

AdaBoost-CNN: An Adaptive Boosting algorithm for

Convolutional Neural Networks to classify Multi-Class

Imbalanced datasets using Transfer Learning

Aboozar Taherkhania,*
, Georgina Cosmab, T. M McGinnityc,d

aSchool of Computer Science and Informatics, De Montfort University, Leicester, UK
bDepartment of Computer Science, School of Science, Loughborough University, Loughborough, UK

cSchool of Science and Technology, Nottingham Trent University, Nottingham, UK
dIntelligent Systems Research Centre, Ulster University, Northern Ireland, Derry, UK

Abstract

Ensemble models achieve high accuracy by combining a number of base estimators and can increase the reliability
of machine learning compared to a single estimator. Additionally, an ensemble model enables a machine learning
method to deal with imbalanced data, which is considered to be one of the most challenging problems in machine
learning. In this paper, the capability of Adaptive Boosting (AdaBoost) is integrated with a Convolutional Neural
Network (CNN) to design a new machine learning method, AdaBoost-CNN, which can deal with large imbalanced
datasets with high accuracy. AdaBoost is an ensemble method where a sequence of classifiers is trained. In
AdaBoost, each training sample is assigned a weight, and a higher weight is set for a training sample that has not
been trained by the previous classifier. The proposed AdaBoost-CNN is designed to reduce the computational
cost of the classical AdaBoost when dealing with large sets of training data, through reducing the required number
of learning epochs for its ingredient estimator. AdaBoost-CNN applies transfer learning to sequentially transfer
the trained knowledge of a CNN estimator to the next CNN estimator, while updating the weights of the samples
in the training set to improve accuracy and to reduce training time. Experimental results revealed that the proposed
AdaBoost-CNN achieved 16.98% higher accuracy compared to the classical AdaBoost method on a synthetic
imbalanced dataset. Additionally, AdaBoost-CNN reached an accuracy of 94.08% on 10,000 testing samples of
the synthetic imbalanced dataset, which is higher than the accuracy of the baseline CNN method, i.e. 92.05%.
AdaBoost-CNN is computationally efficient, as evidenced by the fact that the training simulation time of the
proposed method is 47.33 seconds, which is lower than the training simulation time required for a similar
AdaBoost method without transfer learning, i.e. 225.83 seconds on the imbalanced dataset. Moreover, when
compared to the baseline CNN, AdaBoost-CNN achieved higher accuracy when applied to five other benchmark
datasets including CIFAR-10 and Fashion-MNIST. AdaBoost-CNN was also applied to the EMNIST datasets, to
determine its impact on large imbalanced classes, and the results demonstrate the superiority of the proposed
method compared to CNN.

Key words: Deep Learning, Ensemble Models, AdaBoost, Imbalanced Data, Transfer Learning.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Ensemble approaches have shown their exceptional capabilities in improving the accuracy of classical

machine learning approaches such as Support Vector Machines (SVM) [1] and decision trees [2][3],

and are often used to overcome the difficulty of training imbalanced data [1]. An ensemble method

combines a number of weak classifiers to generate a machine learning method that is better than its

* Corresponding Author (aboozar.taherkhani@dmu.ac.uk)

https://en.wikipedia.org/wiki/Boosting_(meta-algorithm)

ingredient simple classifiers. Class-imbalance is considered as one of the most challenging problems in

machine learning, and it occurs in a learning task where there are considerably less data instances in

one class (the minority class) compared to the other class (the majority class). A balanced dataset

consists of approximately the same number of training samples in each class. Boosting ensemble

approaches are effective methods to overcome the challenges encountered by machine learning

algorithms when learning from data with imbalanced classes [1] [4]. AdaBoost is an ensemble approach

which can identify misclassified instances that occur because of the disjunct problem. The disjunct

problem is apparent in datasets which contain instances in a class that are clustered in a number of

separate small groups, and each group contains a small number of instances that cannot be disregarded

and should be trained [1]. Although class imbalance has been comprehensively studied in classical

machine learning methods, it has received less attention in the context of deep learning [5].

Different ensemble methods have been used in various applications. Viola and Jones [6] have designed

a face detector that works with a large pool of simple classifiers and creates a strong classifier for human

face detection. Galar et al. [3] have proposed tree-based ensemble approaches for the task of classifying

imbalanced data. They have used bagging- and boosting- based ensemble methods to classify

imbalanced data. Nejatian et al. [7] have proposed sub-sampling and ensemble clustering techniques

for learning tasks in which the number of samples in a minority class is less than the number of samples

in a majority class, and they applied these techniques for breast cancer detection. AdaBoost is a well-

known algorithm and the seminal work of Freund and Schapire [8] has attracted significant attention

from researchers. Lee et al. [1] have used SVM as a weak classifier for AdaBoost to propose a method

to deal with imbalanced data. Lee et al.’s [1] approach uses an SVM margin to define different types of

instances, such as borderline instances, and the AdaBoost assigns different instances with different

scores, to achieve higher accuracy on imbalanced data. The AdaBoost method proposed in [1] is used

for binary classification tasks.

Standard learning algorithms are usually designed to work with balanced datasets and need additional

procedures to handle imbalanced datasets [9][10][11]. Namkoong et al. [12] developed an optimisation

method that takes more samples from instances with a high level of importance during stochastic

gradient descent. Another common approach involves resampling an equal number of training data for

each class to make a balanced dataset. Real-world applications usually generate imbalanced datasets

[13] and for this reason approaches for dealing with imbalanced data are needed. Designing a learning

method for imbalanced datasets is an important challenge [7], especially in tasks where the cost of

incorrect classification of an instance from the minority class, for example misclassifying a cancer

patient as a healthy person, is critically high [14].

The two main methods to deal with imbalanced data are those that work directly on data and those based

on algorithms. Buda et al. [5] have shown that data imbalance affects the performance of CNN, and

they have used different methods based on data, such as oversampling, to process imbalanced data. The

impact of class imbalance increases when the scale of the task increases, particularly when large data is

utilized [5]. CNN approaches are known to be suitable for classifying large data, however it has no

algorithmic strategy for dealing with imbalanced data and there is a need for methods that can classify

imbalanced data using the CNN.

Since AdaBoost is an algorithmic method that has been used to overcome the challenges of classifying

imbalanced data in classical machine learning methods [1], this paper proposes a method which extends

AdaBoost’s capabilities to classifying large data using the CNN. In order to embed the capability of

CNN in AdaBoost for the task of dealing with imbalanced data, this paper proposes a new algorithm,

AdaBoost-CNN, which couples CNN’s superior capabilities in analysing and finding patterns in large

data with AdaBoost’s capabilities of dealing with large imbalanced data. To achieve this it was

necessary to construct a new AdaBoost that can be applied for CNN, as a simple application of the

standard AdaBoost method does not improve the performance. In the deep structure of CNN which

consists of a high number of layers, there is a large number of learning parameters, and consequently a

high number of training samples are usually required to tune the parameters. Reducing the number of

effective training samples in the sequential procedure of a conventional AdaBoost can reduce the

performance of the AdaBoost. The proposed method, i.e. AdaBoost-CNN, uses the transfer learning

property of deep learning methods to overcome this difficulty and to reduce the computational cost of

the proposed AdaBoost, making it superior to the conventional AdaBoost and CNN methods.

The paper is structured as follows. Section 2 introduces related works and various ensembles of CNNs.

Then, the principle of the proposed AdaBoost-CNN, is discussed in Section 3. Thereafter, experimental

results are discussed in Section 4. The experimental section describes the five datasets and experiments

carried out to evaluate the performance of the proposed method. Finally, a conclusion is presented in

Section 5.

2. Related works

The high performance of ensemble methods has encouraged researchers to design different ensembles

of CNNs for different applications in different fields. For example, the top results achieved for the

ImageNet Large Scale Visual Recognition Competition (ILSVRC2015) [15] are based on ensemble

methods. Ciresan et al. [16] have proposed an ensemble method for CNNs where a number of deep

neural columns, i.e. CNNs, are trained on inputs, which are pre-processed in different ways, and

thereafter the predictions of the neural columns are averaged. The method is one of the first methods to

achieve an accuracy close to human accuracy when applied to the MNIST dataset [16]. Combining the

network outputs with a simple average might not be the best approach because it assigns the same level

of importance to each network regardless of their accuracies. Frazao and Alexandre [17] have proposed

a weighted ensemble method that applies different weights for each CNN. A CNN with a better

performance is given a higher weight. Consequently, a better CNN has more influence on the final

result. Wen et al. [18] have improved the weighted ensemble method proposed by Frazao and Alexandre

[17]. They have proposed a probability-based fusion method for CNNs to recognize facial expression.

They constructed different estimators by randomly varying the parameters and architecture of a CNN.

The output probabilities of each CNN for different classes are combined to make the probability-based

fusion method. The accuracy of each CNN on the validation data was used to generate a weight for the

CNN to improve the method. Kim et al. [19] have proposed a method to train an ensemble of CNNs.

They have used a variety of network structures, random initial weights, and input normalization to

generate different CNN models. Then they have used a hierarchical committee to fuse the output of the

trained CNN. Kawana et al. [20] have proposed an ensemble of CNNs for human pose estimation. Each

CNN in the ensemble model is optimized for a limited variety of poses. Their method combines the

responses of various CNNs for final estimation by considering the interdependencies between the

different responses. They divided training data into a number of subsets with similar poses. Then they

trained a CNN with each of the subset training data. Finally, they integrated the output of the trained

CNNs by feeding their output to a further CNN.

Wang et al. [21] have used a cascaded ensemble of CNNs for breast cancer grading through mitotic

count at specific time. They count the number of cells which are in the process of dividing. Tajbakhsh

et al. [22] have proposed an automatic polyp detection using an ensemble of CNNs. Different polyp

features such as colour, texture, and shape are considered and each CNN become specialized on one

type of feature. Ijjina et al. [23] have proposed an ensemble method for human action recognition in

video. The maximum value of outputs across all the classifiers is considered as the final output of the

ensemble method. Lyksborg et al. [24] have proposed an ensemble of CNNs for accurate volumetric

tumour segmentation in magnetic resonance images.

http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/challenges/LSVRC/2015/results

3. The principle of the proposed AdaBoost-CNN algorithm

Multiple weak classifiers are combined with AdaBoost techniques to make a single strong classifier. In

this technique a group of weak classifiers are trained sequentially. Each classifier is trained based on

the errors of the previous classifier, and a weight is assigned to each training sample to show the degree

to which the sample is not trained properly with a weak classifier. The weight of a sample is reduced

exponentially if it is trained correctly by the previous weak classifier. Each new weak classifier is

trained with more weights for those samples that are not trained appropriately based on the results of

the previous weak classifier.

This paper adapts the multi-class AdaBoost method proposed by Zhu et al. [2] to design an AdaBoost

method for CNN. The proposed new method is called AdaBoost-CNN. In the baseline multi-class

AdaBoost, a variant of the SAMME (Stagewise Additive Modeling using a multi-class Exponential loss

function) learning algorithm, called SAMME.R (R for Real) [2] is used. SAMME.R uses the real value

of the probability that an input sample belongs to different classes [2].

Suppose the training dataset is (𝒙1, 𝑐1), . . . , (𝒙𝑛, 𝑐𝑛), where 𝒙𝑖 is a p-dimensional input vector, i.e. 𝒙𝑖 ∈

 𝑅𝑝, and 𝑐𝑖 is the output corresponding to 𝒙𝑖, and 𝑐𝑖 ∈ {1, 2, … , 𝐾}, where 𝐾 is the total number of

classes. The training goal is to fit a classifier, 𝐶(𝑥), using training data. The trained classifier can then

be used to find the class label of unseen testing data. A weight is considered for each sample in the

training data, as a result there is a data weight vector called 𝐷 = {𝑑𝑖} where 𝑖 = 1, 2, …𝑛, and 𝑛 is the

number of training samples.

The data weights are initialized by 𝑑𝑖 = 1/𝑛. Then, 𝑀 networks, i.e. CNNs, are trained sequentially. In

the first iteration of the sequential learning approach, the first CNN weights are initialized randomly

and trained for one or more epochs based on the difficulty of the learning task. The first CNN, 𝐶𝑚=1(𝒙),

where 𝑚 is the number of estimators, is trained on all the training samples with the same weight of 1/𝑛.

There are no differences in importance, i.e. weights, of different training samples for the first CNN.

After training, the output of the CNN is calculated for training samples. In AdaBoost-CNN the output

of the CNN is a 𝐾-dimensional output vector for an input sample. The vector contains the predicted

values for the K classes. Each element in the output vector is a real-valued confidence-rated prediction

related to a class. The output vector for an input sample 𝒙𝑖 is 𝑷(𝒙𝑖) = [𝑝𝑘(𝒙𝑖)], 𝑘 = 1,…𝐾, and shows

the probabilities that the applied input belongs to the 𝐾 classes. During testing of an input, the input is

assigned to the class with the highest probability. The output of the first CNN, 𝑷𝑚=1(𝒙𝑖) = [𝑝𝑘
𝑚=1(𝒙𝑖)]

is used for updating the data weights, 𝐷 = {𝑑𝑖} by (1).

𝑑𝑖
𝑚+1 = 𝑑𝑖

𝑚 exp (−𝛼
𝐾−1

𝐾
𝒀𝑖
𝑇 log (𝑷𝑚(𝒙𝑖))), 𝑖 = 1, . . . , 𝑛 (1)

where 𝑑𝑖
𝑚 is the weight of the 𝑖𝑡ℎ training sample used by the 𝑚𝑡ℎ CNN, 𝛼 is a learning rate, 𝒀𝑖 is the

label vector coresponding to the 𝑖𝑡ℎ training sample, 𝑷𝑚(𝒙𝑖) is the output vector of the 𝑚𝑡ℎ CNN in

response to the 𝑖𝑡ℎ training sample. Equation (1) is obtained from the SAMME.R algorithm [2], and in

this paper, (1) is used for updating the sample weights for a CNN. If the logarithm of the output vector

of the 𝑚𝑡ℎ CNN, 𝑷𝑚(𝒙𝑖), and the output label 𝒀𝑖
𝑇 are correlated, and their inner product has a high

value, the exponential function in (1) has a lower value (because of the negative sign). The low value

of the exponential function in (1) consequently reduces the weight of the training sample for the next

CNN, because the current output is close to the label vector and shows that the training sample has been

trained by the current CNN. After updating the weights related to all training samples for the current

CNN, they are normalized by dividing them by the overall sum of the weights. The trained CNN is

saved and the learning of the next CNN is started. In Zhu’s AdaBoost algorithm [2] a completely new

classifier is initialised randomly to be trained as the next classifier. However, in this paper a new method

is proposed to make it suitable for CNN. The classical AdaBoost is not suitable for CNN, because CNN

causes strong correlations between the desired labels, 𝒀𝑖
𝑇, and the actual outputs of the CNN for a large

number of training samples. The high correlations consequently reduce the value of the exponential

element in (1) for the corresponding samples. As a result, the weights only have sensible values for a

small number of training samples that are not trained by the previous CNN. The number of untrained

samples is small compared to the large number of CNN learning parameters and, based on the classical

AdaBoost method, the subsequent CNN is focused on a small set of untrained samples. Full training of

the succeeding CNN from scratch on the small number of training samples forces the CNN to become

over fitted on the small set of the data. Additionally, training a CNN from scratch has a high

computation cost.

For the subsequent CNN, instead of starting the training of the CNN from a random initial condition, it

is proposed that the learning parameters of the trained CNN in the current iteration are transferred to

the subsequent CNN such that it learns using the transferred parameters. Transfer learning is one

interesting characteristic of CNN and helps the following CNN preserve the previous knowledge

acquired in the learning process of the previous CNN. Because the transferred CNN gains good

knowledge about the overall data, it does not need to be trained for a high number of learning epochs.

Transferring the current learning parameters to the next CNN also reduces the computational cost. After

the transfer stage, the previous procedure is repeated for the new CNN, i.e. the CNN is trained for one

epoch, the trained CNN output vector is extracted for each training sample and the output is used to

update the data weights, 𝐷 = {𝑑𝑖}, and then the weights are normalised. This procedure is repeated for

all the CNNs in AdaBoost.

Fig. 1 shows the schematic diagram of the proposed AdaBoost-CNN. The data weights are initialised

by 𝐷1 = {𝑑𝑖 = 1/𝑛}, and the first CNN is trained using the initial data weight. Then the first CNN,

𝐶1(𝒙), is used to update the data weights for the second CNN, 𝐷2 = {𝑑𝑖}. Additionally, the trained

𝐶1(𝒙) is transferred to the second CNN. This procedure is continued to train the 𝑀𝑡ℎ CNN, 𝐶𝑀(𝒙). A

detailed pseudocode of the proposed AdaBoost for CNN is provided in Table 1. In each iteration of the

sequential learning approach, first the classifier corresponding to that iteration is trained using training

data and corresponding data weights, 𝐷 = {𝑑𝑖}. Then based on the result of the trained classifier the

data weights are updated for the next iteration. These two actions are performed sequentially for M

weak classifiers.

3.1. Training a CNN with a weighted sample

 A CNN is usually constructed by stacking a number of convolutional layers, pooling layer, and a fully

connected layer [25]. A CNN has a hierarchical structure such that the bottom layers collect the low-

level features, whereas the high-level layers extract more complex features which contain more abstract

information. The bottom layers of a CNN contain a number of convolutional layers which can collect

local information from the input, and map the local information to the next layer in different feature

maps. CNN uses a number of shared weights called a kernel, 𝑾, to map an input to a feature map.

Suppose that there are a number of feature maps in the 𝑙𝑡ℎ layer. Equation (2) can be used to calculate

the activity of the 𝑖𝑡ℎ feature map in the 𝑙𝑡ℎ layer, 𝒚𝑖
𝑙.

𝒚𝑖
𝑙 =∑𝑓(𝒘𝑖,𝑗

𝑙 ∗ 𝒚𝑗
𝑙−1 + 𝒃𝑖

𝑙)

𝑗

 (2)

where 𝒘𝑖,𝑗
𝑙 is the convolutional kernel which is used to map the 𝑗𝑡ℎ feature map in the (𝑙 − 1)𝑡ℎ layer to

the 𝑖𝑡ℎ feature map in the next layer (the 𝑙𝑡ℎ layer), 𝒃𝑖
𝑙 is the bias related to the 𝑖𝑡ℎ feature map in the

𝑙𝑡ℎ layer. A nonlinear activation function, such as the rectified linear units (ReLU) function or sigmoid

function, f (.), is used in the convolutional layer. The ‘*’ is the convolutional operator sign. A max

pooling layer is used after each convolutional layer, and passes the maximum value in a local window.

The pooling layer reduces the computational cost by reducing the number of features [26].

Fig. 1. Schematic diagram of the proposed AdaBoost-CNN which works based on CNN transfer learning.

Fully connected hidden layers are connected next to the previous convolutional layers. The extracted

features from convolutional layers are flattened and feed to the fully connected layer.

𝑭𝑙 = 𝑓(𝑾𝒍(𝑭𝑙−1)𝑇 + 𝑏𝑙)
(3)

where 𝑭𝑙 is the output of the 𝑙𝑡ℎ hidden layer, 𝑾𝒍 is the weight matrix that connect the 𝑙𝑡ℎ hidden layer

to the previous layer, and 𝑏𝑙 is the bias related to the 𝑙𝑡ℎ hidden layer. 𝑓(.) is a non-linear function.

Note that the output of the last convolutional layer is flattened to a vector before applying to the next

fully connected layer.

A logistic regression model is put on top of the previous layers to construct a categorical output. A

SoftMax function is used to convert the output of the regression model to a probability distribution of

the classes as shown in (4).

𝒁 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾𝒐(𝑭𝐿)𝑇 + 𝑏𝑜) (4)

where 𝐙 is the output vector of the network which has an element corresponding to each class; 𝑾𝒐 is

the weight matrix that connects the output of the last fully connected layer to the output layer; 𝑭𝐿 is the

output of the last fully connected hidden layer where 𝑳 is the number of the output neurons which is

equal to the total number of classes; and 𝑏𝑜 is the bias related to the output layer.

The CNN is trained by the back propagation learning algorithm. Cross entropy is used to calculate error

in the learning algorithm. In this paper, each sample has a weight, 𝑑𝑖, and the sample weights are

introduced in the error function as shown in (5).

Initialize 𝐷1 = {𝑑𝑖 = 1/𝑛}

Train the 1st CNN: 𝐶1(𝒙) CNN Transfer …

Update 𝐷2 = {𝑑𝑖}

Train the 2nd CNN: 𝐶2(𝒙)

CNN Transfer

Update 𝐷𝑀 = {𝑑𝑖}

Train the Mth CNN: 𝐶𝑀(𝒙)

…

Table 1 Pseudo code of the proposed AdaBoost-CNN.

Initialize the 𝑖𝑡ℎ data sample weight with 𝑑𝑖 = 1/𝑛 where 𝑖 = 1, 2, . . . , 𝑛, and 𝑛 is the total number of training samples, and

initialize 𝑀, i.e. the total number of CNNs.

For 𝑚 = 1 to 𝑀:

1) If 𝑚 == 1:

 Train the first CNN, i.e. 𝐶𝑚=1(𝒙), on the training data using the initial sample weights, 𝐷𝑚=1 = {𝑑𝑖 = 1/𝑛}.
 else:

 Transfer the learning parameters of the previous CNN, 𝐶𝑚−1(𝒙), to the 𝑚𝑡ℎ CNN, i.e. 𝐶𝑚(𝒙).
 Train the 𝑚𝑡ℎ CNN, i.e. 𝐶𝑚(𝒙), on the training data for one epoch using the sample weight vector 𝐷𝑚 = {𝑑𝑖} .

2) Obtain the output of the 𝑚𝑡ℎ CNN, i.e. class probability estimates, for all the 𝐾 classes:

 𝑝𝑘
(𝑚)(𝒙) where 𝑘 = 1, 2, . . . , 𝐾.

3) Update the data sample weight 𝐷𝑚 based on 𝑝𝑘
(𝑚)(𝒙) using (1).

4) Re-normalize the updated data sample weights, 𝐷𝑚.

5) Save the 𝑚𝑡ℎ CNN, i.e. 𝐶𝑚(𝒙).

𝐸𝑖 = − ∑𝑡𝑖
𝑐log (𝑧𝑖

𝑐)𝑑𝑖

𝐿

𝑐=1

(5)

where 𝐸𝑖 is the error related to the 𝑖𝑡ℎ sample, 𝑡𝑖
𝑐 is the 𝑐𝑡ℎ element of the label vector corresponding

to the 𝑖𝑡ℎ sample, 𝑧𝑖
𝑐 is the 𝑐𝑡ℎ element of the output vector for the 𝑖𝑡ℎ sample, and 𝑑𝑖 is the sample

weight corresponding to the 𝑖𝑡ℎ input sample.

3.2. Testing with AdaBoost-CNN

After training the 𝑀 base classifiers, the 𝑀 CNNs, the resulted AdaBoost-CNN is ready for testing.

Equation (6) is used to predict the output class of an input.

𝐶(𝒙) = argmax
𝑘

∑ ℎ𝑘
𝑚(𝒙)

𝑀

𝑚=1

(6)

where ℎ𝑘
𝑚(𝒙) is calculated by (7).

ℎ𝑘
𝑚(𝒙) = (𝐾 − 1)(log (𝑝

𝑘
𝑚(𝒙)) −

1

𝐾
∑ log (𝑝

�̃�
𝑚(𝒙))

𝐾

�̃�=1

)
(7)

where 𝑝𝑘
𝑚(𝒙) is the 𝑘𝑡ℎ element of the output vector of the 𝑚𝑡ℎ CNN when 𝒙 is applied as its input.

Equation (7) was obtained in [2] by using the Lagrange optimization on constrained problem to find an

improved estimator in a multi-class AdaBoost.

The Python implementation of the proposed method, AdaBoost-CNN, is publicly available in a GitHub

repository (https://github.com/a-taherkhani/AdaBoost_CNN).

4. Experimental Results

This section describes the datasets which are used to perform the experiments and reports the

experimental results.

4.1. Datasets

Five datasets were utilised for the experiments. These datasets were a synthetic dataset [2], CIFAR-10

[27][28], Fashion-MNIST [29], EMNIST (an Extended version of MNIST) [30], and a Human Activity

Recognition (HAR) dataset [31] [32]. The datasets are described in the subsections that follow.

4.1.1. Synthetic Data

A multi-dimensional standard normal distribution is used to construct an imbalanced synthetic

classification dataset. There are three classes in the synthetic dataset, and it contains 12,300 samples,

where each sample 𝒙 is a ten-dimensional vector, i.e. 𝒙 ∈ 𝑅10. The ten variables in 𝒙 are drawn from a

ten-dimensional standard normal distribution. The three classes are arranged as described in [2].

Equation (8) describes the three classes.

𝑐 =

{

 1, 0 ≤∑𝑥𝑗

2 < 𝜒1/3
2

2, 𝜒1/3
2 ≤∑𝑥𝑗

2 < 𝜒2/3
2

3, 𝜒2/3
2 ≤∑𝑥𝑗

2

(8)

where 𝜒𝑘/3
2 for 𝑘 = 1 𝑎𝑛𝑑 2 is (

𝑘

3
) 100% quantile of the 𝜒2 distribution generated from the ten-

dimensional standard normal distribution, and ∑𝑥𝑗
2 is the Euclidean distance of 𝒙 from the origin of

the Euclidean space. Data related to different classes are separated by nested concentric multi-

dimensional spheres. As shown in (8), the samples from class 1 are distributed around the origin of a

https://github.com/a-taherkhani/AdaBoost_CNN
https://en.wikipedia.org/wiki/Euclidean_space

sphere, and the samples from class 2 are distributed between the surface of two spheres, and they are

far from the origin, i.e. (𝑥1, 𝑥2, … , 𝑥10) where 𝑥𝑖 = 0 𝑓𝑜𝑟 𝑖 = 1,…10, compared to the samples in the

first class, and so on. A total of 2,300 instances are extracted as training data, such that 800, 500 and

1,000 samples belong to class 1, 2, and 3, respectively, to create a class-imbalanced training dataset. A

test set is constructed by extracting 10,000 independent samples. Each sample in the test set belongs to

one of three classes with equal probability. There are approximately the same number of testing data

points in the test set for the three classes. The number of the samples belonging to each class of the

dataset are shown in Table 2.

Table 2 Number of samples for different classes of the synesthetic dataset

Class # Samples Percent

(a) Training

1 800 34.78%

2 500 21.74%

3 1,000 43.48%

Total 2,300 100%

(b) Testing

1 3,326 33.26%

2 3,336 33.36%

3 3,338 33.38%

Total 10,000 100%

4.1.2. CIFAR-10 Dataset

CIFAR-10 includes 60,000 colour images in which 50,000 images are used for training. The size of

each colour image is 32×32 pixels. In the training dataset, each class contains 5,000 training images,

and the remaining 10,000 images are used for testing. Each image belongs to one of ten classes. The

labels of the ten classes are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Fig.

2 shows a set of sample images extracted from the dataset. None of the classes have overlapping

samples. For instance, all the samples in the automobile class are different from the samples in the truck

class. The same number of training samples exists in each class, and each class has 5,000 training

samples. The testing data is also balanced data and there are 1,000 testing samples for each class.

4.1.3. Fashion-MNIST dataset

Fashion-MNIST contains 70,000 grey scale images with the size of 28× 28 pixels. Each pixel has an

integer value from 0 to 255. The original data has 60,000 and 10,000 training and testing samples, and

each sample belongs to one of ten classes. Fig. 3 shows a set of sample images extracted from the

dataset. The labels of the ten classes are: T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt,

Sneaker, Bag, and Ankle boot. Fashion-MNIST is a balanced dataset and thus each class has the same

number of samples. Each class in the training set has 6,000 samples, and each class in the testing set

has 1,000 samples.

4.1.4. EMNIST dataset

EMNIST [30] is an extended version of the MNIST dataset [33], and it is a variant of the NIST dataset

which contains images of handwritten digits, lowercase and uppercase letters. Each grayscale image in

EMNIST has the size of 28×28 pixels, and there are 784 features for each sample. The EMNIST

classification task is a more challenging task than the MNIST classification task, as it involves letters

and digits. EMNIST contains different data splits, and some of the splits are balanced datasets and the

others are imbalanced datasets.

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Fig. 2. Ten sample images for each of the 10 classes of the CIFAR-10 dataset [34]

Fig. 3. Samples from Fashion-MNIST.

There are six splits (versions) of the EMNIST data depending on their content of digits or letters, and

the number of classes. The two splits that are used for the most difficult classification tasks are the

EMNIST by-class and EMNIST by-merge datasets. These two datasets contain more digit samples than

letter samples as the nature of the original dataset is based on digits. The uneven distribution of samples

in each class makes these imbalanced datasets. EMNIST by-class and EMNIST by-merge datasets each

contain 814,255 samples, and the samples are assigned to different classes of digits and letters. Samples

in the EMNIST by-class dataset are assigned to 62 classes, and the labels of the classes are 0-9 digits,

26 uppercase and 26 lowercase letters. Fig. 4 shows the number of samples in the different classes of

ENMIST by-class. The 62 classes in the dataset have different numbers of samples.

EMNIST by-merge has 47 classes. The number of classes in this data set is lower than the number of

classes in EMNIST by-class. The two datasets have the same number of digit classes, however, they

have a different number of letter classes. The uppercase and lowercase classes in EMNIST by-class are

similar and can cause error; these classes are merged and construct the EMNIST by-merge dataset.

EMNIST by-merge is an imbalanced dataset and there are different number of samples in different

classes as shown in Fig. 5. The 814,255 samples in the two datasets are divided into training and testing

sets, and there are 697,932 training samples in each training dataset as shown in Table 3.

Fig. 4. Histogram of the number of training samples in the 62 classes of the EMNIST by-class dataset. EMNIST by-class is an

imbalanced dataset.

Fig. 5. EMNIST by-merge has different numbers of training samples in its 47 classes, and it is an imbalanced dataset.

Table 3. Characteristics of EMNIST by-class and EMNIST by-merge datasets

Dataset # Classes # Training # Testing # Total

By-class 62 697,932 116,323 814,255

By-merge 47 697,932 116,323 814,255

4.1.5. Human Activity Recognition dataset

The Human Activity Recognition (HAR) dataset was collected using the Sensor HAR App [31] which

is installed on a smartphone. The HAR dataset contains 24,075 samples, and each sample has 60

features which are extracted using smartphone accelerometer sensors. For instance, the mean values of

x, y and z components of the acceleration during the activity are the features in this dataset. Each sample

in the dataset belongs to one of the following five classes: Sitting, Standing, Walking, Running, and

Dancing [32]. Fig. 6 shows the distribution of the samples in the different classes of the human activity

datasets. Class 2 has the largest number of samples and it contains 25.84% of all the samples in the

dataset. Class 5 has the smallest number of samples, i.e. 11.02% (see Table 4).

Fig. 6 Number of samples across the various classes.

Table 4. Samples in different classes of the HAR dataset.

Class # Samples Percent

1 5850 24.30%

2 6220 25.84%

3 5396 22.41%

4 3956 16.43%

5 2653 11.02%

Total 24,075 100%

4.2. Experimental methodology

The performance of the proposed AdaBoost-CNN is compared against the benchmark CNN using a

synthetic dataset [2], CIFAR-10 [27][28], Fashion-MNIST [29], EMNIST (an Extended version of

MNIST) by-class [30], EMNIST by-merge [30], and the HAR dataset [31] [32]. In order to obtain

comparable results, the same CNN structure is used in CNN and AdaBoost-CNN.

The configuration of the CNN baseline classifier used for the synthetic dataset is shown in Table 5. It

has a one-dimensional (1D) convolution layer with a ReLU activation function, followed by a 1D Max-

Pooling layer with a pooling size of 2x1. The convolutional layer filter size is 3x1. The layer has 32

feature maps. Then, a Dropout layer is used to randomly exclude 20% of neurons. After that, two fully

connected hidden layers with 128 and 64 neurons are used. The ReLU activation function is applied in

the hidden layers. Finally, an output layer with three neurons and a SoftMax function is used. The

‘Adagrad’ optimizer with the initial values used in Keras was also used. This optimizer updates

parameter values depending on how frequently a parameter is updated. A parameter with frequent

updates will have a smaller learning rate [35]. Categorical cross entropy is used as the loss function.

Table 5. Configuration of CNN used for the synthetic dataset.

Layers Configuration

1D Convolution 32 filters, 3x1 kernel and ReLU

Max-Pooling 2x1 kernel

Dropout 20%

Fully connected 128 Neurons, ReLU

Dropout 20%

Fully connected 64 Neurons, ReLU

Fully connected 3 Neurons, SoftMax

The structure of the CNNs which are used for CIFAR-10 and Fashion-MNIST is shown in Table 6. The

number of classes, i.e. 10, and the number of training data for these datasets are higher than those of the

synthetic datasets. Consequently, a deeper CNN configuration is used for the datasets. There are 10

neurons in the output layer of the CNN. A similar structure for CNN shown in Table 6 is used for

EMNIST by-class and EMNIST by-merge datasets. The only difference is the number of output neurons

which is equal to the number of classes in each dataset. The CNN used for EMNIST by-class and

EMNIST by-merge have 62 and 47 out neurons, respectively. The HAR dataset comprises 1D datasets,

therefore, 1D convolution layers and 1D Max-Pooling layers are used. The remaining characteristics of

the CNNs used for the HAR dataset are the same as the ones shown in Table 6.

For the CFAR-10, Fashion-MNIST, EMNIST, and HAR datasets, the RMSprop optimizer, which is an

optimizer with an adaptive learning rate, has been used to train each CNN. The initial learning rate of

the optimizer is set to 0.0001, and the learning rate decay over each update is set to 11𝑒−6. Categorical

cross entropy is used as the loss function.

Table 6. Configuration of CNN used for CIFAR-10 and Fashion-MNIST.

Layers Configuration

2D Convolution 32 filters, 3x3 kernel and ReLU

2D Convolution 32 filters, 3x3 kernel and ReLU

Max-Pooling 2x2 kernel

Dropout 25%

2D Convolution 64 filters, 3x3 kernel and ReLU

2D Convolution 64 filters, 3x3 kernel and ReLU

Max-Pooling 2x2 kernel

Dropout 25%

Fully connected 512 Neurons, ReLU

DropOut 50%

Fully connected 10 Neurons, SoftMax

4.3. Experimental results

In this section the performance of AdaBoost-CNN is evaluated on the five datasets described in Section

4.1. Then, the effect of different levels of imbalance is investigated.

4.3.1. Experimental results on a synthetic dataset

The performance of the baseline AdaBoost method introduced in [2], CNN and the proposed AdaBoost-

CNN are evaluated on a synthetic dataset (see Section 4.1.1.). The original AdaBoost method [2] is

used as a baseline classifier.

Results when using a conventional AdaBoost with Decision Tree: AdaBoost with decision tree is a

conventional AdaBoost method which can be used to deal with imbalanced data. In this conventional

AdaBoost, 600 decision tree classifiers were used as weak classifiers. The maximum depth of each

decision tree is set to 2. The accuracy of the conventional AdaBoost method [2] on the training dataset

is 91.78%, and its accuracy on the testing dataset is 77.08%. The accuracy of the conventional AdaBoost

with decision tree is compared to a single CNN and the proposed method in Table 8. The proposed

method has a 16.98% higher accuracy than the conventional AdaBoost with decision tree.

Results when using the CNN baseline classifier: In the proposed method, sample weights are used to

control the learning on different training samples. In Table 7 the number of layers in the base network,

shown in Table 5, is changed, and networks with 4 to 10 layers are constructed. Then, the testing

accuracy values of the different networks are reported to find an optimum number of layers. The results

in Table 7 illustrate that the testing accuracy values are higher when there are 7 layers in the network.

The base network with optimum number of layers, i.e. 7 layers, has a testing accuracy of 92.05%, which

is lower than the testing accuracy of the proposed AdaBoost-CNN, i.e. 94.08%.

Uncontrolled learning of a large CNN with a high number of training parameters on a limited number

of training data could cause overfitting on the training data and reduce its testing accuracy. Therefore,

finding an appropriate strategy to train a deep learning method to increase the testing accuracy is

required. In the proposed method, sample weights are used to control the learning on different training

samples.

Table 7. Accuracy of the base network with different number of layers

#Layers Testing

accuracy (%)

Layers

4 81.15 Fully-Dropout-Fully-Fully

5 70.81 Dropout-Fully-Dropout-Fully-Fully

6 90.91 Conv- Dropout-Fully-Dropout-Fully-Fully

7 92.05 Conv-Pooling-Dropout-Fully-Dropout-Fully-Fully

(the original base model in Table 5)

8 91.05 Conv-Pooling-Conv-Dropout -Fully-Dropout-Fully-Fully

9 90.27 Conv-Pooling - Conv- Pooling-Dropout-Fully-Dropout-Fully-Fully

10 89.99 Conv-Pooling-Conv-Pooling-Conv-Dropout-Fully-Dropout-Fully-Fully

The training and testing accuracy values of a single CNN applied to the synthetic data are reported in

Table 8 (b). CNN is trained for different numbers of learning epochs as shown in the third column of

Table 8 (b). The testing accuracy of the baseline CNN method increases from 91.30% to 92.05% when

the number of learning epochs is increased from 5 to 10, but the testing accuracy is reduced when the

number of learning epochs is increased to 15. The imbalanced nature of the training data causes the

trained CNN to become biased to the class with the highest number of training data and consequently

reduces the accuracy of the CNN when the number of training epochs is increased (see Table 8 (b)).

Table 8. Accuracy values of (a) Conventional AdaBoost with Decision Tree (AdaBoost-Decision-Tree), (b) a single CNN,

and (c) the proposed AdaBoost-CNN on synthetic data.

Training

accuracy

Testing accuracy on

10,000 testing data

Epochs/

Estimators

(a) AdaBoost-Decision-Tree

91.78%, 77.08% 600 Estimators

(b) A single CNN

95.00% 91.30% 5 Epochs

95.74% 92.05% 10 Epochs

95.21% 91.25% 15 Epochs

(c) The Proposed AdaBoost-CNN

94.65% 93.46% 8 Estimators

95.61% 94.08% 10 Estimators

95.87% 94.06% 15 Estimators

95.78% 93.91% 20 Estimators

Results when using the proposed AdaBoost-CNN classifier: The training and testing accuracies of

AdaBoost-CNN on the synthetic data are shown in Table 8 (c). The CNN with 7 layers which was used

in the previous experiment is used as the base estimator in AdaBoost-CNN. Performance is evaluated

for different numbers of estimators in the AdaBoost-CNN as shown in the third column of Table 8 (c).

Each estimator is trained with its sample weights for one learning epoch. The testing accuracy of the

methods on 10,000 testing samples increases from 93.46% to 94.08% when the number of estimators

is increased from 8 to 10. Accuracy is reduced to 93.91% when a higher number of estimators (i.e. 20)

is used. When the number of estimators is increased the number of untrained samples for the new

estimators is reduced, and the new estimators are trained with a very low number of training samples

with high weights (the weights related to the other training samples are small enough to be neglected;

because they are already trained with the previous estimators). Consequently, the new estimators are

not trained appropriately on the entire dataset and the overall performance of the method cannot be

improved when the number of estimators is increased than 10 (see Table 8 (c)). AdaBoost-CNN has

reached its highest testing accuracy, i.e. 94.08%, when 10 estimators are used, and this accuracy is

higher than the best accuracy obtained by a single CNN, i.e. 92.05% (see Table 8). The proposed

AdaBoost-CNN correctly recognised 203 testing samples more than the single CNN on the testing data.

The accuracy values of the proposed AdaBoost-CNN, the single CNN and the conventional AdaBoost

with decision three are compared in Table 10. The highest accuracy obtained for each method is reported

in Table 10. AdaBoost-CNN has 10 estimators and each estimator is trained with its sample weights for

one learning epoch. In total there are 10 learning epochs for AdaBoost-CNN, and for the single CNN.

The CNN achieved its highest accuracy at 10 learning epochs (see Table 8 (c)). The results show that

AdaBoost-CNN has the highest accuracy compared to the two other methods. AdaBoost-CNN reached

an accuracy of 94.08%, which is 2.03% higher than the performance of the single CNN. The

experimental results also show that the accuracy of AdaBoost-CNN is much higher than that of the

conventional AdaBoost which uses decision tree as estimator. AdaBoost-CNN has 17% higher testing

accuracy compared to the conventional AdaBoost with decision tree. The results show that the

conventional AdaBoost with decision tree cannot achieve the accuracy level of a single CNN, and its

accuracy is far below the accuracy of a single CNN. Therefore, the conventional AdaBoost with

decision tree was not considered in the remaining experiments.

The number of learning epochs are set in such way that the number of all training epochs for all the

estimators is the same as the number of learning epochs used for a single CNN so as to make a fair

comparison. Table 8 shows that the single CNN can achieve its maximum accuracy on the synthetic

data when it is trained for 10 learning epochs. The same number of training epochs is used for

AdaBoost-CNN. Therefore 10 estimators with a single learning epoch can be used to have the same

number of learning epochs for AdaBoost-CNN and the single CNN. Table 8 (c) shows that when 10

estimators (each of which is trained for one learning epoch) are used, the proposed method reaches the

highest accuracy.

Experiments were carried out to evaluate the performance (training and evaluation accuracy) of the

single CNN across different learning epochs. 15% of training samples were randomly selected to

construct the validation set. Note that the testing data were not used during training. Fig. 7 shows that

after 10 learning epochs, there was no significant improvement in the accuracy on the validation set.

The single CNN is used as a building block of AdaBoost-CNN. Therefore, any degradation or

improvement on the accuracy of the single CNN as a result of the number of learning epochs would

lead to a similar change in the accuracy of the proposed AdaBoost-CNN. The same number of learning

epochs are used for both methods for a fair comparison.

Fig. 7. Training and validation accuracies of the single CNN across different learning epochs

Results when using the Deep Residual Network (ResNet): ResNet is a well-known deep structure

for CNNs, and it has achieved state-of-the-art results in different applications [36]. The performance of

AdaBoost-CNN is compared to the ResNet used in [36]. ResNet has three residual blocks, and it uses

global average pooling at the layer of the network before its output layer. ResNet contains 504,387

trainable parameters. In Table 9, ResNet is compared to AdaBoost-CNN that has 291,870 trainable

parameters. ResNet is trained with different numbers of learning epochs and its training and testing

accuracies are reported in Table 9. ResNet achieved its highest testing accuracy, i.e. 82.81%, with 12

learning epochs which is lower than the testing accuracy of the proposed AdaBoost-CNN, i.e. 94.08%.

AdaBoost-CNN has 10 estimators each of which is trained for one learning epoch. The lower number

of trainable parameters for the proposed AdaBoost-CNN leads to a lower computation time compared

to ResNet (see Table 9).

Table 9 Comparison of the proposed AdaBoost-CNN with ResNet

Epoch/Estimator Testing

accuracy (%)

Training

accuracy (%)

Computation

time (Sec.)

Parameter

ResNet

10 Epochs 78.52 89.38 73.09 504,387

12 Epochs 82.81 94.87 85.85 504,387

14 Epochs 80.82 93.65 99.79 504,387

Proposed AdaBoost-CNN

10 Estimators 94.08%. 95.61% 47.33 291,870

Results when using the CNN with the weighted loss function: New experiments were carried out

with the weighted loss function. In particular, the weighted loss function, which is a general solution to

deal with imbalanced data, was used with CNN to construct a CNN with weighted loss function (CNN-

Weighted-Loss (row 2 of Table 10)) to compare with the proposed AdaBoost-CNN (row 1 of Table

10). The experimental results show that the testing accuracy of AdaBoost-CNN is 94.08%, higher than

the accuracy of CNN-Weighted-Loss, which achieved a testing accuracy of 93.09%. Using the weighted

loss function with CNN improved accuracy by 1.04% compared to when using CNN with the regular

loss function (row 4 Table 10), which gave an accuracy of 92.05%.

Results when using a conventional oversampling method: In order to compare against other

approaches that deal with class imbalance, the proposed method is compared to the conventional

oversampling method called the Synthetic Minority Oversampling Technique (SMOTE) [37]. The

results are shown in Table 10 in the method row called ‘CNN-Over-Sampling’. The results show that

the testing accuracy of the proposed method reached 94.08% which is higher than the accuracy of CNN-

Over-Sampling. The testing accuracy of CNN-Over-Sampling is 92.45%.

Results when using a voting method with CNNs (Voting-CNNs): In order to compare the proposed

method with a method that has the same number of training parameters, a number of CNNs are trained

and then voting is used to assign a label to an applied input. The number of CNNs used in the voting

method is the same as the number of estimators in AdaBoost-CNN. Therefore, the same number of

training parameters is used for both methods. The testing accuracy of the voting method is 92.47%,

which is lower than the testing accuracy of AdaBoost-CNN, i.e. 94.08% (see Table 10). AdaBoost-

CNN correctly recognized 161 testing samples more than the voting method.

Table 10. Comparison of the best results achieved by various methods on synthetic data.

Row Method Training accuracy Testing accuracy on 10,000 testing data b

1 Proposed AdaBoost-CNN

 95.61% 94.08%

2 CNN-Weighted-Loss 95.83% 93.09%

3 CNN-Over-Sampling 95.38% 92.45%

4 CNN 95.74% 92.05%

5 AdaBoost-Decision-Tree 91.78% 77.08%

6 Voting-CNNs 96.52% 92.47%,

7 ResNet 94.87% 82.81%

Investigating the accuracy of each CNN estimator in the proposed AdaBoost-CNN: Fig. 8 shows

the training and testing accuracies of different CNN estimators in AdaBoost-CNN. The ‘x’ axis shows

the number of different CNN estimators in the proposed AdaBoost-CNN. There are 10 CNN estimators

in the AdaBoost-CNN. Fig. 8 shows that the fourth estimator has achieved the highest training accuracy

of 94.04% compared to the other estimators in AdaBoost-CNN. The accuracy of the fourth CNN

estimator on the testing accuracy is 91.85%. However, a single CNN which is trained for 10 learning

epochs cannot reach a testing accuracy higher than 90.97%, even though the training accuracy of the

single CNN is 94.91%. Therefore reducing the effect of already trained samples in subsequent epochs

can be useful to prevent over fitting a CNN. Note that the overall performance of AdaBoost-CNN is

higher than the testing accuracy of its ingredient CNN estimators, and the single CNN. AdaBoost-CNN

can achieve testing accuracy of 94.08%. The improvement in AdaBoost-CNN can be related to its

ability to prevent overfitting. Finding a method to prevent overfitting in deep learning, that can get very

small loss on complex training data, is a known challenge [38]. In each learning epoch, sample weights

reflect how much the current CNN is trained by each training sample. If a training sample is trained by

a CNN estimator, its weight is reduced and consequently its effect on training is reduced for the next

CNN. Therefore, the next CNN is not overtrained on the samples that are already trained, and this might

prevent overfitting of the next CNN on the samples that already trained in the previous learning

procedure.

In AdaBoost-CNN, different CNNs are trained on all the training samples with different sample

weights. If a sample is trained properly by a number of previous estimators, the weight related to that

sample is reduced exponentially. Consequently, this weight has a very small value compared to other

weights and therefore its effect on the training of the next estimator can be neglected. If there are disjoint

clusters of samples in a class then the small cluster of training samples, which were not trained with the

previous CNNs, acquire high value weights and they will be trained by the subsequent CNN. Therefore,

the subsequent CNN becomes expert on the training samples with the high weights. The combination

of different CNNs which are expert on different groups of training samples results in a strong classifier.

Fig. 8 Accuracy of different CNN estimators in the proposed AdaBoost-CNN algorithm

Investigating the importance of the transfer learning: Transfer learning is an important characteristic

of AdaBoost-CNN. To evaluate the effect of transfer learning on computation cost and accuracy,

AdaBoost-CNN is compared to an AdaBoost method with CNN estimators where each CNN estimator

is trained from scratch for a number of training epochs. The first estimator in this AdaBoost method is

trained for 10 epochs, then the sample weights are evaluated and the second CNN estimator is trained

for 10 epochs from scratch using the sample weights obtained from the previous CNN estimator and so

on for the next CNNs. The overall testing accuracy of this AdaBoost with CNN estimators is 90.65%,

which is lower than the testing accuracy of the proposed AdaBoost-CNN which achieved a testing

accuracy of the 94.08%. Moreover, the proposed method reduces the computation cost by reducing the

number of training epoch in subsequent CNN estimators. In the proposed AdaBoost-CNN, instead of

training each subsequent estimator from scratch for a high number of learning epochs, it uses transfer

learning and each pretrained CNN estimator is trained for a small number of training epochs to train the

next estimator. The simulation time for the AdaBoost that trains all CNN from scratch for 10 epochs is

225.83 seconds, whereas the computation time for AdaBoost-CNN is 47.33 seconds. The simulation

was run using an Intel(R) Core(TM) i7-6700HQ @ 2.60GHz 2.59GHZ processor with 64.0 GB installed

memory (RAM), and 64-bit operating system. An NVIDIA Quadro M1000M GPU was used to train

both methods. The accuracy and computation time values for AdaBoost without transfer learning are

shown in Table 11 when each estimator is set up to train for different numbers of epochs (see the first

column).

Table 11. Accuracy and computation time for AdaBoost without transfer learning, and for the proposed AdaBoost-CNN.

Epoch Testing

accuracy (%)

Training

accuracy (%)

Computation

time (Sec.)

AdaBoost without transfer learning

10 90.65 92.00 225.83

15 91.83 95.30 324.07

20 91.18 96.09 415.35

25 89.93 94.17 475.45

Proposed AdaBoost-CNN

10 94.08%. 95.61% 47.33

4.3.2. Experimental results on CIFAR-10

Three sets of experiments were conducted on the CIFAR-10 dataset as described in the following sub

sections.

Effect of different numbers of CNN estimators in the AdaBoost-CNN: The first experimental results

on CIFAR-10 are shown in Table 12. Different numbers of CNN estimators in the AdaBoost-CNN and

different numbers of learning epochs for each estimator are tested. AdaBoost-CNN has training and

testing accuracies of 97.49% and 79.00% respectively when two estimators with 25 training epochs are

used. The two estimators in AdaBoost-CNN are trained on the weighted training samples for 25 epochs.

Table 12. Accuracies of the proposed AdaBoost-CNN in the first experiment on CIFAR-10.

Training

accuracy (%)

Testing

accuracy (%)

#estimators

(M)

#epochs

97.49 79.00 2 25

96.16 77.81 3 25

77.40 66.21 10 3

Effect of changing the number of learning epochs of the first CNN estimator: In the second set of

AdaBoost-CNN experiments on CIFAR-10, the first estimator is trained for a high number of epochs

compared to the other estimators in the AdaBoost-CNN. The number of learning epochs for the first

estimator is increased from 20 to 48 epochs as shown in the fifth column of Table 13. A high number

of learning epochs for the first estimator increases the accuracy of the first CNN, causing the next CNN,

which works on the results of the first CNN, to have a higher accuracy. Table 13 shows that this method

can increase the testing accuracy of AdaBoost to 80.13%, which is higher than the accuracy of 77.89%

(see Table 12) achieved by the base CNN in 50 learning epochs. As shown in the last row of Table 13,

the first estimator is trained for 48 learning epochs, and the second and the third estimator is trained for

one learning epoch. Therefore, altogether there are 50 learning epochs for AdaBoost-CNN. When a

single CNN is trained for 50 learning epochs it cannot achieve an accuracy more than 77.89% (see

Table 12); that is 2.24% lower than the accuracy of the AdaBoost-CNN.

Table 13. Accuracy of the proposed AdaBoost-CNN when different numbers of learning epochs are used for the first estimator.

No. Training

accuracy

Testing accuracy on

10,000 testing data

#estimator (M) #epoch for the

first estimator

#epoch for the

other

estimators

1 93.10% 79.11% 5 20 1

2 94.17% 79.08% 6 20 1

3 95.67% 79.38% 2 23 1

4 95.42% 79.48% 3 23 1

5 94.34% 79.05% 4 23 1

6 91.79% 76.84% 5 23 1

7 98.47% 79.69% 4 47 1

8 98.93% 80.13% 3 48 1

Effect of partially training the next CNN estimators: In the final experiment on the CIFAR10 dataset,

all the layers of the first estimator are trained for 48 learning epochs. For the subsequent estimators only

the fully connected layers are trained, and the weights related to the previous layers, i.e. the weights of

the convolutional layers, are kept fixed. The corresponding trained weights of the first CNN are

transferred to the fixed weights of the next CNN, i.e. the weights are set to the corresponding weight

values of the first trained CNN, and after that the fixed weights are not trained. This prevents

overtraining of the next estimator to a small set of training samples which are not trained appropriately

by the previous estimator. Additionally, the fixed weights keep the knowledge related to previously

trained samples and this reduces the error of the estimator on the previously trained samples. The

experimental results in Table 14 show that by using the proposed AdaBoost-CNN, testing accuracy

reached 81.40% on the CIFAR-10 data. This accuracy is higher than the previously obtained testing

accuracy value of 80.13% reported in the last row of Table 13. In the lower part of Table 14 the

accuracies of the single CNN are shown. The single CNN has lower accuracies of 78.99% and 77.89%

for training and testing data, respectively for 50 epochs. All parameters of the single CNN, such as the

number of layers, and optimization parameters, are set to the same values as used for each CNN in

AdaBoost-CNN (see Table 6).

Table 14. Comparison of the proposed AdaBoost-CNN with a single CNN on CIFAR-10 dataset

Method Training accuracy

(%)

Testing

accuracy (%)

#estimators

(M)

#epochs

Proposed

AdaBoost-

CNN

99.74%. 81.40% 3
50 (for all the

three estimators)

CNN 78.99 77.89 1 50

4.3.3. Experimental results on Fashion-MNIST

In this subsection the effect of partially training subsequent CNN estimators after the first completely

trained estimator, is investigated. Then the performance of the proposed AdaBoost-CNN is compared

to a single CNN.

Effect of partially training the next CNN estimators: In the first experiment shown in the first row

of Table 15, all the layers are trained for all the CNN estimators. AdaBoost-CNN has 4 estimators. The

first estimator is trained for 22 learning epochs and the other 3 estimators are trained for 1 learning

epoch. Altogether there are 25 learning epochs for AdaBoost-CNN. AdaBoost-CNN reached a testing

accuracy of 92.99% (see Table 15).

Table 15. Accuracy of the proposed AdaBoost-CNN on Fashion-MNIST.

Partially

training

Training

accuracy

Testing accuracy on

10,000 testing data

No 96.50% 92.99%

Yes 97.34% 93.36%

In the next experiment, where the results are shown in the second row of Table 15, the first estimator

of AdaBoost-CNN is trained thoroughly by the Fashion-MNIST data and the training of the subsequent

estimators is restricted to the fully connected layers, and their convolutional layers’ weights are fixed

to the value of the first trained estimator. The results in the second row of Table 15 show an

improvement of the testing accuracy compared to the previous where all the layers are trained for all

estimators.

Comparison of AdaBoost-CNN to the single CNN: The accuracies of AdaBoost-CNN and CNN on

Fashion-MNIST are compared in Table 16. The testing accuracy of AdaBoost-CNN is 93.36% which

is higher than the testing accuracy of CNN, 92.00%.

Table 16. Accuracies of the proposed AdaBoost-CNN and the single CNN on Fashion-MNIST.

Method Training

accuracy

Testing accuracy on

10,000 testing data

#estimator (M) # Epochs for

the 1st

estimator

#epoch for the

other

estimators

Proposed

AdaBoost-

CNN

97.34% 93.36% 4 22 1

CNN 92.40% 92.00% 1 25 NA

4.3.4. Experimental results on EMNIST

Experimental results on EMNIST by-class: The performance of AdaBoost-CNN compared to that of

CNN on EMNIST by-class is reported in Table 17. CNN is trained for 15 learning epochs, and

AdaBoost-CNN has four estimators. The first estimator of AdaBoost-CNN is trained for 12 epochs and

the number of learning epochs of the other three estimators are set to one. The results show that

AdaBoost-CNN has reached higher testing accuracy than CNN. Note that the total number of learning

epochs is set to 15 for both methods. AdaBoost-CNN’s misclassification rate on the training data is

1.70% lower than the misclassification of CNN, and it has 11,864 less misclassified samples than CNN.

The balanced accuracy score has been used to compute accuracy for imbalanced datasets [39]. In the

balanced accuracy score, a weighted average is used to calculate the overall accuracy. The weights

related to different samples are specified based on the number of samples in the class of the samples.

The score varies from 0 to 1, and when a classifier correctly classifies all samples, its balanced accuracy

score will be 1. The balanced accuracy score is multiplied by 100 to get balanced accuracy percentage.

If a dataset is balanced, the balanced accuracy percentage will be equal to the usual accuracy percentage.

The balanced accuracy percentages are computed when applying AdaBoost-CNN and the baseline CNN

on the EMNIST by-class and EMNIST by-merge datasets which are large imbalanced datasets, and

each of which contains 814,255 samples. The results are shown in Table 17 and Table 18. The testing

‘balanced accuracy’ for AdaBoost-CNN on EMNIST by-class is 75.66%, whereas the single CNN

cannot reach a testing ‘balanced accuracy’ more than 73.27%.

Table 17. Accuracy and balanced accuracy of the proposed AdaBoost-CNN and CNN on the EMNIST by-class dataset.

Method Training

accuracy (%)

Testing

accuracy (%)

Training balanced

accuracy (%)

Testing balanced

accuracy (%)

Estimator/ Epochs

Proposed AdaBoost-CNN 88.51 87.74 77.57 75.66 4 estimators (15

epochs for all

estimators)

CNN 86.81 86.22 73.83 73.27 15 epochs

Fig. 9 shows the accuracy values of AdaBoost-CNN and CNN on testing data for different classes. The

different classes in the EMNIST by-class dataset have different number of samples as shown in Fig. 4.

The mean accuracy across all classes for AdaBoost-CNN is 75.69%, which is higher than that of the

CNN on EMNIST by-class, i.e. 73.45%. Note that the mean accuracy evaluation metric assigns the

same weight to all the classes independent of the number of samples in each class. However, total

accuracy is calculated based on the total number of correct identifications regardless of the class that

the samples belong. On average, AdaBoost-CNN has achieved higher accuracy than CNN across the

different classes. For instance, the accuracy of AdaBoost-CNN on class 39 is 8.66 times higher than the

accuracy of CNN in the same class. There are accuracy improvements in the other classes such as the

classes 19 and 48 as shown in Fig. 9. On average the mean accuracy of AdaBoost-CNN on different

classes is 2.24% higher than that of CNN.

The number of training samples in the 62 classes of the EMNIST by-class dataset are shown in Fig. 4.

Each class contains a portion of EMNIST by-class dataset. The number of training samples in a class is

normalised in the range [0,100], as shown in Fig. 9. The normalised value for the number of training

samples in a class is obtained by dividing the number of training samples in the class by the number of

samples in the class that has the highest number of training samples compared to the other classes. Then

the results are multiplied by 100 to achieve a number in the range [0, 100] to plot versus accuracy in

Fig. 9.

Experimental results on EMNIST by-merge: Table 18 compares the testing accuracies of the

proposed method and CNN on EMNIST by-merge dataset. The total testing accuracy of AdaBoost-

CNN is 91.02%, which is higher than the accuracy of CNN, i.e. 89.86%. Additionally, AdaBoost-CNN

increased the total testing accuracy by 1.16%. The ‘testing balanced accuracy’ values for AdaBoost-

CNN and the single CNN on EMNIST by-merge dataset are 89.37% and 87.57% respectively. Fig. 10

compares the testing accuracy of AdaBoost-CNN and CNN on the EMNIST by-merge dataset for the

47 classes of the dataset. The mean testing accuracy on the 47 classes for AdaBoost-CNN is 89.26%

which is higher than that of CNN, 88.40%.

Fig. 9. Testing accuracies of the Proposed AdaBoost-CNN and CNN on EMNIST by-class for different classes. The

normalised value of the number of samples for each class (#samples) is also shown.

Table 18. Accuracies and balanced accuracies of the proposed AdaBoost-CNN and CNN on EMNIST by-merge dataset.

Method Training

accuracy (%)

Testing

accuracy (%)

Training balanced

accuracy (%)

Testing balanced

accuracy (%)

Estimator/ Epochs

Proposed AdaBoost-CNN 91.78 91.02 90.56 89.37 4 (15 epochs for all

estimators)

CNN 90.25 89.86 87.93 87.57 15

Fig. 10. Testing accuracy of the proposed AdaBoost is compared to the accuracy of CNN on EMNIST by-merge dataset on

the dataset’s 47 classes.

4.3.5. Experimental results on the Human Activity Recognition (HAR) data

In order to select the most appropriate learning epoch for a single CNN, experiments were carried out

with a number of learning epochs and the performance (in terms of accuracy) of the CNN was evaluated

across the various epochs. Table 19 shows the accuracy of the single CNN on the HAR dataset for

different numbers of learning epochs. The results show that 50 learning epochs are an optimal value for

the CNN to reach a high testing accuracy on this dataset. Table 20 shows the accuracy values of

AdaBoost-CNN with different number of CNN estimators. The total number of learning epochs for all

estimators in each row in Table 20 is 50. The results show that the AdaBoost-CNN achieved the highest

accuracy with 5 estimators, where the first CNN estimator was trained for 46 epochs and the other five

subsequent CNN estimators were trained for one epoch.

Table 21 compares the accuracy of AdaBoost-CNN with CNN on the HAR dataset. The results show

that AdaBoost-CNN increases the testing accuracy from 96.84% to 97.71%. Fig. 11 shows the

accuracies of the methods for the five classes in the HAR dataset. For the first three classes the two

methods have accuracy close to 100%. AdaBoost-CNN shows the most improvement to be for class 4.

There are 395 samples in class 4, and the accuracy of the proposed method on this class is 4.56% higher

than CNN (see Fig. 11).

Table 19 Accuracy of a single CNN on the HAR dataset for different numbers of learning epochs

Training

accuracy (%)

Testing

accuracy (%)

Epochs

97.18 96.55 80

97.45 96.84 50

97.07 96.13 25

Table 20 Accuracy of the proposed AdaBoost-CNN for different numbers of estimators. The total number of learning epochs

was 50.

Training

accuracy (%)

Testing

accuracy (%)

Estimators

98.10 97.38 4

98.22 97.71 5

98.12 97.26 6

Table 21 Accuracy of the proposed AdaBoost-CNN and CNN on the HAR dataset.

Method Training

accuracy (%)

Testing

accuracy (%)

Estimators/ Epochs

Proposed AdaBoost-CNN 98.22 97.71 5 estimator

CNN 97.45 96.84 50 Epochs

Fig. 11. Accuracies of the proposed AdaBoost-CNN on different classes are compared to those of CNN on the HAR dataset.

4.3.6. Effect of different levels of imbalance in the training data using the Synthetic Data

In this section the performance of AdaBoost-CNN is investigated when the degree of imbalance in the

training data changes using the Synthetic dataset described in section 4.1.1. The synthetic data contains

three classes. Initially, class 1 contains 800 cases, class 2 contains 1,000 cases, and class 3 also contains

1,000 cases. To evaluate the impact of imbalance on the performance of CNN and AdaBoost-CNN, the

number of cases in class 2 are modified, whilst the number of cases in classes 1 and 3 remain stable.

For example, when the number of training samples of different classes change from [800, 1,000, 1,000]

to [800, 900, 1,000], the imbalance of the data increases. Table 22 shows the training and testing

accuracies for 10 different experiments, where a different imbalanced dataset with a different number

of training samples is used in each experiment. The last column of Table 22 shows the number of

training data contained in each class.

Considering the results of both CNN and AdaBoost-CNN, as shown in Table 22, in experiments 1 to 2,

the degree of imbalance increases and the training and testing accuracies reduce. In experiment 3, where

the dataset is more balanced the accuracies increase. In experiment 3, class 2 and class 3 have the same

number of samples, making it a more balanced dataset. In experiments 5 and onwards, when the

difference between the number of samples between class 2 and 3 becomes larger, the performance of

the CNN diminishes, compared to AdaBoost-CNN. In particular, after experiment 4, the difference

between the testing accuracy of the CNN and AdaBoost-CNN increases, with AdaBoost-CNN clearly

outperforming CNN in all the experiments. Difference in performance reached its highest in experiment

10, when the degree of imbalance was increased, i.e. by changing the number of cases in class 2 from

1,000 to 100, and this resulted in 20.66% higher accuracy when using AdaBoost-CNN compared to

when using the CNN.

The results in Table 22 reveal that data imbalance affects the accuracy of the CNN, and that

improvements in CNN are required so it can effectively classify imbalance data. The last experiment

shows the results of the datasets with the largest degree of imbalance. Comparing the results of

experiments 1 and 10 testing accuracy of CNN is reduced from 93.85% to 72.37%, whereas for

AdaBoost-CNN the reduction was minor from 93.94% to 93.03%. Comparing the average performance

across the experiments of the two methods, CNN achieved 89.27% whereas AdaBoost-CNN achieved

93.77%.

Fig. 12 shows the testing accuracy improvement when using AdaBoost-CNN compared to the single

CNN when increasing the difference in the number of samples contained in the imbalanced dataset. Fig.

12 shows that when the level of imbalance is low in the training data the accuracy of the single CNN is

close to that of the proposed method. However, the proposed method gives higher accuracy compared

to the CNN when the degree of imbalance in the data increases. Fig. 13 compares the testing accuracies

of AdaBoost-CNN and CNN for different levels of imbalance. Fig. 13 reveals that the proposed method

has higher accuracy for higher imbalance in the training data.

Table 22. Accuracy values of single CNNs and the AdaBoost-CNN on the different datasets. The number of training data in

the second class is reduced from 1,000 to 100 to generate different levels of imbalance.

No.

CNN Proposed AdaBoost-CNN Diff. in

Training

accuracy

(%)

Diff. in

Testing

accuracy

(%)

training samples

in the three classes
Training

accuracy

(%)

Testing

accuracy

(%)

Training

accuracy

(%)

Testing

accuracy

(%)

1. 96.36 93.85 96.00 93.94 -0.36 +0.09 [800, 1,000, 1,000]

2. 94.19 92.65 94.26 92.71 +0.07 +0.06 [800, 900, 1,000]

3. 95.85 93.84 95.69 94.03 -0.16 +0.19 [800, 800, 1,000]

4. 95.24 92.76 94.20 93.66 -1.04 +0.9 [800, 700, 1,000]

5. 95.63 92.09 95.50 93.81 -0.13 +1.72 [800, 600, 1,000]

6. 95.74 92.05 95.61 94.08 -0.13 +2.03 [800, 500, 1,000]

7. 96.36 91.49 95.55 94.10 -0.81 +2.61 [800, 400, 1,000]

8. 95.71 88.65 96.33 94.18 +0.62 +5.53 [800, 300, 1,000]

9. 95.95 82.90 97.00 94.20 +1.05 +11.3 [800, 200, 1,000]

10. 96.16 72.37 97.73 93.03 +1.57 +20.66 [800, 100, 1,000]

Average 95.71 89.27 95.79 93.77 +0.07 +4.51

Fig. 12 Testing accuracy improvement of the proposed method is increased when the level of imbalance, i.e. the difference

between the number of samples in class 2 and 3, in the data is increased.

Fig.m

Fig. 13. Testing accuracies of the proposed AdaBoost-CNN and CNN for different levels of imbalance, i.e. the difference

between the number of samples in class 2 and 3.

5. Conclusion

In this paper a multi-class AdaBoost for CNN, called AdaBoost-CNN, is proposed. In the proposed

method a number of CNNs are used as base estimators. The CNNs are trained sequentially. The errors

of an earlier CNN are used to update the sample weights for its next CNN. After updating the sample

weights, the trained CNN learning parameters are transferred to the next CNN. Transfer learning in the

proposed AdaBoost method increases the accuracy. The updated sample weights are used during

training of the next CNN. The training sample weights are incorporated to the cross-entropy error

function in the CNN back propagation learning algorithm. The ability of the proposed AdaBoost-CNN

in the processing imbalanced data is tested.

The proposed method is a modified version of the traditional AdaBoost to make AdaBoost compatible

with deep learning. The proposed AdaBoost-CNN is designed to be trained on large data by taking the

same number of learning epochs which is used by a single CNN estimator, and can still achieve higher

accuracy than the single CNN.

The high number of training samples in large data, results in high computation cost on each learning

epoch and a specific AdaBoost method is required to be applied when compared to smaller datasets.

Additionally, deep learning methods comprise a high number of learning parameters which should be

adjusted in each training epoch. Consequently reducing the number of training epochs of all estimators

is more crucial when working with deep learning methods to process large data.

In this paper the knowledge acquired during training of a CNN estimator is transferred to the next

estimator instead of initializing an estimator with random learning parameters. Consequently, the

training parameters of CNN estimators are initially set in an appropriate state and they are trained in

one epoch on the weighted training samples. However, the method proposed by Yang et al. [40] does

not consider the high number of training parameters of deep learning methods and the high computation

cost of big data processing, and instead of reducing the number of learning epochs it actually increases

the number of training epochs by repeating the training procedure on the trained estimators. This of

course increases the required computational effort as compared to the approach reported herein.

A multi-dimensional standard normal distribution is used to generate synthetic dataset for different

classes in which samples in different classes are separated by nested concentric multi-dimensional

spheres. The performance of the proposed AdaBoost-CNN is compared to the classical AdaBoost with

a decision tree classifier on the synthetic dataset. The proposed method outperformed the classical

AdaBoost with Decision Tree by 16.98%. Moreover, AdaBoost-CNN gave a 2.03% improvement in

testing accuracy compared to the base CNN. The accuracy of CNN was 92.05%, whereas the proposed

method achieved an accuracy of 94.08%. Additionally, two well-known datasets, CIFAR-10 and

Fashion-MNIST, were used to test the accuracy of the proposed method. AdaBoost-CNN outperformed

the single CNN by 3.51% on CIFAR-10, and misclassified 136 fewer samples compared to the CNN

on the Fashion-MNIST test set.

AdaBoost-CNN was also applied to two EMNIST imbalanced datasets (i.e. EMNIST by-class and

EMNIST by-merge) which are large datasets compared to the well-known dataset MNIST. The

experimental results show that the proposed AdaBoost-CNN improves the overall accuracy on EMNIST

datasets, and across the various imbalanced classes. Importantly, the accuracy of the proposed method

on one of the classes is more than 8 times higher than the accuracy of CNN on the same class.

Additionally, the proposed method improved accuracy on the EMNIST by-merge dataset. The effect of

different levels of imbalance in the training data was also investigated. Experiment results on the

synthetic data revealed that the improvement of accuracy of AdaBoost-CNN can be more than 20% for

highly imbalanced data on 10,000 testing samples. The performance of AdaBoost-CNN on multi-modal

data analysis will be investigated in future research where different modalities of data will be trained

by different CNNs.

Acknowledgment

The work was funded by The Leverhulme Trust Research Project Grant RPG-2016-252 entitled “Novel

Approaches for Constructing Optimised Multimodal Data Spaces”.

References

[1] W. Lee, C. H. Jun, and J. S. Lee, “Instance categorization by support vector machines to adjust weights

in AdaBoost for imbalanced data classification,” Inf. Sci. (Ny)., vol. 381, pp. 92–103, 2017.

[2] J. Zhu, H. Zou, S. Rosset, and T. Hastie, “Multi-class AdaBoost,” Stat. Interface, vol. 2, no. 3, pp. 349–

360, 2009.

[3] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera, “Ordering-based pruning for

improving the performance of ensembles of classifiers in the framework of imbalanced datasets,” Inf.

Sci. (Ny)., vol. 354, pp. 178–196, 2016.

[4] N. H. C. Lima, A. D. D. Neto, and J. D. De Melo, “Creating an ensemble of diverse support vector

machines using Adaboost,” Proc. Int. Jt. Conf. Neural Networks, pp. 1802–1806, 2009.

[5] M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the class imbalance problem in

convolutional neural networks,” pp. 1–23, 2017.

[6] P. Viola and M. J. Jones, “Robust Real-time Object Detection,” Int. J. Comput. Vis., no. February, pp.

1–30, 2001.

[7] S. Nejatian, H. Parvin, and E. Faraji, “Using sub-sampling and ensemble clustering techniques to

improve performance of imbalanced classification,” Neurocomputing, vol. 0, pp. 1–12, 2017.

[8] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-line learning and an

application to boosting,” J. Comput. Syst. Sci., vol. 55, pp. 23–37, 1997.

[9] Z. Sun, Q. Song, X. Zhu, H. Sun, B. Xu, and Y. Zhou, “A novel ensemble method for classifying

imbalanced data,” Pattern Recognit., vol. 48, no. 5, pp. 1623–1637, 2015.

[10] S. Vucetic and Z. Obradovic, “Classification on Data with Biased Class Distribution,” in Machine

Learning: ECML 2001, 2001, pp. 527–538.

[11] C. Chen, A. Liaw, and L. Breiman, “Using random forest to learn imbalanced data,” Univ. California,

Berkeley, no. 1999, pp. 1–12, 2004.

[12] J. Duchi and H. Namkoong, “Variance-based regularization with convex objectives,” in 31st Conference

on Neural Information Processing Systems (NIPS 2017), 2016, no. 3, pp. 1–10.

[13] D. Masko and P. Hensman, “The Impact of Imbalanced Training Data for Convolutional Neural

Networks,” Bachelor thesis, KTH, Sch. Comput. Sci. Commun., 2015.

[14] J. Wang, X. Yang, H. Cai, W. Tan, C. Jin, and L. Li, “Discrimination of Breast Cancer with

Microcalcifications on Mammography by Deep Learning,” Sci. Rep., vol. 6, no. June, pp. 1–9, 2016.

[15] “ImageNet Large Scale Visual Recognition Challenge 2015. ImageNet. ILSVRC2015,” 2015. [Online].

Available: http://image-net.org/challenges/LSVRC/2015/.

[16] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column Deep Neural Networks for Image

Classification,” CVPR, pp. 3642–3649, 2012.

[17] X. Frazão and L. Alexandre, “Weighted Convolutional Neural Network Ensemble,” Prog. Pattern

Recognition, Image Anal. Comput. Vision, Appl., vol. 8827, no. Springer, Cham, pp. 674–681, 2014.

[18] G. Wen, Z. Hou, H. Li, D. Li, L. Jiang, and E. Xun, “Ensemble of Deep Neural Networks with

Probability-Based Fusion for Facial Expression Recognition,” Cognit. Comput., vol. 9, no. 5, pp. 597–

610, 2017.

[19] B.-K. Kim, J. Roh, S.-Y. Dong, and S.-Y. Lee, “Hierarchical committee of deep convolutional neural

networks for robust facial expression recognition,” J. Multimodal User Interfaces, vol. 10, no. 2, pp.

173–189, 2016.

[20] Y. Kawana, N. Ukita, J. Bin Huang, and M. H. Yang, “Ensemble convolutional neural networks for

pose estimation,” Comput. Vis. Image Underst., no. December 2017, pp. 0–1, 2018.

[21] H. Wang et al., “Cascaded ensemble of convolutional neural networks and handcrafted features for

mitosis detection,” Proc. SPIE 9041, Med. Imaging 2014 Digit. Pathol., vol. 9041, p. 90410B, 2014.

[22] N. Tajbakhsh, S. R. Gurudu, and J. Liang, “Automatic Polyp Detection in Colonoscopy Videos Using

an Ensemble of Convolutional Neural Networks,” in IEEE 12th International Symposium on Biomedical

Imaging (ISBI), 2015, pp. 79–83.

[23] E. P. Ijjina and C. Krishna Mohan, “Hybrid deep neural network model for human action recognition,”

Appl. Soft Comput. J., vol. 46, pp. 936–952, 2016.

[24] M. Lyksborg, O. Puonti, M. Agn, and R. Larsen, “An Ensemble of 2D Convolutional Neural Networks

for Tumor Segmentation BT - Image Analysis,” 2015, pp. 201–211.

[25] A. Krizhevsky, I. Sutskever, and H. Geoffrey E., “ImageNet Classification with Deep Convolutional

Neural Networks,” in Advances in Neural Information Processing Systems 25 (NIPS2012), 2012, pp. 1–

9.

[26] K. A, S. I, and H. GE, “ImageNet Classification with Deep Convolutional Neural Networks,” in In:

Advances in neural information processing systems, 202AD.

[27] A. Krizhevsky, “Learning multiple layers of features from tiny images,” 2009.

[28] A. Krizhevsky, V. Nair, and G. Hinton, “The CIFAR-10 dataset,” online http//www. cs. toronto.

edu/kriz/cifar. html, 2014.

[29] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a Novel Image Dataset for Benchmarking

Machine Learning Algorithms,” pp. 1–6, 2017.

[30] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “EMNIST: Extending MNIST to handwritten

letters,” Proc. Int. Jt. Conf. Neural Networks, vol. 2017-May, pp. 2921–2926, 2017.

[31] Amine El Helou, “Sensor HAR recognition App - File Exchange - MATLAB Central.” [Online].

Available: https://uk.mathworks.com/matlabcentral/fileexchange/54138-sensor-har-recognition-app.

[Accessed: 03-Jul-2018].

[32] “Human Activity Recognition Simulink Model for Smartphone Deployment - MATLAB &

Simulink - MathWorks United Kingdom.” [Online]. Available:

https://uk.mathworks.com/help/supportpkg/android/examples/human-activity-recognition-simulink-

model-for-smartphone-deployment.html. [Accessed: 03-Jul-2018].

[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document

recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2323, 1998.

[34] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” … Sci. Dep. Univ. Toronto,

Tech. …, pp. 1–60, 2009.

[35] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic

optimization,” J. Mach. Learn. Res., vol. 12, pp. 2121–2159, 2011.

[36] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep learning for time series

classification: a review,” Data Min. Knowl. Discov., 2019.

[37] N. V Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE : Synthetic Minority Over-

sampling Technique,” vol. 16, pp. 321–357, 2002.

[38] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning requires

rethinking generalization,” 2016.

[39] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann, “The balanced accuracy and its

posterior distribution,” in International Conference on Pattern Recognition The, 2010, pp. 3125–3128.

[40] S. Yang, L. Chen, T. Yan, Y. Zhao, and Y. Fan, “An ensemble Classification Algorithm fro

Convolutional Neural Network based on AdaBoost,” pp. 401–406, 2017.

