to
enhancing NR activity, the accumulation of NO3

− in pepper seedlings after EBR application suggests
that EBR may participate in the regulation of NO3

− absorption and translation in plants. Therefore,
future studies concerning the analysis of genetics and metabolomics will shed light on the regulation
of EBR on plant growth and development.

5. Conclusions

Our study showed that foliar spraying with 0.1 µM EBR alleviated the inhibition of plant growth
under chilling stress by maintaining higher photosynthesis and promoting nitrogen metabolism.
In addition, EBR alleviated the membrane lipid peroxide caused by reactive oxygen species (O2

−· and
H2O2) under chilling stress. The result of this study paves the way toward improved plant yield under
low temperatures via the application of EBR. In the future, transcriptomic and metabolomic analyses
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will provide more information regarding how EBR regulates plant growth and development under
low temperature stress.
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4. Bilska, A.; Sowiński, P. Closure of plasmodesmata in maize (Zea mays) at low temperature: A new mechanism
for inhibition of photosynthesis. Ann. Bot. 2010, 106, 675–686. [CrossRef] [PubMed]

5. Airaki, M.; Leterrier, M.; Mateos, R.M.; Valderrama, R.; Chaki, M.; Barroso, J.B.; Del Rio, L.A.; Palma, J.M.;
Corpas, F.J. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum
L.) plants under low temperature stress. Plant Cell Environ. 2012, 35, 281–295. [CrossRef]

6. Shu, S.; Tang, Y.; Yuan, Y.; Sun, J.; Zhong, M.; Guo, S. The role of 24-epibrassinolide in the regulation
of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low
temperature and weak light stress. Plant Physiol. Biochem. 2016, 107, 344–353. [CrossRef]

7. Khripach, V.; Zhabinskii, V.; de Groot, A. Twenty years of brassinosteroids: Steroidal plant hormones warrant
better crops for the XXI century. Ann. Bot. 2000, 86, 441–447. [CrossRef]

8. Beevers, L.; Hageman, R. Nitrate reduction in higher plants. Annu. Rev. Plant Physiol. 1969, 20, 495–522.
[CrossRef]

9. Giagnoni, L.; Pastorelli, R.; Mocali, S.; Arenella, M.; Nannipieri, P.; Renella, G. Availability of different
nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines
with different nitrogen use efficiency. Appl. Soil Ecol. 2016, 98, 30–38. [CrossRef]

10. Chow, F.; Pedersén, M.; Oliveira, M.C. Modulation of nitrate reductase activity by photosynthetic electron
transport chain and nitric oxide balance in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta).
J. Appl. Phycol. 2013, 25, 1847–1853. [CrossRef]

11. Suzuki, N.; Miller, G.; Morales, J.; Shulaev, V.; Torres, M.A.; Mittler, R. Respiratory burst oxidases: The engines
of ROS signaling. Curr. Opin. Plant Biol. 2011, 14, 691–699. [CrossRef]

12. Gapper, C.; Dolan, L. Control of plant development by reactive oxygen species. Plant Physiol. 2006, 141,
341–345. [CrossRef] [PubMed]

13. Gouia, H.; Suzuki, A.; Brulfert, J.; Ghorbal, M.H. Effects of cadmium on the coordination of nitrogen and
carbon metabolism in bean seedlings. J. Plant Physiol. 2003, 160, 367–376. [CrossRef] [PubMed]

14. Khana, T.A.; Yusufb, M.; Ahmadc, A.; Zoobia, B.; Saeede, T.; Fariduddinf, Q.; Hayatf, S.; Mocka, H.; Wu, T.Q.
Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with
brassinosteroids and hydrogen peroxide under low-temperature stress. Food Chem. 2019, 289, 500–511.
[CrossRef] [PubMed]

http://www.mdpi.com/2073-4395/9/12/839/s1
http://dx.doi.org/10.1016/j.scitotenv.2014.10.075
http://www.ncbi.nlm.nih.gov/pubmed/25460946
http://dx.doi.org/10.1111/pce.13207
http://www.ncbi.nlm.nih.gov/pubmed/29663504
http://dx.doi.org/10.1093/aob/mcq169
http://www.ncbi.nlm.nih.gov/pubmed/20880933
http://dx.doi.org/10.1111/j.1365-3040.2011.02310.x
http://dx.doi.org/10.1016/j.plaphy.2016.06.021
http://dx.doi.org/10.1006/anbo.2000.1227
http://dx.doi.org/10.1146/annurev.pp.20.060169.002431
http://dx.doi.org/10.1016/j.apsoil.2015.09.004
http://dx.doi.org/10.1007/s10811-013-0005-8
http://dx.doi.org/10.1016/j.pbi.2011.07.014
http://dx.doi.org/10.1104/pp.106.079079
http://www.ncbi.nlm.nih.gov/pubmed/16760485
http://dx.doi.org/10.1078/0176-1617-00785
http://www.ncbi.nlm.nih.gov/pubmed/12756916
http://dx.doi.org/10.1016/j.foodchem.2019.03.029
http://www.ncbi.nlm.nih.gov/pubmed/30955642


Agronomy 2019, 9, 839 14 of 16

15. Yu, J.Q.; Huang, L.F.; Hu, W.H.; Zhou, Y.H.; Mao, W.H.; Ye, S.F.; Nogués, S. A role for brassinosteroids in the
regulation of photosynthesis in Cucumis sativus. J. Exp. Bot. 2004, 55, 1135–1143. [CrossRef] [PubMed]

16. Hu, W.H.; Yan, X.H.; Xiao, Y.A.; Zeng, J.J.; Qi, H.J.; Ogweno, J.O. 24-Epibrassinosteroid alleviate
drought-induced inhibition of photosynthesis in Capsicum annuum. Sci. Hortic. 2013, 150, 232–237.
[CrossRef]

17. Ali, Q.; Ashraf, M. Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat
plants by exogenously applied 24-epibrassinolide. Plant Growth Regul. 2008, 56, 107–116. [CrossRef]

18. Fang, P.; Yan, M.; Chi, C.; Wang, M.; Zhou, Y.; Zhou, J.; Shi, K.; Xia, X.; Foyer, C.H.; Yu, J. Brassinosteroids act
as a positive regulator of photoprotection in response to chilling stress. Plant Physiol. 2019, 180, 2061–2076.
[CrossRef]

19. Li, J.; Yang, P.; Gan, Y.T.; Yu, J.H.; Xie, J.M. Brassinosteroid alleviates chilling-induced oxidative stress in
pepper by enhancing antioxidation systems and maintenance of photosystem II. Acta Physiol. Plant. 2015, 37,
222. [CrossRef]

20. Liu, Y.; Jiang, H.; Zhao, Z.; An, L. Abscisic acid is involved in brassinosteroids-induced chilling tolerance in
the suspension cultured cells from Chorispora bungeana. J. Plant Physiol. 2011, 168, 853–862. [CrossRef]

21. Liu, Y.; Zhao, Z.; Si, J.; Di, C.; Han, J.; An, L. Brassinosteroids alleviate chilling-induced oxidative damage by
enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. Plant Growth
Regul. 2009, 59, 207–214. [CrossRef]

22. Chen, X.B.; Yao, Q.F.; Gao, X.H.; Jiang, C.F.; Harberd Nicholas, P.; Fu, X.D. Shoot-to-root mobile transcription
factor HY5 coordinates plant carbon and nitrogen acquisition. Curr. Biol. 2016, 26, 640–646. [CrossRef]

23. Li, J.; Yang, P.; Xie, J.; Yu, J. Effects of 24-epibrassinolide on growth and antioxidant enzymes system in
pepper roots under chilling stress. J. Nucl. Agric. Sci. 2015, 29, 1001–1008.

24. Hu, W.; Wu, Y.; Zeng, J.; He, L.; Zeng, Q. Chill-induced inhibition of photosynthesis was alleviated by
24-epibrassinolide pretreatment in cucumber during chilling and subsequent recovery. Photosynthetica 2010,
48, 537–544. [CrossRef]

25. Dickson, A.; Leaf, A.L.; Hosner, J.F. Quality appraisal of white spruce and white pine seedling stock in
nurseries. For. Chron. 1960, 36, 10–13. [CrossRef]

26. Thornley, J.H. Mathematical Models in Plant Physiology; Academic Press (Inc.) Ltd.: London, UK, 1976.
27. Trouwborst, G.; Hogewoning, S.W.; Harbinson, J.; van Ieperen, W. Photosynthetic acclimation in relation

to nitrogen allocation in cucumber leaves in response to changes in irradiance. Physiol. Plant. 2011, 142,
157–169. [CrossRef] [PubMed]

28. Farquhar, G.V.; von Caemmerer, S.V.; Berry, J. A biochemical model of photosynthetic CO2 assimilation in
leaves of C3 species. Planta 1980, 149, 78–90. [CrossRef] [PubMed]

29. Sharkey, T.D.; Bernacchi, C.J.; Farquhar, G.D.; Singsaas, E.L. Fitting photosynthetic carbon dioxide response
curves for C3 leaves. Plant Cell Environ. 2007, 30, 1035–1040. [CrossRef] [PubMed]

30. Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron
transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92. [CrossRef]

31. Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwards, G.E. New fluorescence parameters for the determination of
Q A redox state and excitation energy fluxes. Photosynth. Res. 2004, 79, 209. [CrossRef]

32. Hussain, M.I.; Reigosa, M.J. Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry,
non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species.
J. Exp. Bot. 2011, 62, 4533–4545. [CrossRef]

33. Bian, Z.; Yang, Q.; Li, T.; Cheng, R.; Barnett, Y.; Lu, C. Study of the beneficial effects of green light on lettuce
grown under short-term continuous red and blue light-emitting diodes. Physiol. Plant. 2018, 164, 226–240.
[CrossRef] [PubMed]

34. Li, X.G.; Meng, Q.W.; Jiang, G.Q.; Zou, Q. The susceptibility of cucumber and sweet pepper to chilling under
low irradiance is related to energy dissipation and water-water cycle. Photosynthetica 2003, 41, 259–265.
[CrossRef]

35. Bian, Z.H.; Cheng, R.F.; Yang, Q.C.; Wang, J.; Lu, C. Continuous light from red, blue, and green light-emitting
diodes reduces nitrate content and enhances phytochemical concentrations and antioxidant capacity in
lettuce. J. Am. Soc. Hortic. Sci. 2016, 141, 186–195. [CrossRef]

36. Yang, F.; Wang, Y.; Miao, L.F. Comparative physiological and proteomic responses to drought stress in two
poplar species originating from different altitudes. Physiol. Plant. 2010, 139, 388–400. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/jxb/erh124
http://www.ncbi.nlm.nih.gov/pubmed/15107450
http://dx.doi.org/10.1016/j.scienta.2012.11.012
http://dx.doi.org/10.1007/s10725-008-9290-7
http://dx.doi.org/10.1104/pp.19.00088
http://dx.doi.org/10.1007/s11738-015-1966-9
http://dx.doi.org/10.1016/j.jplph.2010.09.020
http://dx.doi.org/10.1007/s10725-009-9405-9
http://dx.doi.org/10.1016/j.cub.2015.12.066
http://dx.doi.org/10.1007/s11099-010-0071-y
http://dx.doi.org/10.5558/tfc36010-1
http://dx.doi.org/10.1111/j.1399-3054.2011.01456.x
http://www.ncbi.nlm.nih.gov/pubmed/21320128
http://dx.doi.org/10.1007/BF00386231
http://www.ncbi.nlm.nih.gov/pubmed/24306196
http://dx.doi.org/10.1111/j.1365-3040.2007.01710.x
http://www.ncbi.nlm.nih.gov/pubmed/17661745
http://dx.doi.org/10.1016/S0304-4165(89)80016-9
http://dx.doi.org/10.1023/B:PRES.0000015391.99477.0d
http://dx.doi.org/10.1093/jxb/err161
http://dx.doi.org/10.1111/ppl.12713
http://www.ncbi.nlm.nih.gov/pubmed/29493775
http://dx.doi.org/10.1023/B:PHOT.0000011959.30746.c0
http://dx.doi.org/10.21273/JASHS.141.2.186
http://dx.doi.org/10.1111/j.1399-3054.2010.01375.x
http://www.ncbi.nlm.nih.gov/pubmed/20444190


Agronomy 2019, 9, 839 15 of 16

37. Ahmadi, A.; Baker, D. The effect of water stress on the activities of key regulatory enzymes of the sucrose to
starch pathway in wheat. Plant Growth Regul. 2001, 35, 81–91. [CrossRef]

38. Elstner, E.F.; Heupel, A. Inhibition of nitrite formation from hydroxylammoniumchloride: A simple assay for
superoxide dismutase. Anal. Biochem. 1976, 70, 616–620. [CrossRef]

39. Khokon, M.A.R.; Okuma, E.; Hossain, M.A.; Munemasa, S.; Uraji, M.; Nakamura, Y.; Mori, I.C.; Murata, Y.
Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis.
Plant Cell Environ. 2011, 34, 434–443. [CrossRef]

40. Pompella, A.; Maellaro, E.; Casini, A.; Comporti, M. Histochemical detection of lipid peroxidation in the
liver of bromobenzene-poisoned mice. Am. J. Pathol. 1987, 129, 295.

41. He, X.; Mulvaney, R.L.; Banwart, W. A rapid method for total nitrogen analysis using microwave digestion.
Soil Sci. Soc. Am. J. 1990, 54, 1625–1629. [CrossRef]

42. Solorzano, L. Determination of ammonia in natural water by the phenolhypochlorite method Limnol.
Oceanography 1969, 14, 799–801.

43. Gangwar, S.; Singh, V.P. Indole acetic acid differently changes growth and nitrogen metabolism in Pisum
sativum L. seedlings under chromium (VI) phytotoxicity: Implication of oxidative stress. Sci. Hortic. 2011,
129, 321–328. [CrossRef]

44. Jiao, D.; Huang, X.; Li, X.; Chi, W.; Kuang, T.; Zhang, Q.; Ku, M.S.; Cho, D. Photosynthetic characteristics and
tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes. Photosynth. Res. 2002,
72, 85–93. [CrossRef]

45. Shapiro, B.; Stadtman, E. The regulation of glutamine synthesis in microorganisms. Annu. Rev. Microbiol.
1970, 24, 501–524. [CrossRef]

46. Majerowicz, N.; Kerbauy, G.; Nievola, C.; Suzuki, R. Growth and nitrogen metabolism of Catasetum
fimbriatum (Orchidaceae) grown with different nitrogen sources. Environ. Exp. Bot. 2000, 44, 195–206.
[CrossRef]

47. Aurisano, N.; Bertani, A.; Reggiani, R. Involvement of calcium and calmodulin in protein and amino acid
metabolism in rice roots under anoxia. Plant Cell Physiol. 1995, 36, 1525–1529. [CrossRef]

48. Bajguz, A.; Hayat, S. Effects of brassinosteroids on the plant responses to environmental stresses.
Plant Physiol. Biochem. 2009, 47, 1–8. [CrossRef]

49. Li, J.; Yang, P.; Kang, J.; Gan, Y.T.; Yu, J.H.; Calderón-Urrea, A.; Lyu, J.; Zhang, G.B.; Feng, Z.; Xie, J.M.
Transcriptome analysis of pepper revealed a role of 24-epibrassinolide in response to chilling. Front. Plant Sci.
2016, 7, 1281. [CrossRef]

50. Ogweno, J.O.; Song, X.S.; Shi, K.; Hu, W.H.; Mao, W.H.; Zhou, Y.H.; Salvador, N. Brassinosteroids alleviate
heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant
systems in Lycopersicon esculentum. J. Plant Growth Regul. 2008, 27, 49–57. [CrossRef]

51. Ahammed, G.J.; Xia, X.J.; Li, X.; Shi, K.; Yu, J.Q.; Zhou, Y.H. Role of Brassinosteroid in Plant Adaptation to
Abiotic Stresses and its Interplay with Other Hormones. Curr. Protein Pept. Sci. 2015, 16, 462–473. [CrossRef]

52. Almansa, E.M.; Espín, A.; Chica, R.M.; Lao, M.T. Nutritional response of seedling tomato plants under
different lighting treatments. J. Plant Nutr. 2017, 40, 467–475. [CrossRef]

53. Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59,
89–113. [CrossRef] [PubMed]

54. Nixon, P.J.; Michoux, F.; Yu, J.; Boehm, M.; Komenda, J. Recent advances in understanding the assembly and
repair of photosystem II. Ann. Bot. 2010, 106, 1–16. [CrossRef] [PubMed]

55. Velez-Ramirez, A.I.; van Ieperen, W.; Vreugdenhil, D.; Millenaar, F.F. Plants under continuous light.
Trends Plant Sci. 2011, 16, 310–318. [CrossRef] [PubMed]

56. Yang, Y.J.; Yu, L.; Wang, L.P.; Guo, S.R. Bottle gourd root stock-grafting promotes photosynthesis by
regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress.
Plant Physiol. 2015, 186, 50–58. [CrossRef]

57. Xiong, D.L.; Douthe, C.; Flexas, J. Differential coordination of stomatal conductance, mesophyll conductance
and leaf hydraulic conductance in response to changing light across species. Plant Cell Environ. 2018, 41,
436–450. [CrossRef]

58. Zait, Y.; Shtein, I.; Schwartz, A. Long-Term Acclimation to Different Stress Types: Revealing Tradeoffs
between Mesophyll and Stomatal Conductance. Available online: https://www.biorxiv.org/content/10.1101/

340786v1.full (accessed on 11 November 2019).

http://dx.doi.org/10.1023/A:1013827600528
http://dx.doi.org/10.1016/0003-2697(76)90488-7
http://dx.doi.org/10.1111/j.1365-3040.2010.02253.x
http://dx.doi.org/10.2136/sssaj1990.03615995005400060019x
http://dx.doi.org/10.1016/j.scienta.2011.03.026
http://dx.doi.org/10.1023/A:1016062117373
http://dx.doi.org/10.1146/annurev.mi.24.100170.002441
http://dx.doi.org/10.1016/S0098-8472(00)00066-6
http://dx.doi.org/10.1080/11263509509440949
http://dx.doi.org/10.1016/j.plaphy.2008.10.002
http://dx.doi.org/10.3389/fpls.2016.01281
http://dx.doi.org/10.1007/s00344-007-9030-7
http://dx.doi.org/10.2174/1389203716666150330141427
http://dx.doi.org/10.1080/01904167.2016.1187748
http://dx.doi.org/10.1146/annurev.arplant.59.032607.092759
http://www.ncbi.nlm.nih.gov/pubmed/18444897
http://dx.doi.org/10.1093/aob/mcq059
http://www.ncbi.nlm.nih.gov/pubmed/20338950
http://dx.doi.org/10.1016/j.tplants.2011.02.003
http://www.ncbi.nlm.nih.gov/pubmed/21396878
http://dx.doi.org/10.1016/j.jplph.2015.07.013
http://dx.doi.org/10.1111/pce.13111
https://www.biorxiv.org/content/10.1101/340786v1.full
https://www.biorxiv.org/content/10.1101/340786v1.full


Agronomy 2019, 9, 839 16 of 16

59. Shahbaz, M.; Ashraf, M.; Athar, H.R. Does exogenous application of 24-epibrassinolide ameliorate salt
induced growth inhibition in wheat (Triticum aestivum L.). Plant Growth Regul. 2008, 55, 51–64. [CrossRef]

60. Wang, Y.; Cao, J.J.; Wang, K.X.; Xia, X.J.; Shi, K.; Zhou, Y.H.; Yu, J.Q.; Zhou, J. BZR1 mediates
brassinosteroid-induced autophagy and nitrogen starvation in tomato. Plant Physiol. 2019, 179, 671–685.
[CrossRef]

61. Ma, Y.; Guo, S.; Shan, X.; Sun, J.; Wang, L.; Wang, Y.; Shu, S. Effect of exogenous 24-epibrassinolide on
nitrogen assimilation of cucumber seedlings under hypoxia stress. J. Nanjing Agric. Univ. 2015, 38, 538–545.

62. Diab, H.; Limami, A.M. Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase
(AlaAT) and Glutamate Dehydrogenase (GDH) Alternative route for nitrogen assimilation in higher plants.
Plants 2016, 5, 25. [CrossRef]

63. Masclaux-Daubresse, C.; Reisdorf-Cren, M.; Pageau, K.; Lelandais, M.; Grandjean, O.; Kronenberger, J.;
Valadier, M.H.; Feraud, M.; Jouglet, T.; Suzuki, A. Glutamine synthetase-glutamate synthase pathway and
glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiol. 2006,
140, 444–456. [CrossRef]

64. Liu, L.; Ji, H.; An, J.; Shi, K.; Ma, J.; Liu, B.; Tang, L.; Cao, W.; Zhu, Y. Response of biomass accumulation
in wheat to low-temperature stress at jointing and booting stages. Environ. Exp. Bot. 2019, 157, 46–57.
[CrossRef]

65. Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [CrossRef]
[PubMed]

66. Vardhini, B.V.; Rao, S.S.R. Amelioration of osmotic stress by brassinosteroids on seed germination and
seedling growth of three varieties of sorghum. Plant Growth Regul. 2003, 41, 25–31. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10725-008-9262-y
http://dx.doi.org/10.1104/pp.18.01028
http://dx.doi.org/10.3390/plants5020025
http://dx.doi.org/10.1104/pp.105.071910
http://dx.doi.org/10.1016/j.envexpbot.2018.09.026
http://dx.doi.org/10.1016/j.tplants.2009.11.009
http://www.ncbi.nlm.nih.gov/pubmed/20036181
http://dx.doi.org/10.1023/A:1027303518467
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Growth Conditions and Treatment 
	Plant Growth and Biomass Measurement 
	Gas Exchange and Chlorophyll Fluorescence Measurement 
	Chlorophyll Content Determination 
	Determination and Histochemical Localization of H2O2, O2- and Lipid Peroxidation 
	Determination of Nitrate Nitrogen and Ammonium Nitrogen Concentrations 
	Determination of Nitrogen Metabolism Enzyme Activity and Free Amino Acids 
	Statistical Analyses 

	Results 
	Effects of Exogenous EBR on the Plant Growth and Foliar Pigment Contents of Pepper Seedlings 
	Exogenous EBR Enhances Photosynthesis of Pepper Leaves under Chilling Stress 
	Exogenous EBR Maintains High Photosynthesis Capability and Photosystem Balance in Pepper Leaves under Chilling Stress 
	Exogenous EBR Reduces ROS Accumulation and Mitigates Lipid Peroxidation in Pepper Leaves under Chilling Stress 
	Exogenous EBR Promotes Nitrogen Metabolism via Increasing the Activities of NR, GS, GOGAT, and GDH in the Leaves of Pepper Seedlings 
	Exogenous EBR Results in an Increase in Amino Acid Accumulation in the Leaves of Pepper Seedlings under Chilling Stress 

	Discussion 
	Conclusions 
	References

