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Abstract  Energy sustainability is a complex problem that needs to be tackled holistically by equally 
addressing other aspects such as socio-economic to meet the strict CO2 emission targets. This paper builds 
upon our previous work on the effect of household transition on residential energy consumption where we 
developed a 3D urban energy prediction system (EvoEnergy) using the old UK panel data survey, namely, 
the British household panel data survey (BHPS). In particular, the aim of the present study is to examine 
the validity and reliability of EvoEnergy under the new UK household longitudinal study (UKHLS) 
launched in 2009. To achieve this aim, the household transition and energy prediction modules of 
EvoEnergy have been tested under both data sets using various statistical techniques such as Chow test. 
The analysis of the results advised that EvoEnergy remains a reliable prediction system and had a good 
prediction accuracy (MAPE  5%) when compared to actual energy performance certificate data. From this 
premise, we recommend researchers, who are working on data-driven energy consumption forecasting, to 
consider merging the BHPS and UKHLS data sets. This will, in turn, enable them to capture the bigger 
picture of different energy phenomena such as fuel poverty; consequently, anticipate problems with policy 
prior to their occurrence. Finally, the paper concludes by discussing two scenarios of EvoEnergy 
development in relation to energy policy and decision-making. 

Keywords  urban energy planning, sustainable planning, Big Data, household transition, energy 
prediction 

1 Introduction 
The UK residential sector accounts for the second largest share of the UK’s total energy (30%) and emits 
around 14% of the country’s carbon dioxide (Department for Business, Energy & Industrial Strategy 
(BEIS), 2017a). This justifies why this sector is playing a central role in the UK decarbonisation 
framework. In particular, the UK government has recently placed a special emphasis on building retrofit 
due to the aged (75% built before 1975) and leaky nature of the existing dwelling stock (Edwards and 
Townsend, 2011). As around 68% of the UK dwelling stock benefited from retrofitting measures, the 
implementation of physical strategies will be less effective, challenging, and expensive in the long term 
(BEIS, 2017b). Thus, local authorities should explore alternative measures based on other aspects such as 
behavioral and socio-economic, which are also responsible for 4%–30% of the variation in domestic 
energy consumption patterns (Brounen et al., 2012; Jones et al., 2015). However, before developing such 
strategies (e.g., socio-economic), it is important to determine their degree of influence on residential 
energy usage. This will not only facilitate the decision-making process with regards to the suitability of 
available policies but also help estimate their impact prior to implementation. 

The effect of socio-economic, behavioral, physical, psychological factors on domestic energy 
consumption has been extensively reviewed in the literature (Druckman and Jackson, 2008; Abrahamse 
and Steg, 2009; Frederiks et al., 2015; Longhi, 2015). In our previous study (Medjdoub and Chalal, 2017), 



 

 

we contributed to this body of literature by investigating the impact of household demographic transitions 
on their energy consumption patterns. Our findings suggested that household transition patterns from one 
family type to another have a significant effect on their domestic energy usage. This has led to questioning 
the non-consideration of this concept in urban energy planning, especially after knowing that it constitutes 
an important determinant of consumer purchasing behavior in other disciplines (e.g., marketing). By 
knowing the future transitions probabilities of consumers to different family structures over their lifecycle, 
marketers could anticipate their needs and determine the services and products that are suitable for them 
and in a proactive manner (Du and Kamakura, 2006; Hitesh, 2018). In response to the lack of energy 
prediction tools supporting household lifecycle transition patterns, we have previously developed a 3D 
urban energy prediction system (EvoEnergy) (Medjdoub and Chalal, 2017). EvoEnergy has the ability to 
predict domestic energy at the urban scale in function of (1) household transitions from one family type to 
another (e.g., from single to couple without children, etc.), and (2) the variation in the household 
socio-economic and demographic factors. The predicted energy figures are then mapped onto a given area 
in a color-coded manner with the help of a GIS (Geographic Information System) module. 

Although incorporating the concept of lifecycle household transitions seems promising as it promotes 
proactive energy planning, it could be argued that tools relying on such concept (e.g., EvoEnergy) might 
be prone to validation issues associated with their long-term usage. This could be partially attributed to the 
fact that algorithms of such tools, which have been developed using specific data sets (e.g., the British 
household panel data survey (BHPS)), may not reflect current demographic and socio-economic changes 
of an evolving population. To this end, the research presented in this paper builds upon our previous work 
(Medjdoub and Chalal, 2017) on the effect of household transition patterns on domestic energy 
consumption by evaluating the performance of EvoEnergy under the new UK household longitudinal study 
(UKHLS). To achieve this aim, the following objectives have been addressed: 

• The validation of household transition models from Medjdoub and Chalal (2017) under a new 
UKHLS. 

• The comparison of the effect of household transition on domestic energy usage based on both data sets 
(BHPS and UKHLS). 

• The validation of the performance of the energy prediction algorithm using both data sets. 

Ensuring the validity and reliability of our 3D urban energy prediction system (EvoEnergy) under the 
new UKHLS facilitates its adoption in urban energy planning. By doing so, EvoEnergy can assist energy 
decision-makers to: (1) Predict the long-term variation in the residential energy consumption of urban 
districts in function of changes in the household demographic and socio-economic profiles; (2) enable 
proactive management of the energy grid to meet the demand levels; (3) facilitate the development of 
policies that target specific groups (e.g., low-income lone parents); and (4) estimate the long-term impact 
of a particular policy on a population segment prior to its implementation. 

In addition to the above benefits, making our 3D urban energy prediction system accessible to 
consumers in the near future (on-going research) would help them: (5) Understand their actual and future 
energy usage patterns; (6) raise their pro-environmental awareness; and (7) engage in energy saving 
activities. 

The rest of the article is structured as follows. First, section 2 gives an overview of studies that have 
analyzed the impact of various factors on residential energy consumption. This section ends with a brief 
insight into EvoEnergy published previously by Medjdoub and Chalal (2017) to help the reader acquaint 
with the topic. Section 3 discusses the research methodology. Sections 4 and 5 analyze the research 
findings. Section 6 concludes the article and Section 7 gives future recommendations. 

2 Previous work 
Please note that physical factors affecting residential energy are outside the scope of this paper. For more 
information, please refer to our previous extensive review (Chalal et al., 2016). 

2.1 The effect of psychological factors 
While socio-economic factors have a prominent role in predicting the household energy usage patterns, a 
number of psychological factors were found to have a direct effect on a person’s energy-related behavior 



 

 

(Yang et al., 2016). These factors include environmental awareness, beliefs, culture, values and attitudes, 
preferences, subjective norms, and intentions and goals (Huebner et al., 2016; Guo et al., 2018). For 
example, Abrahamse and Steg (2009) advised that psychological factors are related to energy savings but 
not the actual energy consumption. Similarly, Vringer et al. (2007) did not find a significant relationship 
between the variable values and domestic energy usage. As for environmental awareness, few studies (Barr 
et al., 2005; Steg and Vlek, 2009) advised that superior environmental awareness levels are associated with 
higher energy savings and lower energy consumption levels. However, such relationship is usually either 
weak or insignificant. Other scholars such as Khosrowpour et al. (2018) concentrated on developing 
feedback strategies to tackle the knowledge and environmental awareness gap; consequently, induce 
changes in household energy consumption. For example, Faruqui et al. (2010) suggested that 
implementing direct energy feedback in the form of in-home display (IHD) can contribute to 14% and 7% 
savings in the electricity usage of households who are on prepayment and direct debit schemes, 
correspondingly. 

In addition to the above, many studies suggested that a person’s attitudes, values, and intentions to 
engage in pro-environmental behavior have an impact on domestic energy usage. However, such an effect 
does not necessarily translate to a conforming change in energy consumption or savings (Bamberg and 
Möser, 2007; Huebner et al., 2013). For instance, Kavousian et al. (2013) surprisingly discovered that 
households who expressed an interest in purchasing energy efficient appliances consumed high levels of 
daily minimum energy consumption. 

Likewise, personal comfort can have a significant impact on residential energy usage. More precisely, 
any possible decrease in personal comfort could reduce the likelihood of engaging in energy conservation 
activities (Gatersleben et al., 2002). For example, Barr et al. (2005) found that 40% of householders with 
“good pro-environmental” behavior were not willing to sacrifice their comfort to save energy. On the other 
hand, the percentage of those who unwilling to compromise their comfort to save energy among the 
“non-environmentalist” group was more than 75%. 

2.2 The effect of socio-economic factors 
Longhi (2015) used the UK household longitudinal study (UKHLS) to analyze the change in the household 
energy expenditure in function of various socio-economic and demographic factors. The study suggested 
that socio-economic factors explain 11% of the variation in domestic energy use. Similarly, Huebner et al. 
(2016) analyzed the energy follow up survey (EFUS) which encompasses a sample size of 845 English 
households and discovered that socio-economic variables explained around 21% of the variability in 
electricity consumption. Brounen et al. (2012) Advised that demographic and socio-economic factors are 
responsible for 17% and 5% of the variation in gas and electricity energy consumption, respectively. The 
above studies advised that household size was the most influential factor on domestic energy consumption. 
In particular, Longhi (2015) found that one additional member in the household contributes to 33%–35% 
decrease in the per capita energy expenditure. However, many empirical studies (Bedir et al., 2013; Jones 
and Lomas, 2015), which included household size as a continuous variable in their prediction models, 
showed that there is a positive relationship between this variable and the amount of energy consumed in 
the dwelling. Other factors such as age of household reference person (HRP), income, presence of children, 
level of education, and tenure mode, were also found to influence the variation in energy consumption 
(Pereira et al., 2019). However, their significance and magnitude are still inconsistent in the literature. For 
example, Nair et al. (2010) and BRE (2013) suggested that the energy usage of household reference 
persons (HRPs) aged between 50 and 65 is high, whereas the ones aged above 65 is low. On the other hand, 
Tiwari (2000) showed that householders aged below 45 are usually associated with lower energy 
consumption. Other studies such as Abrahamse and Steg (2009), Poortinga et al. (2004), and Bedir et al. 
(2013) found the effect of age on residential energy usage not significant. Recently, we have found that 
household transition patterns from one family to another does have a significant effect on their energy 
consumption patterns (Medjdoub and Chalal, 2017). For example, on average, a single non-elderly 
household has a 53.3% chance of moving to different household types after 5 years, where the possibility 
of becoming a couple with children is 12.1%. The chance of consuming more than 4000 kWh of electricity 
annually for a single non-elderly making a transition to a couple with children over five years is 35.29%. 
Based on the findings of our previous study (Medjdoub and Chalal, 2017), we have developed a 3D urban 
energy prediction system (EvoEnergy) which will be briefly described in the below sub-section. 



 

 

2.3 Overview of our 3D urban energy prediction model (EvoEnergy) 
EvoEnergy was developed at the Creative and Virtual Technologies Laboratory at Nottingham Trent 
University in collaboration with Nottingham Energy partnership. The main intention behind its 
development was to provide energy planners with a smart platform that assists their sustainable energy 
planning decision-making. A future goal of this project is to help consumers better engage in 
pro-environmental behavior to reduce their home energy usage (on-going research). Since EvoEnergy 
prediction algorithm relies on the British household panel data survey (BHPS), it can estimate future 
residential energy consumption for up to 10 years. These predictions are primarily dependent on (1) 
household transition possibilities to other household structures and (2) the variation in their 
socio-economic circumstances (e.g., income and age). 

EvoEnergy system architecture: 

As shown in Fig. 1, the architecture of EvoEnergy comprises four distinct modules. First, the 
game-based environment represents the 3D platform where it is possible to import and interact with any 
3D semantic model via the user-interface module. The 3D semantic model database module stores the 
different components of the CityGML (3D GIS) models in a hierarchically structured manner to ensure 
stable and reliable data management, and moreover, to permit data exchange (e.g., export, modify, and 
save) with the Game-based environment module. On the other hand, the energy related prediction modules 
estimate the annual energy consumption of different households based on their socio-economic module 
and transition probabilities to other family types. The inputs (e.g., socio-economic characteristics) and 
outputs of the energy related prediction modules are stored in and loaded from the 3D semantic model 
database via the user-interface module. Finally, the Game-based environment enables the visualization/ 
mapping of outputs from the energy related prediction modules. 

 
Fig. 1 Architecture of EvoEnergy. 

Modus operandi: 



 

 

Upon launching EvoEnergy, users can navigate through the 3D model of a particular urban area (Fig. 2) 
and view its energy consumption in a 2D fashion. Moreover, they can trigger a summary of energy history 
and socio-economic profile pertaining to a given dwelling on mouse hover (Fig. 3). To select a particular 
house, the user can either right-click on it or search for it using a valid address and postcode. To perform 
energy predictions, users are required to access the main menu and fill all the input fields in the physical 
and socio-economic modules. After that, they need to select the target household transition (e.g., to couple 
without children) and set the timeline (e.g., next two years) as shown in Fig. 4. The prediction module also 
allows performing meaningful comparisons between the transition patterns and energy usage patterns of 
different households (Fig. 5). 

 
Fig. 2 3D model of the Sneinton area in Nottingham in EvoEnergy. 

 
Fig. 3 Summary of a household energy history and socio-economic profile on mouse hover. 



 

 

 
Fig. 4 Household energy prediction module. 

 
Fig. 5 Comparison of two households’ transition patterns and energy consumption figures. 

3 Methodology 
Figure 6 represents the methodology diagram of the current study in regard to our previous research 
(Medjdoub and Chalal, 2017). The undertaken study embraces a mix-methods research methodology with 
a multi-level triangulation design. Overall, there are seven stages of implementation in total, two of which 
belong to the present study (orange box, Phase VI and Phase VII). However, to allow the reader to 
understand the link between the current and previous research, phases belonging to our previous work are 
briefly described below. 



 

 

 
Fig. 6 The methodology flowchart of this research in relation to our previous work (Medjdoub and Chalal, 2017). 

First, Phase I entails the comparison and manipulation of two distinct UK household panel data sets, 
namely, the British household panel data survey (BHPS) and UK household longitudinal study (UKHLS). 
The purpose of the manipulation is to prepare both data sets in a format, quality, and structure suitable for 
further analysis in phases II, IV, and VI. Phase II includes predicting household transition models using 
fixed and random effects binary logistic regression based on the BHPS and UKHLS data sets. As shown in 
Fig. 1, the prediction models resulting from the UKHLS data set will be only used for validation purposes. 
Phase III consists of analyzing the effect of household transition on energy consumption variables using 
point-biserial correlation. Conversely, Phase IV includes the development of an energy prediction model 
based on (1) the household demographic transition variables and (2) different socio-economic factors. The 
developed energy prediction model from phase IV was used to create a 3D urban energy prediction model 
(EvoEnergy) in Phase V (see Section 2.1). Phase VI entails comparing the prediction models and 
point-biserial correlation coefficients developed from the BHPS data set against the ones created based on 
the UKHLS data set. In phase VII, the accuracy of the energy prediction model resulting from BHPS data 
set will be first evaluated against the one developed based on UKHLS. In addition to comparing both 
prediction algorithms to each other, they will be evaluated against existing EPC (energy performance 
certificate) data. Details about the phases of implementation in the present study and their findings are 
presented in Sections 4 and 5. 

3.1 Data preparation—Data description and comparison 
The analyzed and compared panel data sets in this study are the British household panel data survey 
(BHPS) and the UK household longitudinal study (UKHLS). Both are longitudinal data surveys that 
encompass random UK households annually interviewed on their demographic and socio-economic 
circumstances in addition to other aspects such as energy expenditure (Institute for Social and Economic 
Research, 2016). The BHPS tracked more than 5000 households of different structures (e.g., lone parents) 
over 18 years between 1991 and 2008. On the other hand, the UKHLS, which is the successor of BHPS, 
has a significantly larger target sample size of 40000 despite starting in 2010 (Understanding Society, 
2017). This, in turn, allows for a high-resolution analysis of different time-dependent events such as 
household demographic transitions. However, UKHLS has only 7 waves which limit the capturing of 
household transition patterns for more than 2–3 years. 

From running several statistical including Levene test, it was found that the socio-economic and 
demographic profile of the BHPS and UKHLS samples were completely different from each other. 
Considering that age is a determinant of several socio-economic factors (e.g., income), this difference was 



 

 

mainly attributed to a significant change in the sample age profiles (Fig. 7). For more information, please 
consult Table 4 in Appendix A. 

 
Fig. 7 Pie charts showing the distribution of age groups over the BHPS and UKHLS data sets. 

3.2 Data preparation—Data manipulation 
As depicted in Fig. 6, BHPS was used as the main data source in this study, whereas the UKHLS was 
utilized to validate the research findings. Since this work is part of our research project on Nottingham city, 
which has a high proportion of single non-elderly (Office for National Statistics, 2018), households who 
were not single non-elderly in wave 1 were omitted from both data sets. As a result, the final sample size 
of the BHPS was 7038 after merging all waves, except wave 6 that lacked energy expenditure variables. 
Conversely, the final sample size of UKHLS was 8750. The percentage of missing data in the BHPS and 
UKHLS data sets were only 2.35% and 4.73% of all values, respectively. 

To meet the assumptions of the used statistical tests, the following data screening procedures have been 
applied. First, energy expenditure for gas and electricity were converted into quantities in kWh. Secondly, 
variables with inconsistent coding and/or number of categories across both data sets (e.g., marital status) 
have been recoded. After that, income, expenditure, and energy consumption variables have been 
normalized using log10 transformation. Finally, outliers were checked for and deleted. 

4 Validation of transition models and point-biserial coefficients 
To compare the household transition model coefficients, a likelihood ratio test resembling the Chow test in 
Stata (Eq. (1)) was used (Chow, 1960; Stata, 2015). In particular, the test will compare the coefficients and 
intercepts of the pooled model (combined BHPS and UKHLS) against the model comprising interaction 
effects between covariates and the data set dummy variable (BHPS or UKHLS). The statistics of the 
likelihood-ration test are defined in Eq. (1). 

 1 02LR L L   . (1) 

Let L0 and L1 be the log-likelihood values related to the pooled model (containing both data sets) and 
constrained models (model with interaction and main effects), correspondingly. If the constrained model is 
true, LR is approximately 2 distributed with d0  d1 degrees of freedom, of which d0 and d1 are the degree 
of freedom pertaining to the pooled and constraints models, correspondingly (Greene, 2002). 

Due to the limitation of the UKHLS in capturing household transition patterns beyond 2–3 years, the 
following procedures have been implemented to support the validation process. First, we compared the line 
graphs showing the change in the proportion of single non-elderly households over the BHPS and UKHLS 
waves. Moreover, the Mann–Whitney U and Kolmogorov–Smirnov Z tests were adopted to test the null 
hypothesis that discrepancies in the transition rates of single non-elderly over both data sets are not 
significantly different (McCrum-Gardner, 2008). 

Findings of the validation of transition models and point-biserial coefficients: 

Table 1 represents the statistics of the likelihood ratio Chow test, which compare the regression 
coefficients of transition models from BHPS and UKHLS. Overall, it is evident that the p-values of this 



 

 

test overall all models were greater than 0.05. This signifies that there is no significant difference between 
the constants and coefficients of the compared household transitions models. To overcome the UKHLS 
limitation in capturing household transitions beyond 2–3 years, the authors have analyzed the decline in 
the proportion of single non-elderly households across the BHPS and UKHLS as a result of them 
becoming other family types such as couples without children (Fig. 8). In general, it is evident that the 
decrease in the proportion of single non-elderly followed the same trend across the first seven waves of 
both data sets, although there were minor discrepancies of 8.8% on average. In addition to that, it is 
expected that the decline in the percentage of single non-elderly households in the future waves of UKHLS 
will follow the same trend of the discontinued BHPS (1991–2008) but with minor discrepancies. To verify 
these findings, a Mann–Whitney U and Kolmogorov–Smirnov Z tests have been conducted (Table 2). The 
p-values of both tests were greater than 0.05, which means that there is no significant difference in the 
distribution of single non-elderly transitions over both data sets. Therefore, we can conclude that both 
BHPS and UKHLS are reliable data sets for predicting household transition models. However, we 
recommend employing either the BHPS or a combined BHPS and UKHLS data set as both scenarios allow 
the capturing of transition patterns for a period of at least 10 years. 

Table 1 The results of the Chow likelihood test comparing the coefficients of transition models resulting from BHPS and 
UKHLS 

Transition 
target 

Year of 
transition 

Model Goodness of 
fit 

(McFadden’s 
R2) 

obs ll (null) ll (model) df AIC LR 
chi2 
(6) 

Prob. > 
chi2 

Couples 
with 
children 

1 Pooled model 0.626 480 188.064 70.40656 6 152.81 7.68 0.2625

Model with 
interaction 

effects 

0.646 480 188.064 66.56636 12 157.13 

2 Pooled model 0.514 269 104.314 23.03278 6 58.065 9.91 0.1284

Model with 
interaction 

effects 

0.527 269 104.314 18.07673 12 60.15 

Couples 
without 
children 

1 Pooled model 0.361 1092 413.4964 264.3681 7 542.73 8.18 0.3167
Model with 
interaction 

effects 

0.371 1092 413.4964 260.2763 14 548.55 

2 Pooled model 0.468 693 259.5675 138.1586 7 290.31 10.18 0.1788

Model with 
interaction 

effects 

0.487 693 259.5675 133.0703 14 294.14 

Lone 
parents 

1 Pooled model 0.683 4166 1609.361 510.5721 8 1037.14 6.12 0.6342

Model with 
interaction 

effects 

0.685 4166 1609.361 507.5138 16 1047.02 

2 Pooled model 0.514 2690 1015.016 260.9618 8 537.92 3.46 0.9021

Model with 
interaction 

effects 

0.534 2690 1015.016 259.2309 16 550.46 

Table 2 The results of the Mann–Whitney U and Kolmogorov–Smirnov Z test statisticsa 
Mann–Whitney U Test Kolmogorov–Smirnov Z Test 

 Transition rates  Transition rates 

Mann–Whitney U 15.500 Most Extreme Differences Absolute 0.429 

Wilcoxon W 43.500  Positive 0.429 

Z 1.151  Negative 0.000 

Asymp. Sig. (2-tailed) 0.250 Kolmogorov–Smirnov Z  0.802 

Exact Sig. [2*(1-tailed Sig.)] 0.259b Asymp. Sig. (2-tailed)  0.541 

Note: a. Grouping variable: DATA; b. Not corrected for ties. 



 

 

 
Fig. 8 The decrease in the percentage of single non-elderly households over different waves of BHPS and UKHLS as a 

result of them moving to other household types such as couple without children. 

Following the above discussion, it was expected that the impact of household transitions on energy 
consumption would remain consistent under the UKHLS data set. To reinforce this claim, the 
point-biserial correlation coefficients resulting from BHPS and UKHLS have been compared (Table 3). 
From analyzing Table 3, it is evident that the point-biserial coefficients were in good agreement despite 
minor discrepancies of approximately 0.01 on average. The direction and significance of the point-biserial 
coefficients also remained consistent over both data sets. For those reasons and in line with the above 
recommendation on transition models, BHPS is still a reliable data set for predicting domestic energy 
consumption in function of household transitions. Nevertheless, using a combined UKHLS and BHPS data 
set represents also a viable option. 

Table 3 Comparison of impact of household transition on energy consumption across BHPS and UKHLS 

  LP 
1 year 

LP 
2 years 

CN 
1 year 

CN 
2 years 

CWC  
1 year 

CWC  
2 years 

Log10 
annual 
electricity 
usage 

BHPS 0.11** 0.12** 0.11** 0.093** 0.16** 0.13** 

UKHLS 0.114** 0.117** 0.1157** 0.1043** 0.142** 0.152** 
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Notes: **A Wave represents the year when the panel data survey was conducted. For example, wave 1 of the BHPS 
was in 1991, whereas wave 1 of the UKHLS, occurred in 2009.

**The British houshold panel data survey, which was conducted from 1991 to 2008, has 18 waves. On the other hand, 
UKHLS, which was introduced in 2010, has currently 7 waves. Hence why, the line graph belonging to the UKHLS 
terminates in wave 7. However, it is expected that the decrease in the porportion of single non-elderly in future waves 
of the UKHLS will follow a similar trend to the one of the BHPS but with minor discrepancies.

**Wave 6 was omitted from both datasets because it lacked information about household energy expenditure.



 

 

Square 
root of 
annual 
gas usage 

BHPS 0.008 0.005 0.114** 0.091** 0.160** 0.135** 

UKHLS 0.01 0.009 0.129** 0.0835** 0.148** 0.115** 

Note: LP: Lone parent; CN: Couple without children; CWC: Couple with children. 
* Significance at the 95% level; ** Significance at the 99% level 

5 Validation of energy prediction algorithms 
Reporting the regression coefficients of the developed energy prediction models is outside the scope of this 
paper. For more information, please refer to our previous work (Chalal, 2018). 

As shown in Fig. 9, the accuracy of the energy prediction models developed from BHPS and UKHLS is 
compared to existing EPC energy data. The EPC data belongs to householders who made at least one 
transition from a single non-elderly family to different household structures (e.g., Couple without children) 
over the last 2–3 years. It is worth mentioning that the socio-economic and demographic profiles of the 
selected householders are distinct from each other. In this way, it is possible to test the accuracy of the 
prediction models at different input values. 

 
Fig. 9 The validation process of the developed energy prediction model. 

The validation process starts by inputting the socio-economic and demographic characteristics of the 
chosen householders, including household transition possibilities, into the energy prediction algorithms 
developed from BHPS and UKHLS. The predicted energy values are then compared to each other and then 
against the actual EPC energy data (Fig. 9). Any discrepancies between the predicted and EPC energy data 
are reported using the mean absolute percentage error (MAPE) and mean percentage error (MPE) 
described below in Eqs. (2) and (3). 
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where At and Ft are actual and predicted energy consumption values, respectively. 

Findings of the validation of energy prediction algorithm: 

Figure 10 illustrates the predicted and actual annual electricity energy figures of the selected 
householders. Overall, it is evident that there were some discrepancies between the estimated and actual 
values. More precisely, the mean absolute percentage errors (MAPE) for the BHPS and UKHLS energy 
models were 5.47% and 5.15%, respectively. 



 

 

 
Fig. 10 Clustered bar graph representing the estimated and actual EPC energy figures of the chosen householders. 

As shown in Figs. 11 and 12, the minimum and maximum mean percentage errors (MPE) for the BHPS 
energy model were 1.74% and 9.58%, correspondingly. On the other hand, the lowest and highest MPE 
values for the UKHLS energy model were 1.74% and 7.71%, respectively. This leads to the conclusion 
that the UKHLS energy prediction model had a superior accuracy, although there were minor 
discrepancies between its outputs and the ones of the BHPS energy prediction model (MAPE  3%). This 
was in line with the literature where the goodness of fit of the UKHLS electricity prediction model 
reported by Longhi (2015) (0.369) was superior to the BHPS one stated by Berkhout et al. (2004) (0.11) 
and the one we previously reported (0.25) (Chalal, 2018). 

After further investigations, we found that the mean absolute percentage errors (MAPE) for 
householders who made a transition to lone parent, couple with children, and other family structures were 
higher than 6%. In particular, it seems that both energy prediction models over predict the energy usage 
associated with couple with children transitions. Moreover, they underestimate the consumption of those 
moving to a lone parent family and other family structures (e.g., 2 unrelated households). This could be 
due to the low representativeness of those household types in both data sets. Indeed, we found out that the 
MPE values associated with transitions to couple without children households, who have better 
representativeness in the data sets, were below 5% (Figs. 11 and 12). 

In addition to the above, we have discovered that the number of transitions made by the householder 
negatively correlates with the prediction accuracy of the BHPS and UKHLS energy models. For example, 
the householder who made two transitions in which the last one was to a lone parent household had the 
mean percentage error (MPE) values of 9.58% (Fig. 11) and 5.23% (Fig. 12). Similarly, a householder 
who first moved to couple without children and then to a couple with children household had 9.30% and 
7.29% mean percentage errors as depicted in Figs. 11 and 12. Surprisingly, the number of steps followed in 
the prediction process had a significant effect on the estimation accuracy. More precisely, following a 
multifold prediction process, where the annual electricity usage is predicted at each transition stage, the 
accuracy improved by up to 7% in comparison to a one-fold approach. The reasons behind this 
improvement are unknown and are currently under investigation. 
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Fig. 11 Discrepancies between the estimated energy figures using BHPS and the EPC energy data reported using the mean 

percentage error index (MPE). 

 
Fig. 12 Discrepancies between the estimated energy figures using UKHLS and the EPC energy data reported using the 

mean percentage error index (MPE). 

6 Discussion and conclusions 
In 2009, the British household panel data survey (BHPS) was replaced by its successor, the UK household 
longitudinal survey (UKHLS) (Understanding Society, 2017). Our comparison suggested that the 
socio-economic and demographic profiles of the BHPS and UKHLS were distinct, which indicates that the 
UK society has undergone some important changes from 1991 to the present. An example of these changes 
includes transformations in the age structure of the population, its educational attainment profile, and home 
ownership levels. 

For the above reasons and considering that our 3D urban energy prediction system (EvoEnergy) was 
partly developed using the old data set (BHPS), the present research aimed to evaluate the validity and 
reliability of EvoEnergy under the new household panel data survey (UKHLS). To attain the study aim, we 
have first evaluated the transition module of EvoEnergy by comparing the coefficients of household 
transition models generated from the BHPS and UKHLS data sets. Following this, the energy prediction 
module of EvoEnergy has been tested by first comparing the impact of household transition on energy 
usage over both data sets. After that, the accuracy of energy prediction algorithms resulting from BHPS 
and UKHLS has been evaluated against existing energy performance certificate data (EPC). 

The analysis of findings advised that there were no significant differences between the coefficients of 
transition models of both data sets. This suggests that BHPS and UKHLS are reliable sources for analyzing 
and forecasting dynamic relationships including household demographic transitions. In addition to that, the 
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analysis of point-biserial correlations over the BHPS and UKHLS data sets proved that the effect of family 
transition on domestic energy consumption remained consistent across the two data sets. Finally, the BHPS 
and UKHLS energy prediction models had a good estimation accuracy when compared to the actual EPC 
data (MAPE  5%). However, the UKHLS energy prediction algorithm had superior accuracy. 

While the examination of study findings confirmed the validity and reliability of EvoEnergy as it stands, 
it has opened the doors to new scenarios related to its future development. The first scenario consists of 
utilizing the BHPS data set as the basis for EvoEnergy household transition module. Moreover, it entails 
employing a UKHLS based Energy prediction algorithm. Even though this would certainly improve the 
energy prediction accuracy of EvoEnergy, relying on BHPS data set makes EvoEnergy unable to predict 
the transition patterns of households with low representativeness such as lone parents beyond 7 years. 
Furthermore, it does not permit an adequate analysis of the effect of cultural factors on residential energy 
demand. This is because the BHPS data set has low representativeness of ethnic minority groups in the 
BHPS sample (McFall and Garrington, 2011). This would pose a problem especially if the focus of 
policy-makers is placed on monitoring and determining the effectiveness of policies geared toward minor 
ethnicities and lone parent families. An example of this includes analyzing the change in the fuel poverty 
gap of minor ethnicity groups in function of government schemes, their CO2 emissions, and any changes in 
their socio-economic and demographic factors. From a policy point of view, using EvoEnergy under this 
scenario limits the monitoring, design, and adjustment of pro-environmental behavior policies and 
measures that target specific households over different stages of their family lifecycle. 

In contrast to the above, a better scenario involves using a combined BHPS and UKHLS data set to 
inform the development of EvoEnergy’s household transition and prediction modules. In this way, it is 
possible to monitor more households over a period of at least 25 years. This, in turn, permits to increase 
the prediction period of the transition module to 15 years. Furthermore, it would overcome the limitations 
of BHPS by allowing for better handling of certain household types and ethnic minority groups. Similarly, 
adopting a joined BHPS–UKHLS energy prediction algorithm would help correct the over- and 
under-estimations of couple without children and lone parent households (Section 5.1), respectively. Based 
on that, it is argued that using EvoEnergy under this scenario would support policy- and decision-making 
by addressing certain phenomena while taking account of socio-economic and demographic changes 
occurring over the household lifecycle. This will, in turn, enable the development of proactive measures. 
For example, one of the challenges facing UK policy-makers in identifying fuel poverty is the change in 
the socio-economic factors of the households (ADECOE, 2016). Examples of such changes include 
varying income levels, change in household size, deterioration of housing conditions, and change in the 
fuel price. Using EvoEnergy in this situation could possibly help anticipate the likelihood of being a fuel 
pauvre in function of scenarios of change in the household socio-economic circumstances. 

7 Recommendations for future work 
The analysis of the research findings has highlighted few limitations, which should be addressed in the 
future. These can be summarized as follows: 

• The process of combining the BHPS and UKHLS is challenging and time consuming. Therefore, there 
is a need for tools that could automate or facilitate this process for other scholars, especially those with 
little/basic statistical knowledge. 

• Since EvoEnergy is only confined to the UK residential sector, one of the possibilities is to extend its 
socio-economic module to cover different countries such as Germany, Italy, and Spain. 

Appendix A 
Table 4 represents the summary of the homogeneity of variance analysis of different socio-economic and 
demographic variables over the BHPS and UKHLS data sets. Overall, it is evident that the variance of 
most factors across the two data sets was heterogeneous except for the following variables: Gender, aged 
36–45, divorced, widowed, never married, separated, living as a couple, A-level, rented from employer, 
rented from private landlord, living in terraced houses, and living in 3-bedroom dwellings. This implies 
that the socio-economic and demographic characteristics of both samples are largely significantly different 
from each other. 



 

 

Table 4 Summary of the homogeneity of variance analysis of different socio-economic and demographic variables across 
the BHPS and UKHLS data sets 

 Homogeneity of variance If partially heterogeneous, what category is 
homogenous/heterogeneous? 

Gender Homogeneous N/A 

Age Mostly heterogeneous Aged 36–45 is homogeneous 

Marital status Mostly homogeneous Married is heterogeneous 

Level of education Mostly heterogeneous A-Level is homogeneous 

Tenure mode Mostly heterogeneous Rented from employer and private landlords are 
homogeneous 

Dwelling type Mostly homogenous Living in terraced dwelling is heterogeneous 

Dwelling size Mostly heterogeneous 3-bedroom dwelling is homogeneous 

Socio-economic class Mostly heterogeneous Professional occupations and unskilled workers are 
homogeneous 
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