1	Title page
2	Microalgae-derived hydrochar application on rice paddy soil: Higher rice yield
3	but increased gaseous nitrogen loss
4	Qingnan Chu ^{1,2} , Lihong Xue ^{1,3} , Yanfang Feng ^{1,3,4} , Shan Yu ¹ ,
5	Lin Meng ⁵ , Gang Pan, ² Pengfu Hou ¹ , Linzhang Yang ¹
6	¹ Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of
7	Agriculture, Institute of Agricultural Resources and Environment, Jiangsu Academy of
8	Agricultural Sciences, Nanjing 210014, China
9	² Centre of Integrative Water-Energy-Food Studies, School of Animal, Rural and
10	Environmental Sciences, Nottingham Trent University, Brackenhurst Campus,
11	Nottinghamshire, NG25 0QF, UK
12	³ School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang,
13	212001, China
14	⁴ Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003,
15	USA
16	⁵ Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco
17	Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101,
18	China
19	
20	*Corresponding author:
21	Dr. Yanfang Feng
22	Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of
23	Agriculture, Institute of Agricultural Resources and Environment, Jiangsu Academy of
24	Agricultural Sciences, Nanjing, Jiangsu 210014, China.
05	

25 Email: jaasfengyanfang@163.com

26	Highlights	
20	ingingino	

27		Chlorella	vulgaris	hydrochars	(CVH)	were	fabricated	by	hydrothermal
28	car	bonization							
29	•	CVH addit	ion impro	ved N use eff	iciency, s	sugar co	ontent, and g	rain	yield of rice
30		CVH addit	ion stimul	ated NH ₃ vol	atilizatio	n and N	20 emissior	n fror	n paddy soil
31		Compared	to direct a	ddition of CV	√, CVH a	ddition	inhibited N	H3 vo	olatilization
32		Increasing	gaseous N	loss results f	rom phys	iochem	ical and mic	robio	ological factors

33 Abstract

34 Hydrothermal carbonization represents a promising technique for transforming 35 microalgae into the hydrochar with abundant phytoavailable nutrients. However, the 36 effects of microalgae-derived hydrochars on the gaseous nitrogen (N) loss from 37 agricultural field are still unclear. Chlorella vulgaris powder (CVP) and two Chlorella 38 vulgaris-derived hydrochars that employ water (CVHW) or citrate acid solution 39 (CVHCA) as the reaction medium were applied to a soil column system grown with 40 rice. The temporal variations of nitrous oxide (N₂O) emissions and ammonia (NH₃) 41 volatilization were monitored during the whole rice-growing season. Results showed 42 that CVHW and CVHCA addition significantly increased the grain yield (by 13.5-26.8% 43 and 10.5-23.4%) compared with control and CVP group, while concomitantly 44 increasing the ammonia volatilization (by 53.8% and 72.9%) as well as N₂O emissions 45 (by 2.17- and 2.82-fold) from paddy soil compared to control. The microbial functional 46 genes (AOA, AOB, nirk, nirS, nosZ) in soil indicated that CVHW and CVHCA 47 treatment stimulated the nitrification and denitrification, and inhibited the N2O 48 oxidation in soil. Notably, CVHW was recommended in the view of improving yield 49 and controlling NH₃ volatilization because no significant difference of the yield-scale 50 NH₃ volatilization was detected between control and CVHW treatment. This study for 51 the first time uncovered that Chlorealla vulgaris-derived hydrochars have positive 52 effects on rice N utilization and growth but negative effects on the atmospheric 53 environment.

54	Keywords: Ammonia volatilization; <i>Chlorella vulgaris</i> ; Hydrothermal carbonization;
55	Nitrogen use efficiency; Nitrous oxide emission; Non-point pollution

1. Introduction

57	Blue and green microalgae are predominant biological pollutants of harmful algal
58	blooms in eutrophicated waterbodies that have severe impacts on aquatic ecosystems
59	and human health (O'Neil et al., 2012; Zhang et al., 2016). These microalgae are
60	nutrients-rich, can store the inorganic nitrogen (N) and phosphorus (P) in excess within
61	the cells in the form of protein and polyphosphate (Solovchenko et al., 2016), and thus
62	own potential to be transformed from biowaste to biofertilizer (Ray et al., 2013;
63	Mukherjee et al., 2015; Santos and Pires, 2018). Chlorella, a green microalga, contains
64	significant quantities of N and P (up to 7%-12% and 1%-3% of their cell dry weight,
65	respectively) (Powell et al., 2009; Cabanelas et al., 2013; Zhu et al., 2015). However,
66	direct application of microalgae did not deliver significant difference on the growth of
67	wheat (Schreiber et al., 2018) or rice (Ray et al., 2013; Mukherjee et al., 2015), because
68	the dominant forms of the stored N and P in microalgae are proteins and polyphosphates
69	that are difficult to decompose in soil and unable to be directly utilized by plants.
70	Hydrothermal carbonization (HTC), which can transform the microalgae biomass into
71	hydrochars, is recommended because has been demonstrated to transform most
72	polyphosphates and proteins from lignocellulosic feedstock (Funke et al., 2013; Kruse
73	et al., 2016) and biosolids (Huang and Tang, 2015; Huang et al., 2017; Yu et al., 2019)

into orthophosphate and ammonium or nitrate. Also, HTC is cost-effective to avoid
dehydrating the microalgae collected from the wastewater.

76 Rice (Oryza sativa L.) is a primary food source for more than half of the world's 77 population (Khush, 2005). When applying microalgae-derived hydrochar to rice paddy 78 fields as a fertilizer, the effects on atmospheric environment should be considered, 79 because rice fields have been confirmed as a major emission source of ammonia (NH₃) 80 volatilization and nitrous oxide (N₂O) emissions (Bhattacharyya et al., 2013; Kim et al., 81 2015; Wang et al., 2018). Ammonia (NH₃) volatilization from agricultural fields is a 82 major non-point pollution (Norse, 2005) because it is widely dispersed to the 83 atmospheric environment, leading to atmospheric pollution, such as forming particulate 84 matters (e.g., PM_{2.5}, with diameters $\leq 2.5 \,\mu$ m) (Zhao et al., 2017; Dubache et al., 2019). 85 In paddy fields, N is often applied in excess of plant demand. As a result, large 86 proportions of overused N fertilizers are lost via NH₃ volatilization (Sun et al., 2017; 87 Sun et al., 2019; Hayashi et al., 2008). NH₃ volatilization from agricultural fields 88 accounts for 10-60% of the total nitrogen input (Tilman et al., 2011). In addition, the 89 midseason and final drainage periods stimulate nitrification, thus caused substantial 90 nitrous oxide (N₂O) emissions from paddy fields (Bhattacharyya et al., 2013; Ali et al., 91 2015; Zhou et al., 2018).

Generally, biochar application can reduce soil pH, and increase porosity, aeration, and redox potential, thus reducing NH_3 volatilization or N_2O emission by altering soil properties such as NH_4^+ -N adsorption and activity of nitrobacterium and

95	denitrobacterium (Nelissen et al., 2014; Feng et al., 2017; Mandal et al., 2019; Sha et
96	al., 2019). However, these controversial results also indicate that biochar application
97	can potentially promote NH ₃ volatilization (Sun et al., 2017; Feng et al., 2018b; H. Sun
98	et al., 2019b) or N ₂ O emissions (Duan et al., 2018; Senbayram et al., 2019; Zhang et
99	al., 2019), depending on different properties of soil or feedstock of biochars.
100	Microalgae-derived biochars own a number of distinctive attributes compared with
101	biochars from other feedstocks. For instance, the surface area of Chlorella vulgaris-
102	derived biochar was markedly lower than biochar produced from lignocellulosic
103	biomass (Wang et al., 2013), which may reduce the adsorption capacity to ammonium
104	(NH4 ⁺). The hydrolysis via HTC promotes the chain breakage in macromolecules,
105	which may provide more labile carbon (C) and N pools to nitrobacteria and
106	denitrobacteria. Therefore, it is necessary to investigate the effects of microalgae-
107	derived hydrochar application on gaseous N loss from rice paddy soils.
108	In this study, the primary objective was to investigate the response of NH3
109	volatilization and N ₂ O emissions when applying microalgal hydrochar as fertilizers.
110	We also aimed to identify the key biogeochemical factors influencing gaseous N loss
111	in rice paddy soil. We hypothesize that the addition of microalgae-derived hydrochars
112	would increase N gasification loss from paddy soil because of introduced labile C and
113	N sources to soil.

2. Materials and Methods

2.1. Hydrochar production

116	Chlorella vulgaris, a common microalgal strain existing in eutrophication, was
117	employed in this study and acquired from Guangyu BioScience Limited, Shanghai. The
118	inoculum was maintained in 2 L borosilicate bioreactors using sterilized medium, 3N-
119	BBMV. The operational conditions were as follows: constant aeration using 2.5% CO ₂
120	at 0.2 vvm, a photoperiod of 14:10 light : dark cycles, 150 μ mol/m ² /s of luminance and
121	temperature of 25 \pm 1 °C. Microalgal cells were collected from a cultivation broth using
122	centrifugation at 8,000 g for 5 min at 4 °C, washed using distilled water and lyophilized.
123	HTC was conducted in a high-pressure (approximate 8 Mpa, auto-generated during
124	HTC) hydrothermal reactor, using a solid:liquid ratio of 1:10 (w/w). The structure of
125	high-pressure hydrothermal reactor is shown in Fig S1. The reactor was sealed and
126	heated at 260 °C for 1 h and then allowed to naturally cool down to room temperature
127	overnight. The solid hydrochars produced by HTC were collected by centrifugation,
128	and dried at 70 °C until no further weight loss. Two hydrochars were produced using
129	different reaction media: CVHW (employing deionized water) and CVHCA
130	(employing 1 wt.% citric acid). Citrate acid was added to increase the hydrochar yield
131	(Heilmann et al., 2010), reduce hydrochar pH and promote the degradation of proteins
132	and polyphosphates by acidic hydrolysis (Huang et al., 2017).

133 2.2. Soil column experiment design

134	Polyvinyl chloride sleeves (diameter: 30 cm diameter; height: 50 cm) were filled
135	with dry paddy soil each. The paddy soil, which was classified as hydroagric Stahnic
136	Anthrosol, was collected from a paddy field in Yixing, Jiangsu Province in China.
137	During the rice season of the paddy field in 2017, the local average temperature was
138	25.7 °C and total precipitation was 1082.5 mm. Soil-column experiments were
139	performed in the glasshouse of Jiangsu Academy of Agriculture Science, with natural
140	light and temperature. Each soil column was filled with 35 kg of paddy soil. The soil
141	was air-dried and ground to pass through a 2 mm sieve. The soil had the following
142	properties: pH 6.42 (soil : water, 1 : 2.5), organic matter content, 2.28%, total N, 1.56
143	g kg ⁻¹ , total P 0.96 g kg ⁻¹ , and total potassium 4.12 g kg ⁻¹ . Rice (<i>Oryza sativa</i> L.,
144	Nangeng 46) was grown in the soil-column with three plants. All experiments were
145	performed in triplicate.

146 Prior to sowing, the Chlorella vulgaris powder (CVP), CVHW or CVHCA were 147 mixed with paddy soil at an application rate of 1%, respectively. Rice plants were 148 transplanted on June 29, 2018 and harvested on November 9, 2018. All treatments were applied with 240 kg urea–N ha⁻¹ throughout the rice-growing season. This amount of 149 150 N fertilizer was applied thrice: as a basal fertilizer (BF) prior to transplanting, as a first 151 supplementary fertilizer (SF1) after tillering and as a second supplementary N fertilizer (SF2) after panicle formation at a proportion of 4:4:2. The BF was applied at a rate of 15296 kg N ha⁻¹, 96 kg P₂O₅ ha⁻¹ and 192 kg K₂O ha⁻¹ in the form of urea, calcium 153154superphosphate, and potassium chloride. No hydrochar was applied to the control, but chemical fertilizers were applied in the same rate as other treatments. All plants were
flooded to a water level of 3–5 cm and a mid-season drainage was done during the
period from 7-18 August, 2018.

158

2.3. Characterization of hydrochar

159The pH value of hydrochar samples was determined using a solid/Milli-Q water ratio 160 of 1:2.5 (w/v). Total C, N, hydrogen (H), and sulfur (S) contents of hydrochar were 161 determined by an Elemental Analyzer (EL III; Elementar Analysensysteme GmbH, 162 Germany). The surface morphologies of the hydrochars were visualized by scanning 163 electron microscopy (SEM, Quanta200, FEI, Netherlands) at 5000×. The surface 164 functional groups were characterized by Fourier transform infrared spectroscopy (FTIR) 165 on an Agilent Cary 660 FTIR Analyzer (California), as described in a previous study 166 (Feng et al., 2018a). The surface elements contents (C, O, N, P, Ca, Si) on the surface of CVP, CVHW, and CVHCA were characterized using X-ray photoelectron 167 168 spectroscopy (XPS) technology (the details of analysis are shown in Supplementary 169 Materials). The specific surface area (SSA), porous diameter, and porous volume for 170 adsorption were measured using a NOVA 1200 analyzer, and the parameters were 171calculated using the Brunauer-Emmett-Teller (BET) method, using a surface area 172analyzer (Quadrasorb SI, America) (Yu et al., 2019; Chu et al., 2020).

173 2.4. Measurement of rice growth index, grain N content and grain yield

174 Rice plants were manually harvested from each pot at physiological maturity to 175 determine the grain N content and grain yield. The grain N content was determined 176 using the Kjeldahl method, as described in previous study (Chu et al., 2016b). 177 Furthermore, The N use efficiency was calculated as the percentage of applied fertilizer 178 N recovered in aboveground biomass minus that of the control treatment without N 179 fertilizer application (H. Sun et al., 2019a). The N content of aboveground biomass in 180 the control treatment without N fertilizer application was 1.18 g pot⁻¹.

181 **2.5.** Monitoring NH₃ volatilization and N₂O emissions from paddy soil

182 NH₃ volatilization was measured in parallel with floodwater sampling. The 183 continuous air-flow enclosure method was used to estimate daily NH₃ volatilization 184 fluxes, as described by Feng et al. (2017). In brief, volatilized NH₃ was captured in a 185 Plexiglas chamber with an inner diameter of 15 cm and 20 cm height using a mixture 186 of 80 mL 2% boric acid, an indicator of methyl red, bromocresol, and ethanol as NH₃ 187 absorbent. The NH₃-containing solution was titrated against with 0.01 M H₂SO₄. 188 The cumulative volatilized NH3 was calculated as the sum of daily NH3 volatilization 189 amounts during the monitoring period (The NH₃ volatilization mainly derives from the 190 urea addition and thus the first 7 days after urea application at three fertilization dates

191 was applied) after BF, SF1, and SF2, respectively.

The monitoring of N₂O, as well as gas flux measurement, were conducted as
described in previous study (Zhou et al., 2018). N₂O concentrations was determined by

194 gas chromatography (Agilent 7890, USA). The yield-scale NH₃ volatilization or N₂O
195 emissions were calculated using the aforementioned cumulative NH₃ volatilization loss
196 or N₂O emission loss by dividing it, respectively, with the rice grain yield of the
197 corresponding treatment.

198 2.6. Analysis of soil N and microbial biomass C and N

199 Fresh soil samples were collected from the top layer (0-20 cm) of soil at BF, SF1, 200 and SF2, respectively. The soil samples from each plot were mixed and homogenized, 201 grounded to < 2 mm, and then divided into two aliquots. The first section was frozen 202 immediately in liquid N₂ and stored at -80° C for molecular analysis; the remaining 203 section was stored at -20° C for nitrate (NO₃⁻-N) and ammonium (NH₄⁺-N) analysis, as 204 well as microbial biomass C and N. 205 Soil pH was determined by the same method as described above. The NH4⁺-N and 206 NO₃⁻-N extracted from the soil by 2.0 M KCl were measured using a San++ Continuous 207 Flow Analyzer, as previously described (Chu et al., 2016a; Feng et al., 2017). Soil 208 microbial biomass C and N were measured by the chloroform-fumigation-extraction 209 method described by (Moore et al., 2000). All results were reported as the averages of 210 the duplicated analyses and were expressed on a moisture-free basis. Moisture was 211 determined after drying at 105°C for 48h.

212 2.7. DNA extraction and quantitative polymerase chain reaction (qPCR)

213	Total DNA was isolated from soil samples (ca. 0.5 g) using the mericon DNA
214	Bacteria Kit and mericon Bacteria Plus Kit (Qiagen, Germany) according to the
215	manufacturer's instructions. PCR amplifications of genes of archael NH3-oxidizers
216	(AOA), bacterial NH ₃ -oxidiziers (AOB), nitrite reductase (nirK and nirS) and N ₂ O
217	reductase (nosZ) were performed for primers as shown in Table S1. The abundance of
218	these genes was quantified by qPCR using an AB17500 thermocycler (Applied
219	Biosytems Inc., USA) and was described as the gene copy number per gram of dry soil.
220	The details of this process are shown in the Supplementary Information.

221 **2.8.** Statistical analyses

Statistical analyses were performed using the SPSS version 18.0 (SPSS Inc. Chicago, IL, USA). One-way analysis of variance (ANOVA) was used to evaluate the results at P < 0.05 probability. Duncan's multiple range test was employed only when the ANOVA F-test indicated significant treatment effects at the significance level (P <0.05).

227 **3. Results**

228 **3.1.** Characteristics of hydrochars

Physiochemical characteristics of CVP, CVHW, and CVHCA are listed in Table 1,
where the major elements, including C, H, N, and S of the hydrochars are presented.
CVHCA exhibited an obviously lower pH than CVP or CVHW. Compared with CVP,

232 CVHW and CVHCA hydrochars had higher C and lower N and S content. The C/N and 233 H/C ratio established whether hydrochars were susceptible to mineralization and 234 degradation by soil microorganisms (Zimmermann et al., 2012; Mukome et al., 2013; 235Senbayram et al., 2019). By employing HTC, CVHW and CVHCA improved C/N 236 ratios by 2.15- and 1.99-fold, respectively, and the H/N ratio indicated a 2.09- and 1.69-237 fold improvement compared with CVP, respectively. In addition, the surface atomic 238 concentration was analyzed by XPS technology (Table S1). CVHW and CVHCA both increased surface O concentration and decreased surface N and P concentration 239 240 compared to CVP, suggesting the possible variation on the according surface O-, N-, 241 and P-functional groups. Surface Ca concentration was only detected in CVHW. 242 High SSA and porous volume levels are extremely desirable for enhancing nutrients 243 retention in soil because these features facilitate high mass transfer fluxes and 244 adsorption loading. With respect to adsorption capacity, CVHW and CVHCA had 245 significantly larger SSA (6.71- and 7.76-fold, respectively), and porous diameter (4.33-246 and 4.54-fold, respectively) than CVP. The porous volume of CVHW was 1.93-fold 247 larger than CVHCA, and that of CVHCA was 3.26-fold larger than CVP. Furthermore, 248 SEM structural image showed that more obvious crystal structures formed in the 249 CVHW and CVHCA hydrochars than in the CVP (Fig. S2). A larger porous diameter 250 and more abundant pores were observed in the SEM images of CVHW and CVHCA, 251which was supported by analysis using the BET method.

The FTIR spectra of the hydrochars revealed the functional groups present on their surfaces (**Fig. S3**). The differences between treatments were detected in the peak intensity of the aliphatic C–H at 2923.5 cm⁻¹ and 2852.7 cm⁻¹ wave numbers, in the – COOH peak at a wavenumber of 1700 cm⁻¹, in aliphatic C–O/C–O–C at 1028 cm⁻¹, in aromatic C-H at 825 cm⁻¹, and phenolic hydroxyl group (phenolic –OH) at 3420 cm⁻¹. The peak intensity for all these functional groups for the CVHW and CVHCA hydrochars was markedly lower than those for CVP.

259 **3.2.** Effects of CVP and hydrochars on the rice growth, quality and yield

260 The effects of hydrochars application on grain yield (dry weight, [DW]) and quality 261 are listed in Table 2. Compared with the control, CVHW and CVHCA significantly 262 increased grain yield by 26.7% and 21.2%, respectively. A similar trend was also 263 detected for harvest index and soluble sugars. The application of CVHW and CVHCA significantly improved grain N assimilation by 48.7% and 49.6% compared with 264 265control, and by 23.9% compared with CVP addition, respectively. Conversely, the 266 application of CVHW and CVHCA significantly reduced straw N assimilation by 42.9% 267 and 59.1% compared to control. These results suggested that the addition of hydrochars 268 promoted the N partition to edible part of rice. Moreover, the application of CVHW 269 and CVHCA significantly improved N use efficiency by 51.5% and 38.6% compared 270 with control, and by 38.5% and 32.7% compared with CVP addition. Similar trend was

detected in grain soluble sugars content among treatments. No significant differencewas detected in crude fiber or starch levels.

273 **3.3.** Effects of CVP and hydrochars on NH₃ volatilization

274The effects of CVP and hydrochars on NH₃ volatilization from rice paddy soil are 275shown in Fig. 1. The trends of NH₃ volatilization flux from paddy soil were quite 276 similar among all treatments (Fig. 1A). After BF the peak flux appeared at the second, 277 third, or fourth day and declined shortly afterwards. After SF1 the peak flux only 278 appeared at the second day and declined shortly afterwards. After SF2 no peak flux was 279 detected. CVHCA treatment frequently resulted in the maximum peak value of NH₃ 280 volatilization. Also, CVP and CVHW treatment increased NH3 volatilization compared 281 to control. Following BF, CVHCA addition significantly increased cumulative NH₃ 282 volatilization by 2.29-, 1.51-, and 1.30-fold compared with the control, CVP, and 283 CVHW, respectively (Fig. 1B). Following SF1, CVHW and CVHCA application 284 significantly increased cumulative NH₃ volatilization by 61.7% and 62.6% compared 285 with the control but reduced it by 35.7% and 34.9% compared with CVP application. 286 Following SF2, no significant difference was detected for cumulative NH₃ 287 volatilization. Yield-scale NH₃ volatilization is the quantification of cumulative NH₃ 288 volatilization over the entire growth stage of rice based on yield production. Yield-scale 289 NH₃ volatilization was comparable between the control and CVHW groups (Fig. 1C).

290 Compared with the control, CVP and CVHCA treatment significantly increased yield-

scale NH₃ volatilization by 51.5% and 42.4%, respectively.

292 **3.4.** Effects of CVP and hydrochars on N₂O emissions

293 The dynamics of N₂O emissions during rice-growing seasons under different 294 treatments are shown in Fig. 2A. Different treatments showed the similar temporal 295 trends in N₂O fluxes during the rice-growing season. Obvious emission peaks were 296 observed approximately 30, 45, 80, and 95 days following transplantation. The highest 297 emission peaks of CVHW and CVHCA were observed on the 45 days after 298 transplantation, and the emissions under CVHW and CVHCA were 3.08- and 2.78-fold, 299 and 4.61- and 4.17-fold higher than under control and CVP, respectively. The 300 cumulative N2O emissions after three fertilization dates affected by different treatments 301 are shown in Fig. 2B. Compared to control, CVP, CVHW and CVHCA all significantly 302 increased cumulative N₂O emissions and the significantly highest N2O emissions were 303 observed in CVHCA treatment; CVHCA application significantly increased 304 cumulative N₂O emissions by 3.20-, 1.46-, and 1.47-fold compared with control, CVP, 305 and CVHW, respectively. Moreover, CVP, CVHW and CVHCA all significantly 306 increased yield-scale N2O emissions as well, however, no significant difference was 307 detected between CVP and CVHW, or between CVP and CVHCA (Fig. 2C).

308 **3.5.** Effects of CVP and hydrochars on soil pH, NH₄⁺–N and NO₃⁻–N

309	The effects of CVP and hydrochars application on soil NH_4^+ –N and NO_3^- –N
310	concentrations after BF, SF1 and SF2 are shown in Fig 3. Following BF and SF1, the
311	CVP, CVHW, and CVHCA all significantly improved the soil NH4 ⁺ concentration
312	compared with control (Fig 3A). Compared with CVP, CVHCA significantly reduced
313	soil NH4 ⁺ concentration by 25.1% and 22.8% after BF and SF1, respectively. However,
314	after SF2, soil NH4 ⁺ concentration was comparable among the control, CVHW, and
315	CVHCA groups; only CVP significantly improved the soil NH4 ⁺ concentration.
316	Moreover, CVHCA significantly increased soil NO ₃ ⁻ –N concentrations compared with
317	the control, CVP and CVHW, irrespective of fertilization stages. Furthermore,
318	following BF CVHW significantly increased soil NO3-N concentrations by 46.5%
319	compared with the control; however, after SF1, CVHW significantly reduced soil
320	NO3 ⁻ -N concentrations by 2.06-fold. In addition, the effects of CVP, CVHW, and
321	CVHCA application on soil pH were consistent with the pH of materials; CVP, CVHW,
322	and CVHCA all significantly increased soil pH after different fertilization stage and the
323	strongest effect was detected for CVP treatment (Table. S3).

324 3.6. Effects of CVP and hydrochars on soil microbial C and N, and the abundance 325 of microbial functional genes controlling N₂O emission

The effects of CVP and *Chlorella vulgaris* hydrochar application on soil microbial C and N are shown in **Fig. 4**. CVHW and CVHCA application significantly reduced microbial C content compared with CVP. Compared with the control, CVP, CVHW,

329	and CVHCA all significantly reduced microbial N content. The effects of CVP and
330	Chlorella vulgaris hydrochars application on the abundance of microbial functional
331	genes controlling nitrification (AOA and AOB), denitrification (nirK and nirS) and N2O
332	oxidation (nosZ) are shown in Fig. 5. Compared with the control, only CVHCA
333	treatment significantly improved the abundance of AOA. Also, CVHCA treatment
334	significantly improved the abundance of AOB by 2.56-, 1.52-, and 4.26-fold compared
335	with the control, CVP, CVHW treatment. The Chlorella vulgaris hydrochars, CVHW
336	and CVHCA, significantly improved the abundance of <i>nirK</i> compared with CVP and
337	control. By contrast, the Chlorella vulgaris-derived hydrochars, CVHW and CVHCA,
338	significantly improved the abundance of <i>nirK</i> compared with CVP and control.
339	CVHCA treatment significantly ameliorated the abundance of <i>nirS</i> by 3.48-, 1.68, and
340	1.27-fold compared with the control, CVP, and CVHW treatment, respectively.
341	Compared with the control, CVP application significantly improved the abundance of
342	nosZ by 68.3%; however, CVHW and CVHCA application significantly reduced nosZ
343	levels by 44.8% and 56.1%, respectively. On the basis of these results, the application
344	of CVP and hydrochars had marked impacts on the activities of soil microorganisms
345	that are responsible for nitrification and denitrification.

4. Discussions

347 CVHW and CVHCA addition both significantly improved the grain yield of rice
348 (Table. 2), suggesting that HTC is an effective way to transform the *Chlorella vulgaris*

349	into a fertilizer. The important drivers of increased yield production resulting from
350	microalgae-based hydrochar addition is increased soil NH4 ⁺ -N concentration (Fig. 3)
351	and N use efficiency by rice plant (Table. 2). N is one of the most important mineral
352	nutrients for plant growth comprising 40-50% of dry matter of protoplasm, and is a
353	constituent of amino acids and chlorophyll, and the building blocks of protein
354	(Marschner, 2011; Chu et al., 2019). HTC was also shown to transform the bulk of
355	organic N compounds to inorganic N (Funke et al., 2013; Kruse et al., 2016; Yu et al.,
356	2019). The increased soil NH_4^+ concentration may stimulate rice growth because NH_4^+ -
357	N is the dominant N source for rice. Similar results of increased grain yield derived
358	from increased soil N retention and plant N use efficiency after hydrochar addition have
359	been reported previously (Sun et al., 2017; Yu et al., 2019; Chu et al., 2020).
360	Hydrochars can release an abundant amount of macro and micronutrients, most of
361	which are necessary and beneficial minerals for photosynthesis and plant growth (Feng
362	et al., 2018a; Joseph et al., 2018; Li et al., 2019). The lager SSA of CVHW and CVHCA
363	(8.31- and 9.36-fold higher than CVP, respectively) potentially plays an important role
364	in improving N and nutrients adsorption (Feng et al., 2017; Mandal et al., 2018). The
365	increased grain soluble sugar content (Table. 2) might be associated with the stimulated
366	photosynthesis resulting from mineral nutrients introduced by hydrochars, and this may
367	partly explain the increased yield (Chu et al., 2016a).
368	Chlorella vulgaris-derived hydrochars increased soil NH4 ⁺ concentration (Fig. 3A),

369 NH₃ volatilization (Fig. 1), N₂O emission (Fig. 2), and plant N use efficiency (Table.

370	2). Although the reduced soil microbial N can partly explain the N balance, the
371	increased N gasification and plant N uptake was more likely attributed to the increased
372	soil N mineralization. The N content in CVP and hydrochars was quite high (7.25-
373	12.29%, Table 1) and thus increased the N source for soil microorganisms and plants.
374	However, the low C/N ratio of CVP and hydrochars (3.92-8.44) were able to stimulate
375	soil microbial activity and further accelerated the decomposition of soil organic N
376	(Zimmermann et al., 2012; Mukome et al., 2013; Senbayram et al., 2019). Therefore,
377	the abundant N compounds in hydrochars may serve as a paradoxical aspect for
378	improving both plant N utilization and gaseous N loss to the atmospheric environment.
379	The increased NH ₃ volatilization exacerbated the non-point pollution.
380	The introduction of more N and H sources into soil, together with an increase in pore
381	conductivity that allows for gas exchange, may be important factors for promoting NH3
382	volatilization, as shown in previous studies on biochars (Sun et al., 2017; Feng et al.,
383	2018b; H. Sun et al., 2019b). Soil pH is a primary factor that affects NH ₃ volatilization
384	because an acidic state may promote the negatively charged organic functional groups
385	to become the main adsorption sites for ammonium, thereby preventing NH3
386	volatilization (Sha et al., 2019). CVP, which had the highest pH, caused the highest
387	volume of NH ₃ volatilization loss after BF (Fig. 1). HTC reduced pH of hydrochars,
388	particularly in the citric acid medium (CVHCA), thus helping reduce NH ₃ volatilization
389	loss at BF compared with CVP. Similar studies have also indicated an increase in NH3
390	loss following biochar amendment to rice paddy and coastal saline soils due to the

391	increased soil pH (Schomberg et al., 2012; Feng et al., 2018b). Following SF1, the
392	short-term acidifying disturbance became weak and NH3 volatilization loss became
393	stronger under CVHW and CVHCA treatments. Furthermore, CVHW and CVHCA
394	treatments both increased SSA compared with CVP, and thus were also expected to
395	increase the NH ₃ retention rather than NH ₃ volatilization. The larger porous volume
396	and porous diameter likely led to higher moisture retention in a bid to compete with
397	NH4 ⁺ –N adsorption (Sarkar et al., 2011; Mandal et al., 2019). Furthermore, the reduced
398	abundance of a carboxyl group in CVHW and CVHCA compared with CVP, as shown
399	in FTIR spectra (Fig. S3), may have resulted in the increased NH3 volatilization
400	because NH3 is an alkaline gas and the acidic surface functional groups on the
401	hydrochar, such as the carboxyl and carbonyl group, can protonate NH_3 gas to NH_4^+
402	ions (Spokas et al., 2012; Mandal et al., 2018). Therefore, the increased pH and reduced
403	abundance of acidic surface groups impart Chlorella vulgaris hydorchars to increased
404	NH3 volatilization loss. Additionally, due to the increased yield by CVHW addition, no
405	significant difference of the yield-scale NH3 volatilization was detected between
406	control and CVHW treatment. Therefore, in view of improving yield and avoiding NH ₃
407	volatilization, CVHW is a better recommendation.
408	Furthermore, CVP and Chlorella vulgaris hydrochars all significantly increased N2O

emissions compared with the control group (Fig. 2). Obvious emission peaks were
observed at the mid-season drainage (30 and 45 days after transplantation) and close to
harvest (80 and 95 days after transplantation). The mid-season drainage changed the

412	soil aeration and thus stimulate nitrification, thus caused substantial N2O emissions
413	from paddy soil (Bhattacharyya et al., 2013; Ali et al., 2015; Zhou et al., 2018). The
414	peaks of N2O emissions close to harvest was possibly caused by the accumulated N
415	source from the slow decomposition of CVP or hydrochars. In addition, contradictory
416	results that are related to the mitigation effects of biochar application on N2O emission
417	have been reported (Zhou et al., 2018; Borchard et al., 2019; Wu et al., 2020). The
418	liming effect of the CVP and hydrochars may also be responsible for increased N2O
419	emission, because increased soil pH above a neutral state enables the NH4 ⁺ from the
420	adsorption sites of soil minerals to further promote the nitrification (Mandal et al., 2018;
421	Senbayram et al., 2019). However, the inconsistent results between a lower pH in
422	CVHCA and increased N2O emission suggest that other factors are involved. Compared
423	with CVP, CVHCA significantly reduced the soil NH4 ⁺ concentration and increased
424	soil NO3 ⁻ concentration, which is consistent with increased abundances of AOA and
425	AOB (Fig. 5A and B). Therefore, CVHCA application improved the nitrification and
426	potentially promoted the generation of more N2O. Additionally, the increased
427	abundances of <i>nirK</i> and <i>nirS</i> by CVHCA and CVHW addition suggested the promotion
428	of nitrite reduction, as well as the production of N2O (Fig. 5C and D). Chlorella
429	vulgaris hydrochars readily released the labile C and N pool to the soil, which possibly
430	stimulates the activity of nitrobacteria and denitrobacteria. Similar results were reported
431	in previous studies using other biochars (Duan et al., 2018; Senbayram et al., 2019;
432	Zhang et al., 2019). Furthermore, the expression of nosZ was increased by CVP but

433	was inhibited by CVHW and CVHCA (Fig. 5E) which reflects the inhibition of CVP
434	on the oxidation of N_2O (Krause et al., 2018). This difference may serve as an important
435	reason for the increased N ₂ O emission by CVHW and CVHCA compared with CVP.

436 **5.** Conclusions

437 The results of this study demonstrated that Chlorella vulgaris-derived hydrochars 438 that employ a water or citrate acid solution as a reaction medium in HTC improved the 439 yield and soluble sugars of rice grains while concomitantly increasing the NH₃ 440 volatilization and N2O emissions from rice paddy soil. The positive effects on rice 441 growth and yield indicate that Chlorella vulgaris-derived hydrochars have the potential 442 to serve as a fertilizer that can recycle nutrients from wastewater (enriched by 443 microalgae) into the crop-soil system; this approach is superior to the direct application 444 of CVP. However, the relatively lower C/N and H/C ratio of Chlorella vulgaris-derived 445 hydrochars may readily provide a labile C pool for soil microorganisms to stimulate 446 gaseous N loss. In future studies the additional modifications on Chlorella vulgaris 447 hydrochars must be attempted to find out a way to improve the plant nutrients utilization 448 without polluting the atmospheric environment.

449 Acknowledgments

The contribution of Dr. Haijun Sun from Nanjing Forestry University is highly appreciated. Feng Y. thanks the financially support from Jiangsu Academy of Agricultural Sciences to study as a post-doctoral fellow in the University of

- 453 Massachusetts, Amherst. We also appreciate the funding by National Key Research and
- 454 Development Program of China (2018YFD0800206, 2016YFD0801101); Jiangsu
- 455 Province Agricultural Science and Technology Independent Innovation Fund Project
- 456 (CX(19)1007), and the National Natural Science Foundation of China (41877090,
- 457 41807099, 41601319).

458 **Conflicts of Interest**

459 The authors declare no conflict of interest.

460 Electronic supplementary material

- 461 The online version of this article contains supplementary material, which is available
- to authorized users.

References

464	Ali, M.A., Kim, P.J., Inubushi, K., 2015. Mitigating yield-scaled greenhouse gas
465	emissions through combined application of soil amendments: A comparative
466	study between temperate and subtropical rice paddy soils. Sci. Total Environ.
467	https://doi.org/10.1016/j.scitotenv.2015.04.090
468	Bhattacharyya, P., Roy, K.S., Neogi, S., Dash, P.K., Nayak, A.K., Mohanty, S., Baig,
469	M.J., Sarkar, R.K., Rao, K.S., 2013. Impact of elevated CO2 and temperature on
470	soil C and N dynamics in relation to CH4 and N2O emissions from tropical
471	flooded rice (Oryza sativa L.). Sci. Total Environ.
472	https://doi.org/10.1016/j.scitotenv.2013.05.035
473	Borchard, N., Schirrmann, M., Cayuela, M.L., Kammann, C., Wrage-Mönnig, N.,
474	Estavillo, J.M., Fuertes-Mendizábal, T., Sigua, G., Spokas, K., Ippolito, J.A.,
475	Novak, J., 2019. Biochar, soil and land-use interactions that reduce nitrate
476	leaching and N2O emissions: A meta-analysis. Sci. Total Environ.
477	https://doi.org/10.1016/j.scitotenv.2018.10.060
478	Cabanelas, I.T.D., Ruiz, J., Arbib, Z., Chinalia, F.A., Garrido-Pérez, C., Rogalla, F.,
479	Nascimento, I.A., Perales, J.A., 2013. Comparing the use of different domestic
480	wastewaters for coupling microalgal production and nutrient removal. Bioresour.
481	Technol. 131, 429–436. https://doi.org/10.1016/j.biortech.2012.12.152
482	Chu, Q., Sha, Z., Maruyama, H., Yang, L., Pan, G., Xue, L., Watanabe, T., 2019.
483	Metabolic reprogramming in nodules, roots, and leaves of symbiotic soybean in

- 484 response to iron deficiency. Plant. Cell Environ.
- 485 https://doi.org/10.1111/pce.13608
- 486 Chu, Q., Sha, Z., Nakamura, T., Oka, N., Osaki, M., Watanabe, T., 2016a.
- 487 Differential Responses of Soybean and Sorghum Growth, Nitrogen Uptake, and
- 488 Microbial Metabolism in the Rhizosphere to Cattle Manure Application: A
- 489 Rhizobox Study. J. Agric. Food Chem. 64, 8084–8094.
- 490 https://doi.org/10.1021/acs.jafc.6b03046
- 491 Chu, Q., Watanabe, T., Shinano, T., Nakamura, T., Oka, N., Osaki, M., Sha, Z.,
- 492 2016b. The dynamic state of the ionome in roots, nodules, and shoots of soybean
- 493 under different nitrogen status and at different growth stages. J. Plant Nutr. Soil
- 494 Sci. 179, 488–498. https://doi.org/10.1002/jpln.201600059
- 495 Chu, Q., Xue, L., Singh, B.P., Yu, S., Müller, K., Wang, H., Feng, Y., Pan, G., Zheng,
- 496 X., Yang, L., 2020. Sewage sludge-derived hydrochar that inhibits ammonia
- 497 volatilization, improves soil nitrogen retention and rice nitrogen utilization.
- 498 Chemosphere 245, 125558. https://doi.org/10.1016/j.chemosphere.2019.125558
- 499 Duan, P., Zhang, X., Zhang, Q., Wu, Z., Xiong, Z., 2018. Field-aged biochar
- 500 stimulated N 2 O production from greenhouse vegetable production soils by
- 501 nitrification and denitrification. Sci. Total Environ.
- 502 https://doi.org/10.1016/j.scitotenv.2018.06.166
- 503 Dubache, G., Li, S., Zheng, X., Zhang, W., Deng, J., 2019. Modeling ammonia
- 504 volatilization following urea application to winter cereal fields in the United

- 505 Kingdom by a revised biogeochemical model. Sci. Total Environ.
- 506 https://doi.org/10.1016/j.scitotenv.2018.12.407
- 507 Feng, Y., Sun, H., Han, L., Xue, L., Chen, Y., 2018a. Fabrication of hydrochar based
- 508 on food waste (FWHTC) and its application in aqueous solution rare earth ions
- adsorptive removal : Process, mechanisms and disposal methodology
- 510 Fabrication of hydrochar based on food waste (FWHTC) and its application in.
- 511 https://doi.org/10.1016/j.jclepro.2018.12.094
- 512 Feng, Y., Sun, H., Xue, L., Liu, Y., Gao, Q., Lu, K., Yang, L., 2017. Chemosphere
- 513 Biochar applied at an appropriate rate can avoid increasing NH 3 volatilization
- 514 dramatically in rice paddy soil. Chemosphere 168, 1277–1284.
- 515 https://doi.org/10.1016/j.chemosphere.2016.11.151
- 516 Feng, Y., Sun, H., Xue, L., Wang, Y., Yang, L., Shi, W., Xing, B., 2018b. Sawdust
- 517 biochar application to rice paddy field: reduced nitrogen loss in floodwater
- 518 accompanied with increased NH3 volatilization. Environ. Sci. Pollut. Res. 25,
- 519 8388–8395. https://doi.org/10.1007/s11356-017-1059-y
- 520 Funke, A., Mumme, J., Koon, M., Diakité, M., 2013. Cascaded production of biogas
- and hydrochar from wheat straw: Energetic potential and recovery of carbon and
- 522 plant nutrients. Biomass and Bioenergy.
- 523 https://doi.org/10.1016/j.biombioe.2013.08.018
- 524 Hayashi, K., Nishimura, S., Yagi, K., 2008. Ammonia volatilization from a paddy
- 525 field following applications of urea: Rice plants are both an absorber and an

- 526 emitter for atmospheric ammonia. Sci. Total Environ.
- 527 https://doi.org/10.1016/j.scitotenv.2007.10.037
- 528 Heilmann, S.M., Davis, H.T., Jader, L.R., Lefebvre, P.A., Sadowsky, M.J., Schendel,
- 529 F.J., von Keitz, M.G., Valentas, K.J., 2010. Hydrothermal carbonization of
- 530 microalgae. Biomass and Bioenergy 34, 875–882.
- 531 https://doi.org/10.1016/j.biombioe.2010.01.032
- 532 Huang, R., Fang, C., Lu, X., Jiang, R., Tang, Y., 2017. Transformation of Phosphorus
- 533 during (Hydro)thermal Treatments of Solid Biowastes: Reaction Mechanisms
- and Implications for P Reclamation and Recycling. Environ. Sci. Technol.
- 535 https://doi.org/10.1021/acs.est.7b02011
- 536 Huang, R., Tang, Y., 2015. Speciation Dynamics of Phosphorus during
- 537 (Hydro)Thermal Treatments of Sewage Sludge. Environ. Sci. Technol. 49,
- 538 14466–14474. https://doi.org/10.1021/acs.est.5b04140
- Joseph, S., Kammann, C.I., Shepherd, J.G., Conte, P., Schmidt, H.P., Hagemann, N.,
- 540 Rich, A.M., Marjo, C.E., Allen, J., Munroe, P., Mitchell, D.R.G., Donne, S.,
- 541 Spokas, K., Graber, E.R., 2018. Microstructural and associated chemical changes
- 542 during the composting of a high temperature biochar: Mechanisms for nitrate,
- 543 phosphate and other nutrient retention and release. Sci. Total Environ.
- 544 https://doi.org/10.1016/j.scitotenv.2017.09.200
- 545 Khush, G.S., 2005. What it will take to Feed 5.0 Billion Rice consumers in 2030.
- 546 Plant Mol. Biol. https://doi.org/10.1007/s11103-005-2159-5

547	Kim,	Y.,	Seo,	Y.,	Kraus,	D.,	Klatt, S	., Haas,	Е.,	, Tenhunen,	J.,	Kiese,	R.,	201	5.
-----	------	-----	------	-----	--------	-----	----------	----------	-----	-------------	-----	--------	-----	-----	----

- 548 Estimation and mitigation of N2O emission and nitrate leaching from intensive
- 549 crop cultivation in the Haean catchment, South Korea. Sci. Total Environ.
- 550 https://doi.org/10.1016/j.scitotenv.2015.04.098
- 551 Krause, H.M., Hüppi, R., Leifeld, J., El-Hadidi, M., Harter, J., Kappler, A.,
- Hartmann, M., Behrens, S., Mäder, P., Gattinger, A., 2018. Biochar affects
- 553 community composition of nitrous oxide reducers in a field experiment. Soil
- 554 Biol. Biochem. 119, 143–151. https://doi.org/10.1016/j.soilbio.2018.01.018
- 555 Kruse, A., Koch, F., Stelzl, K., Wüst, D., Zeller, M., 2016. Fate of Nitrogen during
- 556 Hydrothermal Carbonization. Energy and Fuels.
- 557 https://doi.org/10.1021/acs.energyfuels.6b01312
- Li, Z., Song, Z., Singh, B.P., Wang, H., 2019. The impact of crop residue biochars on
- silicon and nutrient cycles in croplands. Sci. Total Environ.
- 560 https://doi.org/10.1016/j.scitotenv.2018.12.381
- 561 Mandal, S., Donner, E., Smith, E., Sarkar, B., Lombi, E., 2019. Biochar with near-
- 562 neutral pH reduces ammonia volatilization and improves plant growth in a soil-
- 563 plant system: A closed chamber experiment. Sci. Total Environ. 697, 134114.
- 564 https://doi.org/10.1016/j.scitotenv.2019.134114
- 565 Mandal, S., Donner, E., Vasileiadis, S., Skinner, W., Smith, E., Lombi, E., 2018. The
- 566 effect of biochar feedstock, pyrolysis temperature, and application rate on the

567	reduction of	ammonia	volatilisation	from	biochar-amen	ded soil	. Sci.	Total

- 568 Environ. 627, 942–950. https://doi.org/10.1016/j.scitotenv.2018.01.312
- 569 Marschner, P., 2011. Marschner's Mineral Nutrition of Higher Plants: Third Edition,
- 570 Marschner's Mineral Nutrition of Higher Plants: Third Edition.
- 571 https://doi.org/10.1016/C2009-0-63043-9
- 572 Moore, J.M., Klose, S., Tabatabai, M.A., 2000. Soil microbial biomass carbon and
- 573 nitrogen as affected by cropping systems. Biol. Fertil. Soils.
- 574 https://doi.org/10.1007/s003740050646
- 575 Mukherjee, C., Chowdhury, R., Ray, K., 2015. Phosphorus recycling from an
- 576 unexplored source by polyphosphate accumulating microalgae and
- 577 cyanobacteria-a step to phosphorus security in agriculture. Front. Microbiol. 6,
- 578 1–7. https://doi.org/10.3389/fmicb.2015.01421
- 579 Mukome, F.N.D., Zhang, X., Silva, L.C.R., Six, J., Parikh, S.J., 2013. Use of
- 580 chemical and physical characteristics to investigate trends in biochar feedstocks.
- 581 J. Agric. Food Chem. https://doi.org/10.1021/jf3049142
- 582 Nelissen, V., Saha, B.K., Ruysschaert, G., Boeckx, P., 2014. Effect of different
- 583 biochar and fertilizer types on N2O and NO emissions. Soil Biol. Biochem. 70,
- 584 244–255. https://doi.org/10.1016/j.soilbio.2013.12.026
- 585 Norse, D., 2005. Non-point pollution from crop production: Global, regional and
- 586 national issues. Pedosphere.

587	O'Neil, J.M.,	, Davis, T.W	., Burford, M.A.	, Gobler, (C.J., 2012	2. The rise	of harmful
-----	---------------	--------------	------------------	-------------	------------	-------------	------------

- 588 cyanobacteria blooms: The potential roles of eutrophication and climate change.
- 589 Harmful Algae. https://doi.org/10.1016/j.hal.2011.10.027
- 590 Powell, N., Shilton, A., Chisti, Y., Pratt, S., 2009. Towards a luxury uptake process
- 591 via microalgae Defining the polyphosphate dynamics. Water Res.
- 592 https://doi.org/10.1016/j.watres.2009.06.011
- 593 Ray, K., Mukherjee, C., Ghosh, A.N., 2013. A way to curb phosphorus toxicity in the
- 594 environment: Use of polyphosphate reservoir of cyanobacteria and microalga as
- a safe alternative phosphorus biofertilizer for Indian agriculture. Environ. Sci.

596 Technol. 47, 11378–11379. https://doi.org/10.1021/es403057c

597 Santos, F.M., Pires, J.C.M., 2018. Nutrient recovery from wastewaters by microalgae

and its potential application as bio-char. Bioresour. Technol.

- 599 https://doi.org/10.1016/j.biortech.2018.07.119
- 600 Sarkar, B., Megharaj, M., Xi, Y., Naidu, R., 2011. Structural characterisation of
- 601 Arquad ® 2HT-75 organobentonites: Surface charge characteristics and
- 602 environmental application. J. Hazard. Mater.
- 603 https://doi.org/10.1016/j.jhazmat.2011.08.016
- 604 Schomberg, H.H., Gaskin, J.W., Harris, K., Das, K.C., Novak, J.M., Busscher, W.J.,
- 605 Watts, D.W., Woodroof, R.H., Lima, I.M., Ahmedna, M., Rehrah, D., Xing, B.,
- 606 2012. Influence of biochar on nitrogen fractions in a coastal plain soil. J.
- 607 Environ. Qual. https://doi.org/10.2134/jeq2011.0133

608	Schreiber, C., Schiedung, H., Harrison, L., Briese, C., Ackermann, B., Kant, J.,
609	Schrey, S.D., Hofmann, D., Singh, D., Ebenhöh, O., Amelung, W., Schurr, U.,
610	Mettler-Altmann, T., Huber, G., Jablonowski, N.D., Nedbal, L., 2018.
611	Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus
612	and to fertilize nutrient-poor soil substrates for crop plants. J. Appl. Phycol.
613	https://doi.org/10.1007/s10811-018-1390-9
614	Senbayram, M., Saygan, E.P., Chen, R., Aydemir, S., Kaya, C., Wu, D.,
615	Bladogatskaya, E., 2019. Effect of biochar origin and soil type on the greenhouse
616	gas emission and the bacterial community structure in N fertilised acidic sandy
617	and alkaline clay soil. Sci. Total Environ. 660, 69–79.
618	https://doi.org/10.1016/j.scitotenv.2018.12.300
619	Sha, Z., Li, Q., Lv, T., Misselbrook, T., Liu, X., 2019. Response of ammonia
620	volatilization to biochar addition: A meta-analysis. Sci. Total Environ.
621	https://doi.org/10.1016/j.scitotenv.2018.11.316
622	Solovchenko, A., Verschoor, A.M., Jablonowski, N.D., Nedbal, L., 2016. Phosphorus
623	from wastewater to crops: An alternative path involving microalgae. Biotechnol.
624	Adv. 34, 550–564. https://doi.org/10.1016/j.biotechadv.2016.01.002
625	Spokas, K.A., Novak, J.M., Venterea, R.T., 2012. Biochar's role as an alternative N-
626	fertilizer: Ammonia capture. Plant Soil. https://doi.org/10.1007/s11104-011-
627	0930-8

628	Sun, H., Lu, H., Chu, L., Shao, H., Shi, W., 2017. Biochar applied with appropriate
629	rates can reduce N leaching, keep N retention and not increase NH3
630	volatilization in a coastal saline soil. Sci. Total Environ.
631	https://doi.org/10.1016/j.scitotenv.2016.09.137
632	Sun, H., Zhang, H., Shi, W., Zhou, M., Ma, X., 2019a. Effect of biochar on nitrogen
633	use efficiency, grain yield and amino acid content of wheat cultivated on saline
634	soil. Plant, Soil Environ. https://doi.org/10.17221/525/2018-PSE
635	Sun, H., Zhang, H., Xiao, H., Shi, W., Müller, K., Van Zwieten, L., Wang, H., 2019b.
636	Wheat straw biochar application increases ammonia volatilization from an urban
637	compacted soil giving a short-term reduction in fertilizer nitrogen use efficiency.
638	J. Soils Sediments. https://doi.org/10.1007/s11368-018-2169-y
639	Sun, X., Zhong, T., Zhang, L., Zhang, K., Wu, W., 2019. Reducing ammonia
640	volatilization from paddy field with rice straw derived biochar. Sci. Total
641	Environ. 660, 512–518. https://doi.org/10.1016/j.scitotenv.2018.12.450
642	Tilman, D., Balzer, C., Hill, J., Befort, B.L., 2011. Global food demand and the
643	sustainable intensification of agriculture. Proc. Natl. Acad. Sci. U. S. A.
644	https://doi.org/10.1073/pnas.1116437108
645	Wang, H., Zhang, D., Zhang, Y., Zhai, L., Yin, B., Zhou, F., Geng, Y., Pan, J., Luo,
646	J., Gu, B., Liu, H., 2018. Ammonia emissions from paddy fields are

- 647 underestimated in China. Environ. Pollut.
- 648 https://doi.org/10.1016/j.envpol.2017.12.103

649	Wang, Z., Zheng, H., Luo, Y., Deng, X., Herbert, S., Xing, B., 2013. Characterization
650	and influence of biochars on nitrous oxide emission from agricultural soil.
651	Environ. Pollut. https://doi.org/10.1016/j.envpol.2012.12.003
652	Wu, Z., Zhang, Q., Zhang, X., Duan, P., Yan, X., Xiong, Z., 2020. Biochar-enriched
653	soil mitigated N2O and NO emissions similarly as fresh biochar for wheat
654	production. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134943
655	Yu, S., Feng, Y., Xue, L., Sun, H., Han, L., Yang, L., Sun, Q., Chu, Q., 2019.
656	Biowaste to treasure: Application of microbial-aged hydrochar in rice paddy
657	could improve nitrogen use efficiency and rice grain free amino acids. J. Clean.
658	Prod. 240, 118180. https://doi.org/10.1016/j.jclepro.2019.118180
659	Zhang, X., Duan, P., Wu, Z., Xiong, Z., 2019. Aged biochar stimulated ammonia-
660	oxidizing archaea and bacteria-derived N2O and NO production in an acidic
661	vegetable soil. Sci. Total Environ.
662	https://doi.org/10.1016/j.scitotenv.2019.06.128
663	Zhang, Y., Shi, K., Liu, J., Deng, J., Qin, B., Zhu, G., Zhou, Y., 2016. Meteorological
664	and hydrological conditions driving the formation and disappearance of black
665	blooms, an ecological disaster phenomena of eutrophication and algal blooms.
666	Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2016.06.244
667	Zhao, Z.Q., Bai, Z.H., Winiwarter, W., Kiesewetter, G., Heyes, C., Ma, L., 2017.
668	Mitigating ammonia emission from agriculture reduces PM2.5 pollution in the

- 669 Hai River Basin in China. Sci. Total Environ.
- 670 https://doi.org/10.1016/j.scitotenv.2017.07.240
- 671 Zhou, B., Feng, Y., Wang, Y., Yang, L., Xue, L., 2018. Chemosphere Impact of
- hydrochar on rice paddy CH 4 and N 2 O emissions : A comparative study with
- 673 pyrochar. Chemosphere 204, 474–482.
- 674 https://doi.org/10.1016/j.chemosphere.2018.04.056
- 675 Zhu, S., Wang, Y., Xu, Jin, Shang, C., Wang, Z., Xu, Jingliang, Yuan, Z., 2015.
- 676 Luxury uptake of phosphorus changes the accumulation of starch and lipid in
- 677 Chlorella sp. under nitrogen depletion. Bioresour. Technol. 198, 165–171.
- 678 https://doi.org/10.1016/j.biortech.2015.08.142
- 679 Zimmermann, M., Bird, M.I., Wurster, C., Saiz, G., Goodrick, I., Barta, J., Capek, P.,
- 680 Santruckova, H., Smernik, R., 2012. Rapid degradation of pyrogenic carbon.
- 681 Glob. Chang. Biol. https://doi.org/10.1111/j.1365-2486.2012.02796.x