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A B S T R A C T  

This study examines contact and impact behaviors of shape memory polymer (SMP) beams fabricated by four-

dimensional (4D) printing technology. A 3D phenomenological constitutive model is developed to predict visco-

elastic-plastic characteristics of SMPs and their shape memory effect in large deformation range for the first time. A 

novel finite element method (FEM) based on non-linear Green strains is established to analyze the SMP beam under 

contact/impact loadings. Newmark and Newton-Raphson methods along with an iterative-incremental approach based 

on a visco-elastic-predictor visco-plastic-corrector return mapping algorithm are implemented to solve FEM 

governing equations in spatial and time domains. Fused deposition modeling is employed to 4D print samples from 

polyurethane-based filaments. Thermo-mechanical experimental tests are performed to acquire the parameters needed 

for the SMP constitutive model. The effects of indentation location, substrate thickness, and edge effect are examined 

numerically for cylindrical indentation of elastic-plastic SMPs at glassy phase. The validation and application of the 

Hertzian load-displacement relation for indentation of elastic materials are also clarified. Then, experimental and 

numerical tests are conducted to examine impact responses of 4D printed SMP beams. Influences of impact position 

and impactor initial velocity and energy on the responses of the structure in forced and free vibration regimes are 

studied in detail. The results revealed that the projectile with low velocity or high velocity accompanied with low 

energy impacted the beam is able to produce plastic deformation. It is shown that the large residual plastic deformation 

can be fully recovered by simply heating. Due to the absence of similar results in the specialized literature, this paper 

provides pertinent results that are instrumental in the design of SMP beam-like structures under impact loadings. 
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1. Introduction 

The mechanical problem of two deformable bodies in contact/collision has been of great 

importance in scientific research and technical applications in various fields. Problems related to 

the contact and impact are complicated and inherently non-linear because of their moving 

boundaries. Even when friction is considered between the contacting surfaces, the problem 

becomes more complex as the contact area may exhibit adhesion and unknown slip regions. The 

first study of the contact problem was made by Hertz (1986) about contact between elastic 

spherical bodies. It has served as a landmark in the theory of elasticity. The classic Hertz contact 

theory has been revealed to be successful in replicating the indentation responses for metals and 

ceramics.  

Following the research work by Hertz (1986), contact mechanics on elastic materials has 

evolved significantly. Many research works have been performed to derive analytical solutions. 

Mathematical approaches on the basis of complex variables, integral transforms and Green 

functions have been applied. A comprehensive review of related development can be found in 

(Hills et al., 1993). A large number of studies have been dedicated to investigate mechanical 

behaviors of elastic structures under projectile impact based on the contact theories (see e.g., 

Dunatunga and Kamrin, 2017; Fan et al., 2018; Ivañez et al., 2014; Ranjbar and Feli, 2018). 

Implementing a finite element method (FEM), Dintwa et al. (2008) examined the validity of the 

Hertz theory for contact between elastic spheres and contact of an elastic sphere on a rigid 

substrate. They concluded that the Hertz theory leads significant prediction errors in the large strain 

regimes. It revealed that the Hertz model underestimates normal force for both cases even at a 

relatively small indentation. Under large impact, plasticity is expected to be formed first at the 

impact location and propagates from high-stress level locations along the structure. Elasto-plastic 
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dynamic study of structures subjected to impact of projectile involves phenomena such as local 

contact behavior, wave propagation and structural response (Christoforou and Yigit, 1998). Over 

the past decades, some theoretical models and dynamic analyses have been devoted to characterize 

elastic-plastic contact/impact behaviors of homogenous and composite materials and structures 

(see e.g., Chen et al., 2017; Wang et al., 2017; Zhang et al., 2018).  

Shape memory polymers (SMPs) have shown unique capabilities to recover their original shape 

after undergoing large deformations, on the application of external stimuli, such as temperature. 

They have been applied in several areas such as aerospace (Liu et al., 2014), and biomedical 

applications (Fan et al., 2016). SMPs are able to recover large plastic deformation by simply 

heating. Great progress has also been made in the development of constitutive models and 

mathematical solutions to describe the SMP behaviors in recent years (see e.g., Akbari et al., 2018; 

Boatti et al., 2016; Bodaghi et al., 2018, 2019; Ge et al., 2014; Lu et al., 2019; Mao et al., 2015; 

Pieczyska et al., 2016; Zeng et al., 2018, 2019a,b, 2020). However, to the best of authors’ 

knowledge, their structural responses to contact and impact loadings have been left as a challenge 

in this field due to the complexity in visco-elastic-plastic behaviors and dynamic simulation. It is 

also worthwhile to mention that available commercial software is not able to simulate SMPs under 

static and dynamic loadings.  

In 2014, Tibbits (2014) first introduced the concept of four-dimensional (4D) printing structures 

which are capable of changing their shape and/or function on-demand and over time. 4D printing 

can be defined as a combination of 3D printing technology and smart materials like SMPs 

(Bodaghi et al., 2018, 2019; Lin et al., 2019; Liu et al., 2020; Tibbits 2014). Lin et al. (2019) 

introduced 4D printed biodegradable, remotely controllable and personalized SMP occlusion 

devices and exemplified atrial septal defect occluders. Liu et al., (2020) investigated anisotropic 
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characteristics of mechanical and shape memory performances induced by different infill strategies 

via both experimental and theoretical methods. SMP samples were 4D printed and uniaxial tensile 

and compressive tests were performed and simulated by considering generalized Maxwell-

Wiechert model and Prony Series implemented in ABAQUS. 

This paper is dedicated to comprehensively investigate contact and impact behaviors of SMPs 

fabricated by 4D printing technology. The fourth dimension is related to the shape recovery after 

plastic deformation (Bodaghi et al., 2018, 2019). First, a node-to-surface algorithm is introduced 

for global/local searching of the contact. A novel constitutive model is then developed to simulate 

visco-elastic-plastic behaviors of SMPs and shape memory effect (SME) in the large strain regime. 

It is then coupled with an FEM formulation. 1D and 2D FEM governing equations are established 

for the SMP beam under contact/impact loadings for the first time. Newmark method is 

implemented along with an iterative-incremental Newton-Raphson process based on a visco-

elastic-predictor visco-plastic-corrector return mapping algorithm to solve non-linear governing 

equations in spatial and time domains. Fused deposition modeling (FDM) as a well-known 3D 

printing technology is implemented to fabricate SMP samples and beams from polyurethane-based 

filaments. Experiments are conducted to extract thermo-mechanical behaviors of the printed SMPs 

in the small and large strains. It is shown that the SMP model is capable of replicating experiments 

well. Mechanical behaviors of the elastic-plastic SMPs at glassy phase indented by a rigid 

cylindrical indenter are studied experimentally. The effects of indentation location, substrate 

thickness, and edge effect are investigated. The correctness and reliability of the Hertzian load-

displacement response for indentation of elastic materials are also checked. Afterwards, impact 

response of 4D printed SMP beams are studied experimentally and numerically. Influences of 

impact position and impactor initial velocity and energy on the forced and free vibrational 
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responses of the structure are investigated via a parametric study, and pertinent conclusions are 

drawn. It is found that the large residual plastic deformation can be fully recovered by simply 

heating. Due to the absence of similar results in the specialized literature, it is expected that the 

results of this research will contribute to a better understanding on the dynamic behaviors of 4D 

printed SMP beam-like structures exposed to impact loads. 

 

2. Models and Solution Methods 

2.1. Modeling of contact problem 

Consider two bodies (A and B) as shown in Fig. 1. It indicates the contact between a rigid 

circular indenter and an SMP body deformed due to the impact. The SMP is assumed to be 

homogeneous and isotropic with visco-elastic-plastic behaviors as observed in experiments (Guo 

et al., 2015). Based on the mesh configuration on the contact surface, among conventional contact 

approaches known as node-to-node, node-to-surface and surface-to-surface contact approaches, 

the node-to-surface contact search is adopted here. In this approach, the equilibrium is only forced 

at nodes of one body and compatibility is forced at nodes of the other body. First, a global search 

is conducted to detect candidate master surfaces from all pre-defined contact surfaces. The contact 

is then enforced between a slave node and master surface facets local to the node, see Fig. 1. The 

penetration distance is measured along the normal to the master surface. The parameter h in Fig. 

1 shows the depth of penetration of the tip of the indenter into the half space. The method tries to 

search nodes that violate contact constraint. The contact force is then applied for the violated 

nodes. A nodal area is assigned to each slave node to convert contact forces to contact stresses. By 
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applying contact conditions as well as other boundary conditions, then the nodal displacements are 

calculated using an iteration approach like Newton-Raphson while the accuracy is satisfied. 

 

2.1.1. Types of contact interface 

In this paper, the influence of material hardness on the change of surface depth as well as friction 

coefficient during the elastoplastic deformation have been neglected. Therefore, the relative 

motion is governed by Coulomb friction model that makes tangent stiffness asymmetric 

(Zienkiewicz et al., 2014). These contact interface conditions can be expressed mathematically as: 

master

t

slave

t

nt

n

t

master

n

slave

n

xxelse

FFthen
F

F
if

xxhwhile

=

=

=



:0

 
 

(1) 

where x  and F  indicate displacement and force while the subscripts t and n stand for normal and 

tangential directions as shown in Fig. 2. Also,   means the friction, which is an empirical property 

of the contacting materials. In this study, the slip contact with friction value of 0.4 is assumed.  

 

2.2. Constitutive SMP model 

2.2.1. Preliminaries 

Consider an SMP material point in the reference configuration at point Xi that moves to a spatial 

point xi. The displacement, iu , can be assumed as: 
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iii Xxu −=  (2) 

The deformation gradient, ijF , defined as local changes in space of the motion is expressed as: 

ijij

j

i
ij Uδ

X

x
F +=




=  

(3) 

where 
j

i
ij

X

U
U




= . The determinant of the deformation gradient denoted by J  (Jacobian of the 

mapping) can be considered as a measure of the change in volume. The Green deformation tensor 

is defined as: 

FFC T=  (4) 

It can be expressed in terms of the displacement vector as: 

TT UUUUIC +++=  (5) 

The first, second and third invariants of the Green deformation tensor can be given as: 

2

3

22

2
1

2

1

)]())([(

)(

JI

CtrCtrI

CtrI

=

+=

=

 (6) 

The Green-Lagrange strain tensor can also be expressed as: 

)(
2
1 ICE −=  

(7) 

where I denotes the second-order identity tensor.  
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2.2.2. Constitutive relations 

SMPs exhibit a combination of hard glassy and soft rubbery phases with elastic-plastic and 

hyper-elastic behaviors, respectively (Bodaghi et al., 2018, 2019). Volume fractions of these 

phases are signified by scalar variables of g  and r  satisfying 1=+ rg  . Subscripts ‘g’ and ‘r’ 

indicate glassy and rubbery phases, respectively. The variable g  is considered to be only 

temperature dependent, i.e., )(Tgg  = , as a generally well-known assumption. 

By considering the viscosity effect in the dynamic behavior of SMPs (Guo et al., 2015), the 

glassy phase is assumed to have a visco-elastic-plastic behavior with shape memory feature. On 

the other hand, the mechanical behavior of the rubbery phase is assumed to be visco-hyper-elastic. 

Considering that rubbery and glassy phases are linked to each other in a parallel manner, the total 

deformation gradient, F , is multiplicatively decomposed into the visco-elastic, visco-plastic and 

SME deformation gradients as follows: 

regsgpge FFFFF ==  (8) 

where the superscripts e, p, s, represent the visco-elastic, visco-plastic, and shape memory 

components, respectively. 

Using Green deformation tensor definition (4), visco-elastic Green deformation tensor of the 

glassy phase can be derived in terms of total Green deformation tensor as: 

1

gp

1

gs

T

gs

T

gpge FCFFFC −−−−=  (9) 

Visco-elastic Green deformation tensor of the rubbery phase can also be expressed as: 

CCre =  (10) 
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The Green deformation tensor C  and the absolute temperature T  and visco-plastic Green 

deformation tensor of the glassy phase gpC  are considered as external and internal variables. 

Assuming the rule of mixtures for the SMP with rubbery and glassy phases, a Helmholtz specific 

free energy function,  , is adopted:  

),()1(),,( TCTCC rerggpgegg  −+=  (11) 

Free energy functions of rubbery and glassy phases are considered as: 

),(),(),( 211
1

21
1

00 gpgpgpggtcgegegeg IITIII 


++=  (12a) 

),(),,( 1
1

321
1

00
TIIII rrtcrerererer 


+=  (12b) 

in which 0  is the reference density while ijij II 21 ,  and ),;,(3 pejrgiI ij ==  signify the first, second 

and the third invariants of the Green deformation tensor. Adopting Saint-Venant-Kirchhoff visco-

elastic strain energy function for the glassy phase (Park et al., 2016), and Mooney-Rivlin visco-

hyper-elastic strain energy function for the rubbery phase (Alwan and Hamza, 2010), geΘ  and reΘ  

are written as: 

( ) :CCμIIcIcΘ ggegeggegge
+−−−+−= )3()3(2)3( 212

2

11  (13a) 

CCIcIIcIIcΘ rrerrererrererre :)1()3()3( 22/1

332

3/2

321

3/1

31
+−+−+−= −−

 (13b) 

where )3,2,1( =ici  are material constants while   is viscosity parameter. Visco-plastic 

configurational energy of the glassy phase is also expressed as: 

( ) gpgpgpgpgpgpgpgp CCIIIh :)3(2)3(4)3( 21

2

18
1  +−−−+−=  (14) 

where gph  and gp  are hardening and viscosity parameters of the plastic deformation in the glassy 

phase. Furthermore, thermo-chemical energies of ),( rgiitc =  are: 
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 )/ln()())(3( 0000012
3 TTTTTcTsuTTI iiiiiiitc −−+−+−−−=   (15) 

where i  is the thermal expansion coefficient; i  is the bulk modulus; iu0  and is0  signify the 

specific internal energy and entropy at the equilibrium temperature 0T ; and ic  denotes the specific 

heat at constant volume. Then, the Clausius-Duhem inequality is written to derive constitutive 

relationship as:  

0TsCS:D
02ρ

1
m +−= )(    (16) 

where S  and s  are the second Piola-Kirchhoff stress tensor and the specific entropy. By 

substituting the time derivative of the Helmholtz free energy (11) into the mechanical dissipation 

inequality (16), state equations can be derived as: 

rggg SSS )1(  −+=  (17a) 

rggg sss )1(  −+=  (17b) 

The Clausius-Duhem inequality (16) is also simplified to 

0C:X gpgp   (18) 

where gpX  represents the dissipative force related to the plastic velocity gradient.  

 

2.2.3. Evolution laws and solutions 

The model is completed by defining evolution equations for ggpC ,  and gsF . To satisfy the 

Clausius-Duhem inequality during plastic deformation of the glassy phase, the evolution law for 

gpC  is adopted as: 
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D

gp

D

gpgp XXC / =  (19) 

where   denotes non-negative consistency parameter and superscript of D makes the component 

deviatoric. Introducing Eq. (19) into the Clausius-Duhem inequality (18) results in: 

0D

gpX  (20) 

The following limit function is given to evolve the plastic deformation into the glassy phase.  

gp

D

gpgp YXL −=  (21) 

where the constant parameter of gpY  governs the kinetics of plastic evolution. The Kuhn-Tucker 

conditions are also met to constrain the evolution of gpC  as: 

0,0,0 =  
gpgp LL  (22) 

Thermal conditions for the plastic deformation evolution of the glassy phase and its recovery are 

assumed as: 















ICTTif

CT,TTTif

Eq.  CT,TTTorTTif

gph

gphl

gphll

setis)(

constantremainsthen)0(

)22(via evolvesthen)0()(





 (23) 

It states that plastic deformation evolves mechanically at low temperatures )( lTT   or during 

cooling in the transition regime )( hl TTT   while it is recovered by heating within transition 

range.  

Evolution of SME deformation gradient in the glassy phase is given as: 



 +−=

constantremainsotherwise

)(then)(

gs

gsgsh

F

IIFcFTTif
 (24) 
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where gsc  ranging within [0 1] controls the shape-fixing imperfection in shape memory 

programming. Finally, the evolution of g  during glassy-rubbery phase transformation can be 

formulated as: 

)tanh()tanh(

)tanh()tanh(

2121

2121

lghg

hgg

g
TTTT

TTTT






−−−

−−−
−=  (25) 

where parameters 
1  and 

2  are chosen to match the experimental DMA curve.  

Finally, in conjugation with the solution of the developed constitutive model, it can be solved by 

performing an incremental-iterative scheme based on the elastic-predictor plastic-corrector return 

mapping method details of which can be found in Simo and Hughes (1998). A visco-elastic trial 

state is considered for gpC  and a trial value of the limit function (21) is calculated to check for the 

trial state admissibility. If the latter is not verified, the step is visco-plastic and the evolution 

equation (19) is integrated. It is discretized via the explicit Forward-Euler integration and solving 

non-linear system of algebraic equations by means of iterative Newton-Raphson method (Reddy, 

2004; Simo and Hughes, 1998). 

 

2.3. Finite element formulation 

In order to extract the governing equations of motion for the SMP body under impact loading, 

the Hamilton principle is used as: 

( )( ) 0=−− 
t2

t1 V
ie dtVdKWW   (26) 
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where V  signifies the body volume and eW  is the work done by external loads. Furthermore, iW  

and K are thermo-visco-elastic and kinetic energies defined as: 

    =



=

t2

t1 V

t2

t1 V

i
t2

t1 V
i dtVdSCdtVd

C

W
CdtVdW ::

2
1   (27a) 

    −==
t2

t1 V

t2

t1 V

t2

t1 V
dtVdUUdtVdUUdtVdK   ..  

(27b) 

 

Considering zero initial conditions, Eq. (26) can be written as: 

( ) ( ) e
VV

WVdUUVdSC  =+  .:
2
1  (28) 

Assume a general beam element with length l, width b and thickness h, as shown in Fig. 3. A 

local 2D Cartesian coordinate system (X, Z) is located on the beam element. An appropriate 

kinematic hypothesis for the present beam under contact/impact loading is the 1D and 2D plane 

stress assumption. It implies: 





====

====

124233332221

12233322

,,,

0
:1

CCCC

SSSS
D


 (29a) 





===

===

123232221

122322

,,

0
:2

CCC

SSS
D


 (29b) 

where )4...1( =ii  are the Lagrange multiplier coefficient. 

In order to solve the problem, an FE method is implemented. For the 1D case, a finite-strain 

beam model is considered to describe the displacement field in the beam domain. It is formulated 

as: 
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)())(cos()(

))(sin()()(

XwXZZXW

XZXvXV

++−=

−=




 (30) 

where V  and W  indicates displacement components of a material point within the element along 

X  and Z  directions. Also, v and w denote mid-plane displacements along X and Z coordinates 

while   is cross-section rotation. 

Quadratic Lagrange shape functions are employed to interpolate mechanical variables,  , in 

terms of nodal variables, )321( ,,ii = , as shown in Fig. 3 as: 

 )(N=  (31) 

where 

  lXN /2,)1(1)1(
2
12

2
1 =+−−=   (32a) 

 T321  =  (32b) 

For the case of 2D beam model, a three-nodded triangular element in the X-Z plane is used to 

discretize the domain. Lagrangian multiplier is interpolated using linear shape functions with 

continuity of 0C  as shown in Fig. 4. The linear interpolation can be expressed as: 

 ),(L=  (33) 

in which L  and   are linear shape function and nodal variable vector defined as:  

 

 T

L

321

1





=

−−=
 (34) 

where ,  are natural local coordinates while 321 ,,   are nodal variables. Adopting a linear 

natural coordinate system for the triangular element, the derivative of Cartesian coordinates can 

also be obtained as: 
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 








=












d

d
J

dZ

dX
 (35) 

where  










−−

−−
=

1313

1212

ZZXX

ZZXX
J  (36) 

The elemental displacements are also interpolated by means of Hermitian shape functions with 

continuity of 1C  as illustrated in Fig. 5. For instance, typical displacement like   can be expressed 

as: 

 ),(N=  (37) 

in which 

 

 TZXZXZX

OMNOMNOMNN

,3,33,2,22,1,11

333222111

 =

=
 (38) 

where )321( ,,iQ,M,N iii =  are Hermitian shape functions details of which can be found in (Reddy, 

2004). The derivative of global displacements can be expressed in terms of their local counterparts 

as: 

  3,2,1
,

,1

,

,
=









=






 −

iJ
i

i

Zi

Xi












 (39) 

Therefore, the elemental local displacements and Lagrangian multiplier can be interpolated in 

terms of nodal variables through shape functions as: 

3,2,1,, === iuLuNU iiii   (40) 

The derivative of the elemental displacements can be derived as: 
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)3,2,1,( =



= jiu

X

N
U

j

i
ij  (41) 

Derivative of C  and S can also be expressed in the discretized form as: 

)3,2,1,()( ==



jiuN

u

C
ij

ij
 (42a) 

)3,2,1,()( ==



jiuM

u

S
ij

ij
 (42b) 

Finally, by substituting Eqs. (40) and (42) into the Hamilton principle (28), the finite element 

governing equations for a base element can be derived as: 

( ) ( ) fuVdNNVdSN
V

i

T

i
V

ij

T

ij =+  2
1  (43) 

where f  is the mechanical force vector. Eq. (43) is a highly non-linear equation in terms of 

mechanical nodal variables and elemental stress in the time domain. It can be expressed as: 

0)()( =−++ fuMuuCufk
  (44) 

where 𝐶 and 𝑀 are damping and mass matrices. In order to find a solution of the present contact 

problem with geometric and material non-linearities, an iterative approach such as Newton-

Raphson (Reddy, 2004) is implemented. To this end, a residual vector is first introduced as: 

fuMuuCufR k −++= )()(  (45) 

By using the implicit time integration scheme of Newmark method, the time derivatives appeared 

in (45) are approximated as: 

5.00)(
2

1
4

)41(

2
21

2
1

2
1 −=++−= +

−−
++ 






 ttttt

t

tttttttt uuuuuuu   (46a) 

tttttttttttttt uuuuuuu  −=++−= +
−

++ 


 222

1
2
21111 )(  (46b) 
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resulting in: 

ttttttttttktt fuMuuCufR  ++++++ −++= )()(  (47) 

Then, equilibrium is reached for each time step by implementing Newton-Raphson iteration until 

a convergence criterion is met. The residual vector (47) is rewritten for the nth iteration as: 

ttt
n

tttt
n

ttt
n

tt
n

ttk
n

tt
fuuMuuuCufR  +



 +



 +



 +



 +



 +

−−+−+= )()()()( 2

1
2

1   (48) 

The tangent matrix defined as differentiation of R  with respect to the nodal displacement vector 

u  is derived as: 

MCuu
u

C

u

f

u

R
T

tutt
n

ttt

uu

k

utt

tt

n
tt

n
tt

n
tt

n
tt

n
tt

2

1
2

1
2

1












++












−




+




=




=



 +



 +



 +



 +



 +

+

+



 +

  
(49) 

The updated value of the nodal displacement vector can be calculated as: 



 +

−



 +



 +




+
+

−=
n

tt
n

tt
n

tt
n

tt
RTuu



1

1

 (50) 

Finally, Eqs. (44) and (49) are used to produce global FE equations and the global tangent matrix 

by assembling and applying boundary conditions. The overall non-linear algebraic equations are 

solved by means of the iterative Newton-Raphson method (Reddy, 2004). 

As the dynamic force induced by impact loading is unknown, it is needed to define it to 

complete the dynamic analysis. Fig. 6 shows a schematic of the pendulum impact test system. It 

consists of a pendulum arm with length eR  and weight M, bolted at distance of r and an impactor 

fixed at the end of the arm. The impact pendulum can generate impact loading throughout the 

collision at adaptable velocity and consequently kinetic energy by adjusting the weight position 

and starting height, h ( eRh =  when the pendulum arm hangs straight down at rest). Considering 
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kgM 4686.0=  plus mass of the arm and impactor and the range of m45.015.0 −  for r, the 

adjustable pendulum impactor can be equivalent with a single mass located at radius of 

rmRm 624.00865.0 +=  with respect to the hinge. The equivalent moment of inertia is calculated 

as 
22

0 .292.00148.0 mkgrJ += . The maximum velocity of the impactor just before collision can 

be computed via: 

oeem0 /JhR.RM.g.R2 V )( −=  (51) 

The impactor is lifted to a desired height and then released to impact on the beam, see Figs. 6 and 

7. Indicating maximum angles of the impactor and the beam after the collision, respectively, by 

1  and 2 , maximum kinetic energy of the pendulum mass can be defined as: 

)(cos 2110  −−= ePRJ   (52) 

This equation is coupled with Eq. (44) and completes the FEM governing equations of the present 

problem. In order to solve the dynamic problem, the following initial conditions are considered:  

       

ett

tt

RV

uu

/0

00

00101

00

==

==

==

==

 


 (53) 

 

3. Materials and Fabrication 

Material properties presented in the model are determined in this section. Samples are designed 

using the 3D CAD program Solidworks and printed using a FlashForge New Creator Pro 3D 

printer. The nozzle diameter is 0.4 mm. Commercial SMP materials (filament with 1.75 mm in 

diameter) are selected to fabricate samples. Printing parameters such as layer height and 

temperatures of nozzle extrusion, build tray and chamber are selected to be as 0.2 mm and 230, 50 
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and C25  while printing speed is smm /10 . Samples are printed with 100% infill with parallel 

line and one shell layer. 

The parameters of the SMP phase transformation like 21,  and ghl TTT ,,  in Eq. (25) are 

measured via a DMA test (Model 242, NETZSCH) in axial tension mode. DMA samples are 

printed with dimensions of mm16.116  . The test is conducted with ratio of dynamic stress to 

static stress equals to 1.5, frequency of force oscillation Hz1 , and heating ramp of 
1min5 −C  within 

C]85...20[− . Fig. 8 shows experimental thermo-mechanical behavior of the printed SMP in terms 

of storage modulus, sE , and phase lag, )(tan  . The parameters of 21,  and ghl TTT ,,  are 

calibrated using DMA data as listed in Table 1. Experimental elastic modulus is compared with 

numerical one calculated based on the defined parameters in Fig. 9. It is seen that Eq. (25) can 

smoothly produce phase transformation that is in a good agreement with experiments.  

Next, elastic material properties of gfgggg ccc ,,,, 21   introduced in 2.2.2 and 2.2.3 sections are 

determined via small-strain tensile and thermal tests. In this respect, a Tinius Olsen® H5kS (Tinius 

Olsen, Horsham, PA, USA) uniaxial testing machine with a 5 kN load cell is utilized. Material 

parameters of 𝜌0, ℎ𝑔𝑝, 𝑐1𝑟 , 𝑐2𝑟 , 𝑌𝑔𝑝 introduced in 2.2.2 and 2.2.3 sections are also calibrated as 

listed in Table 1 by uniaxial large-strain experimental tensile tests conducted at 23 and C85  as 

shown in Fig. 10. Samples have been printed according to the geometry and dimensions described 

by ASTM D638-10 (2010). Modeling results based on the defined parameters are included in Fig. 

10 for a full loading-unloading cycle. The results presented in Fig. 10 reveal that the constitutive 

model is able to well replicate elastic-plastic and hyper-elastic behaviors of SMPs at low and high 

temperatures. 
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4. Structural Analysis  

In this section, mechanical behaviors of the printed SMPs under contact and impact loadings 

are investigated numerically and experimentally. 2D finite element model is implemented for 

analyzing contact of the printed SMP substrates. Then, 1D and 2D finite element models are 

applied to investigate impact responses of the SMP beams. 

  

4.1. Contact study 

The accuracy and reliability of the Hertzian load-displacement response for indentation of 

materials are checked here. As the first example, the rigid cylindrical indentation )1( mmR =  on 

an elastic SMP substrate with dimension of )100( mmbL ==  and various thickness 

)100...1( mmH =  is studied numerically as shown in Fig. 11. The substrate can be considered as a 

beam with stiffness of SMP glassy phase )23,45.0,6.1( CTGPaE ===   with fixed bottom face 

contacted at different positions )(Xi . Fig. 12 depicts the results in terms of contact stiffness )(K  

defined as force over indentation for different contact positions )/( RXi . It is seen that the contact 

stiffness reduces as the substrate becomes thicker. It can be found that, for thin substrates, the 

contact stiffness mostly remains unchanged in the middle of the substrate, while it drops down 

drastically in the edge area. However, this variation becomes smooth and gradually happens as the 

substrate thickness is increased. This figure challenges the validity of the Hertz theory, which is 

widely employed to predict load-indentation response of elastic thin/thick structures, see e.g. 

(Ranjbar and Feli, 2018). As it can be concluded, the Hertz theory is not valid to be used in the 

edge area. The results are also presented in different way in Fig. 13 in terms of contact stiffness 

versus substrate thickness at the edge and middle positions )50,0/( =RXi . It is seen that the 
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contact stiffness is more sensitive to the variation of substrate thickness at middle than the edge 

position, as expected. It can be found more clearly by drawing contact stiffness ratio defined as 

)50(/)0( RXiKXiK ==  versus substrate thickness as shown in Fig. 14.  

Next, static mechanical behavior of an elastic-plastic SMP substrate with material properties 

detailed in Table 1 and geometrical parameters of )1,10,20( mmHmmbmmL ===  in contact 

with a cylindrical rigid indenter with radius of mmR 1=  is investigated numerically. It is assumed 

that the SMP substrate is at glassy phase in the low temperature of CT 23= . The load per unit 

width against indentation (F/b-w) at the edge and center of the SMP substrate is demonstrated in 

Fig. 15. As it can be seen, the indentation load-displacement at tip point is lower than its 

counterpart at the middle zone that is predictable. It is also observed that the relationship between 

indentation load and displacement is linear in the elastic range )8...0( mw  =  beyond which it 

becomes non-linear. This non-linear behavior happens when the SMP material experiences 

plasticity. As it can be seen, there are two non-linear segments in the plastic domain. While there 

is a softening response within the range of mw  12...8= , the material reveals an instant hardening 

at mw  12=  that changes the slop of the load-displacement drastically. This can be due to strain 

hardening effect and/or the increase in the contact area with elastic behaviors. Fig. 15 also shows 

that the difference between indentation load-displacement curves increases as indentation depth 

becomes deeper. Finally, variation of contact stiffness ratio defined as )(/)0(
2
1 LXiKXiK ==  

along the length of the SMA beam is illustrated in Fig. 16. The results in Figs. 15 and 16 obtained 

from 2D FEM contact modeling can serve as benchmark for impact analysis of the SMP beam 

using 1D impact model investigated in the following section. By knowing the contact position, the 
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contact stiffness can be extracted and applied to the impact analysis implementing 1D FEM model 

rather than a 2D one. This approach can reduce the computational cost and complexity. 

4.2. Impact analysis 

This section is dedicated to dynamic response of a 4D printed SMP beam with material 

properties detailed in Table 1 and dimension of mmHmmbmmL 1,10,20 ===  subjected to an 

impact by a 1 mm diameter rigid impactor striking with the initial velocity of smV /5.2,2,10 =  at 

mmLXi
5
1,0= . In all case studies, unless otherwise stated, the value of moment of inertia is set as 

20243.0 kgmJi = . 1D and 2D FEM impact models are implemented to analyze the problem. 

Regarding 1D FEM model, the contact stiffness presented in Figs. 15 and 16 are adopted. 

Experiments are also conducted to verify the accuracy of the developed models. A Photron 

FASTCAM Mini UX 50 high-speed video camera is mounted on a tripod facing the printed beam. 

Displacement of the beam and velocity of the impactor are measured using the recordings during 

forced and free vibration regimes. 

Fig. 17 ad shows computational time history of non-dimensional displacement (W/H), impactor 

velocity, contact force, and energy of the SMP beam impacted by smV /10 =  at its tip point, 

0=Xi . Experimental results related to the displacement and velocity are also included in Fig. 17a 

and 17b. Moreover, configuration of the beam captured experimentally in the forced vibration 

range is compared with that of 2D FEM in Fig. 18. The results presented in Figs. 17 and 18 show 

that 1D and 2D model results for the maximum and residual displacement of the beam, impactor 

velocity and forced-vibration configuration of the beam agree well with those from the 

experimental testing. For example, both 1D and 2D models predict the maximum experimental 

displacement with 4.8 % error. It is seen that the maximum beam displacement and contact force 
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occur at about 9ms when the impactor velocity becomes zero and the beam starts changing its 

motion direction. At the peak point, the kinetic energy of the impactor fully transfers to the beam 

and the strain energy becomes maximum while some energy is dissipated. It should be pointed out 

that the sum of the kinetic energy of the impactor and strain and kinetic energies of the beam plus 

dissipated energy is always constant and equal to the initial kinetic energy of the impactor. As it 

can be found from Fig. 17d, the structure gets a low kinetic energy in this low-speed case study. 

Once the motion direction changes, strain energy and displacement of the beam plus contact force 

decrease while the kinetic energy and velocity of the impactor and dissipated energy of the beam 

are increased. It is seen that the impactor with maximum kinetic energy and velocity leaves the 

beam at about 18 ms. The structure then starts vibrating freely around 2.0/ =HW  with a low level 

of the strain energy. It is observed that the free vibration phase decays at approximately 30 ms, 

while a small plastic strain remains into the beam. 

The effect of impactor initial velocity is investigated in the next example. The previous case 

was considered for initial velocity of smV /20 = . The counterpart of Figs. 17 and 18 for the present 

example is demonstrated in Figs. 19 and 20. The preliminary conclusion is that 2D FEM model 

replicates maximum displacement and impactor velocity more accurately compared to the 1D one. 

For example, while 2D model predicts the maximum experimental displacement with 4.3 % error, 

the 1D one underestimates the maximum displacement as large as 12.5%. Comparing the results 

for different initial velocities presented in Figs. 17-20, the faster impactor is able to increase the 

maximum displacement up to 40% and reduce the impact time up to 50%. It even produces a 

contact force that is 280% larger than one produced by smV /10 = . As it can be seen in Fig. 20, 

this contact force is so large enough that the impactor passes the beam at 4.5 ms. During forced 

vibration regime, the impactor partially transfers its kinetic energy to the beam, see Fig. 19d. It is 
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observed that the strain energy of the beam becomes maximum while a small amount of the energy 

is dissipated and low absorbed kinetic energy almost remains unchanged. Once the impactor passes 

the beam and leaves it, the structure starts oscillating freely and elastically via conversion between 

strain energy and kinetic energy, see Fig. 19a and 19d. As it can be seen, while the beam dissipates 

the energy, the vibration amplitude attenuates so considerably that free vibration phase decays at 

approximately 30 ms. Finally, by focusing on value of the vibration amplitude when the impactor 

leaves the beam, shown in Figs. 17a and 19a, it can be noticed that the oscillation amplitude in the 

free motion phase depends on the distance from the equilibrium condition at the end of forced 

motion regime.  

Influence of impactor initial velocity is further studied by conducting numerical and 

experimental tests with initial velocity of smV /5.20 = . The counterpart of Figs. 19a and 19b is 

demonstrated in Figs. 21a and 21b for the present case study. The results presented in Figs. 19 and 

21 reveal that, increasing the impactor velocity to sm /5.2  that is 25% higher than the previous test 

reduces the impact time up to 22% while not affecting the maximum amplitude significantly. It is 

due to the fact that the structure does not have time enough to be deformed during the impact. It is 

also seen that the high-velocity impact does not produce any plastic deformation so that the 

structure vibrates freely and elastically around the initial equilibrium state 0/ =HW . 

Next, the effect of the impactor position is examined. The SMP beam is impacted by a projectile 

with velocities of smV /10 =  at position of LXi
5
1= . The experimental and numerical results in 

terms of time history of displacement and impactor velocity are depicted in Fig. 22. It is seen that 

the 2D FEM can replicate the experiment very well. Comparing results with their counterpart in 

Fig. 17 shows that, impacting at LX i 5
1=  does not affect maximum displacement in free and forced 
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vibration, plastic deformation and maximum velocity of the impactor when leaving the beam. 

However, due to the higher local bending rigidity in the vicinity of the clamped edge of the beam, 

impacting at LX i 5
1=  reduces the impact time up to 33%. 

The effect of the impactor position is further investigated for the high-velocity impact 

experimentally and numerically. Fig. 23a and c demonstrates time history of displacement and 

impactor velocity for the case of smV /5.20 =  and LXi
5
1= . Shape recovery under temperature 

control is also studied in Fig. 23b via heating the deformed static beam at CT 20=  to C100  

and then cooling down to CT 20= . Moreover, configuration of the beam captured 

experimentally and numerically in the first 30ms is illustrated in Fig. 24. The primary conclusion 

drawn from Figs. 23 and 24 is that the 2D FEM model can replicate experiment well. The results 

in Fig. 21 show that the projectile with high velocity of smV /5.20 =  impacted the tip point passes 

the beam. However, Figs. 23 and 24 reveal that, when the projectile with the same velocity is 

impacted at LX i 5
1= , it slides on the top surface of the structure at the first 17 ms. It moves toward 

the tip of the beam and then gets back to the initial impact position, and finally leaves the beam. 

As the impact time lasts 370% longer than impact on the tip point, the structure experiences 

maximum displacement of 2.6/ =HW  that is 82% larger than the maximum displacement 

induced by the impact on the tip point. It is even seen that a tip displacement as large as 

2.1/ =HW  remains into the beam due to the higher local bending rigidity at LX i 5
1= . It is worth 

mentioning that, although displacement value and impact time are different for two cases, the 

velocity of the leaving impactor is similar for both cases. It can also be seen from Fig. 23b that the 

large residual plastic deformation can be fully recovered by simply heating. Finally, when the 

results presented in Fig. 23 are compared with those in Fig. 22, it can be found that, increasing 
0V  
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from sm /1  to sm /5.2  enhances the maximum displacement up to 139%. The impact time lasts 

30% longer as well. 

Finally, the effects of moment of inertia on the impact response of the SMP beam are 

investigated. As calculated in section 2.3, the moment of inertia directly depends on the distance 

of the mass from the reference point. The SMP beam is impacted at position of LXi
5
1,0=  by a 

projectile with velocity of smV /5.2,10 =  but different values of moment of inertia 

2

0 0645.0,0440.0,0243.0 kgmJ = . The counterpart of Figs. 19a and 19c is demonstrated in Figs. 

25-28 for the cases of 0,/10 == XismV ; LXismV
5
1

0 ,/1 == ; 0,/5.20 == XismV ; and 

LXismV
5
1

0 ,/5.2 == , respectively. The preliminary conclusion drawn from these figures is that 

the projectile with low velocity or high velocity accompanied with low energy impacted the beam 

at LXi
5
1=  is able to produce plastic deformation while other three cases make the beam vibrate 

elastically. From Fig. 25, it is concluded that, while the projectile with low velocity and moment 

of inertia )0243.0,/1( 2

00 KgmJsmV ==  impacted the tip point of the beam cannot pass the 

structures, in other two cases with higher moment of inertia, the impactor is able to pass the beam. 

It is also seen that the projectile with characteristics of 
2

00 0243.0,/1 KgmJsmV ==  makes a half-

sine-like impact pulse and forced displacement, while any increase in the moment of inertia 

changes them to exponential ones with larger magnitude. It is worth mentioning that, while the 

increase from 
2

0 0440.0 KgmJ =  to 20645.0 Kgm  makes the impact time shorter, it does not affect 

the maximum impact force and displacement.  

The results in Fig. 26 reveal that, when the projectile with similar characteristics 

)0645.0,0440.0,0243.0,/1( 2

00 KgmJsmV ==  impacts the beam at LXi
5
1= , it slides and moves 
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toward the tip of the beam and then gets back to the initial impact position, and finally leaves the 

beam. The higher moment of inertia, the longer impact time, the more maximum impact force and 

displacement. Comparing the results in Figs. 25 and 26 shows that the effect of inertia moment on 

the impact time becomes vise-versa when the projectile impacts at LXi
5
1= .  

In conjunction with results presented in Figs. 27 and 28, it can be found that the faster projectile 

with smV /5.20 =  and different moment of inertia passes the beam independent of impact location. 

Fig. 27 reveals an interesting point that, while the projectile with higher moment of inertia 

impacted at 0=Xi  induces large impact force, the displacement and impact time are similar for 

cases of high, moderate and low moment of inertia. However, when it impacts the beam at LXi
5
1=

, the higher value of moment of inertia leads to shorter impact time but maximum displacement. 

Comparing the results in Figs. 26 and 28 also show that, for the case of impact on LXi
5
1= , the 

increase in speed and energy of the projectile lead it pass the beam.  

 

5. Conclusions 

In this paper, the contact and impact behaviors of SMPs fabricated by 4D printing technology 

were explored via constitutive modeling, FEM formulation and simulation, as well as experiments. 

A novel phenomenological 3D constitutive model was derived to predict SME and visco-elastic-

plastic behaviors of SMPs in the large deformation regime. Non-linear 1D and 2D FEM governing 

equations were developed for the SMP beam in the plane stress condition under contact and impact 

loadings. Newmark numerical integration scheme coupled with Newton-Raphson iteration 

technique were implemented to solve non-linear governing equations in spatial and time fields 
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following the visco-elastic-predictor visco-plastic-corrector return map scheme. The iterative 

node-to-surface algorithm was also imposed for global/local searching of the contact. The 3D 

FDM-based printer was used to print tensile samples as well as beams from polyurethane-based 

filaments. Thermo-mechanical experimental tests were first conducted to calibrate parameters 

introduced into the SMP constitutive model. Numerical studies were performed for the case of a 

cylinder in contact with an elastic-plastic substrate. Effects of substrate thickness, indentation 

location and edge effect, as well as validity of the Hertz theory for load-displacement response of 

elastic materials were examined. Afterwards, a set of numerical and experimental parametric study 

was directed to provide an insight into the influences of impact position and impactor initial 

velocity on the forced and free vibrational responses of the 4D printed SMP beams. Finally, the 

following main results can be concluded: 

1) The results revealed that the constitutive model is able to well replicate elastic-plastic and hyper-

elastic behaviors of SMPs at low and high temperatures. 

2) It was found that, for thin elastic substrates, the contact stiffness mostly remains unchanged in 

the middle of the substrate, while it drops down drastically in the edge area. However, this variation 

becomes smooth and gradually happens as the substrate thickness is increased. It was concluded 

that the Hertz theory is not valid to be used in the edge area. 

3) It was found that 1D and 2D model results for the maximum and residual displacement of the 

beam, impactor velocity and forced-vibration configuration of the beam agree well with those from 

the experimental testing for low-velocity impact cases. 

4) It was concluded that 2D FEM model replicates maximum displacement and impactor velocity 

more accurately compared to the 1D one when the impactor initial velocity is high. 

5) It was seen that the high-velocity impact does not produce any plastic deformation. 

6) The results showed that the large residual plastic deformation can be fully recovered by simply 

heating. 
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Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap 

in the state of the art of this problem, and provide pertinent results that are instrumental in the 

design of SMP beam-like structures under impact loadings. 
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Fig. 22. Time history of displacement (a), impactor velocity (b) of the SMP beam impacted by 
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1 . Shape recovery under temperature control (c). 

Fig. 24. Configuration of the beam during the forced vibration range ),/5.2(
5
1

0 LXsmV i  . 

(color bar shows axial stress)  

Fig. 25. Time history of displacement (a) and impact force (b) of the SMP beam impacted by 

smV /10   at 0Xi  with different moment of inertia. 

Fig. 27. Time history of displacement (a) and impact force (b) of the SMP beam impacted by 

smV /5.20   at 0Xi  with different moment of inertia. 

Fig. 28. Time history of displacement (a) and impact force (b) of the SMP beam impacted by 

smV /5.20   at LXi
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1  with different moment of inertia. 
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Fig. 1. Schematic diagram of the rigid indentation. 
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Fig. 2. Contact zone and definition of normal and tangential directions. 
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Fig. 3. Beam element (a) under deformation (b). 
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Fig. 4. Three-nodded linear triangular element. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2

3

1

0


1 2

3

1

0



21

3

Page 37 of 63 AUTHOR SUBMITTED MANUSCRIPT - SMS-109888.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Three-nodded Hermitian triangular element. 
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Fig. 6. Schematic diagram of the pendulum impact test system and the beam. 
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Fig. 7. Schematic diagram of the impacted beam. 
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Fig. 8. DMA test in terms of storage modulus and tan (δ). 
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Fig. 9. Experimental and numerical elastic modulus extracted from the DMA test. 
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Fig. 10. Stress-strain behaviors of the printed SMP at low (a) 23 °C and high (b) 90 °C 

temperatures. 
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Fig. 11. A substrate in contact with a cylindrical rigid indenter. 
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Fig. 12. Variation of contact stiffness versus different positions. 
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Fig. 13. Variation of contact stiffness versus different substrate thickness at the edge and middle 

positions. 
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Fig. 14. Variation of contact stiffness ratio versus different substrate thickness. 
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Fig. 15. Load-indentation curve at the edge and center of the SMP substrate. 
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Fig. 16. Variation of contact stiffness ratio along the length of the SMP substrate. 
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Fig. 17. Time history of displacement (a), impactor velocity (b), impact force (c), and energy 

(d) of the SMP beam impacted by smV /10   at 0Xi . 
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t=0.0 ms t=2.3 ms t=4.6 ms t=7.0 ms t=9.3 ms t=11.6 ms t=13.9 ms t=16.2  ms t=18.5 ms 

         

         
 
 

        

Fig. 18. Configuration of the beam during the forced vibration range )0,/1( 0  XismV .  

(color bar shows axial stress) 
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Fig. 19. Time history of displacement (a), impactor velocity (b), impact force (c), and energy 

(d) of the SMP beam impacted by smV /20   at 0Xi . (color bar shows axial stress) 
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Fig. 20. Configuration of the beam during the forced vibration range )0,/2( 0  XismV .  

(color bar shows axial stress) 
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Fig. 21. Time history of displacement (a), impactor velocity (b) of the SMP beam impacted by 

smV /5.20   at 0Xi . 
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Fig. 22. Time history of displacement (a), impactor velocity (b) of the SMP beam impacted by 

smV /10   at LXi
5

1 .  
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Fig. 23. Time history of displacement (a), impactor velocity (c) of the SMP beam impacted by 

smV /5.20   at LXi
5

1 . Shape recovery under temperature control (c). 
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Fig. 24. Configuration of the beam during the forced vibration range ),/5.2(
5
1

0 LXismV  .  

(color bar shows axial stress) 
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Fig. 25. Time history of displacement (a) and impact force (b) of the SMP beam impacted by 

smV /10   at 0Xi  with different moment of inertia. 
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Fig. 26. Time history of displacement (a) and impact force (b) of the SMP beam impacted by 

smV /10   at LXi
4
1  with different moment of inertia. 
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Fig. 27. Time history of displacement (a) and impact force (b) of the SMP beam impacted by 

smV /5.20   at 0Xi  with different moment of inertia. 
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Fig. 28. Time history of displacement (a) and impact force (b) of the SMP beam impacted by 

smV /5.20   at LXi
4
1  with different moment of inertia. 

 

Page 61 of 63 AUTHOR SUBMITTED MANUSCRIPT - SMS-109888.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



List of Table 

Table 1. Material parameters from experiments. 

 

 

  

Page 62 of 63AUTHOR SUBMITTED MANUSCRIPT - SMS-109888.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Table 1. Material parameters from experiments. 

 
 

)(1 GPac g
 )(2 GPac g

 
)10( 14  Kg  )(MPag  cgf )(,, GPagprg   

0.332 0.307 1, 1 1844 1 0.01, 0.01, 10 

)(MPahgp

 
)(MPaYgp
 )(, 21 MPacc rr

 
21, ,  )(,, CTTT ghl

  )/( 3

0 mkg  

1 23.6 0.55,-0.033 0.15, 0.145 23, 85, 60 1500 
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