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A B S T R A C T

The S100 family of proteins contains 25 known members that share a high degree of sequence and structural
similarity. However, only a limited number of family members have been characterized in depth, and the roles of
other members are likely undervalued. Their importance should not be underestimated however, as S100 family
members function to regulate a diverse array of cellular processes including proliferation, differentiation, inflam-
mation, migration and/or invasion, apoptosis, Ca2+ homeostasis, and energy metabolism. Here we detail S100
target protein interactions that underpin the mechanistic basis to their function, and discuss potential interven-
tion strategies targeting S100 proteins in both preclinical and clinical situations.

1. Introduction

Ca2+ can function as a second messenger involved in the control
of an array of cellular processes ranging from muscle contraction to
cell differentiation or cell death [1]. Ca2+ signalling and intracellular
Ca2+ levels are regulated by several Ca2+ transporters and membrane
channels. Importantly, Ca2+-binding proteins share a common ancestor,
and therefore the ability to regulate intracellular Ca2+ levels and many
Ca2+-signalling pathways [2]. These Ca2+ mediator proteins are charac-
terized by an EF-hand Ca2+-binding motif which transmits Ca2+ signals
by binding to, and thereby regulating, specific target proteins in their
Ca2+-bound conformation [3].

Within the EF-hand superfamily the S100 proteins form the largest
subfamily, with 25 currently known members comprising a set of
non-ubiquitous Ca2+-modulated proteins implicated in multiple intra-
cellular and/or extracellular regulatory activities [4]. Although S100
proteins are expressed exclusively in vertebrates, each has a unique ex-
pression and distribution profile amongst different tissues and cell types.
The key characteristics of each member are summarised in Table 1.

Due to the diverse range of cellular functions undertaken by S100
proteins [5] some family members have been given more than one
name. These include S100A4, which is also known as calvasculin,
S100A6, which is also known as calcyclin, and the dimer formed by
S100A8/A9, which is known as calprotectin (Table 1). Additionally,
calgranulins comprise a group of S100 proteins including S100A8 (cal-
granulin A), S100A9 (calgranulin B) and S100A12 (calgranulin C),
which act as sensors of intracellular Ca2+ levels.

Various Ca2+-binding proteins such as calmodulin or troponin-C
only act at the intracellular level. However, other S100 proteins

act both as intracellular mediators and as extracellular signalling pro-
teins, being thereby able to regulate activities of target cells in either a
paracrine or an autocrine manner [5].

2. S100 protein structure, expression, and function

2.1. Molecular structure

The S100s constitute a family of proteins where each protein is en-
coded by an individual gene [6]. Of the 25 human S100 genes, 19
(group A S100 proteins) are located within chromosome 1q21. Other
members (S100A11P, S100B, S100G, S100P and S100Z) map to differ-
ent regions [6]. Every member of the S100 protein family has a sim-
ilar molecular mass of 10–12 KDa, and they each share 25–65% sim-
ilarity in their amino acid sequence. They exist as anti-parallel homo-
and heterodimers, with each monomer consisting of two helix-loop-he-
lix EF-hands (EF-1 and EF-2) connected by a hinge region and flanked
by conserved hydrophobic residues at the C- and N-terminal ends [7].

In the last 15 years, 3D structures of S100 proteins have been re-
vealed in three different forms: bound to Ca2+, bound to its target
protein, or in its apo (Ca2+-free) form. [8,9]. These studies have re-
vealed that upon Ca2+ binding, the S100 proteins experience a con-
formational change that allows interaction with target proteins. Fur-
thermore, each S100 protein presents a dimeric form, in a symmetric
shape. Each monomer contains two EF-hand motifs, with the N-termi-
nal EF-hand comprising helix I, Ca2+-binding site I and helix II, and the
C-terminal EF-hand comprising helix III, Ca2+-binding site II and he-
lix IV. Both EF-hand motifs are separated by a flexible hinge region, or
linker region [10]. Ca2+ binding to site I results in changes to the back-
bone conformation, the protein thereby acquiring a ‘Ca2+-ready’ state.
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Table 1
S100 proteins: cell/tissue expression, function, interacting partners, and associated disease pathologies.

S100 protein
Other
names Expression Function Interactions

Associated
pathologies Regulation Refs

S100A1 S100 alpha Skeletal muscle
fibres,
cardiomyocytes
and certain
neuronal
populations.

Extracell: internalized
into neurons and
delivered to
endosomes, Golgi and
lysosomes. Enhances
Ca 2+ influx in
cardiomyocytes.
Intracell: associates
with cytoskeletal
components, interacts
with SR Ca 2+-ATPase
and RyR2 in the
heart, improving
contractile
performance.

Extracell: RAGE.
Intracell: SERCA,
RyR1 & 2, Fructose-
bisphosphate aldolase

S100A1 deficiency
results in
abnormal SR
Ca 2+ content and
fluxes,
deterioration of
cardiac
performance and
heart failure

Inhibitory transcription
factors downstream of
GPCRs and PKC

[171–173]

S100A2 S100L,
CAN19

Urothelium,
respiratory,
gastrointestinal
and squamous
epithelium.

Extracell: chemotactic
factor for eosinophils.
Intracell: binds to p53
and potentiates
tumour-suppressing
activity.

Extracell: RAGE. Downregulated in
many cancers, but
upregulated in
others

– [174–175]

S100A3 S100E Hair root cells
and some
astrocytomas

Epithelial cell
differentiation and
Ca 2+-dependent hair
cuticular barrier
formation.

RARα Involved in HCC
tumorigenesis and
tumour
aggressiveness

– [176–178]

S100A4 Metastasin1
(Mts1),
Calvasculin

Tumour and
stromal cells,
myeloid cells,
adipocytes,
fibroblasts,
immunocytes,
vascular cells.

Extracell: key role in
tumour cell survival
and metastasis.
Activates NF-κB,
inducing production
of pro-inflammatory
cytokines and
migration of
neutrophils,
monocytes, and
macrophages.
Activates ERK1/2,
modulating growth
and survival.
Intracell: induces
MMP expression and
interacts with
cytoskeletal proteins
NMIIA, tropomyosin
and actin to promote
cell migration.

Extracell: RAGE,
EGFR, Gαq-coupled
receptor. Intracell:
NMIIA, tropomyosin,
actin, p53, S100A1,
annexin2

Upregulated in
many cancers

Upregulated by β-
catenin/T-cell factor
complex

[110,159,179]

S100A5 S100D – – RAGE Upregulated in
bladder cancer
and recurrent
grade I
meningiomas

– [180]

S100A6 Calcyclin
(CACY)

Epithelial cells,
fibroblasts and
different kinds of
cancer cells

Extracell: activates
RAGE and promotes
apoptosis and
generation of ROS.
Stimulates insulin
release from
pancreatic islet cells.
Intracell: interacts
with caldesmon,
calponin,
tropomyosin and
kinesin to modulate
cell proliferation,
cytoskeletal dynamics
and tumorigenesis.

Extracell: RAGE Overexpressed in
AT.

– [181]
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Table 1 (Continued)

S100 protein
Other
names Expression Function Interactions

Associated
pathologies Regulation Refs

S100A7 Psoriasin1
(PSOR1)

Keratinocytes Extracell: signals
through RAGE to
activate NF-κB,
inducing production
of pro-inflammatory
cytokines and
migration of
neutrophils,
monocytes, and
macrophages.
Intracell: promotes
aggressive features
in breast cancer by
stimulating Akt and
NF-κB.

Extracell: RAGE Overexpression
induces leukocyte
infiltration linked
to inflammatory
skin diseases such
as psoriasis.

Upregulated in breast
cancer by
proinflammatory
cytokines and in
keratinocytes by IL-17,
IL-22 and flagellin.

[182,183]

S100A8 Calgranulin-
A (CAGA),
Calprotectin
1 L1

Macrophages,
dendritic cells,
microvascular
endothelial
cells, epithelial
cells and
fibroblasts upon
activation

Extracell: regulates
inflammation.
Chemotactic factor
for neutrophils.
Induces cell
differentiation and
TNF-α and IL-1β
production in
myeloid cells.
Scavenges
intracellular ROS
and stabilizes NO in
neutrophils,
protecting from
oxidative damage in
inflammatory
lesions. Intracell:
stimulates
keratinocyte
differentiation and
exerts anti-
inflammatory effects.

Extracell: GPCR,
TLR4, Scavenger
receptor CD36.
Intracell: telomerase

Overexpressed in
inflammatory and
autoimmune
conditions.

Induced by pro-
inflammatory stimuli,
TLR agonists and
oxidative stress in an
IL-10-dependent
manner.

[184–187]

S100A9 Calgranulin-
B (CAGB),
Calprotectin
L1H

Monocytes,
neutrophils and
dendritic cells;
Fibroblasts,
mature
macrophages,
vascular
endothelial cells
and
keratinocytes
upon activation

Extracell: involved in
leukocyte migration,
chemotactic for
neutrophils. Induces
TNF-α, IL-1β, IL-6
and IL-8 in
macrophages via
NF-κB activation.
Intracell: inhibits
myeloid
differentiation and
accumulation of
myeloid-derived
suppressor cells via
ROS generation,
contributing to
tumour growth.
Regulates S100A8/
S100A9 activities.

Extracell: RAGE,
TLR4, Scavenger
receptor CD36

Anti-
inflammatory in
healthy state,
while oxidative
stress activates its
pro-inflammatory
functions.
Contributes to the
pathogenesis of
autoimmune
diseases.

Upregulated by
oxidative stress,
corticosteroids,
cytokines and growth
factors.

[43,186,188],[189]

3



UN
CO

RR
EC

TE
D

PR
OO

F

L.L. Gonzalez et al. BBA - Molecular Cell Research xxx (xxxx) xxx-xxx

Table 1 (Continued)

S100 protein
Other
names Expression Function Interactions

Associated
pathologies Regulation Refs

S100A8/
S100A9

Calprotectin Monocytes,
neutrophils and
dendritic cells;
Fibroblasts,
mature
macrophages,
vascular
endothelial cells
and
keratinocytes
upon activation

Extracell: anti-
microbial properties.
Chemotactic for
neutrophils.
Regulates
inflammation, cell
proliferation,
differentiation and
tumour development
via NF-κB-mediated
pro-inflammatory
cytokine production
in monocytes and
macrophages.
Intracell: inhibits
myeloid cell
differentiation.
Facilitates FA
transport.
Cytoplasmic
Ca 2+sensor linking
Ca 2+influx to
phagosomal ROS
production. Induces
microtubule
polymerization and
F-actin cross-linking.

Extracell: RAGE,
Scavenger receptor

Overexpression
promotes
resistance to
TNF-α-induced
apoptosis and
induces malignant
progression
through ROS
production.
Mediates
differentiation of
psoriatic
keratinocytes.
Overexpressed in
atherosclerotic
lesions and
cardiovascular
events.

Regulated through an
autoinhibitory process
resulting in restriction of
inflammation.

[67,187],[190–192]

S100A10 Calpactin-1
(CAL-1 L)

Macrophages Regulator of cellular
plasmin production:
plasminogen
receptor, mediates
macrophage
recruitment into
tumour sites in
response to
inflammatory
stimuli. Bound to
annexin 2, serves as
binding scaffold for
pathogens and host
proteins, assisting
their trafficking and
anchorage to the
plasma membrane.
Plays important roles
in angiogenesis and
endothelial cell
function.

Annexin2, serotonin
1B receptor

Downregulated in
depressive-like
states. Implicated
in the action of
antidepressant
drugs and
electroconvulsive
seizures due to its
interaction with
serotonin
receptors.

Induced by EGF, TGF-α,
IFN-γ, NGF, KGF, RA
and thrombin, and by
the oncogenes PML-
RARα and Kras.

[193–196]

S100A11 S100C,
Calgizzarin

Chondrocytes,
luteal cells,
oviductal
epithelial cells

Extracell: promotes
chondrocyte
hypertrophic
differentiation and
stimulates RAGE-
dependent type X
collagen and IL-8
production. Intracell:
When
phosphorylated by
PKC-α, Ca 2+-bound
S100A11 inhibits cell
growth through
activation of the cell
cycle modulator
p21WAF1/CIP1.

Extracell: RAGE.
Intracell: Nucleolin,
Rad54B

Signal through
RAGE to activate
p38 MAPK,
accelerating
chondrocyte
hypertrophy and
matrix catabolism
to promote
osteoarthritis
progression.

Induced/released by
chondrocytes exposed to
IL-1β, TNF-α, and
CXCL8

[86],[197–200]
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Table 1 (Continued)

S100 protein
Other
names Expression Function Interactions

Associated
pathologies Regulation Refs

S100A12 Calgranulin-
C (CAGC)

Constitutively
expressed in
neutrophils,
monocytes and
early
macrophages.
Induced in
endothelial and
epithelial cells
and
proinflammatory
macrophages
under
inflammatory
condition.

Extracell: Activates
NF-κB, inducing
production of pro-
inflammatory
cytokines, TNF-α, and
chemokines for
neutrophil, monocyte
and lymphocyte
recruitment. Intracell:
modulates
interactions between
cytoskeletal elements
and membranes.
Inhibits aggregation
of aldolase and
GAPDH.

Extracell: RAGE,
GPCR, Scavenger
receptor. Intracell:
Aldolase, Nox-1.

Expression in
epithelial cells is
associated with
growth arrest.
Overexpression
causes VSMC
dysfunction and
aortic aneurysms,
linked to
leukocyte influx.

TNF-α, IL-6 and
endotoxin induce its
expression in monocytes/
macrophages; LPS in
smooth muscle cells.

[46],[201–203]

S100A13 – Fibroblasts,
osteoblasts and
melanoma cells

Involved in stress-
induced release of
FGF-1 and IL-1α from
several cell types.
Promotes its own
intracellular
translocation,
possibly via RAGE
signalling. Plays a key
role in tumour
growth, angiogenesis
and metastasis.

Extracell: RAGE.
Intracell: FGF-1, p40
Syt1

Overexpression
associated with
high intratumoral
angiogenesis and
poor prognosis in
patients with stage
I NSCLC.

Induced by FGF1 and
IL-1α upon intracellular
stress conditions.

[132],[204,205]

S100A14 – Lymphocytes,
epithelial cells

Extra: at low doses
stimulates
proliferation, at high
doses stimulates
apoptosis in ESCC
cells via RAGE
signalling. Intracell:
may function as a
cancer suppressor
affecting the p53
pathway and
modulating
expression of MMP1,
MMP2 and MMP9.

Extracell: RAGE.
Intracell: p53

Ectopic
overexpression
promotes motility
and invasiveness
of ESCC cells.

Induced by EGF through
p-ERK signalling
pathway in breast cancer
cells

[206–208]

S100A15 S100A7A Keratinocytes in
inflamed skin

Putative functional
role in innate
immunity, epidermal
cell maturation, and
epithelial
tumorigenesis. Acts as
chemotactic factor for
monocytes and
granulocytes. Acts
synergistically with
S100A7 in leukocyte
recruitment in vitro
and in vivo.

GPCR Potential
therapeutic target
for various human
disorders
including arthritis,
cancer, and AD.

Induced by LPS, IL-1β
and Th-1 cytokines

[209,210]

S100A16 S100F Astrocytes,
preadipocytes

Acts as a novel
adipogenesis-
promoting factor,
affecting negatively
insulin sensitivity.

p53 Upregulated in
several tumours

Increased expression in
AT of diet-induced obese
mice

[153],[211]
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Table 1 (Continued)

S100 protein
Other
names Expression Function Interactions

Associated
pathologies Regulation Refs

S100B – Astrocytes,
Schwann cells,
melanocytes,
chondrocytes,
adipocytes,
skeletal
myofibers,
certain dendritic
cell and
lymphocyte
populations

Extracell: Released
from astrocytes,
signals through
RAGE. At low
concentrations
stimulates
proliferation through
ERK1/2 and NF-κB-
mediated
upregulation of Bcl-2.
At high
concentrations
promotes
inflammatory
activities and kills
neurons through ROS
production. Intracell:
interacts with nuclear
NDR kinase and
blocks recruitment of
its substrates. May
maintain cell
proliferation with
beneficial effects
during development
and tissue
regeneration, and
detrimental effects
during tumorigenesis.

Extracell: RAGE,
FGFR. Intracell:
Tubulin, actin-
binding proteins,
annexin 6, Rac1, SRC
kinase, NDR kinase,
p53, intermediates
upstream of
IKKβ/NF-κB.

Involved in brain,
cartilage and
muscle repair,
activation of
astrocytes in brain
damage and
neurodegenerative
processes,
cardiomyocyte
remodelling after
infarction and in
melanomagenesis
and gliomagenesis.

NF-κB, EGF and IFN-γ
regulate S100B
expression in several cell
types.

[212–216]

S100G Calbindin-
D9K
(CABP9K)

Epithelial cells Acts as cytosolic
Ca 2+ buffer in many
tissues, resulting in
modulation of Ca 2+

adsorption.

– – – [217]

S100P S100E Lymphocytes,
epithelial cells

Extracell: mediates
tumour growth and
cancer cell drug
resistance through
RAGE signalling.
Intracell: promotes
transendothelial
migration of tumour
cells through
reduction of focal
adhesion sites.

Extracell: RAGE.
Intracell: ezrin/
radixin/moesin,
IQGAP1

Overexpressed in
clinically isolated
tumours,
associated with
metastasis, drug
resistance, and
poor clinical
outcome.

– [218–220]

S100Z – Lymphocytes – – Downregulated in
several tumours

– [221]

This involves a ~40° rotation of helix III to a more open structure that
exposes a broad hydrophobic region including residues from helices III
and IV in the C-terminal EF-hand and hinge region. This regulates pro-
tein activity by enabling the respective S100 protein to interact with
many different target proteins including receptors and other S100 mem-
bers [3,11].

Certain S100 members have been described to bind to the same tar-
get molecules. For instance, S100A1, S100A6 and S100B interact with
annexin A6 [12], while S100A1, S100A2, S100A4 and S100B bind to
the tumour suppressor gene p53 [13,14]. This could be predictable
given the substantial sequence similarities between most of the S100
proteins. However, there is a subtle level of discrimination that pre-
vents arbitrary interaction of targets with any S100 protein. Struc-
tural studies of S100-target complexes have shown that S100 family
members use different mechanisms for target recognition despite the
similar conformational change induced by Ca2+ binding in all S100
family members [15–18]. Moreover, the region exposed upon Ca2+

binding comprises the most variable portions of the S100 sequences
(hinge and C-terminal regions), which is enough to discriminate against
different target proteins [10]. The distribution of hydrophobic and

charged residues, together with differences in surface configurations,
contribute to the specific target binding patterns described amongst
S100 family members [18,19].

2.2. Expression

Members of the S100 gene family show different patterns of both
cell- and tissue-specific expression (Table 1). Moreover, expression of
S100 proteins is carefully regulated in order to ensure the maintenance
of immune homeostasis [20]. Calprotectin (S100A8/A9), for example,
is constitutively expressed in certain immune cells including monocytes,
neutrophils, and dendritic cells [21]. However, upon activation, it is
also expressed in fibroblasts [22] or mature macrophages [23], amongst
other types of cells. In addition, epigenetic mechanisms also play a vital
role in regulating S100 gene expression, with methylation of DNA CpG
islands being a common method of transcriptional repression. Accord-
ingly, DNA hypomethylation has been reported to significantly induce
expression of several members of the S100 members in prostate and gas-
tric cancer [24,25].
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2.3. Function

S100 proteins have been implicated in the control of a wide number
of intracellular and/or extracellular functions, including regulation of
cell apoptosis, proliferation, differentiation, migration/invasion, energy
metabolism, Ca2+ homeostasis, protein phosphorylation and inflamma-
tion in different cell types [5]. Some of their key regulatory functions
are detailed below.

2.3.1. S100s as damage associated molecular pattern (DAMP) molecules
DAMPs play a key role in the pathogenesis of many inflamma-

tory diseases, including rheumatoid arthritis (RA), osteoarthritis (OA)
and atherosclerosis. After cell damage/stress or activation of immune
cells including neutrophils and macrophages, S100 proteins are released
to the extracellular space where they play a key role in the regula-
tion of several immune and inflammatory processes [26]. They can
act as DAMP molecules to activate both immune and endothelial cells

by binding to toll-like receptors (TLR)s and receptors for advanced-gly-
cation end products (RAGE) (Fig. 1).

For example, there is evidence showing that binding of calprotectin
S100A8/A9 to TLR4 triggers a signalling cascade that modulates
processes such as inflammation, cell proliferation, differentiation and tu-
mour development via nuclear factor κB (NF-κB) activation [27]. Fur-
thermore, S100A12 binding to RAGE has been shown to induce expres-
sion of intercellular adhesion molecule-1 (ICAM-1) and vascular cell ad-
hesion molecule-1 (VCAM-1) on endothelial cells, as well as increasing
NF-κB-induced expression of proinflammatory cytokines such as tumour
necrosis factor α (TNF-α) by other inflammatory cells [28]. As such,
S100A12 has an essential role in the mediation of inflammation and has
been described to increase atherosclerosis in vivo through interactions
with RAGE [29,30].

Importantly, S100A4, S100A8/9, S100A11 and S100A12 have been
found to be upregulated in the synovial tissue, synovial fluid, or serum
of patients with RA [31–33]. Expression of S100A8/A9 was elevated in
the synovium of a collagenase-induced OA mouse model [34], as well
as in patients with sepsis, correlating with severity of disease [35

Fig. 1. Extracellular S100s signalling. S100 proteins are released from inflammatory cells including fibroblasts, macrophages, lymphocytes and neutrophils in response to inflammation
and stress. They signal through a range of cell surface receptors to activate several inflammatory signalling pathways which ultimately activate transcription of proinflammatory factors
including TNF-α, IL-1β, IL-6 and IL-8, as well as other mechanisms that lead to ROS formation and apoptosis. S100B signal through FGFR to activate the PI3K/PKB pathway. Most S100s
signal through RAGE to activate the JAK/STAT, PI3K/PKB and ERK/NF-κB pathways. EGFR-mediated signalling can also activate the PI3K/PKB and ERK/NF-κB pathways. GPCR-mediated
signalling can also activate NF-κB although the mechanism involved in unknown. S100A10 signals through the 5-HT1B receptor to activate ILK and NF-κB, while CD36-mediated signalling
activates the JNK/AP1 pathway. Abbreviations: 5-HT1B5-hydroxytriptamine 1B serotonin receptor; AP1 activator protein 1; CD36 cluster of differentiation 36; EGFR epidermal growth
factor receptor; ERK extracellular signalling-related kinase; FGFR fibroblast growth factor receptor; GPCR G protein coupled receptor; IL interleukin; ILK integrin-linked protein kinase; JAK
Janus kinase; JNK c-Jun N-terminal kinase; NF-κB nuclear factor κB; PI3K phosphatidyl inositol 3 phosphate; PKB protein kinase B; RAGE receptor for advanced glycation end products;
STAT signal transducer and activator of transcription; TLR4 toll-like receptor 4; TNF-α tumour necrosis factor alpha.
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]. S100A12 levels were also found to be significantly increased in the
synovial fluid of patients with OA when compared to healthy controls
[36].

DAMPs also play a role in the pathogenesis of neurodegenerative dis-
eases. S100B serum levels have been found to be closely associated to
the severity of diseases such as Alzheimer's [37] and Parkinson's [38]. In
addition, S100A10, which is also known as p11, increases expression of
the 5-hydroxytryptamine 1B serotonin receptor (5-HT1B) in HeLa cells
and brain tissue, and interestingly its expression has been shown to be
decreased in rodent models of depression [39].

2.3.2. S100s in immune cell migration, invasion and differentiation
Macrophages play a vital role in tumour development and metastasis

through several mechanisms including regulation of local inflammation,
inhibition of anti-tumour immunological processes and stimulation of
angiogenesis [40]. Macrophages are recruited by various chemoattrac-
tant molecules including chemokine ligands (CCL) 3–8 and macrophage
inflammatory protein 1 alpha (MIP-1α) [41]. Importantly, increasing
evidence show that several S100 proteins also contribute to leukocyte
migration. For instance, as well as inducing pro-inflammatory cytokine
production in macrophages through the activation of the NF-κB and p38
mitogen activated protein kinase (MAPK) pathways [42], S100A8/A9
has been seen to mediate immune cell migration [43]; S100A12 has
been shown to induce the production of pro-inflammatory cytokines in-
terleukin (IL) -6 and -8 through RAGE-dependent NF-κB activation, re-
sulting in the recruitment of monocytes [44,45]; S100A10 has been re-
ported to recruit macrophages to tumour sites [46]; whereas S100A8/
S100A9 have been shown to signal through RAGE to mediate the effect
of TNF-α on the differentiation of myeloid-derived suppressor cells [47].

3. Targeting S100 proteins in disease

3.1. S100s as biomarkers for disease

Since a number of S100 proteins can be identified in body fluids,
they may be used as biomarkers to detect a specific disease, where their
increased expression levels are indicative of pathological conditions
[48]. As such, S100A4 has recently been reported as a novel biomarker
and an important regulator of glioma stem cells, with its increased ex-
pression contributing to the appearance of a metastatic phenotype [49],
as well as having been described as a marker for lupus nephritis activ-
ity, a determinant factor for the onset of the complex inflammatory au-
toimmune disease lupus erythematosus [50]; increased serum levels of
S100A6 have been reported in patients with gastric cancer [51]; S100A7
levels have been found to be increased in cerebrospinal fluid and brain
of patients with Alzheimer's disease [52]; blood levels of S100A12 are
increased in patients with diabetes [30] and it has also been used as
a biomarker for detection of other inflammatory disease such as sys-
temic-onset juvenile idiopathic arthritis [53]; augmented serum levels of
S100A8/A9 have been seen in individuals with obesity [54] and in pa-
tients with coronary artery diseases [55]. Importantly, S100A8/A9 has
also proven to be a useful biomarker for disease activity in the manage-
ment of inflammatory bowel diseases such as Crohn's disease [56], and
faecal S100A8/A9 detection can be used to differentiate inflammatory
bowel disease from irritable bowel syndrome [57]. Finally, recent evi-
dence shows that S100B can be used as a monitoring and prediction tool
for management of traumatic brain injury [58], while its overexpression
has also been associated with certain genetic disorders such as Down
syndrome [59] and even to certain mood disorders as a consequence of
glial pathology [60].

3.2. S100s as therapeutic targets

An increasing number of studies suggest that S100 proteins could be
used as potential therapeutic targets to treat a variety of diseases. S100
proteins, particularly calgranulins (S100A8, A9 and A12), play a major
role in the mediation of the immune responses characteristic of a series
of diseases, including inflammatory arthritis, atherosclerosis and micro-
bial infections [61], as well as joint inflammation and cartilage degra-
dation in patients with RA [62]. Furthermore S100A7 has been found
to be abundantly expressed in psoriatic lesions or in serum from psori-
atic patients [63] as well as in atomic dermatitis skin lesions, induced
by pro-inflammatory factors such as TNF-α, IL-17 and IL-22 [64].

Several S100 proteins bind to TLR4 [27,33,65] and RAGE [66] (Fig.
1). Amongst them, S100A8/S100A9, whose levels are found to be ele-
vated in the serum of patients suffering from rheumatoid arthritis and
other inflammatory conditions [62], elicits most of its effects via these
receptors [27]. Importantly, the heterodimeric form of S100A8/S100A9
can bind TLR4, whereas high extracellular Ca2+ concentrations induce
the formation of S100A8/S100A9 tetramers [67], preventing its interac-
tion with TLR4, thus providing an autoinhibitory mechanism for modu-
lating S100A8/9 biological activity [68].

Substantial evidence shows that tissue and serum levels of many
S100 proteins correlate with disease severity during tissue or local in-
flammation [5,68]. In addition, we have seen how extracellular S100
proteins can behave as DAMPs, triggering proinflammatory responses
and inducing autoimmune conditions and inflammatory disorders
[5,26,69]. Function-blocking antibodies directed towards receptors and
ligands have been widely used as therapeutic agents for the treat-
ment of numerous pathologies including cancers and in immune disor-
ders [71–74]. Given the extensive evidence indicating that extracellu-
lar S100 proteins mediate inflammatory responses in many pathologi-
cal conditions mostly through cell receptor signalling [62,65], the use
of S100 function-blocking antibodies might therefore provide an effec-
tive therapeutic strategy to treat these conditions. Some examples of
S100-neutralised activity in various diseases are described in further de-
tail below. In addition, anti-allergic drugs have been reported to bind to
S100A12, blocking downstream RAGE signalling and subsequent NF-κB
activation [75].

It has been well established that elevated extracellular S100A8/
S100A9 levels are closely linked to inflammatory and autoimmune dis-
eases, including rheumatoid arthritis [76], inflammatory bowel disease
[77], cystic fibrosis [78], diabetic nephropathy [79] and cardiovascu-
lar disease [80], amongst others. It has been seen that restriction of
S100A8/A9 activity with the use of small-molecule inhibitors or neu-
tralizing antibodies ameliorates pathological conditions in murine mod-
els [81]. For example, it has been seen that certain quinoline-3-car-
boxamides, compounds presently under study for the treatment of hu-
man autoimmune and inflammatory diseases, interact with S100A9 and
the S100A8/A9 complex, thus blocking their interaction with TLR4 or
RAGE and inhibiting TNF-α release in vivo [82]. Blockade of S100A8/
A9 has also recently been seen to reduce inflammatory processes in
murine models of arthritis [83]. Importantly, it has been suggested
that S100A8 would be a good target against obesity-induced chronic
inflammation [84]. Furthermore, it has been reported that increased
S100A8/A9 expression in the tumour microenvironment is associated
with the progression and aggressiveness of the disease [85,86]. In par-
ticular, it has been seen that extracellular S100A8/A9 plays a central
role in the recruitment of myeloid cells, thereby promoting the forma-
tion of a pre-metastatic niche and tumour growth [87,88]. It also pro-
motes the expression of serum amyloid 3, which recruits myeloid cells
to pre-metastatic spots [89], enabling the formation of a proinflamma-
tory environment that recruits circulating tumour cells. It has been seen
that S100A8 and S100A9 neutralizing antibodies block the recruitment
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of both myeloid cells and circulating tumour cells [89]. It has also
been reported that peptibodies (chimeric proteins consisting of a biolog-
ically active peptide and a fragment crystallizable (Fc) domain of im-
munoglobulin G (IgG)) [90] directed towards S100A8 and S100A9 re-
duce tumour-related complications in a range of cancer models [91].
Collectively, these studies underline the potential use of S100A8 and
S100A9 antibodies as therapeutic reagents, but also as diagnostic tools.
In addition, S100A4 and S100B have been shown to bind to p53 tu-
mour suppressor gene, inhibiting its phosphorylation and thereby lead-
ing to p53 down-regulation [14]. Inhibition of the S100B-p53 interac-
tion would therefore restore the anti-tumour function of p53.

In addition to direct interaction strategies to modulate S100 pro-
teins in disease, covalent modification has important implications for
the function of S100 proteins. For example, S100A7, S100A10, and
S100A11 activity is regulated through transglutaminase-dependent co-
valent modification [92]. In addition, several S100 proteins have been
seen to be S-nitrosylated, including S100B [93], S100A1 [94] and
S100A8/A9 [95]. Furthermore, the ability of S100A1 to act as a calcium
receptor is thought to be regulated by S–glutathionylation [96]. Other
covalent modifications such as sumoylation [97] and phosphorylation
[98] of several S100 proteins have also been described. Therefore, tar-
geting these modifications may also constitute an indirect way to modu-
late S100 structure or function, thus impacting upon disease pathophys-
iology and progression.

4. S100A4

Of all of the S100 family members, S100A4 is the most exten-
sively studied. As such it is worthy of consideration in its own right.
S100A4 has been given many names, including metastasin (MTS-1),
PEL-98, 18A2, 42A, P9KA, CAPL, calvasculin and fibroblast-specific pro-
tein (FSP-1) [99]. The human S100A4 gene maps to chromosome 1q21,
and comprises four exons that encode a protein containing 101 amino
acid residues [100]. It is ubiquitously expressed, and present both intra-
and extracellularly, with intracellular levels being high both in the cyto-
plasm and in the nucleus [101].

S100A4 plays a significant role in many physiological functions in-
cluding cell motility, adhesion, proliferation, invasion, and metastasis
[102]. Intracellular S100A4 binds to proteins of the cytoskeleton in-
cluding F-actin and non-muscle myosin heavy chains [103], both in-
volved in cellular stability and/or motility [104]. By contrast, extracel-
lular S100A4 regulates the expression of extracellular matrix (ECM)-re-
modelling enzymes such as MMPs, which are implicated in mediating
cellular migration in various tissues [105], and can signal through mem-
brane receptors to activate proinflammatory pathways [106].

4.1. S100A4 signalling

4.1.1. Extracellular S100A4
Under a range of pathological stimuli, a number of inflammatory

cells including lymphocytes, macrophages and neutrophils upregulate
expression and release of S100A4 into the extracellular space in the form
of plasma membrane-derived macrovesicles [107]. Amongst the ways
in which extracellular S100A4 potentially exerts its effects, it has been
described to signal through several cell-membrane receptors including
RAGE, epidermal growth factor receptor (EGFR), TLR4 and IL-10 recep-
tor (IL-10R) [5,108].

RAGE is a transmembrane receptor of the immunoglobulin superfam-
ily. Its expression is cell type- and developmental stage-specific: while
it is highly expressed during embryogenesis, its expression decreases
in adult life [109]. However, its expression has been seen to be in-
creased in pathogenic environments such as inflammatory conditions
[110]. For example, increased expression of RAGE and some of its lig-
ands has been found in atherosclerotic lesions from diabetic individuals
who died unexpectedly from cardiovascular problems [111]. Further

more, numerous studies reveal that RAGE expression is low in the hu-
man kidney in physiological conditions, but that its expression is in-
creased in kidney failure-related diseases, including diabetes [112].

As with other S100 family members, RAGE are well-established in-
teraction partners of S100A4 [113]. In addition to inducing smooth
muscle proliferation in atherosclerosis [113], it has been reported that
binding of extracellular S100A4 to these receptors increases the migra-
tory and invasive capabilities of colorectal cancer cells via activation of
MAPK/extracellular signal-regulated kinase (ERK) and NF-κB, as well as
hypoxia signalling through the hypoxia inducible transcription factor,
HIF-1α, upregulation [114] (Fig. 2).

Extracellular S100A4 signalling activates several major proinflam-
matory pathways, including the MAPKs p38, ERK and c-Jun N-terminal
kinases (JNK) [115]. This triggers leukocyte migration and recruitment
during immune responses, inducing a self-amplifying pro-inflammatory
cycle through the upregulation of various pro-inflammatory cytokines
(IL-1β, IL-6, and TNF-α) and other immune cell related factors, as well as
several well-established inflammation-associated S100 proteins includ-
ing S100A8 and S100A9, thereby enabling the development of an in-
flammatory milieu [106].

Extracellular S100A4 also triggers the activation of another key
proinflammatory transcription factor, namely NF-κB [108,116]. Im-
portantly, both NF-κB and MAPKs are main transcriptional regulators
of various MMPs [117], and could therefore mediate S100A4-induced
stimulation of cell migration and metastasis. The underlying mecha-
nisms of S100A4-mediated activation of MAPKs and NF-κB have not
been fully described. In chondrocytes, this process is dependent on the
interaction of S100A4 with RAGE [116], whereas in primary neurons
and endothelial cells, the activation of this signalling pathway appears
to be RAGE-independent [118]. It has been widely demonstrated that
extracellular S100A4 induces NF-κB activation in human cancer cell
lines through the classical NF-κB pathway [119,120] to promote cell
migration and metastasis. It has been recently proposed that S100A4
constitutes a link between cancer-related metastasis and inflammation
[107]. However, very little is known about the role of S100A4 in the ac-
tivation of the inflammatory processes mediated by NF-κB in many au-
toimmune diseases, fibrosis, and other disorders.

4.1.2. Intracellular S100A4 signalling
Intracellular S100A4 was firstly identified in tumour cells, and ac-

cordingly, extensive evidence shows that an upregulation in S100A4
intracellular levels correlates with increased tumour cell motility
[121,122]. Besides tumour cells, intracellular S100A4 is expressed in
normal cells and tissues, including fibroblasts and cells of the immune
system [123]. For instance, it has been seen to be expressed in astro-
cytes, where its levels increase after injury, inducing astrocyte migra-
tion and repair responses [121]. Importantly, a model of S100A4 (−/−)
mice shows impaired recruitment of macrophages to inflammation sites
in vivo, whereas macrophages derived from these mice showed defective
chemotaxis in vitro [123]. Overall, these findings indicate that intracel-
lular S100A4 plays a major role in conferring migratory capacity to cells,
mainly to non-metastatic tumour cells during an epithelial to mesenchy-
mal transition, as well as to cells of the immune system including lym-
phocytes, neutrophils and macrophages during the progress of the im-
mune response [124].

One of the mechanisms through which this intracellular S100A4 up-
regulation is thought to take place is through TGF-β-induced expression
[125]. Secretion of proinflammatory cytokines and other factors such
as TGF-β by activated immune cells and fibroblasts signal through the
SMAD2/SMAD3 pathway to induce expression of intracellular S100A4,
which is then able to interact with cytoskeleton–associated target mole-
cules such as acto-myosin filaments, tropomyosin or non-muscle myosin
heavy chain IIA (NMIIA) (Fig. 2). This interaction destabilises the
myosin II assembly, promoting its dissociation and remodelling, ul
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Fig. 2. RAGE-mediated S100A4 signalling. Extracellular S100A4, released from fibroblasts, macrophages, lymphocytes, neutrophils, vascular cells, and other bone marrow derived cells,
signals through RAGE, leading to increased phosphorylation of MAPKs and subsequent activation of NF-κB, inducing expression of pro-inflammatory genes. On the other hand, TGF-β
secreted from immune cells induces intracellular expression of S100A4, which is then able to interact with a number of target molecules, including NMIIA, tropomyosin, p53, and actin,
to form complexes that facilitate the remodelling of microtubes and microfilaments to enhance cell motility and chemotaxis, as well as contributing to the infiltration of fibroblasts, im-
mune cells and vascular cells into the affected region. In addition, binding of intracellular S100A4 to p53 promotes cell proliferation and collagen expression via MAPK activation and
phosphorylation of ERK. Finally, extracellular S100A4 signalling through RAGE can also activate hypoxia signalling through upregulation of HIF-1α. Abbreviations: ERK extracellular sig-
nalling-related kinase; HIF-1α hypoxia inducible factor 1α; MAPK mitogen-activated protein kinases; NF-κB nuclear factor κB; NMIIA non-muscle myosin IIA; RAGE receptor for advanced
glycation end products; TGF-β transforming growth factor β.

timately resulting in enhanced migration [126]. In the case of fibrob-
lasts and immune cells, this enhanced migration allows subsequent in-
filtration into the affected regions, inducing the release of inflamma-
tory factors and thereby contributing to the aggravation of pathological
processes [127]. Additionally, intracellular S100A4 is also able to bind
to p53. This interaction inhibits p53 phosphorylation and subsequent ac-
tivation, thereby modulating transcription of cell cycle-regulating genes,
and consequently stimulating apoptosis [124]. Importantly, intracellu-
lar interactions of S100A4 with the mentioned cytoskeleton target mol-
ecules as well as with p53 are Ca2+-dependent, thus linking the cellular
functions of these proteins with changes in intracellular Ca2+ concen-
trations and consequently with the energetic status of the cells [124].

4.2. S100A4 in disease

4.2.1. S100A4 and cancer
In the last years, the number of cancer cases has increased world-

wide, making it the second leading cause of death behind cardiovas-
cular disease [128]. Environmental factors such as increased pollu

tion, together with unhealthy lifestyles including tobacco smoking, al-
cohol consumption, changing diet patterns and lack of exercise, as well
as increased life expectancy associated with better medical services,
have been considered responsible for this situation. There were 14.1
million new cancer cases and 8.2 million deaths attributable to cancer
worldwide in 2012 [128]. Prevention and treatment measures to re-
duce cancer incidence have been introduced, but little progress is being
made [129]. Consequently, most cancers continue to appear, grow, and
metastasize due to the lack of effective management strategies [128].

S100A4, together with many other proteins, have been seen to be
involved in the complex multi-step process of cancer metastasis at the
molecular level [124,130]. It has been well established that S100A4, se-
creted from both tumour and non-malignant cells, plays a key role in the
regulation of angiogenesis, cell migration and inflammation [131,132].
It was first shown to be associated with tumour metastasis in 1989
[133], and later, it was discovered that transfection of S100A4 could in-
tensify the tumorigenic potential and induce the metastatic phenotype
in vivo [134].

It was not until the year 2000 that S100A4 overexpression was
identified as a marker of poor prognosis and high metastatic poten
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tial. This was seen in a case of human breast cancer [135]. From this
date, S100A4 levels have been found to be increased in many types of
cancers and tumour microenvironments, including brain, breast, lung,
gastric, liver, pancreatic, colorectal and prostate cancers amongst oth-
ers, in addition to osteosarcoma, leukaemia and malignant melanoma,
always associated to poor prognosis [136–139]. Thus, S100A4 is now a
strong likely biomarker for cancer diagnosis and metastasis prediction.

Intracellular S100A4 expressed by cancer cells, as well as by fi-
broblasts and immune cells, interacts covalently with target molecules
such as actin, non-muscle myosin IIA and tropomyosin [140], all of
them associated with cell migration, metastasis and tumour cell spread
[104,123]. Intracellulas S100A4 has also been seen to interact with
p53, methionine aminopeptidase 2, and liprin-β1, although not all of
them have been confirmed in vivo [141].

As an extracellular protein, S100A4 released from tumour and/or
stromal cells can alter the tumour microenvironment by stimulating an-
giogenesis and attracting immune cells to the developing tumour lesions
[142], as well as by inducing release of several cytokines and growth
factors. Importantly, studies using breast adenocarcinoma and cervical
carcinoma cell lines [143] have shown that extracellular S100A4 can
signal through RAGE to induce nuclear translocation of intracellular
S100A4, which when in the nucleus may function as a transcription fac-
tor for various genes including those encoding adherence junction pro-
teins, and thereby regulating cell motility. Nuclear expression of S100A4
in tumour cells is therefore a substantial, independent indicator of poor
prognosis. This also connects extracellular S100 proteins with intracel-
lular responses [144].

S100A4 has been seen to induce and drive metastasis in many can-
cers, but experiments with transgenic mice have revealed that it is not
a tumour-initiating oncogene, as well as having suggested that S100A4
needs to couple with an oncogene in order to induce cancer [145]. The
proposed mechanism by which S100A4 promotes metastasis in many
cancer types is via epithelial-to-mesenchymal transition (EMT), a com-
plex molecular process involving a change in cell morphology and func-
tion in which cells acquire fibroblastic phenotype and stem cell features
[146]. Transforming growth factor β (TGF-β), a key triggering factor of
the EMT process, induces upregulation of S100A4 through the activation
of the SMAD pathway, decreasing expression of epithelial cell markers
and increasing expression of mesenchymal cell markers [147].

S100A4 was initially described to promote EMT through downregu-
lation of the cell-adhesion molecule E-cadherin [148]. Since then, other
mechanisms of S100A4-induced activation of EMT have been described
in different types of cancer. In colorectal cancer, S100A4-induced EMT
is mediated by TGF-β-induced activation of the phosphatidyl inositol 3
kinase (PI3K)/protein kinase B (PKB)/mammalian target of rapamycin
(mTOR)/ribosomal protein S6 kinase beta 1 (p70S6K) signalling path-
way [149]. In pancreatic cancer, it is mediated by the sonic hedge-
hog-gli1 (SHH-GLI1) signalling pathway [150]. In gallbladder cancer,
overexpression of c-Myc and MMP14 induces loss of E-cadherin expres-
sion and subsequent increase in S100A4 expression [151]. In prostate
cancer, NF-κB-dependent transcriptional activation of MMP9 induces
S100A4-mediated cell invasion and malignant phenotypes [152]. In os-
teosarcoma, S100A4-induced tumour invasion and metastasis is also me-
diated through the dysregulation of MMPs and the expression of tissue
inhibitors of metalloproteinases (TIMPs) [153], whereas in leukaemia,
preferentially expressed antigen of melanoma (PRAME) suppresses heat
shock protein HSP27 and S100A4 expression, inducing cell apoptosis
and inhibiting cell proliferation and tumorigenicity [154].

4.2.2. S100A4 and non-cancer pathologies
Even though S100A4 is best known in a disease context for its par-

ticipation in cancer progression and metastasis, an increase in S100A4

expression has also been associated with several non-tumour patho-
physiological processes including tissue fibrosis, inflammation, neuro-
protection and cardiovascular events [155]. Numerous studies indicate
that the S100A4-mediated EMT plays a crucial role in the appearance
and development of both tumour and non-tumour pathophysiologies.
The EMT process can be classified into three subtypes [156]: Type I
EMT (non-pathological tissue development) takes place during regular
organogenesis; type II EMT (pathological conditions) is related to wound
healing, tissue regeneration, and organ fibrosis; finally, type III EMT is
associated with neoplastic cells, which can migrate into surrounding tis-
sues and infiltrate at metastasis sites [157–159].

S100A4 controls tissue fibrosis associated with type II EMT through
several mechanisms. Epithelial cells that have undergone EMT express
S100A4, inducing the production of extracellular matrix components
and thereby initiating tissue fibrosis [160]. Moreover, TGF-β-induced
S100A4 expression induces secretion of fibronectin from fibroblasts,
contributing to the establishment of a pro-inflammatory niche [161].
Given its specific expression patterns, S100A4 expression is regularly
used to follow the development of tissue fibrosis [146]. Simultane-
ously, extracellular S100A4 secreted in response to inflammatory cy-
tokines signals through RAGE, promoting the recruitment and chemo-
taxis of macrophages, neutrophils, and leukocytes via the activation of
the MAPK and NF-κB pathways [108], thereby activating a positive
feedback-regulated pro-inflammatory cycle through the upregulation of
various pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α, and
thus regulating inflammation and immune functions [162]. S100A4 is
also involved in angiogenesis, thus inducing its metastasis-promoting
mechanisms via interaction with annexin 2 and stimulation of MMP pro-
duction [105,163]. Interestingly, it has also been seen that silencing
S100A4 inhibits retinal neovascularization in a mouse model of oxy-
gen-induced ischaemic retinopathy, an inflammatory disease [164].

It has been described that certain members of the S100 protein
family display obesity-facilitating properties. For instance, S100B pro-
motes obesity by reducing insulin sensitivity [165], while overexpres-
sion of S100A16 can promote adipogenesis in 3T3-L1 preadipocytes
[166]. S100A4 expression has also been described to have a role in the
pathogenesis of a number of autoimmune diseases and other inflamma-
tory conditions including rheumatoid arthritis, systemic sclerosis, pso-
riasis [31], diabetes retinopathy [167] and inflammatory myopathies
[106]. Given that S100A4 white adipose tissue (WAT) expression has
been reported to associate positively with expression of genes involved
in inflammation and immune cell activation, as well as with those in-
volved in ECM formation, organization and migration [168], S100A4
may also have obesity-facilitating properties, given that obesity has been
described to be a state of low-grade chronic inflammation [169].

Adipokine secretion from WAT has been associated with WAT dys-
function and metabolic complications of obesity. The size of fat cells
might constitute a determinant factor for metabolic disease linked to
pathological WAT [170]. WAT can be made of a large number of small
fat cells (hyperplasia) or a small number of large fat cells (hypertrophy).
Hypertrophic WAT is closely related to insulin resistance (IR), risk of
type 2 diabetes (T2D) and other metabolic abnormalities [171]. The
correlation between S100A4 expression and fat cell size suggests that
S100A4 could constitute an indicator of WAT hypertrophy, which could
consequently explain its association with IR [168]. S100A4 could there-
fore be classified as a novel adipokine linked to a pathological adipose
phenotype, including adipocyte hypertrophy and increased expression
and secretion of proinflammatory factors [168].

The known association between S100A4 and cancer suggests that
perhaps it has a role in linking obesity/IR with cancer. It is known that
in cancer cells, WNT/β-catenin signalling increases S100A4 gene tran-
scription, leading to an increase in tumour progression and invasive-
ness [172]. Conversely, the inhibition of this pathway reduces S100A4
mRNA levels, and hence cell migration and invasion [173]. Other fac
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tors known to be involved in regulating S100A4 expression in different
cancer cell types are C/EBPβ [174], c-Myb [175] and SHH [150].

While the mechanism of transcriptional regulation of S100A4 in dif-
ferent AT cells are yet to be fully elucidated, given the commonality be-
tween obesity/IR and WAT dysfunction to both T2D and certain types
of cancer, it is tempting to speculate involvement of S100A4 in both.
Indeed, the auto-inflammatory component of T2D is, in part, associated
with the excessive AT proliferation that causes hypoxia in AT [176].
Rapid AT expansion causes a reduction in oxygen availability, exposing
cells to hypoxia. This will result in activation of hypoxia inducible fac-
tor 1α (HIF-1α), a transcription factor that activates transcription of sev-
eral apoptosis-related genes, as well as other factors including S100A4.
Given that HIF-1α can also participate in the ROS response that results
from hyperglycaemia in diabetes, this may therefore represent a unify-
ing molecular mechanism in diabetes (Fig. 3).

4.3. S100A4 therapeutics

S100A4 has proven to be a valuable biomarker and therapeutic tar-
get for many types of cancer. As a biomarker, the identification of
S100A4 levels in tumour tissues or in body fluids could predict progno-
sis and metastasis of cancer patients in the early stages, whereas as a
target, the inhibition of S100A4 expression can reduce metastasis in vivo.
Several molecular targeting strategies for S100A4 have been developed
[177]. The use of these new techniques has made it possible to discover,
for instance, the exact atomic structure of the interaction between intra-
cellular S100A4 and NMIIA [101]. However, there is a currently unmet
clinical need to develop new therapeutic agents that function to modu-
late S100A4 expression and activity.

S100A4 expression is intimately associated with the proliferation,
aggressive phenotype and metastatic behaviour of numerous types of
human cancers, and as such is linked to poor outcome of cancer pa-
tients. Therefore, therapeutic strategies aimed at reducing S100A4 ex-
pression or biological activity might help reduce metastatic cancer, im-
prove prognosis and increase survival rates of patients with cancer, as
well as to combat non-tumour pathophysiology processes such as tis

sue fibrosis, inflammation, immune reaction, neuroprotection and car-
diovascular disease.

Strategies to decrease the S100A4-mediated metastatic action in-
clude inhibition of S100A4 expression using miRNA-, siRNA- or
shRNA-based knockdown of S100A4 with the use of neutralizing an-
tibodies, or with the use of specific small molecule inhibitors. It was
reported in 1996 that ribozyme-based knockdown of S100A4 success-
fully reduced the S100A4-mediated osteosarcoma metastatic phenotype
[178], and more recently that this effect is mediated by the repres-
sion of MM9 [179]. It has also recently been seen that shRNA-mediated
S100A4 knockdown reduces metastasis formation in colorectal cancer
in vivo [180], while siRNA-mediated S100A4 knockdown induces apop-
tosis and inhibits metastasis of anaplastic thyroid cancer cells in vitro
[181]. Moreover, miR-3189-3p mimics have been seen to intensify the
effects of S100A4 siRNA on the inhibition of proliferation and migration
of gastric cancer cells [182].

S100A4 neutralizing antibodies have been demonstrated to decrease
tumour metastasis and T-cell recruitment in murine models of breast
cancer [183] and pre-metastatic lungs [184], as well as to block the
growth of pancreatic tumours in immunocompromised mice [185].

Transcription of S100A4 is controlled by the β-catenin/TCF complex
[172], therefore strategies that promote β-catenin degradation and/or
block the establishment of the β-catenin/TCF complex such as the use
of calcimycin, niclosamide or sulindac will be able to inhibit S100A4
transcription [186–188]. In fact, it was reported that in vitro treatment
of colorectal cancer cells with niclosamide reduces S100A4 expression,
subsequently inhibiting tumour cell migration, invasion, proliferation
and colony formation [187].

5. Conclusions

Molecular characterisation of primary tumour lesions has been used
to identify and evaluate the risk in the development of tumour metas-
tasis and to predict prognosis and therapy responses in various types
of cancer. As a result, several S100 members, mainly S100A4 and
S100A8/9, have been identified as key players in the pathogenesis of
many types of cancer, as well as of several other disease conditions in

Fig. 3. Oxygen-dependent regulation of HIF-1α and induction of S100A4 transcription. In normoxic conditions, PHDs hydroxylate HIF-1α, priming it for poly-ubiquitination by VHL, which
leads to its proteasomal degradation. In situations of hypoxia however, PHDs are inactivated, therefore HIF-1α is stabilized and translocates to the nucleus, where it binds to HIF-1β and
other co-factors. Together, they bind to HRE in the promoter region of target genes including S100A4. Increased levels of S100A4 induce secretion of proinflammatory factors and cell
migration and invasion. In addition to hypoxia, other factors found to be upregulated in diabetes such as TGF-β, PKB, and ROS, can also activate HIF-1α even in nonhypoxic conditions.
Abbreviations: HIF-1α hypoxia inducible factor 1 alpha; HIF-1β hypoxia inducible factor 1 beta; HRE hypoxia responsive elements; PHDs prolyl hydroxylases; PKB protein kinase B; ROS
reactive oxygen species; TGF-β transforming growth factor β; VHL von Hippel-Lindau ubiquitin-ligase.
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cluding diabetes and other inflammatory diseases. Elucidating the mech-
anisms of action of S100 proteins in the pathophysiology of these dis-
eases may therefore lead to the development and application of novel,
more effective therapeutic approaches. Future research should therefore
focus on the validation of the S100 proteins as biomarkers in early dis-
ease detection and prognosis, and in the development of novel strategies
based around anti-S100 therapies.

Abbreviations

5-HT1B 5-hydroxytryptamine 1B serotonin receptor
AP1 Activator protein 1
AT Adipose tissue
C/EBPβ CCAAT enhancer binding protein beta
CCL Chemokine ligands
CD36 Cluster of differentiation 36
DAMP Damage associated molecular pattern
DSS Dextran sulphate sodium
ECM Extracellular matrix
EGFR Epidermal growth factor receptor
EMT Epithelial-to-mesenchymal transition
FGFR Fibroblast growth factor receptor
FSP-1 Fibroblast specific protein 1
GPCR G-protein coupled receptor
HIF-1α Hypoxia inducible factor 1 alpha
HSP Heat shock protein
ICAM-1 Intracellular adhesion molecule 1
IFN-γ Interferon gamma
IL Interleukin
ILK Integrin linked protein kinase
IR Insulin resistance
JAK Janus kinase
JNK c-Jun N-terminal kinase
MAPK Mitogen activated protein kinase
MIP-1α Macrophage inflammatory protein 1 alpha
MMP Matrix metalloproteinase
mTOR Mammalian target of rapamycin
MTS-1 Metastasin 1
NF-κB Nuclear factor kappa B
NMIIA Non-muscle myosin 1A
OA Osteoarthritis
p70S6K Ribosomal protein S6 kinase beta 1
PHD Prolyl hydroxylase
PI3K Phosphatidyl inositol 3 phosphate
PKB Protein kinase B
PRAME Preferentially expressed antigen of melanoma
RA Rheumatoid arthritis
RAGE Receptor for advanced glycation end products
ROS Reactive oxygen species
SHH-GLI1 Sonic hedgehog-gli 1
STAT Signal transducer and activator of transcription
T2D Type 2 diabetes
TG2 Transglutaminase 2
TGF-β Transforming growth factor beta
TIMP Tissue inhibitors of metalloproteinases
TLR Toll-like receptor
TNF-α Tumour necrosis factor alpha
VCAM-1 Vascular cell adhesion molecule 1
VEGF Vascular endothelial growth factor
VHL Von-Hippel-Lindau ubiquitin ligase
WAT White adipose tissue

Author contributions

LLG: Data curation. Writing – original draft.
KG: Supervision. Writing – review and editing.

MDT: Conceptualization. Supervision. Writing – review and editing.

Uncited reference

[70]

Declaration of competing interest

The authors declare that they have no known competing financial in-
terests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was supported by funding from Nottingham Trent University.

References

[1] D. Osterloh, V.V. Ivanenkov, V. Gerke, Hydrophobic residues in the C-terminal re-
gion of S100A1 are essential for target protein binding but not for dimerization,
Cell Calcium 24 (1998) 137–151.

[2] E.A. Permyakov, R.H. Kretsinger, Cell signaling, beyond cytosolic calcium in eu-
karyotes, J. Inorg. Biochem. 103 (2009) 77–86.

[3] D.B. Zimmer, J.O. Eubanks, D. Ramakrishnan, M.F. Criscitiello, Evolution of the
S100 family of calcium sensor proteins, Cell Calcium 53 (2013) 170–179.

[4] R. Donato, S100: a multigenic family of calcium-modulated proteins of the
EF-hand type with intracellular and extracellular functional roles, Int. J. Biochem.
Cell Biol. 33 (2001) 637–668.

[5] R. Donato, B.R. Cannon, G. Sorci, F. Riuzzi, K. Hsu, D.J. Weber, C.L. Geczy, Func-
tions of S100 proteins, Curr. Mol. Med. 13 (2013) 24–57.

[6] I. Marenholz, C.W. Heizmann, G. Fritz, S100 proteins in mouse and man: from
evolution to function and pathology (including an update of the nomenclature),
Biochem. Biophys. Res. Commun. 322 (2004) 1111–1122.

[7] B.W. Schäfer, C.W. Heizmann, The S100 family of EF-hand calcium-binding pro-
teins: functions and pathology, Trends Biochem. Sci. 21 (1996) 134–140.

[8] S. Réty, J. Sopkova, M. Renouard, D. Osterloh, V. Gerke, S. Tabaries, F.
Russo-Marie, A. Lewit-Bentley, The crystal structure of a complex of p11 with the
annexin II N-terminal peptide, Nat. Struct. Biol. 6 (1999) 89–95.

[9] L.R. Otterbein, J. Kordowska, C. Witte-Hoffmann, C.L.A. Wang, R. Dominguez,
Crystal structures of S100A6 in the Ca2+-free and Ca2+-bound states: the cal-
cium sensor mechanism of S100 proteins revealed at atomic resolution, Structure.
10 (2002) 557–567.

[10] L. Santamaria-Kisiel, A.C. Rintala-Dempsey, G.S. Shaw, Calcium-dependent and
-independent interactions of the S100 protein family, Biochem. J. 196 (2006)
201–214.

[11] W.J. Chazin, Relating form and function of EF-hand calcium binding proteins,
Acc. Chem. Res. 44 (2011) 171–179.

[12] C. Arcuri, I. Giambanco, R. Bianchi, R. Donato, Annexin V, annexin VI, S100A1
and S100B in developing and adult avian skeletal muscles, Neuroscience. 109
(2002) 371–388.

[13] A. Muelleri, B.W. Schäfer, S. Ferrari, M. Weibel, M. Makek, M. Höchli, C.W. Heiz-
mann, The calcium-binding protein S100A2 interacts with p53 and modulates its
transcriptional activity, J. Biol. Chem. 280 (2005) 29186–29193.

[14] M.R. Fernandez-Fernandez, D.B. Veprintsev, A.R. Fersht, Proteins of the S100 fam-
ily the regulate the oligomerization of p53 tumor suppressor, Proc. Natl. Acad.
Sci. U. S. A. 102 (2005) 4735–4740.

[15] S. Bhattacharya, E. Large, C.W. Heizmann, B. Hemmings, W.J. Chazin, Structure
of the Ca2+/S100B/NDR kinase peptide complex: insights into S100 target speci-
ficity and activation of the kinase, Biochemistry. 42 (2003) 14416–14426.

[16] Y.T. Lee, Y.N. Dimitrova, G. Schneider, W.B. Ridenour, S. Bhattacharya, S.E. Soss,
R.M. Caprioli, A. Filipek, W.J. Chazin, Structure of the S100A6 complex with a
fragment from the C-terminal domain of Siah-1 interacting protein: a novel mode
for S100 protein target recognition, Biochemistry. 47 (2008) 10921–10932.

[17] B. Kiss, A. Duelli, L. Radnai, K.A. Kékesi, G. Katona, L. Nyitray, Crystal structure
of the S100A4-nonmuscle myosin IIA tail fragment complex reveals an asymmet-
ric target binding mechanism, Proc. Natl. Acad. Sci. U. S. A. 109 (2012)
6048–6053.

[18] G. Ozorowski, S. Milton, H. Luecke, Structure of a C-terminal AHNAK peptide in a
1:2:2 complex with S100A10 and an acetylated N-terminal peptide of annexin A2,
Acta Crystallogr. Sect. D Biol. Crystallogr. 69 (2013) 92–104.

[19] L.N. Wafer, F.O. Tzul, P.P. Pandharipande, G.I. Makhatadze, Novel interactions of
the TRTK12 peptide with S100 protein family members: specificity and thermody-
namic characterization, Biochemistry. 52 (2013) 5844–5856.

[20] R. Donato, Intracellular and extracellular roles of S100 proteins, Microsc. Res.
Tech. 60 (2003) 540–551.

[21] M.M. Averill, S. Barnhart, L. Becker, X. Li, J.W. Heinecke, R.C. Leboeuf, J.A.
Hamerman, C. Sorg, C. Kerkhoff, K.E. Bornfeldt, S100A9 differentially modifies
phenotypic states of neutrophils, macrophages, and dendritic cells: implications
for atherosclerosis and adipose tissue inflammation, Circulation. 123 (2011)
1216–1226.

[22] F. Rahimi, K. Hsu, Y. Endoh, C.L. Geczy, et al., FEBS J 272 (2005) 2811–2827.
[23] M.A. Ingersoll, R. Spanbroek, C. Lottaz, E.L. Gautier, M. Frankenberger, R. Hoff-

mann, R. Lang, M. Haniffa, M. Collin, F. Tacke, A.J.R. Habenicht, L. Ziegler-Heit-
brock, G.J. Randolph, Comparison of gene expression profiles between human

13



UN
CO

RR
EC

TE
D

PR
OO

F

L.L. Gonzalez et al. BBA - Molecular Cell Research xxx (xxxx) xxx-xxx

and mouse monocyte subsets (blood (2010) 115, 3 (e10-e19)), Blood. 115 (2010)
e10–e19.

[24] Q. Wang, M. Williamson, S. Bott, N. Brookman-Amissah, A. Freeman, J. Naricu-
lam, M.J.F. Hubank, A. Ahmed, J.R. Masters, Hypomethylation of WNT5A, CRIP1
and S100P in prostate cancer, Oncogene. 26 (2007) 6560–6565.

[25] X.H. Wang, L.H. Zhang, X.Y. Zhong, X.F. Xing, Y.Q. Liu, Z.J. Niu, Y. Peng, H. Du,
G.G. Zhang, Y. Hu, N. Liu, Y.B. Zhu, S.H. Ge, W. Zhao, A.P. Lu, J.Y. Li, J.F. Ji,
S100A6 overexpression is associated with poor prognosis and is epigenetically
up-regulated in gastric cancer, Am. J. Pathol. 177 (2010) 586–597.

[26] C. Xia, Z. Braunstein, A.C. Toomey, J. Zhong, X. Rao, S100 proteins as an impor-
tant regulator of macrophage inflammation, Front. Immunol. 8 (2018).

[27] T. Vogl, K. Tenbrock, S. Ludwig, N. Leukert, C. Ehrhardt, M.A.D. Van Zoelen, W.
Nacken, D. Foell, T. Van Der Poll, C. Sorg, J. Roth, Mrp8 and Mrp14 are endoge-
nous activators of toll-like receptor 4, promoting lethal, endotoxin-induced shock,
Nat. Med. 13 (2007) 1042–1049.

[28] M.A. Hofmann, S. Drury, C. Fu, W. Qu, A. Taguchi, Y. Lu, C. Avila, N. Kambham,
A. Bierhaus, P. Nawroth, M.F. Neurath, T. Slattery, D. Beach, J. McClary, M. Na-
gashima, J. Morser, D. Stern, A.M. Schmidt, RAGE mediates a novel proinflamma-
tory axis: a central cell surface receptor for S100/calgranulin polypeptides, Cell.
97 (1999) 889–901.

[29] E. Harja, D.X. Bu, B.I. Hudson, S.C. Jong, X. Shen, K. Hallam, A.Z. Kalea, Y. Lu,
R.H. Rosario, S. Oruganti, Z. Nikolla, D. Belov, E. Lalla, R. Ramasamy, F.Y. Shi,
A.M. Schmidt, Vascular and inflammatory stresses mediate atherosclerosis via
RAGE and its ligands in apoE−/− mice, J. Clin. Invest. 118 (2008) 183–194.

[30] A. Oesterle, M.A. Hofmann Bowman, S100A12 and the S100/Calgranulins: emerg-
ing biomarkers for atherosclerosis and possibly therapeutic targets, Arterioscler.
Thromb. Vasc. Biol. 35 (2015) 2496–2507.

[31] J. Klingelhöfer, L. Šenolt, B. Baslund, G.H. Nielsen, I. Skibshøj, K. Pavelka, M. Nei-
dhart, S. Gay, N. Ambartsumian, B.S. Hansen, J. Petersen, E. Lukanidin, M. Grigo-
rian, Up-regulation of metastasis-promoting S100A4 (Mts-1) in rheumatoid arthri-
tis: putative involvement in the pathogenesis of rheumatoid arthritis, Arthritis
Rheum. 56 (2007) 779–789.

[32] A. Baillet, C. Trocmé, S. Berthier, M. Arlotto, L. Grange, J. Chenau, S. Quétant, M.
Sève, F. Berger, R. Juvin, F. Morel, P. Gaudin, Synovial fluid proteomic finger-
print: S100A8, S100A9 and S100A12 proteins discriminate rheumatoid arthritis
from other inflammatory joint diseases, Rheumatology (Oxford) 49 (2010)
671–682.

[33] L. Andrés Cerezo, B. Šumová, K. Prajzlerová, D. Veigl, D. Damgaard, C.H. Nielsen,
K. Pavelka, J. Vencovský, L. Šenolt, Calgizzarin (S100A11): a novel inflammatory
mediator associated with disease activity of rheumatoid arthritis, Arthritis Res.
Ther. 19 (2017) 79.

[34] N.A.J. Cremers, M.H.J. van den Bosch, S. van Dalen, I. Di Ceglie, G. Ascone, F.
van de Loo, M. Koenders, P. van der Kraan, A. Sloetjes, T. Vogl, J. Roth, E.J.W.
Geven, A.B. Blom, P.L.E.M. van Lent, S100A8/A9 increases the mobilization of
pro-inflammatory Ly6Chigh monocytes to the synovium during experimental os-
teoarthritis, Arthritis Res. Ther. 19 (2017) 217.

[35] M.A.D. Van Zoelen, T. Vogl, D. Foell, S.Q. Van Veen, J.W.O. Van Till, S. Florquin,
M.W. Tanck, X. Wittebole, P.F. Laterre, M.A. Boermeester, J. Roth, T. Der Van
Poll, Expression and role of myeloid-related protein-14 in clinical and experimen-
tal sepsis, Am. J. Respir. Crit. Care Med. 180 (2009) 1098–1106.

[36] L.C. Wang, H.Y. Zhang, L. Shao, L. Chen, Z.H. Liu, X. He, W.X. Gong, S100A12
levels in synovial fluid may reflect clinical severity in patients with primary knee
osteoarthritis, Biomarkers. 18 (2013) 216–220.

[37] M.L. Chaves, A.L. Camozzato, E.D. Ferreira, I. Piazenski, R. Kochhann, O. Dal-
l’Igna, G.S. Mazzini, D.O. Souza, L.V. Portela, Serum levels of S100B and NSE pro-
teins in Alzheimer’s disease patients, J. Neuroinflammation 7 (2010).

[38] D.V. Schaf, A.B.L. Tort, D. Fricke, P. Schestatsky, L.V.C. Portela, D.O. Souza,
C.R.M. Rieder, S100B and NSE serum levels in patients with Parkinson’s disease,
Park. Relat. Disord. 11 (2005) 39–43.

[39] P. Svenningsson, K. Chergui, I. Rachleff, M. Flajolet, X. Zhang, M. El Yacoubi, J.M.
Vaugeois, G.G. Nomikos, P. Greengard, Alterations in 5-HT1B receptor function by
p11 in depression-like states, Science 311 (80) (2006) 77–80.

[40] A. Sica, V. Bronte, Altered macrophage differentiation and immune dysfunction in
tumor development, J. Clin. Invest. 117 (2007) 1155–1166.

[41] G. Dhabekar, R. Dandekar, A. Kingaonkar, Role of macrophages in malignancy,
Ann. Maxillofac. Surg. 1 (2011) 150–154.

[42] K. Sunahori, M. Yamamura, J. Yamana, K. Takasugi, M. Kawashima, H. Ya-
mamoto, W.J. Chazin, Y. Nakatani, S. Yui, H. Makino, The S100A8/A9 het-
erodimer amplifies proinflammatory cytokine production by macrophages via ac-
tivation of nuclear factor kappa B and p38 mitogen-activated protein kinase in
rheumatoid arthritis, Arthritis Res. Ther. 8 (2006) R69.

[43] I. Eue, B. Pietz, J. Storck, M. Klempt, C. Sorg, Transendothelial migration of
27E10+ human monocytes, Int. Immunol. 12 (2000) 1593–1604.

[44] G. Sorci, F. Riuzzi, I. Giambanco, R. Donato, RAGE in tissue homeostasis, repair
and regeneration, Biochim. Biophys. Acta - Mol. Cell Res. (2013).

[45] Z. Yang, W.X. Yan, H. Cai, N. Tedla, C. Armishaw, N. Di Girolamo, H.W. Wang, T.
Hampartzoumian, J.L. Simpson, P.G. Gibson, J. Hunt, P. Hart, J.M. Hughes, M.A.
Perry, P.F. Alewood, C.L. Geczy, S100A12 provokes mast cell activation: a poten-
tial amplification pathway in asthma and innate immunity, J. Allergy Clin. Im-
munol. 119 (2007) 106–114.

[46] P.A. O’Connell, A.P. Surette, R.S. Liwski, P. Svenningsson, D.M. Waisman,
S100A10 regulates plasminogen-dependent macrophage invasion, Blood. 116
(2010) 1136–1146.

[47] M. Sade-Feldman, J. Kanterman, E. Ish-Shalom, M. Elnekave, E. Horwitz, M.
Baniyash, Tumor necrosis factor-α blocks differentiation and enhances suppressive
activity of immature myeloid cells during chronic inflammation, Immunity. 38
(2013) 541–554.

[48] D. Foell, S. Seeliger, T. Vogl, H.G. Koch, H. Maschek, E. Harms, C. Sorg, J. Roth,
Expression of S100A12 (EN-RAGE) in cystic fibrosis, Thorax. 58 (2003) 613–617.

[49] K.H. Chow, H.J. Park, J. George, K. Yamamoto, A.D. Gallup, J.H. Graber, Y. Chen,
W. Jiang, D.A. Steindler, E.G. Neilson, B.Y.S. Kim, K. Yun, S100A4 is a biomarker
and regulator of glioma stem cells that is critical for mesenchymal transition in
glioblastoma, Cancer Res. 77 (2017) 5360–5373.

[50] J.L. Turnier, N. Fall, S. Thornton, D. Witte, M.R. Bennett, S. Appenzeller, M.S.
Klein-Gitelman, A.A. Grom, H.I. Brunner, Urine S100 proteins as potential bio-
markers of lupus nephritis activity, Arthritis Res. Ther. 19 (2017) 242.

[51] J. Zhang, K. Zhang, X. Jiang, J. Zhang, S100A6 as a potential serum prognostic
biomarker and therapeutic target in gastric cancer, Dig. Dis. Sci. 59 (2014)
2136–2144.

[52] W. Qin, L. Ho, J. Wang, E. Peskind, G.M. Pasinetti, S100A7, a novel Alzheimer’s
disease biomarker with non-amyloidogenic α-secretase activity acts via selective
promotion of ADAM-10, PLoS One 4 (2009) e4183.

[53] H. Wittkowski, M. Frosch, N. Wulffraat, R. Goldbach-Mansky, T. Kallinich, J.
Kuemmerle-Deschner, M.C. Frühwald, S. Dassmann, T.H. Pham, J. Roth, D. Foell,
S100A12 is a novel molecular marker differentiating systemic-onset juvenile idio-
pathic arthritis from other causes of fever of unknown origin, Arthritis Rheum. 58
(2008) 3924–3931.

[54] O.H. Mortensen, A.R. Nielsen, C. Erikstrup, P. Plomgaard, C.P. Fischer, R.
Krogh-Madsen, B. Lindegaard, A.M. Petersen, S. Taudorf, C. Philip, Calprotectin -
a novel marker of obesity, PLoS One 4 (2009) e7419.

[55] M.G. Ionita, A. Vink, I.E. Dijke, J.D. Laman, W. Peeters, P.H. Van Der Kraak, F.L.
Moll, J.P.P.M. De Vries, G. Pasterkamp, D.P.V. De Kleijn, High levels of
myeloid-related protein 14 in human atherosclerotic plaques correlate with the
characteristics of rupture-prone lesions, Arterioscler. Thromb. Vasc. Biol. 29
(2009) 1220–1227.

[56] H.K. De Jong, A. Achouiti, G.C.K.W. Koh, C.M. Parry, S. Baker, M.A. Faiz, J.T. van
Dissel, A.M. Vollaard, E.M.M. van Leeuwen, J.J.T.H. Roelofs, A.F. de Vos, J. Roth,
T. van der Poll, T. Vogl, W.J. Wiersinga, Expression and function of S100A8/A9
(calprotectin) in human typhoid fever and the murine salmonella Model, PLoS
Negl. Trop. Dis. 9 (2015) e0003663.

[57] M.R. Konikoff, L.A. Denson, Role of fecal calprotectin as a biomarker of intestinal
inflammation in inflammatory bowel disease, Inflamm. Bowel Dis. 12 (2006)
524–534.

[58] E.P. Thelin, D.W. Nelson, B.M. Bellander, A review of the clinical utility of serum
S100B protein levels in the assessment of traumatic brain injury, Acta Neurochir.
159 (2017) 209–225.

[59] J. Lu, G. Esposito, C. Scuderi, L. Steardo, L.C. Delli-Bovi, J.L. Hecht, B.C. Dickin-
son, C.J. Chang, T. Mori, V. Sheen, S100B and APP promote a gliocentric shift and
impaired neurogenesis in down syndrome neural progenitors, PLoS One 6 (2011)
e22126.

[60] M.L. Schroeter, H. Abdul-Khaliq, J. Sacher, J. Steiner, I.E. Blasig, K. Mueller,
Mood disorders are glial disorders: evidence from in vivo studies, Cardiovasc. Psy-
chiatry Neurol. 780645 (2010).

[61] C. Perera, H.P. McNeil, C.L. Geczy, S100 Calgranulins in inflammatory arthritis,
Immunol. Cell Biol. 88 (2010) 41–49.

[62] J. Austermann, C. Spiekermann, J. Roth, S100 proteins in rheumatic diseases, Nat.
Rev. Rheumatol. 14 (2018) 528–541.

[63] S. Morizane, R.L. Gallo, Antimicrobial peptides in the pathogenesis of psoriasis, J.
Dermatol. 39 (2012) 225–230.

[64] S.T. Gläser R, U. Meyer-Hoffert, J. Harder, J. Cordes, M. Wittersheim, J. Kobli-
akova, R. Fölster-Holst, E. Proksch, J.M. Schröder, The antimicrobial protein pso-
riasin (S100a7) is upregulated in atopic dermatitis and after experimental skin
barrier disruption, J. Invest. Dermatol. 129 (2009) 641–649.

[65] D. Foell, H. Wittkowski, C. Kessel, A. Lüken, T. Weinhage, G. Varga, T. Vogl, T.
Wirth, D. Viemann, P. Björk, M.A.D. Van Zoelen, F. Gohar, G. Srikrishna, M. Kraft,
J. Roth, Proinflammatory S100A12 can activate human monocytes via toll-like re-
ceptor 4, Am. J. Respir. Crit. Care Med. 187 (2013) 1324–1334.

[66] E. Leclerc, G. Fritz, S.W. Vetter, C.W. Heizmann, Binding of S100 proteins to
RAGE: an update, Biochim. Biophys. Acta - Mol. Cell Res. 1793 (2009) 993–1007.

[67] M. Brini, D. Ottolini, T. Calì, E. Carafoli, Calcium in health and disease, Met. Ions
Life Sci. 13 (2013) 81–137.

[68] T. Vogl, A. Stratis, V. Wixler, T. Völler, S. Thurainayagam, S.K. Jorch, S. Zenker,
A. Dreiling, D. Chakraborty, M. Fröhling, P. Paruzel, C. Wehmeyer, S. Hermann,
O. Papantonopoulou, C. Geyer, K. Loser, M. Schäfers, S. Ludwig, M. Stoll, T. Lean-
derson, J.L. Schultze, S. König, T. Pap, J. Roth, Autoinhibitory regulation of
S100A8/S100A9 alarmin activity locally restricts sterile inflammation, J. Clin. In-
vest. 128 (2018) 1852–1866.

[69] C. Kessel, D. Holzinger, D. Foell, Phagocyte-derived S100 proteins in autoinflam-
mation: putative role in pathogenesis and usefulness as biomarkers, Clin. Im-
munol. 147 (2013) 229–241.

[70] D. Foell, H. Wittkowski, T. Vogl, J. Roth, S100 proteins expressed in phagocytes: a
novel group of damage-associated molecular pattern molecules, J. Leukoc. Biol. 8
(2007) 28–37.

[71] A. Brufsky, Trastuzumab-based therapy for patients with HER2-positive breast
cancer: from early scientific development to foundation of care, Am. J. Clin. On-
col. Cancer Clin. Trials. 33 (2010) 186–195.

[72] M.W. Saif, Anti-VEGF agents in metastatic colorectal cancer (mCRC): are they all
alike?, Cancer Manag. Res. 5 (2013) 103–115.

[73] M. König, F. Rharbaoui, S. Aigner, B. Dälken, J. Schüttrumpf, Tregalizumab – a
monoclonal antibody to target regulatory T cells, Front. Immunol. 7 (2016).

[74] K. Hofmann, A.K. Clauder, R.A. Manz, Targeting B cells and plasma cells in au-
toimmune diseases, Front. Immunol. 9 (2018).

[75] J.W. Chiou, B. Fu, R.H. Chou, C. Yu, Blocking the interactions between cal-
cium-bound S100A12 protein and the v domain of RAGE using tranilast, PLoS
One 11 (2016) e0162000.

[76] M. Frosch, A. Strey, T. Vogl, N.M. Wulffraat, W. Kuis, C. Sunderkötter, E. Harms,
C. Sorg, J. Roth, Myeloid-related proteins 8 and 14 are specifically secreted during
interaction of phagocytes and activated endothelium and are useful markers

14



UN
CO

RR
EC

TE
D

PR
OO

F

L.L. Gonzalez et al. BBA - Molecular Cell Research xxx (xxxx) xxx-xxx

for monitoring disease activity in pauciarticular-onset juvenile rheumatoid arthri-
tis, Arthritis Rheum. 43 (2000) 628–637.

[77] M. Pruenster, T. Vogl, J. Roth, M. Sperandio, S100A8/A9: from basic science to
clinical application, Pharmacol. Ther. (2016) 120–131.

[78] J.C. Cohen, J.E. Larson, Pathophysiologic consequences following inhibition of a
CFTR-dependent developmental cascade in the lung, BMC Dev. Biol. 5 (2005).

[79] K. Burkhardt, S. Schwarz, C. Pan, F. Stelter, K. Kotliar, M. Von Eynatten, D.
Sollinger, I. Lanzl, U. Heemann, M. Baumann, Myeloid-related protein 8/14 com-
plex describes microcirculatory alterations in patients with type 2 diabetes and
nephropathy, Cardiovasc. Diabetol. 8 (2009).

[80] L.A. Altwegg, M. Neidhart, M. Hersberger, S. Müller, F.R. Eberli, R. Corti, M.
Roffi, G. Sütsch, S. Gay, A. Von Eckardstein, M.B. Wischnewsky, T.F. Lüscher, W.
Maier, Myeloid-related protein 8/14 complex is released by monocytes and granu-
locytes at the site of coronary occlusion: a novel, early, and sensitive marker of
acute coronary syndromes, Eur. Heart J. 28 (2007) 941–948.

[81] S. Wang, R. Song, Z. Wang, Z. Jing, S. Wang, J. Ma, S100A8/A9 in inflammation,
Front. Immunol. 9 (2018).

[82] P. Björk, A. Björk, T. Vogl, M. Stenström, D. Liberg, A. Olsson, J. Roth, F. Ivars, T.
Leanderson, Identification of human S100A9 as a novel target for treatment of au-
toimmune disease via binding to quinoline-3-carboxamides, PLoS Biol. 7 (2009)
e97.

[83] J. Austermann, S. Zenker, J. Roth, S100-alarmins: potential therapeutic targets for
arthritis, Expert Opin. Ther. Targets 21 (2017) 739–751.

[84] R. Sekimoto, S. Fukuda, N. Maeda, Y. Tsushima, K. Matsuda, T. Mori, H. Nakat-
suji, H. Nishizawa, K. Kishida, J. Kikuta, Y. Maijima, T. Funahashi, M. Ishii, I. Shi-
momura, Visualized macrophage dynamics and significance of S100A8 in obese
fat, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) E2058–E2066.

[85] V. Tidehag, P. Hammarsten, L. Egevad, T. Granfors, P. Stattin, T. Leanderson, P.
Wikström, A. Josefsson, C. Hägglöf, A. Bergh, High density of S100A9 positive in-
flammatory cells in prostate cancer stroma is associated with poor outcome, Eur.
J. Cancer 50 (2014) 1829–1835.

[86] P. Miller, K.M. Kidwell, D. Thomas, M. Sabel, J.M. Rae, D.F. Hayes, B.I. Hudson,
D. El-Ashry, M.E. Lippman, Elevated S100A8 protein expression in breast cancer
cells and breast tumor stroma is prognostic of poor disease outcome, Breast Can-
cer Res. Treat. 166 (2017) 85–94.

[87] P. Cheng, C.A. Corzo, N. Luetteke, B. Yu, S. Nagaraj, M.M. Bui, M. Ortiz, W.
Nacken, C. Sorg, T. Vogl, J. Roth, D.I. Gabrilovich, Inhibition of dendritic cell dif-
ferentiation and accumulation of myeloid-derived suppressor cells in cancer is reg-
ulated by S100A9 protein, J. Exp. Med. 205 (2008) 2235–2249.

[88] M. Ichikawa, R. Williams, L. Wang, T. Vogl, G. Srikrishna, S100A8/A9 activate
key genes and pathways in colon tumor progression, Mol. Cancer Res. 9 (2011)
133–148.

[89] S. Hiratsuka, A. Watanabe, Y. Sakurai, S. Akashi-Takamura, S. Ishibashi, K.
Miyake, M. Shibuya, S. Akira, H. Aburatani, Y. Maru, The S100A8-serum amyloid
A3-TLR4 paracrine cascade establishes a pre-metastatic phase, Nat. Cell Biol. 10
(2008) 1349–1355.

[90] M. Cavaco, M.A.R.B. Castanho, V. Neves, Peptibodies: an elegant solution for a
long-standing problem, Pept. Sci. (2017).

[91] H. Qin, B. Lerman, I. Sakamaki, G. Wei, S.C. Cha, S.S. Rao, J. Qian, Y.
Hailemichael, R. Nurieva, K.C. Dwyer, J. Roth, Q. Yi, W.W. Overwijk, L.W. Kwak,
Generation of a new therapeutic peptide that depletes myeloid-derived suppressor
cells in tumor-bearing mice, Nat. Med. 20 (2014) 676–681.

[92] M. Ruse, A. Lambert, N. Robinson, D. Ryan, K.J. Shon, R.L. Eckert, S100A7,
S100A10, and S100A11 are transglutaminase substrates, Biochemistry. 40 (2001)
3167–3173.

[93] M. Bajor, M. Zareba-Kozioł, L. Zhukova, K. Goryca, J. Poznański, A.
Wysłouch-Cieszyńska, An interplay of S-nitrosylation and metal ion binding for as-
trocytic S100B protein, PLoS One 11 (2016) e0154822.

[94] M.L. Živković, M. Zarȩba-Kozioł, L. Zhukova, J. Poznański, I. Zhukov, A.
Wysłouch-Cieszyńska, Post-translational S-nitrosylation is an endogenous factor
fine tuning the properties of human S100A1 protein, J. Biol. Chem. 287 (2012)
40457–40470.

[95] S.Y. Lim, M.J. Raftery, C.L. Geczy, Oxidative modifications of DAMPs suppress in-
flammation: the case for S100A8 and S100A9, Antioxidants Redox Signal 15
(2011) 2235–2248.

[96] S.Y. Lim, M.J. Raftery, J. Goyette, K. Hsu, C.L. Geczy, Oxidative modifications of
S100 proteins: functional regulation by redox, J. Leukoc. Biol. 86 (2009)
577–587.

[97] K.J. Miranda, R.F. Loeser, R.R. Yammani, Sumoylation and nuclear translocation
of S100A4 regulate IL-1β-mediated production of matrix metalloproteinase-13, J.
Biol. Chem. 285 (2010) 31517–31524.

[98] V. Schenten, S. Plançon, N. Jung, J. Hann, J.L. Bueb, S. Bréchard, E.J. Tschirhart,
F. Tolle, Secretion of the phosphorylated form of S100A9 from neutrophils is es-
sential for the proinflammatory functions of extracellular S100A8/A9, Front. Im-
munol. (2018) 9.

[99] Y. Watanabe, N. Usuda, S. Tsugane, R. Kobayashi, H. Hidaka, Calvasculin, an en-
coded protein from mRNA termed pEL-98, 18A2, 42A, or p9Ka, is secreted by
smooth muscle cells in culture and exhibits Ca2+- dependent binding to 36-kDa
microfibril-associated glycoprotein, J. Biol. Chem. 267 (1992) 17136–17140.

[100] T. Ravasi, K. Hsu, J. Goyette, K. Schroder, Z. Yang, F. Rahimi, L.P. Miranda, P.F.
Alewood, D.A. Hume, C. Geczy, Probing the S100 protein family through genomic
and functional analysis, Genomics. 84 (2004) 10–22.

[101] V.N. Malashkevich, K.M. Varney, S.C. Garrett, P.T. Wilder, D. Knight, T.H. Charp-
entier, U.A. Ramagopal, S.C. Almo, D.J. Weber, A.R. Bresnick, Structure of
Ca2+-bound S100A4 and its interaction with peptides derived from nonmuscle
myosin-IIA, Biochemistry. 47 (2008) 5111–5126.

[102] J. Roh, S. Knight, J.Y. Chung, S.H. Eo, M. Goggins, J. Kim, H.J. Cho, E. Yu, S.M.
Hong, S100A4 expression is a prognostic indicator in small intestine adenocarci-
noma, J. Clin. Pathol. 67 (2014) 216–221.

[103] H.L. Ford, D.L. Silver, B. Kachar, J.R. Sellers, S.B. Zain, Effect of Mts1 on the
structure and activity of nonmuscle myosin II, Biochemistry. 36 (1997)
16321–16327.

[104] S. Tarabykina, T.L. Griffiths, E. Tulchinsky, J. Mellon, I. Bronstein, M. Kriajevska,
Metastasis-associated protein S100A4: spotlight on its role in cell migration, Curr.
Cancer Drug Targets 7 (2007) 217–228.

[105] B. Schmidt-Hansen, D. Örnås, M. Grigorian, J. Klingelhöfer, E. Tulchinsky, E.
Lukanidin, N. Ambartsumian, Extracellular S100A4(mts1) stimulates invasive
growth of mouse endothelial cells and modulates MMP-13 matrix metallopro-
teinase activity, Oncogene. 23 (2004) 5487–5495.

[106] L.A. Cerezo, K. Kuncová, H. Mann, M. Tomčk, J. Zámečník, E. Lukanidin, M. Neid-
hart, S. Gay, M. Grigorian, J. Vencovský, L. Šenolt, The metastasis promoting pro-
tein S100A4 is increased in idiopathic inflammatory myopathies, Rheumatology.
50 (2011) 1766–1772.

[107] N. Ambartsumian, M. Grigorian, S100A4, a link between metastasis and inflam-
mation, Mol. Biol. 50 (2016) 577–588.

[108] I. Grotterød, G.M. Mælandsmo, K. Boye, Signal transduction mechanisms involved
in S100A4-induced activation of the transcription factor NF-κB, BMC Cancer 10
(2010).

[109] O. Hori, J. Brett, T. Slattery, R. Cao, J. Zhang, J.X. Chen, M. Nagashima, E.R.
Lundh, S. Vijay, D. Nitecki, J. Morser, D. Stern, A.M. Schmidt, The receptor for ad-
vanced glycation end products (RAGE) is a cellular binding site for amphoterin.
Mediation of neurite outgrowth and co-expression of RAGE and amphoterin in the
developing nervous system, J. Biol. Chem. 270 (1995) 25752–25761.

[110] S.F. Yan, R. Ramasamy, A.M. Schmidt, Receptor for AGE (RAGE) and its lig-
ands-cast into leading roles in diabetes and the inflammatory response, J. Mol.
Med. 87 (2009) 235–247.

[111] A.P. Burke, F.D. Kolodgie, A. Zieske, D.R. Fowler, D.K. Weber, P.J. Varghese, A.
Farb, R. Virmani, Morphologic findings of coronary atherosclerotic plaques in dia-
betics: a postmortem study, Arterioscler. Thromb. Vasc. Biol. 24 (2004)
1266–1271.

[112] D. Suzuki, M. Toyoda, N. Yamamoto, M. Miyauchi, M. Katoh, M. Kimura, M.
Maruyama, M. Honma, T. Umezono, M. Yagame, Relationship between the ex-
pression of advanced glycation end-products (AGE) and the receptor for AGE
(RAGE) mRNA in diabetic nephropathy, Intern. Med. 45 (2006) 435–441.

[113] C. Chaabane, C.W. Heizmann, M.L. Bochaton-Piallat, Extracellular S100A4 in-
duces smooth muscle cell phenotypic transition mediated by RAGE, Biochim. Bio-
phys. Acta - Mol. Cell Res. 1853 (2015) 2144–2157.

[114] M. Dahlmann, A. Okhrimenko, P. Marcinkowski, M. Osterland, P. Herrmann, J.
Smith, C.W. Heizmann, P.M. Schlag, U. Stein, RAGE mediates S100A4-induced
cell motility via MAPK/ERK and hypoxia signaling and is a prognostic biomarker
for human colorectal cancer metastasis, Oncotarget. 5 (2014) 3220–3233.

[115] V. Novitskaya, M. Grigorian, M. Kriajevska, S. Tarabykina, I. Bronstein, V.
Berezin, E. Bock, E. Lukanidin, Oligomeric forms of the metastasis-related Mts1
(S100A4) protein stimulate neuronal differentiation in cultures of rat hippocampal
neurons, J. Biol. Chem. 275 (2000) 41278–41286.

[116] R.R. Yammani, C.S. Carlson, A.R. Bresnick, R.F. Loeser, Increase in production of
matrix metalloproteinase 13 by human articular chondrocytes due to stimulation
with S100A4: role of the receptor for advanced glycation end products, Arthritis
Rheum. 54 (2006) 2901–2911.

[117] R.C. Borghaei, G. Gorski, M. Javadi, NF-κB and ZBP-89 regulate MMP-3 expres-
sion via a polymorphic site in the promoter, Biochem. Biophys. Res. Commun.
382 (2009) 269–273.

[118] D. Kiryushko, V. Novitskaya, V. Soroka, J. Klingelhofer, E. Lukanidin, V. Berezin,
E. Bock, Molecular mechanisms of Ca2+ signaling in neurons induced by the
S100A4 protein, Mol. Cell. Biol. 26 (2006) 3625–3638.

[119] K. Boye, I. Grotterød, H.C. Aasheim, E. Hovig, G.M. Maelandsmo, Activation of
NF-κB by extracellular S100A4: analysis of signal transduction mechanisms and
identification of target genes, Int. J. Cancer 123 (2008) 1301–1310.

[120] H. Kim, Y.D. Lee, M.K. Kim, J.O. Kwon, M.K. Song, Z.H. Lee, H.H. Kim, Extracellu-
lar S100A4 negatively regulates osteoblast function by activating the NF-κB path-
way, BMB Rep. 50 (2017) 97–102.

[121] K. Takenaga, E.N. Kozlova, Role of intracellular S100A4 for migration of rat astro-
cytes, Glia. 53 (2006) 313–321.

[122] N. Tsukamoto, S. Egawa, M. Akada, K. Abe, Y. Saiki, N. Kaneko, S. Yokoyama, K.
Shima, A. Yamamura, F. Motoi, H. Abe, H. Hayashi, K. Ishida, T. Moriya, T.
Tabata, E. Kondo, N. Kanai, Z. Gu, M. Sunamura, M. Unno, A. Horii, The expres-
sion of S100A4 in human pancreatic cancer is associated with invasion, Pancreas.
42 (2013) 1027–1033.

[123] Z.H. Li, N.G. Dulyaninova, R.P. House, S.C. Almo, A.R. Bresnick, S100A4 regulates
macrophage chemotaxis, Mol. Biol. Cell 21 (2010) 2598–2610.

[124] S.C. Garrett, K.M. Varney, D.J. Weber, A.R. Bresnick, S100A4, a mediator of
metastasis, J. Biol. Chem. 281 (2006) 677–680.

[125] I. Matsuura, C.Y. Lai, K.N. Chiang, Functional interaction between Smad3 and
S100A4 (metastatin-1) for TGF-β-mediated cancer cell invasiveness, Biochem. J.
426 (2010) 327–335.

[126] N.G. Dulyaninova, V.N. Malashkevich, S.C. Almo, A.R. Bresnick, Regulation of
myosin-IIA assembly and Mts1 binding by heavy chain phosphorylation, Biochem-
istry. 44 (2005) 6867–6876.

[127] D.M. Helfman, E.J. Kim, E. Lukanidin, M. Grigorian, The metastasis associated
protein S100A4: role in tumour progression and metastasis, Br. J. Cancer 92
(2005) 1955–1958.

[128] A. Torre, L.A. Bray, F. Siegel, R.L. Ferlay, J. Lortet-Tieulent, J. Jemal, Global can-
cer statistics, Cancer J. Clin. 65 (2015) (2012) 87–108.

[129] C. Fitzmaurice, D. Dicker, A. Pain, H. Hamavid, M. Moradi-Lakeh, M.F. MacIntyre,
C. Allen, G. Hansen, R. Woodbrook, C. Wolfe, R.R. Hamadeh, A. Moore, A.
Werdecker, B.D. Gessner, B. Te Ao, B. McMahon, C. Karimkhani, C. Yu, G.S.
Cooke, D.C. Schwebel, D.O. Carpenter, D.M. Pereira, D. Nash, D.S. Kazi, D. De
Leo, D. Plass, K.N. Ukwaja, G.D. Thurston, K. Yun Jin, E.P. Simard, E. Mills, E.K.
Park, F. Catalá-López, G. DeVeber, C. Gotay, G. Khan, H.D. Hosgood, I.S. Santos,

15



UN
CO

RR
EC

TE
D

PR
OO

F

L.L. Gonzalez et al. BBA - Molecular Cell Research xxx (xxxx) xxx-xxx

J.L. Leasher, J. Singh, J. Leigh, J.B. Jonas, J. Sanabria, J. Beardsley, K.H. Jacob-
sen, K. Takahashi, R.C. Franklin, L. Ronfani, M. Montico, L. Naldi, M. Tonelli, J.
Geleijnse, M. Petzold, M.G. Shrime, M. Younis, N. Yonemoto, N. Breitborde, P.
Yip, F. Pourmalek, P.A. Lotufo, A. Esteghamati, G.J. Hankey, R. Ali, R. Lunevicius,
R. Malekzadeh, R. Dellavalle, R. Weintraub, R. Lucas, R. Hay, D. Rojas-Rueda, R.
Westerman, S.G. Sepanlou, S. Nolte, S. Patten, S. Weichenthal, S.F. Abera, S.M.
Fereshtehnejad, I. Shiue, T. Driscoll, T. Vasankari, U. Alsharif, V.
Rahimi-Movaghar, V.V. Vlassov, W.S. Marcenes, W. Mekonnen, Y.A. Melaku, Y.
Yano, A. Artaman, I. Campos, J. MacLachlan, U. Mueller, D. Kim, M. Trillini, B.
Eshrati, H.C. Williams, K. Shibuya, R. Dandona, K. Murthy, B. Cowie, A.T. Amare,
C.A. Antonio, C. Castañeda-Orjuela, C.H. Van Gool, F. Violante, I.H. Oh, K. Deribe,
K. Soreide, L. Knibbs, M. Kereselidze, M. Green, R. Cardenas, N. Roy, T. Tillmann,
Y. Li, H. Krueger, L. Monasta, S. Dey, S. Sheikhbahaei, N. Hafezi-Nejad, G.A. Ku-
mar, C.T. Sreeramareddy, L. Dandona, H. Wang, S.E. Vollset, A. Mokdad, J.A. Sa-
lomon, R. Lozano, T. Vos, M. Forouzanfar, A. Lopez, C. Murray, M. Naghavi, The
global burden of cancer, JAMA Oncol. 1 (2015) (2013) 505–527.

[130] K. Jin, T. Li, H. van Dam, F. Zhou, L. Zhang, Molecular insights into tumour
metastasis: tracing the dominant events, J. Pathol. 241 (2017) 567–577.

[131] J.T. O’Connell, H. Sugimoto, V.G. Cooke, B.A. MacDonald, A.I. Mehta, V.S.
LeBleu, R. Dewar, R.M. Rocha, R.R. Brentani, M.B. Resnick, E.G. Neilson, M. Zeis-
berg, R. Kalluri, VEGF-A and tenascin-C produced by S100A4 + stromal cells are
important for metastatic colonization, Proc. Natl. Acad. Sci. U. S. A. 108 (2011)
16002–16007.

[132] M. Dahlmann, D. Kobelt, W. Walther, G. Mudduluru, U. Stein, S100A4 in cancer
metastasis: Wnt signaling-driven interventions for metastasis restriction, Cancers
(Basel). (2016).

[133] A. Ebralidze, E. Tulchinsky, M. Grigorian, A. Afanasyeva, V. Senin, E. Revazova,
E. Lukanidin, Isolation and characterization of a gene specifically expressed in dif-
ferent metastatic cells and whose deduced gene product has a high degree of ho-
mology to a Ca2+-binding protein family, Genes Dev. 3 (1989) 1086–1093.

[134] B.R. Davies, R. Barraclough, P.S. Rudland, Induction of metastatic ability in a sta-
bly diploid benign rat mammary epithelial cell line by transfection with DNA from
human malignant breast carcinoma cell lines, Cancer Res. 54 (1994) 2785–2793.

[135] P.S. Rudland, A. Platt-Higgins, C. Renshaw, C.R. West, J.H.R. Winstanley, L.
Robertson, R. Barraclough, Prognostic significance of the metastasis-inducing pro-
tein S100A4 (p9Ka) in human breast cancer, Cancer Res. 60 (2000) 1595–1603.

[136] R. Zakaria, A. Platt-Higgins, N. Rathi, D. Crooks, A. Brodbelt, E. Chavredakis, D.
Lawson, M.D. Jenkinson, P.S. Rudland, Metastasis-inducing proteins are widely
expressed in human brain metastases and associated with intracranial progression
and radiation response, Br. J. Cancer 114 (2016) 1101–1118.

[137] S. Taylor, S. Herrington, W. Prime, P.S. Rudland, R. Barraclough, S100A4 (p9Ka)
protein in colon carcinoma and liver metastases: association with carcinoma cells
and T-lymphocytes, Br. J. Cancer (2002).

[138] S. Gongoll, G. Peters, M. Mengel, P. Piso, J. Klempnauer, H. Kreipe, R. Von
Wasielewski, Prognostic significance of calcium-binding protein S100A4 in col-
orectal cancer, Gastroenterology. (2002), doi:10.1053/gast.2002.36606.

[139] S.R. Gross, C.G.T. Sin, R. Barraclough, P.S. Rudland, Joining S100 proteins and
migration: for better or for worse, in sickness and in health, Cell. Mol. Life Sci. 71
(2014) 1551–1579.

[140] F. Fei, J. Qu, M. Zhang, Y. Li, S. Zhang, S100A4 in cancer progression and metas-
tasis: a systematic review, Oncotarget. 8 (2017) 73219–73239.

[141] A.R. Bresnick, D.J. Weber, D.B. Zimmer, S100 proteins in cancer, Nat. Rev. Cancer
15 (2015) 96–109.

[142] N. Ambartsumian, J. Klingelhöfer, M. Grigorian, C. Christensen, M. Kriajevska, E.
Tulchinsky, G. Georgiev, V. Berezin, E. Bock, J. Rygaard, R. Cao, Y. Cao, E.
Lukanidin, The metastasis-associated Mts1(S100A4) protein could act as an angio-
genic factor, Oncogene. 20 (2001) 4685–4695.

[143] A. Mueller, T. Bächi, M. Höchli, B.W. Schäfer, C.W. Heizmann, Subcellular distrib-
ution of S100 proteins in tumor cells and their relocation in response to calcium
activation, Histochem. Cell Biol. 111 (1999) 453–459.

[144] H.L. Hsieh, B.W. Schäfer, B. Weigle, C.W. Heizmann, S100 protein translocation in
response to extracellular S100 is mediated by receptor for advanced glycation
endproducts in human endothelial cells, Biochem. Biophys. Res. Commun. 316
(2004) 949–959.

[145] M.P.A. Davies, P.S. Rudland, L. Robertson, E.W. Parry, P. Jolicoeur, R. Barra-
clough, Expression of the calcium-binding protein S100A4 (p9Ka) in MMTV-neu
transgenic mice induces metastasis of mammary tumours, Oncogene. 13 (1996)
1631–1637.

[146] B. Smith, N. Bhowmick, Role of EMT in metastasis and therapy resistance, J. Clin.
Med. 5 (2016) E17 pii.

[147] Q. Ning, F. Li, L. Wang, H. Li, Y. Yao, T. Hu, Z. Sun, S100A4 amplifies TGF-β-in-
duced epithelial–mesenchymal transition in a pleural mesothelial cell line, J. In-
vestig. Med. 66 (2018) 334–339.

[148] A. Keirsebilck, S. Bonné, E. Bruyneel, P. Vermassen, E. Lukanidin, M. Mareel, F.
Van Roy, E-cadherin and metastasin (mts-1/S100A4) expression levels are in-
versely regulated in two tumor cell families, Cancer Res. 58 (1998) 4587–4591.

[149] H. Wang, L. Duan, Z. Zou, H. Li, S. Yuan, X. Chen, Y. Zhang, X. Li, H. Sun, H. Zha,
Y. Zhang, L. Zhou, Activation of the PI3K/Akt/mTOR/p70S6K pathway is in-
volved in S100A4-induced viability and migration in colorectal cancer cells, Int. J.
Med. Sci. 11 (2014) 841–849.

[150] X. Xu, B. Su, C. Xie, S. Wei, Y. Zhou, H. Liu, W. Dai, P. Cheng, F. Wang, X. Xu, C.
Guo, Sonic hedgehog-Gli1 signaling pathway regulates the epithelial mesenchy-
mal transition (EMT) by mediating a new target gene, S100A4, in pancreatic can-
cer cells, PLoS One 9 (2014) e96441.

[151] N. Kohya, Y. Kitajima, W. Jiao, K. Miyazaki, Effects of E-cadherin transfection on
gene expression of a gallbladder carcinoma cell line: repression of MTS1/S100A4
gene expression, Int. J. Cancer 104 (2003) 44–53.

[152] M. Saleem, M.H. Kweon, J.J. Johnson, V.M. Adhami, I. Elcheva, N. Khan, B. Bin
Hafeez, K.M.R. Bhat, S. Sarfaraz, S. Reagan-Shaw, V.S. Spiegelman, V. Setaluri, H.

Mukhtar, S100A4 accelerates tumorigenesis and invasion of human prostate can-
cer through the transcriptional regulation of matrix metalloproteinase 9, Proc.
Natl. Acad. Sci. U. S. A. 103 (2006) 14825–14830.

[153] K. Bjørnland, J.O. Winberg, O.T. Ødegaard, E. Hovig, T. Loennechen, A.O. Aasen,
Ø. Fodstad, G.M. Mælandsmo, S100A4 involvement in metastasis: deregulation of
matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in os-
teosarcoma cells transfected with an anti-S100A4 ribozyme, Cancer Res. 59
(1999) 4702–4708.

[154] N. Tajeddine, M. Louis, C. Vermylen, J.L. Gala, B. Tombal, P. Gailly, Tumor asso-
ciated antigen PRAME is a marker of favorable prognosis in childhood acute
myeloid leukemia patients and modifies the expression of S100A4, Hsp 27, p21,
IL-8 and IGFBP-2 in vitro and in vivo, Leuk. Lymphoma. 49 (2008) 1123–1131.

[155] F. Fei, J. Qu, C. Li, X. Wang, Y. Li, S. Zhang, Role of metastasis-induced protein
S100A4 in human non-tumor pathophysiologies, Cell Biosci. 7 (2017).

[156] R. Kalluri, R.A. Weinberg, The basics of epithelial-mesenchymal transition, J. Clin.
Invest. 119 (2009) 1420–1428.

[157] M. Zeisberg, E.G. Neilson, Biomarkers for epithelial-mesenchymal transitions, J.
Clin. Invest. 119 (2009) 1429–1437.

[158] M. Zeisberg, R. Kalluri, The role of epithelial-to-mesenchymal transition in renal
fibrosis, J. Mol. Med. 82 (2004) 175–181.

[159] R. Kalluri, E.G. Neilson, Epithelial-mesenchymal transition and its implications for
fibrosis, J. Clin. Invest. 112 (2003) 1776–1784.

[160] N. E, H. Okada, T.M. Danoff, R. Kalluri, Early role of Fsp1 in epithelial-mesenchy-
mal transformation, Am. J. Physiol. Physiol. 273 (2017) F563–F574.

[161] M. Tomcik, K. Palumbo-Zerr, P. Zerr, J. Avouac, C. Dees, B. Sumova, A. Distler, C.
Beyer, L. Andres Cerezo, R. Becvar, O. Distler, M. Grigorian, G. Schett, L. Senolt,
J.H.W. Distler, S100A4 amplifies TGF-β-induced fibroblast activation in systemic
sclerosis, Ann. Rheum. Dis. 74 (2015) 1748–1755.

[162] M. Zhou, Z.Q. Li, Z.L. Wang, S100A4 upregulation suppresses tissue ossification
and enhances matrix degradation in experimental periodontitis models, Acta Phar-
macol. Sin. 36 (2015) 1388–1394.

[163] A. Semov, M.J. Moreno, A. Onichtchenko, A. Abulrob, M. Ball, I. Ekiel, G.
Pietrzynski, D. Stanimirovic, V. Alakhov, Metastasis-associated protein S100A4 in-
duces angiogenesis through interaction with annexin II and accelerated plasmin
formation, J. Biol. Chem. (2005).

[164] G. Cheng, T. He, Y. Xing, Silencing of S100A4, a metastasis-associated protein, in-
hibits retinal neovascularization via the downregulation of BDNF in oxygen-in-
duced ischaemic retinopathy, Eye. 30 (2016) 877–887.

[165] A. Fujiya, H. Nagasaki, Y. Seino, T. Okawa, J. Kato, A. Fukami, T. Himeno, E.
Uenishi, S. Tsunekawa, H. Kamiya, J. Nakamura, Y. Oiso, Y. Hamada, The role of
S100B in the interaction between adipocytes and macrophages, Obesity. 22
(2014) 371–379.

[166] Y. Liu, R. Zhang, J. Xin, Y. Sun, J. Li, D. Wei, A.Z. Zhao, Identification of S100A16
as a novel adipogenesis promoting factor in 3T3-L1 cells, Endocrinology. 152
(2011) 903–911.

[167] A.M.A. El-Asrar, M.I. Nawaz, G. De Hertogh, K. Alam, M.M. Siddiquei, K. Van Den
Eynde, A. Mousa, G. Mohammad, K. Geboes, G. Opdenakker, S100a4 is upregu-
lated in proliferative diabetic retinopathy and correlates with markers of angio-
genesis and fibrogenesis, Mol. Vis. 20 (2014) 1209–1224.

[168] P. Arner, P. Petrus, D. Esteve, A. Boulomié, E. Näslund, A. Thorell, H. Gao, I.
Dahlman, M. Rydén, Screening of potential adipokines identifies S100A4 as a
marker of pernicious adipose tissue and insulin resistance, Int. J. Obes. 42 (2018)
2047–2056.

[169] A.M. Castro, L.E. Macedo-de la Concha, C.A. Pantoja-Meléndez, Low-grade inflam-
mation and its relation to obesity and chronic degenerative diseases, Rev. Médica
Del Hosp. Gen. México. 80 (2017) 101–105.

[170] S. Laforest, J. Labrecque, A. Michaud, K. Cianflone, A. Tchernof, Adipocyte size as
a determinant of metabolic disease and adipose tissue dysfunction, Crit. Rev. Clin.
Lab. Sci. 52 (2015) 301–313.

[171] E. Arner, P.O. Westermark, K.L. Spalding, T. Britton, M. Rydén, J. Frisén, S.
Bernard, P. Arner, Adipocyte turnover: relevance to human adipose tissue mor-
phology, Diabetes. 59 (2010) 105–109.

[172] U. Stein, F. Arlt, W. Walther, J. Smith, T. Waldman, E.D. Harris, S.D. Mertins,
C.W. Heizmann, D. Allard, W. Birchmeier, P.M. Schlag, R.H. Shoemaker, The
metastasis-associated gene S100A4 is a novel target of β-catenin/T-cell factor sig-
naling in colon cancer, Gastroenterology. 131 (2006) 1486–1500.

[173] U. Stein, F. Arlt, J. Smith, U. Sack, P. Herrmann, W. Walther, M. Lemm, I. Ficht-
ner, R.H. Shoemaker, P.M. Schlag, Intervening in β-catenin signaling by sulindac
inhibits S100A4-dependent colon cancer metastasis, Neoplasia. 13 (2011)
131–144.

[174] D. Aguilar-Morante, J.A. Morales-Garcia, A. Santos, A. Perez-Castillo, CCAAT/en-
hancer binding protein β induces motility and invasion of glioblastoma cells
through transcriptional regulation of the calcium binding protein S100A4, Onco-
target. 6 (2015) 4369–4384.

[175] J. Liu, Z.M. Xu, G. Bin Qiu, Z.H. Zheng, K.L. Sun, W.N. Fu, S100A4 is upregulated
via the binding of c-Myb in methylation-free laryngeal cancer cells, Oncol. Rep.
31 (2014) 442–449.

[176] L.L. Gonzalez, K. Garrie, M.D. Turner, Type 2 diabetes – an autoinflammatory dis-
ease driven by metabolic stress, Biochim. Biophys. Acta - Mol. Basis Dis. 1864
(2018) 3805–3823.

[177] H.I. Chen, D.G. Fernig, P.S. Rudland, A. Sparks, M.C. Wilkinson, R. Barraclough,
Binding to intracellular targets of the metastasis-inducing protein, S100A4 (p9Ka),
Biochem. Biophys. Res. Commun. 286 (2001) 1212–1217.

[178] F. O, G.M. Maelandsmo, E. Hovig, M. Skrede, O. Engebraaten, V.A. Flørenes, O.
Myklebost, M. Grigorian, E. Lukanidin, K.J. Scanlon, Reversal of the in vivo
metastatic phenotype of human tumor cells by an anti-CAPL (mts1) ribozyme,
Cancer Res. 56 (1996) 5490–5498.

[179] G. Zhang, M. Li, J. Jin, Y. Bai, C. Yang, Knockdown of S100A4 decreases tumori-
genesis and metastasis in osteosarcoma cells by repression of matrix metallopro-
teinase-9, Asian Pac. J. Cancer Prev. (2011).

16



UN
CO

RR
EC

TE
D

PR
OO

F

L.L. Gonzalez et al. BBA - Molecular Cell Research xxx (xxxx) xxx-xxx

[180] M. Dahlmann, U. Sack, P. Herrmann, M. Lemm, I. Fichtner, P.M. Schlag, U. Stein,
Systemic shRNA mediated knock-down of S100A4 in colorectal cancer
xenografted mice reduces metastasis formation, Oncotarget. 3 (2012) 783–797.

[181] K. Zhang, M. Yu, F. Hao, A. Dong, D. Chen, Knockdown of S100A4 blocks growth
and metastasis of anaplastic thyroid cancer cells in vitro and in vivo, Cancer Bio-
markers. 17 (2016) 281–291.

[182] Y. Bian, J. Guo, L. Qiao, X. Sun, miR-3189-3p mimics enhance the effects of
S100A4 siRNA on the inhibition of proliferation and migration of gastric cancer
cells by targeting CFL2, Int. J. Mol. Sci. 19 (2018) 236.

[183] J. Klingelhöfer, B. Grum-Schwensen, M.K. Beck, R.S.P. Knudsen, M. Grigorian, E.
Lukanidin, N. Ambartsumian, Anti-S100A4 antibody suppresses metastasis forma-
tion by blocking stroma cell invasion, Neoplasia (United States). 14 (2012)
1260–1268.

[184] B. Grum-Schwensen, J. Klingelhöfer, M. Beck, M.M. Bonefeld, P. Hamerlik, P.
Guldberg, M. Grigorian, E. Lukanidin, N. Ambartsumian, S100A4-neutralizing an-
tibody suppresses spontaneous tumor progression, pre-metastatic niche formation
and alters T-cell polarization balance, BMC Cancer 15 (2015).

[185] J.L. Hernández, L. Padilla, S. Dakhel, T. Coll, R. Hervas, J. Adan, M. Masa, F. Mit-
jans, J.M. Martinez, S. Coma, L. Rodríguez, V. Noé, C.J. Ciudad, F. Blasco, R.
Messeguer, Therapeutic targeting of tumor growth and angiogenesis with a novel
anti-S100A4 monoclonal antibody, PLoS One (2013).

[186] U. Sack, W. Walther, D. Scudiero, M. Selby, J. Aumann, C. Lemos, I. Fichtner,
P.M. Schlag, R.H. Shoemaker, U. Stein, S100A4-induced cell motility and metasta-
sis is restricted by the Wnt/β-catenin pathway inhibitor calcimycin in colon can-
cer cells, Mol. Biol. Cell 22 (2011) 3344–3354.

[187] U. Sack, W. Walther, D. Scudiero, M. Selby, D. Kobelt, M. Lemm, I. Fichtner, P.M.
Schlag, R.H. Shoemaker, U. Stein, Novel effect of antihelminthic niclosamide on
s100a4-mediated metastatic progression in colon cancer, J. Natl. Cancer Inst.
(2011).

[188] U. Stein, F. Arlt, J. Smith, U. Sack, P. Herrmann, W. Walther, M. Lemm, I. Ficht-
ner, R.H. Shoemaker, P.M. Schlag, Intervening in β-catenin signaling by sulindac
inhibits S100A4-dependent colon cancer metastasis, Neoplasia. (2011).

17


	Role of S100 proteins in health and disease
	Keywords
	Abstract
	Introduction
	S100 protein structure, expression, and function
	Molecular structure
	Expression
	Function
	S100s as damage associated molecular pattern (DAMP) molecules
	S100s in immune cell migration, invasion and differentiation


	Targeting S100 proteins in disease
	S100s as biomarkers for disease
	S100s as therapeutic targets

	S100A4
	S100A4 signalling
	Extracellular S100A4
	Intracellular S100A4 signalling

	S100A4 in disease
	S100A4 and cancer
	S100A4 and non-cancer pathologies

	S100A4 therapeutics

	Conclusions
	Abbreviations
	Author contributions
	Uncited reference
	Declaration of competing interest
	Acknowledgements
	References


