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Abstract 

Ensemble models achieve high accuracy by combining a number of base estimators and can increase the reliability 
of machine learning compared to a single estimator. Additionally, an ensemble model enables a machine learning 
method to deal with imbalanced data, which is considered to be one of the most challenging problems in machine 
learning. In this paper, the capability of Adaptive Boosting (AdaBoost) is integrated with a Convolutional Neural 
Network (CNN) to design a new machine learning method, AdaBoost-CNN, which can deal with large imbalanced 
datasets with high accuracy. AdaBoost is an ensemble method where a sequence of classifiers is trained. In 
AdaBoost, each training sample is assigned a weight, and a higher weight is set for a training sample that has not 
been trained by the previous classifier. The proposed AdaBoost-CNN is designed to reduce the computational 
cost of the classical AdaBoost when dealing with large sets of training data, through reducing the required number 
of learning epochs for its ingredient estimator. AdaBoost-CNN applies transfer learning to sequentially transfer 
the trained knowledge of a CNN estimator to the next CNN estimator, while updating the weights of the samples 
in the training set to improve accuracy and to reduce training time. Experimental results revealed that the proposed 
AdaBoost-CNN achieved 16.98% higher accuracy compared to the classical AdaBoost method on a synthetic 
imbalanced dataset. Additionally, AdaBoost-CNN reached an accuracy of 94.08% on 10,000 testing samples of 
the synthetic imbalanced dataset, which is higher than the accuracy of the baseline CNN method, i.e. 92.05%. 
AdaBoost-CNN is computationally efficient, as evidenced by the fact that the training simulation time of the 
proposed method is 47.33 seconds, which is lower than the training simulation time required for a similar 
AdaBoost method without transfer learning, i.e. 225.83 seconds on the imbalanced dataset. Moreover, when 
compared to the baseline CNN, AdaBoost-CNN achieved higher accuracy when applied to five other benchmark 
datasets including CIFAR-10 and Fashion-MNIST. AdaBoost-CNN was also applied to the EMNIST datasets, to 
determine its impact on large imbalanced classes, and the results demonstrate the superiority of the proposed 
method compared to CNN. 
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1. Introduction 

Ensemble approaches have shown their exceptional capabilities in improving the accuracy of classical 

machine learning approaches such as Support Vector Machines (SVM) [1] and decision trees [2][3], 

and are often used to overcome the difficulty of training imbalanced data [1]. An ensemble method 

combines a number of weak classifiers to generate a machine learning method that is better than its 
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ingredient simple classifiers. Class-imbalance is considered as one of the most challenging problems in 

machine learning, and it occurs in a learning task where there are considerably less data instances in 

one class (the minority class) compared to the other class (the majority class). A balanced dataset 

consists of approximately the same number of training samples in each class. Boosting ensemble 

approaches are effective methods to overcome the challenges encountered by machine learning 

algorithms when learning from data with imbalanced classes [1] [4]. AdaBoost is an ensemble approach 

which can identify misclassified instances that occur because of the disjunct problem. The disjunct 

problem is apparent in datasets which contain instances in a class that are clustered in a number of 

separate small groups, and each group contains a small number of instances that cannot be disregarded 

and should be trained [1]. Although class imbalance has been comprehensively studied in classical 

machine learning methods, it has received less attention in the context of deep learning [5].  

Different ensemble methods have been used in various applications. Viola and Jones [6] have designed 

a face detector that works with a large pool of simple classifiers and creates a strong classifier for human 

face detection. Galar et al. [3] have proposed tree-based ensemble approaches for the task of classifying 

imbalanced data. They have used bagging- and boosting- based ensemble methods to classify 

imbalanced data. Nejatian et al. [7] have proposed sub-sampling and ensemble clustering techniques 

for learning tasks in which the number of samples in a minority class is less than the number of samples 

in a majority class, and they applied these techniques for breast cancer detection. AdaBoost is a well-

known algorithm and the seminal work of  Freund and Schapire [8] has attracted significant attention 

from researchers. Lee et al. [1] have used SVM as a weak classifier for AdaBoost to propose a method 

to deal with imbalanced data. Lee et al.’s [1] approach uses an SVM margin to define different types of 

instances, such as borderline instances, and the AdaBoost assigns different instances with different 

scores, to achieve higher accuracy on imbalanced data. The AdaBoost method proposed in [1] is used 

for binary classification tasks.   

Standard learning algorithms are usually designed to work with balanced datasets and need additional 

procedures to handle imbalanced datasets [9][10][11]. Namkoong et al. [12] developed an optimisation 

method that takes more samples from instances with a high level of importance during stochastic 

gradient descent. Another common approach involves resampling an equal number of training data for 

each class to make a balanced dataset. Real-world applications usually generate imbalanced datasets 

[13] and for this reason approaches for dealing with imbalanced data are needed. Designing a learning 

method for imbalanced datasets is an important challenge [7], especially in tasks where the cost of 

incorrect classification of an instance from the minority class, for example misclassifying a cancer 

patient as a healthy person, is critically high [14].  

The two main methods to deal with imbalanced data are those that work directly on data and those based 

on algorithms. Buda et al. [5] have shown that data imbalance affects the performance of CNN, and 

they have used different methods based on data, such as oversampling, to process imbalanced data. The 

impact of class imbalance increases when the scale of the task increases, particularly when large data is 

utilized [5]. CNN approaches are known to be suitable for classifying large data, however it has no 

algorithmic strategy for dealing with imbalanced data and there is a need for methods that can classify 

imbalanced data using the CNN.  

Since AdaBoost is an algorithmic method that has been used to overcome the challenges of classifying 

imbalanced data in classical machine learning methods [1], this paper proposes a method which extends 

AdaBoost’s capabilities to classifying large data using the CNN. In order to embed the capability of 

CNN in AdaBoost for the task of dealing with imbalanced data, this paper proposes a new algorithm, 

AdaBoost-CNN, which couples CNN’s superior capabilities in analysing and finding patterns in large 

data with AdaBoost’s capabilities of dealing with large imbalanced data. To achieve this it was 

necessary to construct a new AdaBoost that can be applied for CNN, as a simple application of the 

standard AdaBoost method does not improve the performance. In the deep structure of CNN which 



consists of a high number of layers, there is a large number of learning parameters, and consequently a 

high number of training samples are usually required to tune the parameters. Reducing the number of 

effective training samples in the sequential procedure of a conventional AdaBoost can reduce the 

performance of the AdaBoost. The proposed method, i.e. AdaBoost-CNN, uses the transfer learning 

property of deep learning methods to overcome this difficulty and to reduce the computational cost of 

the proposed AdaBoost, making it superior to the conventional AdaBoost and CNN methods. 

The paper is structured as follows. Section 2 introduces related works and various ensembles of CNNs. 

Then, the principle of the proposed AdaBoost-CNN, is discussed in Section 3. Thereafter, experimental 

results are discussed in Section 4. The experimental section describes the five datasets and experiments 

carried out to evaluate the performance of the proposed method. Finally, a conclusion is presented in 

Section 5. 

2. Related works 

The high performance of ensemble methods has encouraged researchers to design different ensembles 

of CNNs for different applications in different fields. For example, the top results achieved for the 

ImageNet Large Scale Visual Recognition Competition (ILSVRC2015) [15] are based on ensemble 

methods. Ciresan et al. [16]  have proposed an ensemble method for CNNs where a number of  deep 

neural columns, i.e. CNNs, are trained on inputs, which are pre-processed in different ways, and 

thereafter the predictions of the neural columns are averaged. The method is one of the first methods to 

achieve an accuracy close to human accuracy when applied to the MNIST dataset [16]. Combining the 

network outputs with a simple average might not be the best approach because it assigns the same level 

of importance to each network regardless of their accuracies. Frazao and Alexandre [17] have proposed 

a weighted ensemble method that applies different weights for each CNN. A CNN with a better 

performance is given a higher weight. Consequently, a better CNN has more influence on the final 

result. Wen et al. [18] have improved the weighted ensemble method proposed by Frazao and Alexandre 

[17]. They have proposed a probability-based fusion method for CNNs to recognize facial expression. 

They constructed different estimators by randomly varying the parameters and architecture of a CNN. 

The output probabilities of each CNN for different classes are combined to make the probability-based 

fusion method. The accuracy of each CNN on the validation data was used to generate a weight for the 

CNN to improve the method. Kim et al. [19] have proposed a method to train an ensemble of CNNs. 

They have used a variety of network structures, random initial weights, and input normalization to 

generate different CNN models. Then they have used a hierarchical committee to fuse the output of the 

trained CNN. Kawana et al. [20] have proposed an ensemble of CNNs for human pose estimation. Each 

CNN in the ensemble model is optimized for a limited variety of poses. Their method combines the 

responses of various CNNs for final estimation by considering the interdependencies between the 

different responses. They divided training data into a number of subsets with similar poses. Then they 

trained a CNN with each of the subset training data. Finally, they integrated the output of the trained 

CNNs by feeding their output to a further CNN.  

Wang et al. [21] have used a cascaded ensemble of CNNs for breast cancer grading through mitotic 

count at specific time. They count the number of cells which are in the process of dividing. Tajbakhsh 

et al. [22] have proposed an automatic polyp detection using an ensemble of CNNs. Different polyp 

features such as colour, texture, and shape are considered and each CNN become specialized on one 

type of  feature. Ijjina et al. [23] have proposed an ensemble method for human action recognition in 

video. The maximum value of outputs across all the classifiers is considered as the final output of the 

ensemble method.  Lyksborg et al. [24] have proposed an ensemble of CNNs for accurate volumetric 

tumour segmentation in magnetic resonance images.  
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3. The principle of the proposed AdaBoost-CNN algorithm 

Multiple weak classifiers are combined with AdaBoost techniques to make a single strong classifier. In 

this technique a group of weak classifiers are trained sequentially. Each classifier is trained based on 

the errors of the previous classifier, and a weight is assigned to each training sample to show the degree 

to which the sample is not trained properly with a weak classifier. The weight of a sample is reduced 

exponentially if it is trained correctly by the previous weak classifier. Each new weak classifier is 

trained with more weights for those samples that are not trained appropriately based on the results of 

the previous weak classifier. 

This paper adapts the multi-class AdaBoost method proposed by Zhu et al. [2] to design an AdaBoost 

method for CNN. The proposed new method is called AdaBoost-CNN. In the baseline multi-class 

AdaBoost, a variant of the SAMME (Stagewise Additive Modeling using a multi-class Exponential loss 

function) learning algorithm, called SAMME.R (R for Real) [2] is used. SAMME.R uses the real value 

of the probability that an input sample belongs to different classes [2].  

Suppose the training dataset is (𝒙1, 𝑐1), . . . , (𝒙𝑛, 𝑐𝑛), where 𝒙𝑖 is a p-dimensional input vector, i.e. 𝒙𝑖  ∈

 𝑅𝑝, and 𝑐𝑖 is the output corresponding to 𝒙𝑖, and 𝑐𝑖  ∈ {1, 2, … , 𝐾}, where 𝐾 is the total number of 

classes. The training goal is to fit a classifier, 𝐶(𝑥), using training data. The trained classifier can then 

be used to find the class label of unseen testing data. A weight is considered for each sample in the 

training data, as a result there is a data weight vector called 𝐷 = {𝑑𝑖} where 𝑖 = 1, 2, …𝑛, and 𝑛 is the 

number of training samples.  

The data weights are initialized by 𝑑𝑖 = 1/𝑛. Then, 𝑀 networks, i.e. CNNs, are trained sequentially. In 

the first iteration of the sequential learning approach, the first CNN weights are initialized randomly 

and trained for one or more epochs based on the difficulty of the learning task. The first CNN, 𝐶𝑚=1(𝒙), 

where 𝑚 is the number of estimators, is trained on all the training samples with the same weight of 1/𝑛. 

There are no differences in importance, i.e. weights, of different training samples for the first CNN. 

After training, the output of the CNN is calculated for training samples. In AdaBoost-CNN the output 

of the CNN is a 𝐾-dimensional output vector for an input sample. The vector contains the predicted 

values for the K classes. Each element in the output vector is a real-valued confidence-rated prediction 

related to a class. The output vector for an input sample 𝒙𝑖 is 𝑷(𝒙𝑖) = [𝑝𝑘(𝒙𝑖)], 𝑘 = 1,…𝐾, and shows 

the probabilities that the applied input belongs to the 𝐾 classes. During testing of an input, the input is 

assigned to the class with the highest probability. The output of the first CNN, 𝑷𝑚=1(𝒙𝑖) = [𝑝𝑘
𝑚=1(𝒙𝑖)] 

is used for updating the data weights, 𝐷 = {𝑑𝑖} by (1). 

𝑑𝑖
𝑚+1 = 𝑑𝑖

𝑚 exp (−𝛼
𝐾−1

𝐾
𝒀𝑖
𝑇 log (𝑷𝑚(𝒙𝑖))),  𝑖 = 1, . . . , 𝑛 (1) 

 

where 𝑑𝑖
𝑚 is the weight of the 𝑖𝑡ℎ training sample used by the 𝑚𝑡ℎ CNN, 𝛼 is a learning rate, 𝒀𝑖 is the 

label vector coresponding to the 𝑖𝑡ℎ training sample, 𝑷𝑚(𝒙𝑖) is the output vector of the 𝑚𝑡ℎ CNN in 

response to the 𝑖𝑡ℎ training sample. Equation (1) is obtained from the SAMME.R algorithm [2], and in 

this paper, (1) is used for updating the sample weights for a CNN. If the logarithm of the output vector 

of the 𝑚𝑡ℎ CNN, 𝑷𝑚(𝒙𝑖), and the output label 𝒀𝑖
𝑇 are correlated, and their inner product has a high 

value, the exponential function in (1) has a lower value (because of the negative sign). The low value 

of the exponential function in (1) consequently reduces the weight of the training sample for the next 

CNN, because the current output is close to the label vector and shows that the training sample has been 

trained by the current CNN.  After updating the weights related to all training samples for the current 

CNN, they are normalized by dividing them by the overall sum of the weights. The trained CNN is 

saved and the learning of the next CNN is started. In Zhu’s AdaBoost algorithm [2] a completely new 

classifier is initialised randomly to be trained as the next classifier. However, in this paper a new method 

is proposed to make it suitable for CNN. The classical AdaBoost is not suitable for CNN, because CNN 



causes strong correlations between the desired labels, 𝒀𝑖
𝑇, and the actual outputs of the CNN for a large 

number of training samples. The high correlations consequently reduce the value of the exponential 

element in (1) for the corresponding samples. As a result, the weights only have sensible values for a 

small number of training samples that are not trained by the previous CNN. The number of untrained 

samples is small compared to the large number of CNN learning parameters  and, based on the classical 

AdaBoost method, the subsequent CNN is focused on a small set of untrained samples. Full training of 

the succeeding CNN from scratch on the small number of training samples forces the CNN to become 

over fitted on the small set of the data. Additionally, training a CNN from scratch has a high 

computation cost. 

For the subsequent CNN, instead of starting the training of the CNN from a random initial condition, it 

is proposed that the learning parameters of the trained CNN in the current iteration are transferred to 

the subsequent CNN such that it learns using the transferred parameters. Transfer learning is one 

interesting characteristic of CNN and helps the following CNN preserve the previous knowledge 

acquired in the learning process of the previous CNN. Because the transferred CNN gains good 

knowledge about the overall data, it does not need to be trained for a high number of learning epochs. 

Transferring the current learning parameters to the next CNN also reduces the computational cost. After 

the transfer stage, the previous procedure is repeated for the new CNN, i.e. the CNN is trained for one 

epoch, the trained CNN output vector is extracted for each training sample and the output is used to 

update the data weights, 𝐷 = {𝑑𝑖}, and then the weights are normalised. This procedure is repeated for 

all the CNNs in AdaBoost.  

Fig. 1 shows the schematic diagram of the proposed AdaBoost-CNN. The data weights are initialised 

by 𝐷1 = {𝑑𝑖 = 1/𝑛}, and the first CNN is trained using the initial data weight. Then the first CNN, 

𝐶1(𝒙), is used to update the data weights for the second CNN, 𝐷2 = {𝑑𝑖}. Additionally, the trained 

𝐶1(𝒙) is transferred to the second CNN. This procedure is continued to train the 𝑀𝑡ℎ CNN, 𝐶𝑀(𝒙). A 

detailed pseudocode of the proposed AdaBoost for CNN is provided in Table 1. In each iteration of the 

sequential learning approach, first the classifier corresponding to that iteration is trained using training 

data and corresponding data weights, 𝐷 = {𝑑𝑖}.  Then based on the result of the trained classifier the 

data weights are updated for the next iteration. These two actions are performed sequentially for M 

weak classifiers. 

3.1. Training a CNN with a weighted sample 

 A CNN is usually constructed by stacking a number of convolutional layers, pooling layer, and a fully 

connected layer [25]. A CNN has a hierarchical structure such that the bottom layers collect the low-

level features, whereas the high-level layers extract more complex features which contain more abstract 

information. The bottom layers of a CNN contain a number of convolutional layers which can collect 

local information from the input, and map the local information to the next layer in different feature 

maps. CNN uses a number of shared weights called a kernel, 𝑾, to map an input to a feature map. 

Suppose that there are a number of feature maps in the 𝑙𝑡ℎ layer. Equation (2) can be used to calculate 

the activity of the 𝑖𝑡ℎ feature map in the 𝑙𝑡ℎ layer, 𝒚𝑖
𝑙. 

𝒚𝑖
𝑙 =∑𝑓(𝒘𝑖,𝑗

𝑙 ∗ 𝒚𝑗
𝑙−1 + 𝒃𝑖

𝑙)

𝑗

 (2) 

where 𝒘𝑖,𝑗
𝑙 is the convolutional kernel which is used to map the 𝑗𝑡ℎ feature map in the (𝑙 − 1)𝑡ℎ layer to 

the 𝑖𝑡ℎ feature map in the next layer (the 𝑙𝑡ℎ layer),  𝒃𝑖
𝑙 is the bias related to the 𝑖𝑡ℎ feature map in the 

𝑙𝑡ℎ layer. A nonlinear activation function, such as the rectified linear units (ReLU) function or sigmoid 

function, f (.), is used in the convolutional layer. The ‘*’ is the convolutional operator sign. A max 

pooling layer is used after each convolutional layer, and passes the maximum value in a local window. 

The pooling layer reduces the computational cost by reducing the number of features [26]. 



 

 

 

Fig. 1. Schematic diagram of the proposed AdaBoost-CNN which works based on CNN transfer learning. 

 

 

Fully connected hidden layers are connected next to the previous convolutional layers. The extracted 

features from convolutional layers are flattened and feed to the fully connected layer.   

𝑭𝑙 = 𝑓(𝑾𝒍(𝑭𝑙−1)𝑇 + 𝑏𝑙) 
(3) 

where  𝑭𝑙 is the output of the 𝑙𝑡ℎ hidden layer, 𝑾𝒍 is the weight matrix that connect the 𝑙𝑡ℎ hidden layer 

to the previous layer, and 𝑏𝑙 is the bias related to the 𝑙𝑡ℎ hidden layer. 𝑓(. ) is a non-linear function. 

Note that the output of the last convolutional layer is flattened to a vector before applying to the next 

fully connected layer.  

A logistic regression model is put on top of the previous layers to construct a categorical output. A 

SoftMax function is used to convert the output of the regression model to a probability distribution of 

the classes as shown in (4). 

𝒁 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾𝒐(𝑭𝐿)𝑇 + 𝑏𝑜) (4) 

where 𝐙 is the output vector of the network which has an element corresponding to each class; 𝑾𝒐 is 

the weight matrix that connects the output of the last fully connected layer to the output layer; 𝑭𝐿 is the 

output of the last fully connected hidden layer where 𝑳 is the number of the output neurons which is 

equal to the total number of classes; and 𝑏𝑜 is the bias related to the output layer.  

The CNN is trained by the back propagation learning algorithm. Cross entropy is used to calculate error 

in the learning algorithm. In this paper, each sample has a weight, 𝑑𝑖, and the sample weights are 

introduced in the error function as shown in (5). 

Initialize 𝐷1 = {𝑑𝑖 = 1/𝑛} 

Train the 1st CNN: 𝐶1(𝒙) CNN Transfer … 

Update  𝐷2 = {𝑑𝑖} 

Train the 2nd CNN: 𝐶2(𝒙) 

 
CNN Transfer 

Update  𝐷𝑀 = {𝑑𝑖} 

Train the Mth CNN: 𝐶𝑀(𝒙) 

… 

Table 1 Pseudo code of the proposed AdaBoost-CNN. 

 

Initialize the 𝑖𝑡ℎ data sample weight with 𝑑𝑖 = 1/𝑛 where 𝑖 = 1, 2, . . . , 𝑛, and 𝑛 is the total number of training samples, and 

initialize 𝑀, i.e. the total number of CNNs.  

 

 

For  𝑚 = 1 to 𝑀: 

1) If 𝑚 ==  1: 

                         Train the first CNN, i.e. 𝐶𝑚=1(𝒙), on the training data using the initial sample weights, 𝐷𝑚=1 = {𝑑𝑖 = 1/𝑛}. 
                     else: 

                         Transfer the learning parameters of the previous CNN, 𝐶𝑚−1(𝒙), to the 𝑚𝑡ℎ CNN, i.e. 𝐶𝑚(𝒙). 
     Train the 𝑚𝑡ℎ CNN, i.e. 𝐶𝑚(𝒙), on the training data for one epoch using the sample weight vector  𝐷𝑚 = {𝑑𝑖} . 
 

2) Obtain the output of the 𝑚𝑡ℎ CNN, i.e. class probability estimates, for all the 𝐾 classes: 

                     𝑝𝑘
(𝑚)(𝒙) where 𝑘 = 1, 2, . . . , 𝐾. 

3) Update the data sample weight  𝐷𝑚 based on 𝑝𝑘
(𝑚)(𝒙) using (1). 

4) Re-normalize the updated data sample weights,  𝐷𝑚. 

5) Save the 𝑚𝑡ℎ CNN, i.e. 𝐶𝑚(𝒙). 
  

 

 



𝐸𝑖 = − ∑𝑡𝑖
𝑐log (𝑧𝑖

𝑐)𝑑𝑖

𝐿

𝑐=1

 
(5) 

 

where 𝐸𝑖 is the error related to the 𝑖𝑡ℎ sample, 𝑡𝑖
𝑐 is the 𝑐𝑡ℎ element of the label vector corresponding 

to the 𝑖𝑡ℎ sample, 𝑧𝑖
𝑐 is the 𝑐𝑡ℎ element of the output vector for the 𝑖𝑡ℎ sample, and 𝑑𝑖 is the sample 

weight corresponding to the 𝑖𝑡ℎ input sample. 

3.2. Testing with AdaBoost-CNN  

After training the 𝑀 base classifiers, the 𝑀 CNNs, the resulted AdaBoost-CNN is ready for testing. 

Equation (6) is used to predict the output class of an input.    

𝐶(𝒙) = argmax
𝑘

∑ ℎ𝑘
𝑚(𝒙)

𝑀

𝑚=1

  
(6) 

where ℎ𝑘
𝑚(𝒙) is calculated by (7).  

ℎ𝑘
𝑚(𝒙) = (𝐾 − 1)(log (𝑝

𝑘
𝑚(𝒙)) −

1

𝐾
∑ log (𝑝

�̃�
𝑚(𝒙))

𝐾

�̃�=1

) 
(7) 

where 𝑝𝑘
𝑚(𝒙) is the 𝑘𝑡ℎ element of the output vector of the 𝑚𝑡ℎ CNN when 𝒙 is applied as its input. 

Equation (7) was obtained in [2] by using the Lagrange optimization on constrained problem to find an 

improved estimator in a multi-class AdaBoost. 

The Python implementation of the proposed method, AdaBoost-CNN, is publicly available in a GitHub 

repository (https://github.com/a-taherkhani/AdaBoost_CNN). 

4. Experimental Results 

This section describes the datasets which are used to perform the experiments and reports the 

experimental results. 

4.1. Datasets 

Five datasets were utilised for the experiments. These datasets were a synthetic dataset [2], CIFAR-10 

[27][28], Fashion-MNIST [29], EMNIST (an Extended version of MNIST) [30], and a Human Activity 

Recognition (HAR) dataset [31] [32]. The datasets are described in the subsections that follow. 

4.1.1. Synthetic Data 

A multi-dimensional standard normal distribution is used to construct an imbalanced synthetic 

classification dataset. There are three classes in the synthetic dataset, and it contains 12,300 samples, 

where each sample 𝒙 is a ten-dimensional vector, i.e. 𝒙 ∈ 𝑅10. The ten variables in 𝒙 are drawn from a 

ten-dimensional standard normal distribution. The three classes are arranged as described in [2]. 

Equation (8) describes the three classes. 

𝑐 =

{
 
 

 
 1, 0 ≤∑𝑥𝑗

2 < 𝜒1/3
2

2, 𝜒1/3
2 ≤∑𝑥𝑗

2 < 𝜒2/3
2

3, 𝜒2/3
2 ≤∑𝑥𝑗

2

 
(8) 

where 𝜒𝑘/3
2  for 𝑘 = 1 𝑎𝑛𝑑 2 is (

𝑘

3
) 100% quantile of the 𝜒2 distribution generated from the ten-

dimensional standard normal distribution, and ∑𝑥𝑗
2 is the Euclidean distance of 𝒙 from the origin of 

the  Euclidean space. Data related to different classes are separated by nested concentric multi-

dimensional spheres. As shown in (8), the samples from class 1 are distributed around the origin of a 

https://github.com/a-taherkhani/AdaBoost_CNN
https://en.wikipedia.org/wiki/Euclidean_space


sphere, and the samples from class 2 are distributed between the surface of two spheres, and they are 

far from the origin, i.e. (𝑥1, 𝑥2, … , 𝑥10) where 𝑥𝑖 = 0 𝑓𝑜𝑟 𝑖 = 1,…10, compared to the samples in the 

first class, and so on. A total of 2,300 instances are extracted as training data, such that 800, 500 and 

1,000 samples belong to class 1, 2, and 3, respectively, to create a class-imbalanced training dataset. A 

test set is constructed by extracting 10,000 independent samples. Each sample in the test set belongs to 

one of three classes with equal probability. There are approximately the same number of testing data 

points in the test set for the three classes. The number of the samples belonging to each class of the 

dataset are shown in Table 2. 

Table 2 Number of samples for different classes of the synesthetic dataset 

Class # Samples  Percent 

(a) Training 

1  800  34.78% 

2  500 21.74% 

3  1,000 43.48% 

Total 2,300 100% 

(b) Testing 

1  3,326 33.26% 

2  3,336 33.36% 

3  3,338 33.38% 

Total 10,000 100% 

 

4.1.2. CIFAR-10 Dataset 

CIFAR-10  includes 60,000 colour images in which 50,000 images are used for training. The size of 

each colour image is 32×32 pixels. In the training dataset, each class contains 5,000 training images, 

and the remaining 10,000 images are used for testing. Each image belongs to one of ten classes. The 

labels of the ten classes are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Fig. 

2 shows a set of sample images extracted from the dataset. None of the classes have overlapping 

samples. For instance, all the samples in the automobile class are different from the samples in the truck 

class. The same number of training samples exists in each class, and each class has 5,000 training 

samples. The testing data is also balanced data and there are 1,000 testing samples for each class.  

4.1.3. Fashion-MNIST dataset 

Fashion-MNIST contains 70,000 grey scale images with the size of 28× 28 pixels. Each pixel has an 

integer value from 0 to 255. The original data has 60,000 and 10,000 training and testing samples, and 

each sample belongs to one of ten classes. Fig. 3 shows a set of sample images extracted from the 

dataset. The labels of the ten classes are: T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, 

Sneaker, Bag, and Ankle boot. Fashion-MNIST is a balanced dataset and thus each class has the same 

number of samples. Each class in the training set has 6,000 samples, and each class in the testing set 

has 1,000 samples.  

 

4.1.4. EMNIST dataset 



EMNIST [30] is an extended version of the MNIST dataset [33], and it is a variant of the NIST dataset 

which contains images of handwritten digits, lowercase and uppercase letters. Each grayscale image in 

EMNIST has the size of 28×28 pixels, and there are 784 features for each sample. The EMNIST 

classification task is a more challenging task than the MNIST classification task, as it involves letters 

and digits. EMNIST contains different data splits, and some of the splits are balanced datasets and the 

others are imbalanced datasets.   

airplane 
          

automobile 
          

bird 
          

cat 
          

deer 
          

dog 
          

frog 
          

horse 
          

ship 
          

truck 
          

Fig. 2. Ten sample images for each  of the 10 classes of the CIFAR-10 dataset [34] 

 

 

Fig. 3. Samples from Fashion-MNIST. 



There are six splits (versions) of the EMNIST data depending on their content of digits or letters, and 

the number of classes. The two splits that are used for the most difficult classification tasks are the 

EMNIST by-class and EMNIST by-merge datasets. These two datasets contain more digit samples than 

letter samples as the nature of the original dataset is based on digits. The uneven distribution of samples 

in each class makes these imbalanced datasets. EMNIST by-class and EMNIST by-merge datasets each 

contain 814,255 samples, and the samples are assigned to different classes of digits and letters. Samples 

in the EMNIST by-class dataset are assigned to 62 classes, and the labels of the classes are 0-9 digits, 

26 uppercase and 26 lowercase letters. Fig. 4 shows the number of samples in the different classes of 

ENMIST by-class. The 62 classes in the dataset have different numbers of samples.  

EMNIST by-merge has 47 classes. The number of classes in this data set is lower than the number of 

classes in EMNIST by-class. The two datasets have the same number of digit classes, however, they 

have a different number of letter classes. The uppercase and lowercase classes in EMNIST by-class are 

similar and can cause error; these classes are merged and construct the EMNIST by-merge dataset. 

EMNIST by-merge is an imbalanced dataset and there are different number of samples in different 

classes as shown in Fig. 5. The 814,255 samples in the two datasets are divided into training and testing 

sets, and there are 697,932 training samples in each training dataset as shown in Table 3.  

 

Fig. 4. Histogram of the number of training samples in the 62 classes of the EMNIST by-class dataset. EMNIST by-class is an 

imbalanced dataset.  

 



 

Fig. 5. EMNIST by-merge has different numbers of training samples in its 47 classes, and it is an imbalanced dataset.  

 

Table 3. Characteristics of EMNIST by-class and EMNIST by-merge datasets 

Dataset # Classes # Training # Testing  # Total 

By-class 62 697,932 116,323 814,255 

By-merge 47 697,932 116,323 814,255 

 

4.1.5. Human Activity Recognition dataset 

The Human Activity Recognition (HAR) dataset was collected using the Sensor HAR App [31] which 

is installed on a smartphone.  The HAR dataset contains 24,075 samples, and each sample has 60 

features which are extracted using smartphone accelerometer sensors. For instance, the mean values of 

x, y and z components of the acceleration during the activity are the features in this dataset. Each sample 

in the dataset belongs to one of the following five classes: Sitting, Standing, Walking, Running, and 

Dancing [32]. Fig. 6 shows the distribution of the samples in the different classes of the human activity 

datasets. Class 2 has the largest number of samples and it contains 25.84% of all the samples in the 

dataset. Class 5 has the smallest number of samples, i.e. 11.02% (see Table 4). 



 

Fig. 6 Number of samples across the various classes.  

Table 4. Samples in different classes of  the HAR dataset. 

Class # Samples  Percent 

1  5850  24.30% 

2  6220 25.84% 

3  5396 22.41% 

4  3956 16.43% 

5  2653 11.02% 

Total 24,075 100% 

 

 

4.2.  Experimental methodology 

The performance of the proposed AdaBoost-CNN is compared against the benchmark CNN using a 

synthetic dataset [2], CIFAR-10 [27][28], Fashion-MNIST [29], EMNIST (an Extended version of 

MNIST) by-class [30], EMNIST by-merge [30], and the HAR dataset [31] [32]. In order to obtain 

comparable results, the same CNN structure is used in CNN and AdaBoost-CNN. 

The configuration of the CNN baseline classifier used for the synthetic dataset is shown in Table 5. It 

has a one-dimensional (1D) convolution layer with a ReLU activation function, followed by a 1D Max-

Pooling layer with a pooling size of 2x1. The convolutional layer filter size is 3x1. The layer has 32 

feature maps. Then, a Dropout layer is used to randomly exclude 20% of neurons. After that, two fully 

connected hidden layers with 128 and 64 neurons are used. The ReLU activation function is applied in 

the hidden layers. Finally, an output layer with three neurons and a SoftMax function is used. The 

‘Adagrad’ optimizer with the initial values used in Keras was also used. This optimizer updates 

parameter values depending on how frequently a parameter is updated. A parameter with frequent 

updates will have a smaller learning rate [35]. Categorical cross entropy is used as the loss function. 

 



Table 5. Configuration of CNN used for the synthetic dataset. 

Layers Configuration 

1D Convolution 32 filters, 3x1 kernel and ReLU 

Max-Pooling 2x1 kernel 

Dropout 20% 

Fully connected 128 Neurons, ReLU 

Dropout 20% 

Fully connected 64 Neurons, ReLU 

Fully connected 3 Neurons, SoftMax 

 

The structure of the CNNs which are used for CIFAR-10 and Fashion-MNIST is shown in Table 6. The 

number of classes, i.e. 10, and the number of training data for these datasets are higher than those of the 

synthetic datasets. Consequently, a deeper CNN configuration is used for the datasets. There are 10 

neurons in the output layer of the CNN. A similar structure for CNN shown in Table 6 is used for 

EMNIST by-class and EMNIST by-merge datasets. The only difference is the number of output neurons 

which is equal to the number of classes in each dataset. The CNN used for EMNIST by-class and 

EMNIST by-merge have 62 and 47 out neurons, respectively. The HAR dataset comprises 1D datasets, 

therefore, 1D convolution layers and 1D Max-Pooling layers are used. The remaining characteristics of 

the CNNs used for the HAR dataset are the same as the ones shown in Table 6.  

For the CFAR-10, Fashion-MNIST, EMNIST, and HAR datasets, the RMSprop optimizer, which is an 

optimizer with an adaptive learning rate, has been used to train each CNN. The initial learning rate of 

the optimizer is set to 0.0001, and the learning rate decay over each update is set to 11𝑒−6. Categorical 

cross entropy is used as the loss function. 

 

Table 6. Configuration of CNN used for CIFAR-10 and Fashion-MNIST. 

Layers Configuration 

2D Convolution 32 filters, 3x3 kernel and ReLU 

2D Convolution 32 filters, 3x3 kernel and ReLU 

Max-Pooling 2x2 kernel 

Dropout 25% 

2D Convolution 64 filters, 3x3 kernel and ReLU 

2D Convolution 64 filters, 3x3 kernel and ReLU 

Max-Pooling 2x2 kernel 

Dropout 25% 

Fully connected 512 Neurons, ReLU 

DropOut 50% 

Fully connected 10 Neurons, SoftMax 

 

 

 



4.3.  Experimental results 

In this section the performance of AdaBoost-CNN is evaluated on the five datasets described in Section 

4.1. Then, the effect of different levels of imbalance is investigated.  

4.3.1. Experimental results on a synthetic dataset 

The performance of the baseline AdaBoost method introduced in [2], CNN and the proposed AdaBoost-

CNN are evaluated on a synthetic dataset (see Section 4.1.1.). The original AdaBoost method [2] is 

used as a baseline classifier.  

Results when using a conventional AdaBoost with Decision Tree: AdaBoost with decision tree is a 

conventional AdaBoost method which can be used to deal with imbalanced data. In this conventional 

AdaBoost, 600 decision tree classifiers were used as weak classifiers. The maximum depth of each 

decision tree is set to 2. The accuracy of the conventional AdaBoost method [2] on the training dataset 

is 91.78%, and its accuracy on the testing dataset is 77.08%. The accuracy of the conventional AdaBoost 

with decision tree is compared to a single CNN and the proposed method in Table 8. The proposed 

method has a 16.98% higher accuracy than the conventional AdaBoost with decision tree. 

Results when using the CNN baseline classifier: In the proposed method, sample weights are used to 

control the learning on different training samples. In Table 7 the number of layers in the base network, 

shown in Table 5, is changed, and networks with 4 to 10 layers are constructed. Then, the testing 

accuracy values of the different networks are reported to find an optimum number of layers. The results 

in Table 7 illustrate that the testing accuracy values are higher when there are 7 layers in the network. 

The base network with optimum number of layers, i.e. 7 layers, has a testing accuracy of 92.05%, which 

is lower than the testing accuracy of the proposed AdaBoost-CNN, i.e. 94.08%.  

Uncontrolled learning of a large CNN with a high number of training parameters on a limited number 

of training data could cause overfitting on the training data and reduce its testing accuracy. Therefore, 

finding an appropriate strategy to train a deep learning method to increase the testing accuracy is 

required. In the proposed method, sample weights are used to control the learning on different training 

samples. 

Table 7. Accuracy of the base network with different number of layers 

#Layers Testing 

accuracy (%) 

Layers 

4 81.15 Fully-Dropout-Fully-Fully 

5 70.81 Dropout-Fully-Dropout-Fully-Fully 

6 90.91 Conv- Dropout-Fully-Dropout-Fully-Fully 

7 92.05  Conv-Pooling-Dropout-Fully-Dropout-Fully-Fully 

(the original base model in Table 5) 

8 91.05 Conv-Pooling-Conv-Dropout -Fully-Dropout-Fully-Fully 

9 90.27 Conv-Pooling - Conv- Pooling-Dropout-Fully-Dropout-Fully-Fully 

10 89.99 Conv-Pooling-Conv-Pooling-Conv-Dropout-Fully-Dropout-Fully-Fully 

 

The training and testing accuracy values of a single CNN applied to the synthetic data are reported in 

Table 8 (b). CNN is trained for different numbers of learning epochs as shown in the third column of 

Table 8 (b).  The testing accuracy of the baseline CNN method increases from 91.30% to 92.05% when 

the number of learning epochs is increased from 5 to 10, but the testing accuracy is reduced when the 

number of learning epochs is increased to 15. The imbalanced nature of the training data causes the 



trained CNN to become biased to the class with the highest number of training data and consequently 

reduces the accuracy of the CNN when the number of training epochs is increased (see Table 8 (b)). 

Table 8. Accuracy values of (a) Conventional AdaBoost with Decision Tree (AdaBoost-Decision-Tree), (b) a single CNN, 

and (c) the proposed AdaBoost-CNN on synthetic data.  

Training 

accuracy 

Testing accuracy on 

10,000 testing data 

# Epochs/          

# Estimators 

(a) AdaBoost-Decision-Tree 

91.78%, 77.08% 600 Estimators 

(b) A single CNN 

95.00% 91.30% 5 Epochs 

95.74% 92.05% 10 Epochs 

95.21% 91.25% 15 Epochs 

(c) The Proposed AdaBoost-CNN 

94.65% 93.46% 8 Estimators 

95.61% 94.08% 10 Estimators 

95.87% 94.06% 15 Estimators 

95.78% 93.91% 20 Estimators 

 

Results when using the proposed AdaBoost-CNN classifier: The training and testing accuracies of 

AdaBoost-CNN on the synthetic data are shown in Table 8 (c). The CNN with 7 layers which was used 

in the previous experiment is used as the base estimator in AdaBoost-CNN. Performance is evaluated 

for different numbers of estimators in the AdaBoost-CNN as shown in the third column of Table 8 (c). 

Each estimator is trained with its sample weights for one learning epoch. The testing accuracy of the 

methods on 10,000 testing samples increases from 93.46% to 94.08% when the number of estimators 

is increased from 8 to 10. Accuracy is reduced to 93.91% when a higher number of estimators (i.e. 20) 

is used. When the number of estimators is increased the number of untrained samples for the new 

estimators is reduced, and the new estimators are trained with a very low number of training samples 

with high weights (the weights related to the other training samples are small enough to be neglected; 

because they are already trained with the previous estimators). Consequently, the new estimators are 

not trained appropriately on the entire dataset and the overall performance of the method cannot be 

improved when the number of estimators is increased than 10 (see Table 8 (c)). AdaBoost-CNN has 

reached its highest testing accuracy, i.e. 94.08%, when 10 estimators are used, and this accuracy is 

higher than the best accuracy obtained by a single CNN, i.e. 92.05% (see Table 8). The proposed 

AdaBoost-CNN correctly recognised 203 testing samples more than the single CNN on the testing data.  

The accuracy values of the proposed AdaBoost-CNN, the single CNN and the conventional AdaBoost 

with decision three are compared in Table 10. The highest accuracy obtained for each method is reported 

in Table 10. AdaBoost-CNN has 10 estimators and each estimator is trained with its sample weights for 

one learning epoch. In total there are 10 learning epochs for AdaBoost-CNN, and for the single CNN. 

The CNN achieved its highest accuracy at 10 learning epochs (see Table 8 (c)). The results show that 

AdaBoost-CNN has the highest accuracy compared to the two other methods. AdaBoost-CNN reached 

an accuracy of 94.08%, which is 2.03% higher than the performance of the single CNN. The 

experimental results also show that the accuracy of AdaBoost-CNN is much higher than that of the 

conventional AdaBoost which uses decision tree as estimator. AdaBoost-CNN has 17% higher testing 

accuracy compared to the conventional AdaBoost with decision tree. The results show that the 

conventional AdaBoost with decision tree cannot achieve the accuracy level of a single CNN, and its 



accuracy is far below the accuracy of a single CNN. Therefore, the conventional AdaBoost with 

decision tree was not considered in the remaining experiments. 

The number of learning epochs are set in such way that the number of all training epochs for all the 

estimators is the same as the number of learning epochs used for a single CNN so as to make a fair 

comparison. Table 8 shows that the single CNN can achieve its maximum accuracy on the synthetic 

data when it is trained for 10 learning epochs. The same number of training epochs is used for 

AdaBoost-CNN. Therefore 10 estimators with a single learning epoch can be used to have the same 

number of learning epochs for AdaBoost-CNN and the single CNN. Table 8 (c) shows that when 10 

estimators (each of which is trained for one learning epoch) are used, the proposed method reaches the 

highest accuracy. 

Experiments were carried out to evaluate the performance (training and evaluation accuracy) of the 

single CNN across different learning epochs. 15% of training samples were randomly selected to 

construct the validation set. Note that the testing data were not used during training. Fig. 7 shows that 

after 10 learning epochs, there was no significant improvement in the accuracy on the validation set. 

The single CNN is used as a building block of AdaBoost-CNN. Therefore, any degradation or 

improvement on the accuracy of the single CNN as a result of the number of learning epochs would 

lead to a similar change in the accuracy of the proposed AdaBoost-CNN. The same number of learning 

epochs are used for both methods for a fair comparison. 

 

Fig. 7. Training and validation accuracies of the single CNN across different learning epochs 

Results when using the Deep Residual Network (ResNet): ResNet is a well-known deep structure 

for CNNs, and it has achieved state-of-the-art results in different applications [36]. The performance of 

AdaBoost-CNN is compared to the ResNet used in [36]. ResNet has three residual blocks, and it uses 

global average pooling at the layer of the network before its output layer. ResNet contains 504,387 

trainable parameters. In Table 9, ResNet is compared to AdaBoost-CNN that has 291,870 trainable 

parameters. ResNet is trained with different numbers of learning epochs and its training and testing 

accuracies are reported in Table 9. ResNet achieved its highest testing accuracy, i.e. 82.81%, with 12 

learning epochs which is lower than the testing accuracy of the proposed AdaBoost-CNN, i.e. 94.08%. 

AdaBoost-CNN has 10 estimators each of which is trained for one learning epoch. The lower number 

of trainable parameters for the proposed AdaBoost-CNN leads to a lower computation time compared 

to ResNet (see Table 9).  



Table 9 Comparison of the proposed AdaBoost-CNN with ResNet 

# Epoch/Estimator Testing 

accuracy (%) 

Training 

accuracy (%) 

Computation 

time (Sec.) 

# Parameter 

ResNet  

10 Epochs 78.52 89.38 73.09 504,387 

12 Epochs 82.81 94.87 85.85 504,387 

14 Epochs 80.82 93.65 99.79 504,387 

Proposed AdaBoost-CNN  

10 Estimators 94.08%. 95.61% 47.33 291,870 

 

Results when using the CNN with the weighted loss function: New experiments were carried out 

with the weighted loss function. In particular, the weighted loss function, which is a general solution to 

deal with imbalanced data, was used with CNN to construct a CNN with weighted loss function (CNN-

Weighted-Loss (row 2 of Table 10)) to compare with the proposed AdaBoost-CNN (row 1 of Table 

10). The experimental results show that the testing accuracy of AdaBoost-CNN is 94.08%, higher than 

the accuracy of CNN-Weighted-Loss, which achieved a testing accuracy of 93.09%. Using the weighted 

loss function with CNN improved accuracy by 1.04% compared to when using CNN with the regular 

loss function (row 4 Table 10), which gave an accuracy of 92.05%.    

Results when using a conventional oversampling method: In order to compare against other 

approaches that deal with class imbalance, the proposed method is compared to the conventional 

oversampling method called the Synthetic Minority Oversampling Technique (SMOTE) [37]. The 

results are shown in Table 10 in the method row called ‘CNN-Over-Sampling’. The results show that 

the testing accuracy of the proposed method reached 94.08% which is higher than the accuracy of CNN-

Over-Sampling. The testing accuracy of CNN-Over-Sampling is 92.45%.  

Results when using a voting method with CNNs (Voting-CNNs): In order to compare the proposed 

method with a method that has the same number of training parameters, a number of CNNs are trained 

and then voting is used to assign a label to an applied input. The number of CNNs used in the voting 

method is the same as the number of estimators in AdaBoost-CNN. Therefore, the same number of 

training parameters is used for both methods. The testing accuracy of the voting method is 92.47%, 

which is lower than the testing accuracy of AdaBoost-CNN, i.e. 94.08% (see Table 10). AdaBoost-

CNN correctly recognized 161 testing samples more than the voting method.  

Table 10.  Comparison of the best results achieved by various methods on synthetic data.  

Row Method Training accuracy Testing accuracy on 10,000 testing data b 

1 Proposed AdaBoost-CNN
 
 95.61% 94.08% 

2 CNN-Weighted-Loss 95.83% 93.09% 

3 CNN-Over-Sampling 95.38% 92.45% 

4 CNN 95.74% 92.05% 

5 AdaBoost-Decision-Tree  91.78% 77.08% 

6 Voting-CNNs 96.52% 92.47%, 

7 ResNet 94.87% 82.81% 

 



Investigating the accuracy of each CNN estimator in the proposed AdaBoost-CNN: Fig. 8 shows 

the training and testing accuracies of different CNN estimators in AdaBoost-CNN. The ‘x’ axis shows 

the number of different CNN estimators in the proposed AdaBoost-CNN. There are 10 CNN estimators 

in the AdaBoost-CNN. Fig. 8 shows that the fourth estimator has achieved the highest training accuracy 

of 94.04% compared to the other estimators in AdaBoost-CNN. The accuracy of the fourth CNN 

estimator on the testing accuracy is 91.85%. However, a single CNN which is trained for 10 learning 

epochs cannot reach a testing accuracy higher than 90.97%, even though the training accuracy of the 

single CNN is 94.91%. Therefore reducing the effect of already trained samples in subsequent epochs 

can be useful to prevent over fitting a CNN. Note that the overall performance of AdaBoost-CNN is 

higher than the testing accuracy of its ingredient CNN estimators, and the single CNN. AdaBoost-CNN 

can achieve testing accuracy of 94.08%. The improvement in AdaBoost-CNN can be related to its 

ability to prevent overfitting. Finding a method to prevent overfitting in deep learning, that can get very 

small loss on complex training data, is a known challenge [38]. In each learning epoch, sample weights 

reflect how much the current CNN is trained by each training sample. If a training sample is trained by 

a CNN estimator, its weight is reduced and consequently its effect on training is reduced for the next 

CNN. Therefore, the next CNN is not overtrained on the samples that are already trained, and this might 

prevent overfitting of the next CNN on the samples that already trained in the previous learning 

procedure.  

In AdaBoost-CNN, different CNNs are trained on all the training samples with different sample 

weights. If a sample is trained properly by a number of previous estimators, the weight related to that 

sample is reduced exponentially. Consequently, this weight has a very small value compared to other 

weights and therefore its effect on the training of the next estimator can be neglected. If there are disjoint 

clusters of samples in a class then the small cluster of training samples, which were not trained with the 

previous CNNs, acquire high value weights and they will be trained by the subsequent CNN. Therefore, 

the subsequent CNN becomes expert on the training samples with the high weights. The combination 

of different CNNs which are expert on different groups of training samples results in a strong classifier. 

 

Fig. 8 Accuracy of different CNN estimators in the proposed AdaBoost-CNN algorithm 

Investigating the importance of the transfer learning: Transfer learning is an important characteristic 

of AdaBoost-CNN. To evaluate the effect of transfer learning on computation cost and accuracy, 

AdaBoost-CNN is compared to an AdaBoost method with CNN estimators where each CNN estimator 

is trained from scratch for a number of training epochs. The first estimator in this AdaBoost method is 

trained for 10 epochs, then the sample weights are evaluated and the second CNN estimator is trained 

for 10 epochs from scratch using the sample weights obtained from the previous CNN estimator and so 



on for the next CNNs. The overall testing accuracy of this AdaBoost with CNN estimators is 90.65%, 

which is lower than the testing accuracy of the proposed AdaBoost-CNN which achieved a testing 

accuracy of the 94.08%. Moreover, the proposed method reduces the computation cost by reducing the 

number of training epoch in subsequent CNN estimators. In the proposed AdaBoost-CNN, instead of 

training each subsequent estimator from scratch for a high number of learning epochs, it uses transfer 

learning and each pretrained CNN estimator is trained for a small number of training epochs to train the 

next estimator. The simulation time for the AdaBoost that trains all CNN from scratch for 10 epochs is 

225.83 seconds, whereas the computation time for AdaBoost-CNN is 47.33 seconds. The simulation 

was run using an Intel(R) Core(TM) i7-6700HQ @ 2.60GHz 2.59GHZ processor with 64.0 GB installed 

memory (RAM), and 64-bit operating system. An NVIDIA Quadro M1000M GPU was used to train 

both methods. The accuracy and computation time values for AdaBoost without transfer learning are 

shown in Table 11 when each estimator is set up to train for different numbers of epochs (see the first 

column). 

Table 11. Accuracy and computation time for AdaBoost without transfer learning, and for the proposed AdaBoost-CNN. 

# Epoch Testing 

accuracy (%) 

Training 

accuracy (%) 

Computation 

time (Sec.) 

AdaBoost without transfer learning 

10 90.65 92.00 225.83  

15 91.83 95.30 324.07 

20 91.18 96.09 415.35 

25 89.93 94.17 475.45 

Proposed AdaBoost-CNN 

10 94.08%. 95.61% 47.33 

 

4.3.2.  Experimental results on CIFAR-10 

Three sets of experiments were conducted on the CIFAR-10 dataset as described in the following sub 

sections. 

Effect of different numbers of CNN estimators in the AdaBoost-CNN: The first experimental results 

on CIFAR-10 are shown in Table 12. Different numbers of CNN estimators in the AdaBoost-CNN and 

different numbers of learning epochs for each estimator are tested. AdaBoost-CNN has training and 

testing accuracies of 97.49% and 79.00% respectively when two estimators with 25 training epochs are 

used. The two estimators in AdaBoost-CNN are trained on the weighted training samples for 25 epochs.  

Table 12. Accuracies of the proposed AdaBoost-CNN in the first experiment on CIFAR-10. 

Training 

accuracy (%) 

Testing 

accuracy (%) 

#estimators 

(M) 

#epochs 

97.49 79.00 2 25 

96.16 77.81 3 25 

77.40 66.21 10 3 

 

Effect of changing the number of learning epochs of the first CNN estimator: In the second set of 

AdaBoost-CNN experiments on CIFAR-10, the first estimator is trained for a high number of epochs 

compared to the other estimators in the AdaBoost-CNN. The number of learning epochs for the first 



estimator is increased from 20 to 48 epochs as shown in the fifth column of Table 13. A high number 

of learning epochs for the first estimator increases the accuracy of the first CNN, causing the next CNN, 

which works on the results of the first CNN, to have a higher accuracy. Table 13 shows that this method 

can increase the testing accuracy of AdaBoost to 80.13%, which is higher than the accuracy of 77.89% 

(see Table 12) achieved by the base CNN in 50 learning epochs. As shown in the last row of Table 13, 

the first estimator is trained for 48 learning epochs, and the second and the third estimator is trained for 

one learning epoch. Therefore, altogether there are 50 learning epochs for AdaBoost-CNN. When a 

single CNN is trained for 50 learning epochs it cannot achieve an accuracy more than 77.89% (see 

Table 12); that is 2.24% lower than the accuracy of the AdaBoost-CNN.  

Table 13. Accuracy of the proposed AdaBoost-CNN when different numbers of learning epochs are used for the first estimator. 

No. Training 

accuracy 

Testing accuracy on 

10,000 testing data 

#estimator (M) #epoch for the 

first estimator 

#epoch for the 

other 

estimators 

1  93.10% 79.11% 5 20 1 

2  94.17% 79.08% 6 20 1 

3  95.67% 79.38% 2 23 1 

4  95.42% 79.48% 3 23 1 

5  94.34% 79.05% 4 23 1 

6  91.79% 76.84% 5 23 1 

7  98.47% 79.69% 4 47 1 

8  98.93% 80.13% 3 48 1 

 

Effect of partially training the next CNN estimators: In the final experiment on the CIFAR10 dataset, 

all the layers of the first estimator are trained for 48 learning epochs. For the subsequent estimators only 

the fully connected layers are trained, and the weights related to the previous layers, i.e. the weights of 

the convolutional layers, are kept fixed. The corresponding trained weights of the first CNN are 

transferred to the fixed weights of the next CNN, i.e. the weights are set to the corresponding weight 

values of the first trained CNN, and after that the fixed weights are not trained. This prevents 

overtraining of the next estimator to a small set of training samples which are not trained appropriately 

by the previous estimator. Additionally, the fixed weights keep the knowledge related to previously 

trained samples and this reduces the error of the estimator on the previously trained samples. The 

experimental results in Table 14 show that by using the proposed AdaBoost-CNN, testing accuracy 

reached 81.40% on the CIFAR-10 data. This accuracy is higher than the previously obtained testing 

accuracy value of 80.13% reported in the last row of Table 13. In the lower part of Table 14 the 

accuracies of the single CNN are shown. The single CNN has lower accuracies of 78.99% and 77.89% 

for training and testing data, respectively for 50 epochs. All parameters of the single CNN, such as the 

number of layers, and optimization parameters, are set to the same values as used for each CNN in 

AdaBoost-CNN (see Table 6). 

Table 14. Comparison of the proposed AdaBoost-CNN with a single CNN on CIFAR-10 dataset 

Method Training accuracy 

(%) 

Testing 

accuracy (%) 

#estimators 

(M) 

#epochs 

Proposed 

AdaBoost-

CNN 

99.74%. 81.40% 3 
50 (for all the 

three estimators) 

CNN 78.99 77.89 1 50 



 

4.3.3. Experimental results on Fashion-MNIST 

In this subsection the effect of partially training subsequent CNN estimators after the first completely 

trained estimator, is investigated. Then the performance of the proposed AdaBoost-CNN is compared 

to a single CNN.  

Effect of partially training the next CNN estimators: In the first experiment shown in the first row 

of Table 15, all the layers are trained for all the CNN estimators. AdaBoost-CNN has 4 estimators. The 

first estimator is trained for 22 learning epochs and the other 3 estimators are trained for 1 learning 

epoch. Altogether there are 25 learning epochs for AdaBoost-CNN. AdaBoost-CNN reached a testing 

accuracy of 92.99% (see Table 15). 

Table 15. Accuracy of the proposed AdaBoost-CNN on Fashion-MNIST. 

Partially 

training 

Training 

accuracy 

Testing accuracy on 

10,000 testing data 

No 96.50% 92.99% 

Yes 97.34% 93.36% 

 

In the next experiment, where the results are shown in the second row of Table 15, the first estimator 

of AdaBoost-CNN is trained thoroughly by the Fashion-MNIST data and the training of the subsequent 

estimators is restricted to the fully connected layers, and their convolutional layers’ weights are fixed 

to the value of the first trained estimator. The results in the second row of Table 15 show an 

improvement of the testing accuracy compared to the previous where all the layers are trained for all 

estimators.  

Comparison of AdaBoost-CNN to the single CNN: The accuracies of AdaBoost-CNN and CNN on 

Fashion-MNIST are compared in Table 16. The testing accuracy of AdaBoost-CNN is 93.36% which 

is higher than the testing accuracy of CNN, 92.00%. 

Table 16. Accuracies of the proposed AdaBoost-CNN and the single CNN on Fashion-MNIST. 

Method Training 

accuracy 

Testing accuracy on 

10,000 testing data 

#estimator (M) # Epochs for 

the 1st 

estimator 

#epoch for the 

other 

estimators 

Proposed 

AdaBoost-

CNN 

97.34% 93.36% 4 22 1 

CNN 92.40% 92.00% 1 25 NA 

 

4.3.4.  Experimental results on EMNIST  

Experimental results on EMNIST by-class: The performance of AdaBoost-CNN compared to that of 

CNN on EMNIST by-class is reported in Table 17. CNN is trained for 15 learning epochs, and 

AdaBoost-CNN has four estimators. The first estimator of AdaBoost-CNN is trained for 12 epochs and 

the number of learning epochs of the other three estimators are set to one. The results show that 

AdaBoost-CNN has reached higher testing accuracy than CNN. Note that the total number of learning 

epochs is set to 15 for both methods. AdaBoost-CNN’s misclassification rate on the training data is 

1.70% lower than the misclassification of CNN, and it has 11,864 less misclassified samples than CNN. 



The balanced accuracy score has been used to compute accuracy for imbalanced datasets [39]. In the 

balanced accuracy score, a weighted average is used to calculate the overall accuracy. The weights 

related to different samples are specified based on the number of samples in the class of the samples.  

The score varies from 0 to 1, and when a classifier correctly classifies all samples, its balanced accuracy 

score will be 1. The balanced accuracy score is multiplied by 100 to get balanced accuracy percentage. 

If a dataset is balanced, the balanced accuracy percentage will be equal to the usual accuracy percentage. 

The balanced accuracy percentages are computed when applying AdaBoost-CNN and the baseline CNN 

on the EMNIST by-class and EMNIST by-merge datasets which are large imbalanced datasets, and 

each of which contains 814,255 samples. The results are shown in Table 17 and Table 18. The testing 

‘balanced accuracy’ for AdaBoost-CNN on EMNIST by-class is 75.66%, whereas the single CNN 

cannot reach a testing ‘balanced accuracy’ more than 73.27%.  

Table 17. Accuracy and balanced accuracy of the proposed AdaBoost-CNN and CNN on the EMNIST by-class dataset. 

Method Training 

accuracy (%) 

Testing 

accuracy (%) 

Training balanced 

accuracy (%) 

Testing balanced 

accuracy (%) 

# Estimator/ Epochs 

Proposed AdaBoost-CNN 88.51 87.74 77.57 75.66 4 estimators (15 

epochs for all 

estimators) 

CNN 86.81 86.22 73.83 73.27 15 epochs 

 

Fig. 9 shows the accuracy values of AdaBoost-CNN and CNN on testing data for different classes. The 

different classes in the EMNIST by-class dataset have different number of samples as shown in Fig. 4. 

The mean accuracy across all classes for AdaBoost-CNN is 75.69%, which is higher than that of the 

CNN on EMNIST by-class, i.e. 73.45%. Note that the mean accuracy evaluation metric assigns the 

same weight to all the classes independent of the number of samples in each class. However, total 

accuracy is calculated based on the total number of correct identifications regardless of the class that 

the samples belong. On average, AdaBoost-CNN has achieved higher accuracy than CNN across the 

different classes. For instance, the accuracy of AdaBoost-CNN on class 39 is 8.66 times higher than the 

accuracy of CNN in the same class. There are accuracy improvements in the other classes such as the 

classes 19 and 48 as shown in Fig. 9. On average the mean accuracy of AdaBoost-CNN on different 

classes is 2.24% higher than that of CNN. 

The number of training samples in the 62 classes of the EMNIST by-class dataset are shown in Fig. 4. 

Each class contains a portion of EMNIST by-class dataset. The number of training samples in a class is 

normalised in the range [0,100], as shown in Fig. 9. The normalised value for the number of training 

samples in a class is obtained by dividing the number of training samples in the class by the number of 

samples in the class that has the highest number of training samples compared to the other classes. Then 

the results are multiplied by 100 to achieve a number in the range [0, 100] to plot versus accuracy in 

Fig. 9. 

Experimental results on EMNIST by-merge: Table 18 compares the testing accuracies of the 

proposed method and CNN on EMNIST by-merge dataset. The total testing accuracy of AdaBoost-

CNN is 91.02%, which is higher than the accuracy of CNN, i.e. 89.86%. Additionally, AdaBoost-CNN 

increased the total testing accuracy by 1.16%.  The ‘testing balanced accuracy’ values for AdaBoost-

CNN and the single CNN on EMNIST by-merge dataset are 89.37% and 87.57% respectively. Fig. 10 

compares the testing accuracy of AdaBoost-CNN and CNN on the EMNIST by-merge dataset for the 

47 classes of the dataset. The mean testing accuracy on the 47 classes for AdaBoost-CNN is 89.26% 

which is higher than that of CNN, 88.40%.   

 



 

Fig. 9. Testing accuracies of the Proposed AdaBoost-CNN and CNN on EMNIST by-class for different classes. The 

normalised value of the number of samples for each class (#samples) is also shown.  

 

Table 18. Accuracies and balanced accuracies of the proposed AdaBoost-CNN and CNN on EMNIST by-merge dataset. 

Method Training 

accuracy (%) 

Testing 

accuracy (%) 

Training balanced 

accuracy (%) 

Testing balanced 

accuracy (%) 

# Estimator/ Epochs 

Proposed AdaBoost-CNN 91.78  91.02         90.56 89.37 4 (15 epochs for all 

estimators) 

CNN 90.25  89.86  87.93 87.57 15 

 

 



 

Fig. 10.  Testing accuracy of the proposed AdaBoost is compared to the accuracy of CNN on EMNIST by-merge dataset on 

the dataset’s 47 classes.  

 

4.3.5.  Experimental results on the Human Activity Recognition (HAR) data 

In order to select the most appropriate learning epoch for a single CNN, experiments were carried out 

with a number of learning epochs and the performance (in terms of accuracy) of the CNN was evaluated 

across the various epochs. Table 19 shows the accuracy of the single CNN on the HAR dataset for 

different numbers of learning epochs. The results show that 50 learning epochs are an optimal value for 

the CNN to reach a high testing accuracy on this dataset. Table 20 shows the accuracy values of 

AdaBoost-CNN with different number of CNN estimators. The total number of learning epochs for all 

estimators in each row in Table 20 is 50. The results show that the AdaBoost-CNN achieved the highest 

accuracy with 5 estimators, where the first CNN estimator was trained for 46 epochs and the other five 

subsequent CNN estimators were trained for one epoch. 

Table 21 compares the accuracy of AdaBoost-CNN with CNN on the HAR dataset. The results show 

that AdaBoost-CNN increases the testing accuracy from 96.84% to 97.71%. Fig. 11 shows the 

accuracies of the methods for the five classes in the HAR dataset. For the first three classes the two 

methods have accuracy close to 100%. AdaBoost-CNN shows the most improvement to be for class 4. 

There are 395 samples in class 4, and the accuracy of the proposed method on this class is 4.56% higher 

than CNN (see Fig. 11).  

Table 19 Accuracy of a single CNN on the HAR dataset for different numbers of learning epochs 

Training 

accuracy (%) 

Testing 

accuracy (%) 

# Epochs  

97.18 96.55 80 

97.45 96.84 50 

97.07 96.13 25 



Table 20 Accuracy of the proposed AdaBoost-CNN for different numbers of estimators. The total number of learning epochs 

was 50. 

Training 

accuracy (%) 

Testing 

accuracy (%) 

# Estimators 

98.10 97.38 4 

98.22 97.71 5 

98.12 97.26 6 

Table 21 Accuracy of the proposed AdaBoost-CNN and CNN on the HAR dataset. 

Method Training 

accuracy (%) 

Testing 

accuracy (%) 

# Estimators/ Epochs 

Proposed AdaBoost-CNN 98.22 97.71 5 estimator 

CNN 97.45 96.84 50 Epochs 

 

 

Fig. 11. Accuracies of the proposed AdaBoost-CNN on different classes are compared to those of CNN on the HAR dataset. 

4.3.6. Effect of different levels of imbalance in the training data using the Synthetic Data 

In this section the performance of AdaBoost-CNN is investigated when the degree of imbalance in the 

training data changes using the Synthetic dataset described in section 4.1.1. The synthetic data contains 

three classes. Initially, class 1 contains 800 cases, class 2 contains 1,000 cases, and class 3 also contains 

1,000 cases. To evaluate the impact of imbalance on the performance of CNN and AdaBoost-CNN, the 

number of cases in class 2 are modified, whilst the number of cases in classes 1 and 3 remain stable. 

For example, when the number of training samples of different classes change from [800, 1,000, 1,000] 

to [800, 900, 1,000], the imbalance of the data increases. Table 22 shows the training and testing 

accuracies for 10 different experiments, where a different imbalanced dataset with a different number 

of training samples is used in each experiment. The last column of Table 22 shows the number of 

training data contained in each class.  

Considering the results of both CNN and AdaBoost-CNN, as shown in Table 22, in experiments 1 to 2, 

the degree of imbalance increases and the training and testing accuracies reduce. In experiment 3, where 

the dataset is more balanced the accuracies increase. In experiment 3, class 2 and class 3 have the same 

number of samples, making it a more balanced dataset. In experiments 5 and onwards, when the 

difference between the number of samples between class 2 and 3 becomes larger, the performance of 

the CNN diminishes, compared to AdaBoost-CNN. In particular, after experiment 4, the difference 



between the testing accuracy of the CNN and AdaBoost-CNN increases, with AdaBoost-CNN clearly 

outperforming CNN in all the experiments. Difference in performance reached its highest in experiment 

10, when the degree of imbalance was increased, i.e. by changing the number of cases in class 2 from 

1,000 to 100, and this resulted in 20.66% higher accuracy when using AdaBoost-CNN compared to 

when using the CNN.  

The results in Table 22 reveal that data imbalance affects the accuracy of the CNN, and that 

improvements in CNN are required so it can effectively classify imbalance data. The last experiment 

shows the results of the datasets with the largest degree of imbalance. Comparing the results of 

experiments 1 and 10 testing accuracy of CNN is reduced from 93.85% to 72.37%, whereas for 

AdaBoost-CNN the reduction was minor from 93.94% to 93.03%. Comparing the average performance 

across the experiments of the two methods, CNN achieved 89.27% whereas AdaBoost-CNN achieved 

93.77%. 

Fig. 12 shows the testing accuracy improvement when using AdaBoost-CNN compared to the single 

CNN when increasing the difference in the number of samples contained in the imbalanced dataset. Fig. 

12 shows that when the level of imbalance is low in the training data the accuracy of the single CNN is 

close to that of the proposed method. However, the proposed method gives higher accuracy compared 

to the CNN when the degree of imbalance in the data increases.  Fig. 13 compares the testing accuracies 

of AdaBoost-CNN and CNN for different levels of imbalance. Fig. 13 reveals that the proposed method 

has higher accuracy for higher imbalance in the training data.  

Table 22. Accuracy values of single CNNs and the AdaBoost-CNN on the different datasets. The number of training data in 

the second class is reduced from 1,000 to 100 to generate different levels of imbalance. 

No. 

 

CNN Proposed AdaBoost-CNN Diff. in 

Training 

accuracy 

(%) 

Diff. in 

Testing 

accuracy 

(%) 

# training samples 

in the three classes  
Training 

accuracy 

(%) 

Testing 

accuracy

(%) 

Training 

accuracy 

(%) 

Testing 

accuracy 

(%) 

1.  96.36 93.85 96.00 93.94 -0.36 +0.09 [800, 1,000, 1,000] 

2.  94.19 92.65 94.26 92.71 +0.07 +0.06 [800, 900, 1,000] 

3.  95.85 93.84 95.69 94.03 -0.16 +0.19 [800, 800, 1,000] 

4.  95.24 92.76 94.20 93.66 -1.04 +0.9 [800, 700, 1,000] 

5.  95.63 92.09 95.50 93.81 -0.13 +1.72 [800, 600, 1,000] 

6.  95.74 92.05 95.61 94.08 -0.13 +2.03 [800, 500, 1,000] 

7.  96.36 91.49 95.55 94.10 -0.81 +2.61 [800, 400, 1,000] 

8.  95.71 88.65 96.33 94.18 +0.62 +5.53 [800, 300, 1,000] 

9.  95.95 82.90 97.00 94.20 +1.05 +11.3 [800, 200, 1,000] 

10.  96.16 72.37 97.73 93.03 +1.57 +20.66 [800, 100, 1,000] 

Average 95.71 89.27 95.79 93.77 +0.07 +4.51  

 



 

Fig. 12 Testing accuracy improvement of the proposed method is increased when the level of imbalance, i.e. the difference 

between the number of samples in class 2 and 3, in the data is increased.  

Fig.m 

 

Fig. 13. Testing accuracies of the proposed AdaBoost-CNN and CNN for different levels of imbalance, i.e. the difference 

between the number of samples in class 2 and 3.  

 

5. Conclusion 

In this paper a multi-class AdaBoost for CNN, called AdaBoost-CNN, is proposed. In the proposed 

method a number of CNNs are used as base estimators. The CNNs are trained sequentially. The errors 

of an earlier CNN are used to update the sample weights for its next CNN. After updating the sample 

weights, the trained CNN learning parameters are transferred to the next CNN. Transfer learning in the 

proposed AdaBoost method increases the accuracy. The updated sample weights are used during 

training of the next CNN. The training sample weights are incorporated to the cross-entropy error 



function in the CNN back propagation learning algorithm. The ability of the proposed AdaBoost-CNN 

in the processing imbalanced data is tested.  

The proposed method is a modified version of the traditional AdaBoost to make AdaBoost compatible 

with deep learning. The proposed AdaBoost-CNN is designed to be trained on large data by taking the 

same number of learning epochs which is used by a single CNN estimator, and can still achieve higher 

accuracy than the single CNN.  

The high number of training samples in large data, results in high computation cost on each learning 

epoch and a specific AdaBoost method is required to be applied when compared to smaller datasets. 

Additionally, deep learning methods comprise a high number of learning parameters which should be 

adjusted in each training epoch. Consequently reducing the number of training epochs of all estimators 

is more crucial when working with deep learning methods to process large data.  

In this paper the knowledge acquired during training of a CNN estimator is transferred to the next 

estimator instead of initializing an estimator with random learning parameters. Consequently, the 

training parameters of CNN estimators are initially set in an appropriate state and they are trained in 

one epoch on the weighted training samples. However, the method proposed by Yang et al. [40] does 

not consider the high number of training parameters of deep learning methods and the high computation 

cost of big data processing, and instead of reducing the number of learning epochs it actually increases 

the number of training epochs by repeating the training procedure on the trained estimators. This of 

course increases the required computational effort as compared to the approach reported herein. 

A multi-dimensional standard normal distribution is used to generate synthetic dataset for different 

classes in which samples in different classes are separated by nested concentric multi-dimensional 

spheres. The performance of the proposed AdaBoost-CNN is compared to the classical AdaBoost with 

a decision tree classifier on the synthetic dataset. The proposed method outperformed the classical 

AdaBoost with Decision Tree by 16.98%. Moreover, AdaBoost-CNN gave a 2.03% improvement in 

testing accuracy compared to the base CNN. The accuracy of CNN was 92.05%, whereas the proposed 

method achieved an accuracy of 94.08%. Additionally, two well-known  datasets, CIFAR-10 and 

Fashion-MNIST, were used to test the accuracy of the proposed method. AdaBoost-CNN outperformed 

the single CNN by 3.51% on CIFAR-10, and misclassified 136 fewer samples compared to the CNN 

on the Fashion-MNIST test set. 

AdaBoost-CNN was also applied to two EMNIST imbalanced datasets (i.e. EMNIST by-class and 

EMNIST by-merge) which are large datasets compared to the well-known dataset MNIST. The 

experimental results show that the proposed AdaBoost-CNN improves the overall accuracy on EMNIST 

datasets, and across the various imbalanced classes. Importantly, the accuracy of the proposed method 

on one of the classes is more than 8 times higher than the accuracy of CNN on the same class. 

Additionally, the proposed method improved accuracy on the EMNIST by-merge dataset. The effect of 

different levels of imbalance in the training data was also investigated. Experiment results on the 

synthetic data revealed that the improvement of accuracy of AdaBoost-CNN can be more than 20% for 

highly imbalanced data on 10,000 testing samples.  The performance of AdaBoost-CNN on multi-modal 

data analysis will be investigated in future research where different modalities of data will be trained 

by different CNNs.  
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