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Abstract 

The rise of a new class of smart materials known as electro-magnetorheological elastomers 

(EMREs) requires comprehensive understanding on their electro-magneto-visco-hyperelastic 

behaviors. The aim of this paper is to develop a generalized three-dimensional (3D) 

continuum-based framework of the electro-magneto-visco-hyperelastic behaviors of EMREs. 

The finite strain model is established based on the linear viscoelasticity theory and non-linear 

electro-magneto-elastic framework. As EMRE devices can be used in a cylindrical shape 

undergoing shear and normal stresses in many engineering applications like artificial muscles, 

a boundary-value problem simulating torsion-extension deformations of EMRE cylinders is 

developed in the finite strain regime and solved semi-analytically. The behaviors of EMRE 

cylinders under different loading conditions such as purely mechanical loading, purely electric 

loading as well as full coupling between mechanical, electric and magnetic loading are studied 

in detail. Influence of different parameters such as electric field, magnetic field, applied strain 

(-rate) and their coupling on the induced moment and axial force of the EMRE cylinder as well 

as its relaxation and creep under torsion-extension loading is also examined. It is shown that 

EMREs have adaptive capability and great potential in applications where the stiffness needs 

to be controllable. Due to simplicity and accuracy, the model is expected to be used in the 

future studies dealing with the analysis of EMREs in particular cylinders under torsion-

extension developments like 4D printing of artificial EMRE-based cylindrical muscles.  

 

                                                 
        † Corresponding Author. Tel.: +44-115-84-83470. 
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Keywords: Electro-magneto-visco-hyperelastics, Multi-trigger actuators, Large torsion-

extension, Cylinders, Constitutive modelling 

1 Introduction 

Nowadays, smart materials with exceptional properties have gained considerable attention. 

Shape memory polymers (SMPs) [1], Shape memory alloys (SMAs) [2], Hydrogels [3], 

Magnetorheological or Electrorheological fluid [4], Magnetorheological elastomer (MRE) [5], 

dielectric elastomer [6] and also EMRE [7] are the most common smart materials used for 

advanced engineering applications. Light-weight, fast response, shape memory, shape 

changing, stiffening, multi-triggers and etc., are the common fantastic properties of these smart 

materials [8-12]. EMREs are a class of smart materials that can change their electric, magnetic 

and mechanical properties in the presence of full coupling between electric, magnetic and 

mechanical loadings. In other words, adding electric particles such as carbon nanotube and also 

ferromagnetic particles such as Fe3O4 or carbonyl iron to elastomeric materials makes the 

matrix multi-trigger smart materials which are known as electro-magneto-elastic materials. 

Thanks to the properties of these novel materials, they have great potential applications in 4D 

printing [13], actuators and sensors, energy harvesters, adaptable optics (tunable lenses) and 

etc., [14-16], in particular, artificial muscles [17, 18]. The emerging properties of EMREs 

would receive increasing attention in the future in particular due to their potential for additive 

manufacturing [13, 19]. 

On the numerical and modeling aspects, few studies have been dedicated to model EMREs 

in the presence of the full coupling between electric, magnetic and mechanical loadings [7, 14, 

15, 20-22]. Most researchers investigated dielectrics or MREs, separately and mostly examined 

their hyperelastic behaviors. Since the base material of EMREs is a rubber-like material, they 

could endure large deformations. In this way, the general non-linear electro-magneto-elasticity 

theory provides some constitutive modeling of EMREs in a large deformation regime. In 

addition, these materials may also be considered as time-dependent materials. However, there 

are a few studies for modeling of visco-hyperelastic dielectric elastomers and MREs. 

Recently, many attempts have been conducted in order to model hyperelastic behaviors of 

isotropic dielectrics and MREs [14, 15, 23-29] and their anisotropy [30-32] for different 

applications and deformation regimes. In addition, to model time-dependent behaviors of 

dielectrics or MREs, there are few studies in the open literature that will be reviewed in the 

following. An electro-viscoelastic constitutive model for a polyurethane-based dielectric at 
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finite strains was initially developed by Ask et al. [33]. Using a coupled finite element 

formulation, they analyzed several boundary value problems numerically. In a complex model, 

Saxena and his colleagues [34, 35] presented a general framework of finite deformation 

magneto-viscoelasticity. They investigated uni-axial, pure shear and simple shear deformations 

of MREs decomposing the free energy into elastic, viscoelastic and equilibrium and non-

equilibrium magnetic parts. A new model was developed by Vogel et al. [36] to investigate the 

effects of the electric field on the viscoelastic properties of the dielectric elastomers. 

Considering a geometrically non-linear finite element framework, they also investigated the 

relaxation and hysteresis behaviors of the dielectrics. To analyze thermo-electro-viscoelasticity 

of dielectrics, Mehnert et al. [37] developed a mathematical framework decomposing the free 

energy function into four elastic, electric, time-depended and thermal parts. In a particular 

problem, for a spring-connected dielectric actuator, Wang [38] investigated creep and cyclic 

behaviors of the actuator via a non-linear three-element viscoelastic model by solving its 

differential-algebraic system of equations. Bishara and Jabareen [39] implemented a visco-

electric-hyperelastic model using a user subroutine UEL in the commercial finite element 

method (FEM) software of ABAQUS. More recently, Garcia [40] introduced a new framework 

to model time-depended behaviors of MREs based on the multiplicative decomposition of 

deformation gradient tensor into elastic and viscous parts. They examined the effects of rate 

dependencies of mechanical loading and magnetic field on the uniaxial deformation.  

The literature review indicates that the time-dependent behaviors of dielectric elastomers 

have been investigated by some researchers numerically (e.g., [37, 41, 42]) and experimentally 

(e.g., [43]). It also reveals the lack of a comprehensive finite-strain constitutive model with 

capability of simulating electro-magneto-visco-hyperelastic behaviors of EMREs in a three-

dimensional (3D) framework. This paper aims at developing a general 3D continuum-based 

constitutive model of the electro-magneto-visco-hyperelastic behaviors of EMREs in the finite 

strain regime. For the time-dependent part of the model, the Maxwell-Wiechert model with ten 

non-equilibrium branches is considered where viscoelastic parameters are calibrated using a 

relaxation test of a VHB 4910. For the electro-magneto part, a nominal Helmholtz free energy 

density function adapted from Kumar and Sarangi’s work [15, 22] and Dorfmann and Ogdens’ 

work [44] is assumed. Regarding the elastic part, Mooney-Rivlin and exp-exp strain energy 

density functions are considered. Then, inspired by artificial skeletal muscles and their 4D 

printing, an EMRE-based cylinder as a boundary-value problem under torsion-extension 

deformations is established in the finite strain regime and solved semi-analytically. The 

solution is verified for a pure torsion-extension loading by implementing the commercial FEM 
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software ABAQUS. It is also shown that the governing equations can be non-dimensionalized 

to eliminate the magnetic parameters. Due to simplicity and accuracy, the model is expected to 

be an efficient tool in analyzing EMREs in particular cylinders under torsion-extension in 

future studies and developments like 4D printing of artificial EMRE-based cylindrical muscles. 

The paper is organized as follows. In Section 2, a general non-linear 3D continuum-based 

formulation for the electro-magneto-visco-hyperelastic behaviors of the EMRE is developed. 

In Section 2.3, based on the existing experiments in the open literature, the model parameters 

are calibrated. Next, the non-linear continuum-based formulation of EMRE-based cylinders 

under large torsion-extension is presented and examined semi-analytically in Section 2.4. In 

Section 3, the numerical results are presented. Firstly, the verification of the problem is carried 

out. Next, the effects of the electric field in the absence of the magnetic field on electric and 

mechanical behaviors of the cylinder are studied. The influence of some parameters like strain 

rate is investigated and the relaxation and creep behaviors of the cylinder under a fixed electric 

field are examined. Then, the coupling of the electric, magnetic and mechanical loading are 

considered. The effects of the magnetic field under a fixed electric field on the mechanical 

behaviors of the cylinder are investigated via the semi-analytical solution. Finally, in Section 

4, the summary and conclusion of this work is presented. 

2 Electro-magneto-visco-hyperelastic constitutive modeling  

Mechanical response of viscoelastic materials is a combination of elastic and viscous 

properties [45]. In general, based on the linear viscoelastic theory of time-dependent materials, 

the relationship between strains and stresses can be expressed as follows [46, 47]: 

( ) ( )
0

,
H

t
vh d

t s t d
d

 


= −
σ

σ ε  (1) 

in which, 𝛔𝑣ℎ, ɛ, 𝛔𝐻 and s are total viscoelastic stress, total strain tensor, the stress depending 

on the elastic part and a non-dimensional function which describes the time (or relaxation) 

phenomenon of the material, respectively. Also, based on the definition of 𝛔𝐻, Eq. (1) can be 

used in both small deformation (i.e., linear viscoelastic material) and large deformation (i.e., 

visco-hyperelastic material). Meanwhile, based on the assumption of the considering dielectric 

and magnetic effects of elastomers in their strain energy function instead of decomposing stress 

components, motivated by the linear viscoelastic theory, the relationship between the total 

Cauchy stress and strain in electro-magneto-visco-hyperelastic materials can be expressed as 

follows. A schematic drawing of the proposed model is also shown in Figure 1.  
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Figure 1. The schematic drawing of the proposed model for the electro-magneto-visco-hyperelastic 

behaviors of EMREs. 

 

( ) ( )
0

, , ,
t d

t s t d
d

 


= −
0σσ E H ε  

(2) 

Where σ(E, H, t, ɛ) is the total stress tensor and 𝛔𝟎 is a stress depending on the strain, electric 

and magnetic parts. E, H, and t are the electric field, magnetic field and time, respectively. As 

mentioned before, s is a non-dimensional function which can be commonly defined in Prony 

series form as: 

( ) ( ) ( )
1

, exp
N

i

i i

t
s t s s




=

 −
= +  

 
ε ε ε  

(3) 

in which 𝑠∞ and 𝑠𝑖 are non-dimensional material constants corresponding to the equilibrium 

and instantaneous (viscous) parts, respectively. Furthermore, the values of 𝑠∞ and 𝑠𝑖 vary 

between 0 and 1 and also the constraint 𝑠∞ + ∑ 𝑠𝑖
𝑛
𝑖=1  should be satisfied. 𝜏𝑖 indicates the 

corresponding relaxation time or retardation time in i-th branch (i=1, 2, 3, …, n). In Section 

2.2, the time-dependent part is discussed in detail.  

2.1 Electric, magnetic and strain-dependent parts 

In the current configuration, electrical field variations are E, D, and P which are electric 

field vector, electric induction or electric displacement vector and polarization density vector, 

respectively. Similarly, for the magnetic field, the variations H, B, and M are called the 

magnetic field vector, magnetic induction vector and magnetization density vector, 

respectively. For condensed materials, these parameters are simply related together as:  

0= +D E P , ( )0= +B H M  (4) 

2E

1E 1

2

.

..nE n

Non-equilibrium 

0
σ

Equilibrium 

, ,E H ε, ,E H ε

• Electric-dependent

• Magnetic-dependent 

• Strain-dependent  
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in which ɛ0 and µ0 denote the electric permittivity and magnetic permeability of free space. 

The simplified form of Eq. (4) for linear isotropic media is defined as [48]: 

0 0,

1 1
,

r r

r r

r r

   

 

 

= =

− −
= =

D E B H

P D M H
 (5) 

Where ɛ𝑟 and µ𝑟 are the dielectric constant so-called relative electric permittivity and 

dimagnetic constant so-called relative magnetic permeability. In addition, the macroscopic 

formulation of Maxwell's equations (i.e., Maxwell's equations in a vacuum) can be written as 

[49]:  

( )div =D  (Gauss’ law of electricity) 

( ) 0div =B   (Gauss’ law of magnetism) 

( )curl
t


= −



B
E  (Faraday’s law of induction) 

( )curl
t


= +



D
H J  (Ampère’s law) 

(6) 

where ρ, t, and J denote free electric charge density, time and free electric current density. 

Also, curl and div denote curl and divergence operators with respect to the current position 

vector x . For a quasi-static state, / t   vanishes and in a vacuum with free current or electric 

charge, the simplified forms of Maxwell’s equations (6) in the current configuration can be 

expressed as: 

( ) ( )

( ) ( )

0, 0

0, 0

curl div

curl div

= =

= =

E D

H B
 (7) 

Correspondingly, the nominal electric field vector and the magnetic field vector in the 

reference configuration are denoted by 𝐄𝑙 and 𝐇𝑙, and the relation between them based on the 

standard kinematic can be expressed as: 

1

1

,

,

l T l

l T l

−

−

= =

= =

E F E D F D

H F H B F B
 

(8) 

Adapting Eq. (7), the quasi-static Maxwell’s equations in the reference configuration are 

expressed as: 

( ) 0lCurl =E  , ( ) 0lDiv =D   

( ) 0lCurl =H , ( ) 0lDiv =B  

(9) 
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wherein Curl and Div denote curl and divergence operators in the reference configuration with 

respect to the reference position vector X . 

2.1.1 Constitutive equation of electro-magneto-hyperelastic elastomers 

Following [50, 51], the total Cauchy stress tensor 𝛔𝟎 (or true stress) followed by the 

Maxwell’s concept for an electro-magneto-elastic material with the mechanical Cauchy stress 

tensor 𝛔𝐌𝐞 can be expressed as [52]: 

= + + +Me

0 p e mσ σ τ τ τ  (10) 

 

in which 𝛕𝐩, 𝛕𝐞, and 𝛕𝐦 are known as polarization stress tensor, electrostatic Maxwell stress 

tensor and magnetic Maxwell stress tensor, and commonly expressed as [48, 53]: 

( )0

1
.

2


 
=  − 

 
e
τ E E EE I , ( )

0

1 1
.

2

 
=  − 

 
mτ B B BB I , = Pτ P E  

(11) 

However, this superposition of elastic, electric and magnetic stresses might not be accurate, 

especially for large deformations. To overcome this issue, an amended strain energy function 

in which the total stress can be determined through the nominal Helmholtz free energy density 

function ( ), ,l l =  F H E  is introduced. Recently, Kumar and Sarangi [15, 22] presented a 

general form of the amended strain energy function in terms of b and 𝐛−1that are adopted here 

[15, 22]:  

( ) ( ) ( ) ( )1

0

0

1 1
, , , , . .

2 2

l l l l l l l l 


− = − +F H E F H E E b E B bB  
(12) 

where b is left Cauchy-green deformation tensor. Unlike the superposition of stresses, it is 

preferred to superposition nominal Helmholtz free energy density function. Therefore, the 

general relationship between total Cauchy stress tensor, electric induction vector and magnetic 

induction vector with strain energy function for an incompressible isotropic electro-magneto-

elastic material in the current configuration may be written as [48]: 

, ,
l l

p
  

= − + = − = −
 

0
σ I F D F B F

F E H
  

(13) 

wherein p may be interpreted as a hydrostatic pressure (a Lagrange multiplier associated with 

the incompressibility constrain) and I is the second-order identity tensor. Also, the 

corresponding total first Piola-Kirchhoff stress tensor T (or nominal stress) based on the 

electric induction and magnetic induction in the undeformed configuration for incompressible 

and isotropic materials is expressed as: 
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1 , ,l l

l l
p

  
= = − + = − = −

  

-T -
T σF F D B

F E H
  

(14) 

Since nominal Helmholtz free energy density function is commonly presented in terms of 

invariants (𝐼1: 𝐼9), the principal invariants depending on the tensor b and other invariants 

depending on 𝐄𝑙 and 𝐇𝑙 (or quasi invariants) can be defined as [15, 22]: 

( ) ( ) ( )( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2

1 2 3

1

4 5

2

6 7

2

8 9

1
, , det 1

2

: , :

: , :

: , :

l l l l

l l l l

l l l l

I tr I tr tr I

I I

I I

I I

−

−

= = − = =

=  = 

=  = 

=  = 

b b b b

E E I E E b

E E b H H I

H H b H H b

 
(15) 

wherein, tr, :, and   represent trace, double-contraction, and outer product, respectively. In 

this study, for more simplicity, we consider that the electric field and magnetic field are 

constant and consequently we ignore the direct coupling between electric field and magnetic 

field (i.e., ignoring 𝐼10). In order to calculate the stresses, electric and magnetic induction, based 

on the previous relations, Eqs. (12)-(15), the explicit form of 𝛔𝟎, D and B can be derived by 

performing some mathematical manipulation as [15, 22]: 

( )

( )

( )

( )

( )

2

1 2 1 5

1 1

6 8

2 2

9

1

4 5 6

2 3

7 8 9

2

2 2

2

2

2

p I

− −

−

= − +  +  − −  

−   +  +  

+   + 

= −  +  + 

= −  +  + 

0
σ I b 2 b b 2 E E

b E E E b E bH bH

bH b H b H bH

D b I b E

B b b b H

 (16) 

where, ( )1: 9 /i ii I = =   . More details on the derivation Eq. (16) can be found in the 

appendix.  

In this model, adopting the Mooney-Rivilin model [54] and exp-exp model [55] for the 

purely mechanical hyperelastic property of the EMRE, and based on the work done by Kumar 

et al [15, 22] and Dorfmann and Ogden [44], a new and complete version of the nominal 

Helmholtz free energy density function for isotropic electro-magneto-hyperelastic materials is 

considered as: 
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( ) ( ) ( ) ( )

( )( )( ) ( )( )( )

( ) ( )

. 0 0
1 1 2 2 3 4 4 5 5 6 6 7 7 8

.

1 1 1 1 1 2

0 0
3 4 4 5 5 6 6 7 7 8

3 3
2 2

A exp 3 1 B exp 3 1

2 2

M R

E E

C I C I C I C I C I C I C I

m I n I

C I C I C I C I C I

 

 

 = − + − + + + + +

    = − − + − − +
   

+ + + +

  
(17) 

Now, by using Eqs. (16) and (17) and having specific deformation gradient tensor, T, D, and 

B tensors can be easily obtained. 

2.2 Time-dependent Part 

As discussed already, to model the time-dependent behaviors of EMREs, the linear 

viscoelastic theory (Eq. (2)) is used where the non-dimensional function s is introduced by 

Prony series. In fact, by considering the Maxwell-Wiechert rheological model with an 

equilibrium branch and n number of non-equilibrium branch for the time-dependent part of the 

model (see, Figure 1), the viscoelastic parameters 𝑠∞ and 𝑠𝑖 can be calculated. Based on the 

constitutive equations of the Maxwell-Wiechert model, the relaxation modulus of the model is 

expressed as [56]: 

( ) ( ) ( )( )0

1 1

exp / 1 exp /
n n

i i i i

i i

E t E E t E E t 

= =

= + − = − − −   
(18) 

in which 𝐸0 is called instantaneous relaxation modulus which is equal to 𝐸∞ + ∑ 𝐸𝑖
𝑛
𝑖=1 . Also 

𝐸∞ is the equilibrium elastic modulus of the linear viscoelastic model (i.e., linear elastic part 

replacing in the orange box in Figure 1). Thus, the parameter of 𝑠𝑖 can be expressed as 𝐸𝑖/𝐸0. 

Finally, in the following section, the material parameters are calibrated briefly. 

2.3 Material and model calibration 

2.3.1 Electric constants 

In order to determine the electric constants of VHB 4910 acrylic-based dielectric 

elastomer, Wissler and Mazza [57] presented the deformation-dependent relative electric 

permittivity ɛ𝑟 = ɛ𝑟(𝜆) in equivalent-biaxial deformation loading as shown in Figure 2.a. The 

deformation gradient F and electric field vector E for the experimental condition of the Wissler 

and Mazzas’ work [57] can be expressed as: 

( ) ( )2

0, ; 0,0,diag E  −=  =F E  (19) 

Based on Eqs. (16), (17) and (19), the electric displacement vector is obtained as: 

( )( )4 4

0 0 3 4 50,0, E C C C  −= − + +D  (20) 

Page 9 of 33 AUTHOR SUBMITTED MANUSCRIPT - SMS-109941.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



  

10  

 

Considering 𝐷3 = ɛ0ɛ𝑟𝐸0, the deformation-dependent relative electric permittivity of the 

material is derived as: 

( )4 4

3 4 5r C C C  −= − + +  (21) 

Finally, by fitting Eq. (21) with experiment data [57], the dielectric parameters are obtained as 

listed in Table 1. Furthermore, the experiment data and the model prediction of the dielectric 

part are shown in Figure 2.a. 

2.3.2 Viscoelastic coefficients 

In this division, the time-dependent properties of a VHB 4910 acrylic-based dielectric 

elastomer reported by Hossain et al. [58] are considered. Here, in order to determine the 

viscoelastic parameters of the model, a single-step relaxation test of a standard sample at 20% 

strain performed by Hossain et al. [58] is used. For the calibration purpose, the relaxation 

modulus is fitted with the experiment data. The relation between stress and relaxation modulus 

under small deformation for time-dependent materials is written as: 

( ) ( ) ( )

( ) ( ) ( )

0

1

0.2 ,

exp / 5
n

i

i

t E t E t

E t E E t t

 

 

=

= =

= + − =
 (22) 

Finally, considering appropriate numbers of branches of the Maxwell-Wiechert model (with 

ten branches), the time-dependent parameters are obtained as listed in Table 1. In addition, the 

experiment data and model prediction of the time-dependent model are shown in Figure 2.b. 

2.3.3 Hyperelastic parameters 

In this division, in order to determine hyperelastic parameters of VHB 4910, Hossain et 

al.’s experiment [58] is used. They conducted some experiments on the strain-dependent and 

time-dependent properties of VHB 4910. First of all, the continuum formulation of the large 

deformation of elastic materials is presented. The deformation gradient for a pure homogeneous 

deformation can be written as: 

0 0

0 0

0 0

x

y

z







 
 

=
 
  

F  (23) 

in which 𝜆𝑥, 𝜆𝑦 and 𝜆𝑧 are the longitudinal stretch in the x, y and z directions, respectively. By 

considering the incompressible postulate for VHB 4910 under uniaxial test, they are defined 

as:  

1/2, 1 ,x y x y z z x yJ         −= = = → = = =  (24) 
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Finally, the true stress σ and nominal stress 𝐏𝐌𝐞 can be calculated from the following non-

linear continuum formulations [59]: 

2

2

1 2

2

2

1 2 0

1 1
2 ( ) 2 ( );

1 2 1 2 1
( ) ( )

Me Me

Me Me

z z

I I

F
P

I I A

 
 

  
    

− 
= − + − =

 

 
= = − + − =

 

Me T
σ P σF

 (25) 

where 𝑃𝑧 is the first Piola-Kirchhoff stress tensor in the z direction, F is the force measured 

from the experiment, Ao is the cross-section of the test sample in the reference configuration 

and 
Me  is the mechanical strain energy density function related to the hyperelastic behavior 

of the material.  

Eventually, by adapting the Mooney-Rivlin model and exp-exp model for the mechanical 

strain energy density functions, the corresponding uniaxial true stresses and the uniaxial first 

Piola-Kirchhoff stresses can be derived presented as: 

( ) ( )

( )( ) ( )( )

( )( )

( )

( )( )

( )

. 1 1 2 2

. 1 1 1 1 1 2

. 1 2 1

2 1

. 2 2

1 1 1 1 1 1 2

. 1 2

2 1

. 2

1 1

3 3

A exp 3 1 B exp 3 1

2

1 2 1
2 1 exp 3 2 exp 2 3

2

2

Me

M R

Me

e e

M R

z

e e

z

M R

z

e e

z

C I C I

m I n I

C C

A m m B n n

P C C

P A m

   

    
  

  

 

− −

−

− −

−

 = − + −

    = − − + − −   

= + −

        
= − + − + − + −        

        

= + −

= − ( )2 3

1 1 1 1 2

2 1
exp 3 2 1 exp 2 3m B n n  

 

−      
+ − + − + −      

      

 (26) 

In addition, the experiment data and prediction of the hyperelastic models are shown in Figure 

2.c. As the state of the art, Figure 2 shows the comparison between experimental data and the 

predictions in the calibration process of the present model. It can be seen that the predictions 

are in a good agreement with experimental data showing the high accuracy of the calibration. 

All material parameters can also be found in Table 1. It is noted that there is no related 

experiment on VHB 4910 to calibrate the material parameters of the magnetic part. To settle 

this issue, equations depending on the coupling between electric, magnetic and mechanical 

parts are reformulated in non-dimensional forms so that the equations will not depend on the 

magnetic parameters. 
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(a) (b) 

  
(c) 

 
Figure 2. Model predictions compared to the experiment for a VHB 4910: a. relative dielectric constant vs. 

stretch (elastic part) at frequency 100 Hz, b. relaxation modulus time-history, c. nominal uniaxial stress vs. 

stretch (hyperelastic part) at strain rate 0.011/s. 

 

Table 1. Material parameters of the present electro-magneto-visco-hyperelastic model. 

Electric part 

( )0 / .C V m  ( )3C −  ( )4C −  ( )5C −  

8.854e-12   -0.7279   -3.879 0.001993 

Magnetic part 
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( )2

0 NA −
 

6C  
7C  

71   4 0 −  -           - 

Viscoelastic part 
s

 
1s  

2s  
3s  

4s  
5s  

6s  
7s  

8s  

1.4e-1 3.14e-1 2.15e-1 8.77e-2 2.64e-2 3.45e-4 8.28e-7 8.04e-7 3.27e-6 

9s  
10s  ( )1 s  ( )2 s  ( )3 s  ( )4 s  ( )5 s  ( )6 s  ( )7 s  

8.70e-3 2.04e-1 19.19 19.25 168.4 250 1178 836.7 34.52 

( )8 s  ( )9 s  ( )10 s  

1115 19.43 2891 

Hyperelastic part 
Mooney-Rivlin exp-exp 

( )1C Pa  ( )2C Pa  ( )1A Pa  ( )1B Pa  1m  
1n  

1.463e+04  4114  1.076e+06  8.11e+04  0.005156 0.1956 

 

2.4 Torsion-extension deformation  

As mentioned in Section 1, dielectrics, MREs and EMREs are used in wire, rod and tube 

forms to produce actuating forces and moments. In many engineering applications, the smart 

devices experience axial-torsional deformations. EMREs also have great potential in 4D 

printing of smart actuators like artificial muscles. In many circumstances, these actuators like 

artificial muscles, may undergo different loading regimes like large bending, torsion-extension, 

etc. From a simulation point of view, introducing a simplified model for these special structures 

is adorable. To this end, a boundary-value problem of the torsion-extension deformation of 

EMRE cylinders at a finite strain regime is developed here. The deformation mapping for 

torsion-extension loading in the cylindrical coordinates based on the reference configuration 

(R, ϴ, Z) and current configuration (r, θ, z) for a solid cylinder with outer radius Ro can be 

expressed as  [60]: 

1/2 ; ;

0 ;0 2 ;0o

r R Z z Z

R R Z L

   



−= =  + =

      
 (27) 

Where γ and τ denote the cylinder axial stretch, and the amount of twist per stretched length 

unit, respectively. A schematic of the solid cylinder under extension and torsion deformation 

in magnetic and electric fields is illustrated in Figure 3.  
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Figure 3: The schematic of the solid cylinder under torsion-extension loading in electric and magnetic 

fields. 

 

The deformation gradient tensor of the torsion-extension loading of a cylinder in the cylindrical 

coordinate system can be written as: 

1/2

1/2 1/2

1

0 0

0

0 0
1

r r r

R R Z

r
r r R

R R Z

z z z

R R Z


  

 



−

−

   
      

     = =     
       

    

F  (28) 

By adapting Eq. (28), the left Cauchy green tensor and its inverse can be derived as: 

1

1 2 2 3/2

3/2 2

0 0

0

0

T R R

R



   

 

−

−

 
 

= = + 
 
 

b FF  (29) 

and the principal invariants read as: 

2 1 2 2 2 2 2

1 1 32 ; 2 ; 0I R I R I     − −= + + = + + =  (30) 

The general form of the equilibrium equations in the radial and tangential directions (in the 

current configuration) is expressed as: 

θ 
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1 1
( )

1 2

rrr
rr r r

r
r

F a
r r r r

F a
r r r




 
  


  

 
 




+ + − + =

 

 
+ + + =

 

 (31) 

where, 𝐹𝑟 , 𝐹𝜃, 𝑎𝑟 , 𝑎𝜃 and ρ denote external radial body force, external tangential body force, 

radial acceleration, tangential acceleration and density, respectively. In the absence of external 

body forces and acceleration, based on the principle of conservation of linear momentum, Eq. 

(31) can be rewritten as: 

0rrrr

r r

  −
+ =

  
(32) 

Considering the incompressibility condition and integrating Eq. (32) with respect to R, the 

following equation can be derived: 

1/2

1/2

o or R
rr

rr
r R

dR
R






 


−

−

−
=   (33) 

Considering the boundary condition at 𝜎𝑟𝑟(𝑅 = 𝑅𝑟𝑟𝑜 = 0), one obtains 

( )
1/2

1/2

oR
rr

rr
R

R dR
R






 


−

−

−
= −  (34) 

Lagrange multiplier p can be obtained from Eqs. (34) and (16), and by substituting it into Eq. 

(16), the stress tensor 𝛔0 is obtained. Finally, by substituting the stress tensor 𝛔0 into Eq. (2), 

the total Cauchy stress tensor can be readily calculated.  

The resultant moment and axial force corresponding to the deformation are given by: 

1/2

1/2

2 2
2 3/2 2

0 0 0 0

2 2
1

0 0 0 0

Ro
o

Ro
o

p r

z Z

p r

zz ZZ

M r drd R dRd

N rdrd RdRd

 



 

   

   

−

−

−



−

 = 

 = 

   

   

  (35) 

Considering Eq. (16) and 𝐄 = (𝐸𝑟 , 𝐸𝜃, 𝐸𝑧) and 𝐇 = (𝐻𝑟 , 𝐻𝜃, 𝐻𝑧), the electric and magnetic 

induction components of EMREs can be expressed as: 

4 0 3 0 5 0

3

2 24 0 5 0 2
3 0 5 0 3 0

3

2 2 25 0 4 0 5 02
3 0 3 0 2

2( )
2 2 2

1 1 1 1
2(( ( )) ( ) )

2 2 2 2 2

1 1 1
2(( ) ( ( )) )

2 2 2 2 2

r r

z

z z

C C C
D E

C C
D C R E C R C R E

C C C
D R C R E C R E

 



   



  
      



  
      



= − + +

= − + + + + − +

= − − + + + + +

 (36) 

The magnetic induction components are also derived as: 

7 0 6 0

2
2( )

2 2
r r

C C
B H

 

 
= − +  (37) 
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2 2 2 3 2 2 2 26 0
7 0

3 7 3

2 22 2 2
6 0 7 0

1 1 1
2(( ( ) ( ( ) ))

2 2

1 1 1
( ( ( ))) )
2 2

z

C
B R C R R H

C R C R R R H

 


    

 

        


= − + + + + +

+ + +

 

3 7 3

2 26 0 7 02 2 2

2 4 2 3 26 0 7 0

1
2(( ( ( )))

2 2

( ( )) )
2 2

z

z

C C
B R R R R H

C C
R H



 
      



 
   

= − − + + + +

+ +

  

Considering Eqs. (15)-(17) and (29), 𝐄 = (0,0, 𝐸0) and 𝐇 = (0,0, 𝐻0), the electric and the 

strain-dependent stress components of the EMRE under torsion-extension at large 

deformations can be expressed as: 

2 2 2

1 2 0

2 2

7 0

1
( 0.25 ) ) (2 2

2
r R C C C H   = − + + +  

2 2 2 2

1 2 0 07

2 2(0.5 )) ( 0.0625 (0. )25 0.5 ))2 (( )( 0.125  C C R R HC     = + − + ++ − + +

3 3 2 2 2

2 1 1 22

2 2 2 2 2 2 2 2

2 0 4 5 0

4 2 2 2 2

7 0 0

1
( ( 2 2 ) ( 2 2 ) ( ( 0.25 ) 0.25

( 2 (1 2 ))) ( ( 2 2 ))

( ( 0.125 0.5 ) ) )

z C C C R C

C R C C R E

C R H

     


      

   

= − + + − + + − + − +

− + + + − + − − +

+ − +

 

3 2

5

2 2 2 3 2

1 2 5 0 0 7 0 0
2  (2 2 (2 ) )z R C C R R C E C H         = + + − + + +  

0r rz  = =  

(38

) 

3 Results and discussion 

In order to verify the solution, preliminary results are presented for a purely mechanical 

loading of the EMRE cylinder through both semi-analytical solution and an FEM in Section 

3.1. Then in Section 3.2, the effects of the electric field in the absence of any magnetic field on 

different parameters such as axial force, moment, stress components, electric induction, 

relaxation and creep behaviors of the EMRE are investigated via the semi-analytical solution. 

Finally, in Section 3.3, the effects of the coupling between electric and magnetic fields on the 

aforesaid parameters are examined.  

3.1 Verification 

It should be mentioned that since there are no appropriate experiments in the literature to 

calibrate the proposed model, the solution is verified in the absence of any electric and magnetic 
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fields. To this end, Two different mechanical strains (𝛾 = 1.2, 𝜃 =
𝜋

2
 𝑅𝑎𝑑 and 𝛾 = 1.05, 𝜃 =

𝜋

4
 𝑅𝑎𝑑) are applied to the EMRE-based cylinder in the absence of any electric and magnetic 

fields and analyzed via commercial FEM software of ABAQUS CAE (6.17) and the semi-

analytical solution implemented in Maple (2018) and Mathematica (11.3). It is noted that firstly 

the complete explicit forms of the stress components were obtained via Mathematica, then 

using a numerical integration method the total, Cauchy stress components were obtained via 

Maple. The variation of the moment and the axial force during a time period are shown in 

Figure 4.a and b, respectively. As mentioned before, to model the visco-hyperelastic behavior 

of the EMRE, Maxwell- Wiechert with ten branches is used. Therefore, for modeling visco-

hyperelastic behavior of the EMRE in ABAQUS, the calibrated ten non-dimensional 

parameters si and 𝜏𝑖 reported in Table. 1 were implemented. Also, by choosing Mooney-Rivlin 

model for the equilibrium (hyperelastic) part, its material parameters were also implemented. 

In order to determine the optimum required number of meshes, a mesh study was performed 

and finally 100000 elements were chosen. To mesh the cylinder, the cross-section of the 

cylinder was divided into two central and marginal partitions. Linear tetrahedral (i.e., C3D4H: 

A 4-node linear tetrahedron, hybrid, linear pressure) and quad elements (i.e., C3D8H:  An 8-

node linear brick, hybrid, constant pressure) were considered for the central and marginal 

partitions, respectively.  

(a) (b) 

  
Figure 4. The semi-analytical solution compared to the FEM: a. moment, b. axial force under two loading 

regimes. ANL in the legends denotes the semi-analytical solution.  
 

As can be seen in Figure 4, the results from FEM and semi-analytical solution are in good 

agreement in particular for the small value of the twist angle. Figure 4.a shows that at strains 

of 𝛾 = 1.05, 𝜃 =
𝜋

4
 𝑅𝑎𝑑, the maximum difference between FEM and semi-analytical solution 

for the moment is 2.2 % and at strains of  𝛾 = 1.2, 𝜃 =
𝜋

2
 𝑅𝑎𝑑, the maximum difference 
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becomes 6.5 %. Also, it is concluded from Figure 4.b that under large strains, in particular, a 

large twist angle, the axial force from the semi-analytical solution has a higher difference with 

its corresponding FEM. At strains of  𝛾 = 1.05, 𝜃 =
𝜋

4
 𝑅𝑎𝑑, the maximum difference between 

FEM and semi-analytical solution for the axial force reads 6.5 % and at strains of  𝛾 = 1.2, 𝜃 =

𝜋

2
 𝑅𝑎𝑑, the maximum difference reaches to 10.2 %. The reason for these differences under a 

large twist angle seems to be the definition of the deformation gradient tensor used in the semi-

analytical approach (see Eq. (28)) that is not exactly similar to that in ABAQUS and may result 

in some differences at higher strains. It should be noted that at a strain of 𝛾 = 1.2, 𝜃 =
𝜋

2
 𝑅𝑎𝑑, 

the maximum shear strain (ɛ23) is about 70 % that means the applied strain is very large. 

3.2 Effect of the electric field in the absence of magnetic field 

In this section, in the absence of the magnetic field (merely dielectric), the coupling of the 

electric field and mechanical loading in torsion-extension of VHB 4910-based dielectric at a 

finite strain regime is examined. In this regard, the effects of electric field on the resultant 

moment and axial force, stress components, relaxation, creep behaviors and electric induction 

are investigated. The effects of the strain rate and applied strain at a fixed electric field are 

examined as well.  

3.2.1 Effect of the electric field on the moment, axial force and stress components 

The effects of the uni-axial electric field 𝐄 = (0,0, 𝐸0) considering on the axial force and 

external moment are examined as shown in Figure 5. 

(a) (b) 

  

(c) 
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Figure 5. The effects of the different electric fields on a. the time-history of the moment, b. the resultant 

force, and c. the variation of outer-surface 𝜎𝑧𝑧, the moment and axial force vs. the electric field with 20% axial 

strain and π/2 twist angle at 200 s. It should be noted that the unit of the electric field (𝐸0) in two proposed 

relations in part (c) is MV.m-1. 

 

Since the electric field is only applied in the z direction, it has no effects on 𝜎𝜃𝑧. As the 

resultant moment is calculated based on the shear stress 𝜎𝜃𝑧 (35.1)), both 𝜎𝜃𝑧 and resultant 

moment are independent of E0, and consequently, they are not changed by varying E0, see 

Figure 5.a. It can be conducted from Figure 5.b that increasing the electric field (E0) makes the 

dielectric stiffer and finally produces higher 𝜎𝑧𝑧, so that the axial force at an electric field of 50 

MV.m-1 becomes 2.47 higher than that in the absence of the electric field. Therefore, based on 

Eq. (35.2), the axial force increases. Furthermore, in order to illustrate the relation between the 

axial force, the resultant moment and 𝜎𝑧𝑧with the electric field (E0), Figure 5.c is studied. Based 

on the results presented in this figure, it can be found that increasing the electric field increases 

the stress level, moment and axial force since the EMRE becomes stiffer. It reveals that EMRE 

stiffness can be changed and the material can be classified as adaptive materials with 

controllable stiffness. This phenomenon is unique compared to other soft smart materials and 

shows the great potential of EMRE for mechanical applications, especially when high forces 

are required. For instance, it is expected that soft EMRE actuators could grasp objects with 

higher weight compared to those made of shape memory polymers.  

3.2.2 Effect of the strain rate on the stress components 

Since the proposed EMRE model is time-dependent, the strain rate may affect the stress 

state. To this end, considering the fixed electric field 𝐄 = (0,0,50 𝑀𝑉. 𝑚−1), 20% fixed axial 
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strain and π/2 twist angle, the dependency of 𝜎𝑟𝑟 and 𝜎𝑧𝑧 to strain rates are examined as shown 

in Figure 6.a and b.  

(a) (b) 

 
 

Figure 6. The effects of the strain rate on a. 𝜎𝑟𝑟 , and b. 𝜎𝑧𝑧 in the outer surface at the fixed electric field 

(𝐸𝑧=𝐸0= 50 MV.𝑚−1), 20% axial strain and π/2 twist angle.  

 

It is well known that viscoelastic materials have damping properties. Therefore, the results 

presented in Figure 6 for large strain rates show that the molecular chains do not allow to 

reorganize in the equilibrium state producing more stress and strength. It is seen that by 

increasing the axial stretch rate from 0.003 1/s to 0.12 1/s, 𝜎𝑟𝑟 and 𝜎𝑧𝑧 increase as much as 

105.0 % and 44.9 %, respectively. 

3.2.3 Effect of the electric field on the relaxation and creep behavior  

To investigate how ERMEs relieve the stress under a constant strain and how ERMEs 

strain under constant stress, relaxation and creep analyses are carried out, respectively. In order 

to examine the effects of the electric field on the relaxation behavior of EMREs, the following 

strains are applied to the material at different electric fields, and the results of the resultant 

moment and axial force under the proposed relaxation condition are shown in Figure 7.a and 

b, respectively.  

( ) ( )
0 0

1 1

1 1

0 1 1 2 0 1 1 2

,

t t
t t t t

t tt t

t t t t t t t t

 

 

 

 
  

= = 
   +   + 

 (39) 

where 𝛾0 = 1.2, 𝜃0 =
𝜋

2
 𝑅𝑎𝑑, 𝑡1 = 20 𝑠, 𝑡2 = 100 𝑠 are adapted.  
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(a) (b) 

  

Figure 7. The effects of the electric field (𝐸𝑧=𝐸0) on the relaxation behavior of the dielectric in terms of a. 

the moment, and b. the force under 20% axial stretch and π/2 twist angle.  

 

As discussed in Figure 5, the electric field does not affect the resultant moment of the 

relaxation test, see Figure 8.a. Also, based on Eq. (39), up to time t1, the resultant moment and 

axial force increase. However, from t1 to (t1+t2) under strains of 𝛾0 = 1.2, 𝜃0 =
𝜋

2
 𝑅𝑎𝑑, both 

the resultant moment and axial force decrease and start relaxing. As mentioned before, based 

on the experimental observation, the EMRE becomes stiffer under high electric fields 

producing more axial force. Figure 8.a reveals that the proposed model is also able to replicate 

this phenomenon.  

Next, the effects of the electric field on the creep behaviors of the dielectric are 

investigated. Moment and axial force for this case are applied to the cylinder as follows: 

( ) ( )
0 0

1 1

1 1

0 1 1 2 0 1 1 2

,

M t N t
t t t t

t tM t N t

M t t t t N t t t t

 
  

= = 
   +   + 

 (40) 

Where 𝑀0 = 3000 𝑁. 𝑚, 𝑁0 = 20000 𝑁, 𝑡1 = 20 𝑠, 𝑡2 = 100 𝑠  are chosen. The axial stretch 

and the twist angle are reported as depicted in Figure 8.a and b, respectively. 
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(a) (b) 

  
Figure 8. The effects of the electric field (𝐸𝑧=𝐸0) on the creep behavior of the dielectric in terms of a. the 

axial stretch, and b. the twist angle under 𝑀0 = 3000 𝑁. 𝑚, 𝑁0 = 20000 𝑁. 

 

It should be mentioned that the resultant moment or 𝜎𝜃𝑧 are not changed by the varying electric 

field in the relaxation (see Figure 7.a) and the creep tests. However, since the control 

parameters are moment and force in the creep test, both axial stretch and twist angle change 

when the electric field varies, see Figure 9. The results show that, due to the hardening effect 

of the EMRE in the presence of the electric field, increasing the electric field decreases both 

axial stretch and twist angle, especially as time passes.  

3.2.4 Effect of the uni-axial electric field on the electric induction 

By applying electric fields, electric inductions or electric displacements are generated 

where they have a relation with themselves via Eqs. (16.2) and (36.3). Under different uni-

axial electric field 𝐄 = (0,0, 𝐸0), the electric induction in the z direction (𝐷𝑧) is shown in Figure 

9.  

(a) (b) 

 
 

Figure 9. The effects of the electric field (𝐸𝑧=𝐸0) on a. the electric induction (𝐷𝑧) under fixed 20% axial 

stretch and π/2 twist angle, and b. the induction vs. the electric field in the outer surface of the cylinder in both 
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purely electric loading and electro-mechanical loading. It should be noted that the parameter C so-called 

Coulomb is the unit of the electric charge.  

 

Considering Eq. (36.3), it seems that the electric induction 𝐷𝑧 has a direct relation with the 

electric field 𝐸𝑧. It means that increasing the electric field increases the electric induction. Also, 

due to the coupling between the electric field (𝐸𝑧) and mechanical loading (20% axial stretch 

and π/2 twist angle), the electric induction (𝐷𝑧) is generated more than purely electric case, see 

Figure 9.b. 

3.3 Effect of coupling electric and magnetic field 

As mentioned before, there are no appropriate experimental data to calibrate the magnetic 

part of the model. Therefore, governing equations can be non-dimensionalized to eliminate the 

magnetic parameters in the constitutive relations. Considering uni-axial electric field and 

magnetic field 𝐄 = (0,0, 𝐸0) and 𝐇 = (0,0, 𝐻0) for the torsion-extension deformation of the 

cylinder (see Eq.(28)), the stress components 𝜎𝑧𝜃 and 𝜎𝑧𝑧 can be derived as: 

( )( )

( ) ( )
( )

( )( )

( )( ) ( )( )

3 5/2 2 2 2 2 3 2

2 1 2 2 2 5 0 0 7 0 0

2 2

1 2
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
     

  
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= + + − + + +

 − + − +
 = − + + − + + +
 − + +
 

− + − − + + − +

  (41) 

For the sake of simplicity and also due to the lack of appropriate experiments, the non-

dimensional form of Eq. (41) can be rewritten by a normalization process as: 

( ) ( ) ( ) ( )( )

( ) ( )

3 5/2 2 2 2 2 3 25 0 7 01
0 0

2 2 2 2

3 3 2 2 2 2 2 21 1

2 2
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

  
     

  
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  

 
− + + − + + − + − + − + + + 

 
=

 
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 
 
 
 
 
 
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  (42) 

By introducing 
*

2

z
z

C





 =  , 
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2

zz
zz
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
 = , * 5 0

0

2
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C


= , * 7 0

0

2

C
H H

C


= , Eq. (42) can be 

expressed as: 
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  (43) 

The non-dimensional torsional moment and axial force can also be calculated via Eq. (35). 

The effects of coupling between electric field, magnetic field and mechanical loading on 

the resultant moment, axial force and the relaxation behaviors of the EMRE will be investigated 

in the following sections. 

3.3.1 The effect of coupling between the electric field and magnetic field on the moment 

and axial force 

In this section, the influence of coupling between electric, magnetic and mechanical 

loadings on the non-dimensional resultant moment and axial force under fixed strains 𝛾 =

1.2, 𝜃 =
𝜋

2
 𝑅𝑎𝑑 is studied as shown in Figure 10. Henceforth, (-) means that the parameter is 

expressed in the non-dimensional form. 

(a) (b) 

  
Figure 10. The effects of coupling between magnetic and electric fields on a. the moment, and b. the force 

at 20% pre-axial stretch and π/2 twist angle. 

 

As it can be seen from Figure 10.a, the effect of the purely magnetic loading is more 

significant than the purely electric loading on the resultant moment. It is also observed that the 

coupling between electric, magnetic and mechanical loadings has the most significant effect 

on the resultant moment. It is found that by applying 𝐸0
∗ = 𝐻0

∗ = 5 with respect to purely 

mechanical loading (i.e., 𝐸0
∗ = 𝐻0

∗ = 0), the non-dimensional resultant moment is increased 

about 457.4 %. However, for the non-non-dimensional axial force as shown in Figure 10.b, the 
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effect of the purely electric loading becomes much more significant about 4600 times than the 

purely magnetic loading. 

3.3.2 The effect of magnetic field on the axial force and moment in the presence of a 

fixed electric field 

The influence of the magnetic field in the presence of a fixed electric field on the resultant 

moment and axial force is examined here. The electric field is kept fixed as 𝐄∗ = (0,0, 𝐸0
∗ =

1) and strains of 𝛾 = 1.2, 𝜃 =
𝜋

2
 𝑅𝑎𝑑 are applied. The non-dimensional resultant moment and 

axial force are illustrated in Figure 11.a and b, respectively. 

(a) (b) 

  
Figure 11. The effects of different magnetic fields at a constant electric field on a. the moment, and b. the 

force at 20% pre-stretch and π/2 torsion. 

 

It can be observed from Figure 11 that the magnetic field has a prominent effect on both 

the resultant moment and the axial force. It is seen that by increasing the magnetic field 𝐻0
∗ 

from 1 to 30, the non-dimensional resultant moment and axial force are increased 8995.5 % 

and 183.1 %, respectively. It can be concluded that not only the electric field makes the EMRE 

stiffer, but also the magnetic field helps make the EMRE much stiffer. Also, to further illustrate 

the stress state when non-dimensional electric and magnetic fields are varied, 2D contours of 

the non-dimensional stress components for strains of 𝛾 = 1.2, 𝜃 =
𝜋

2
 𝑅𝑎𝑑 are depicted in 

Figure 12. The results show that the stress components vary only in the radial direction. It is 

seen that the stress gradually increases along the radial direction. It is also observed that, since 

both electric and magnetic fields are applied in the z direction, zz is more sensitive compared 

to other stress components. Furthermore, it can be found that the radial and longitudinal stresses 

are more sensitive to magnetic and electric fields, respectively.  
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Figure 12. 2D contours of the stress components in different electric and magnetic fields: a.  𝐸0
∗ = 𝐻0

∗ = 0, 

b. 𝐸0
∗ = 𝐻0

∗ = 1, c. 𝐸0
∗ = 1, 𝐻0

∗ = 30, and d. 𝐸0
∗ = 10, 𝐻0

∗ = 1.  

 

3.3.3 The effect of magnetic field on the relaxation behavior in the presence of a fixed 

electric field 

Finally, the effects of the non-dimensional magnetic field in the presence of the fixed 

electric field 𝐄 = (0, 0, 𝐸0
∗ = 1) and strains of 𝛾0 = 1.2, 𝜃0 =

𝜋

2
 𝑅𝑎𝑑 are investigated. The 

/

(a)

(b)

(c)

(d)

( )rr − ( )z − ( )zz −
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results are depicted in Figure 13.a and b for non-dimensional resultant moment and axial force, 

respectively.  

(a) (b) 

  
Figure 13. The relaxation behavior in terms of a. the moment, and b. the force at 20% pre-stretch and π/2 

twist angle in the different magnetic fields at the constant electric field 𝐸0
∗ = 1. 

 

The results presented in Figure 13.a and b show that increasing the magnetic field increases 

both the resultant moment and the axial force and finally makes the EMRE stiffer. It is seen 

that by increasing the non-dimensional magnetic field from 1 to 30, the non-dimensional 

relaxed resultant moment and relaxed axial force increase around 164.6 % and 8694.4 %, 

respectively.  

4 Summary and conclusion 

The main objective of this paper was to develop a 3D generalized constitutive model to 

replicate the electro-magneto-visco-hyperelastic behavior of EMREs. Considering a nominal 

Helmholtz free energy density function depending on the electric, magnetic and strain loading, 

the total Cauchy stress components were derived. Also, in order to consider time-dependency 

of the EMERs, the total Cauchy stress under large deformations was derived by adopting the 

linear viscoelastic theory. The visco-hyperelastic and electric parts were calibrated using 

experimental data. Due to the lack of appropriate experiment data to calibrate the magnetic part 

of the model, it was successfully non-dimensionalized eliminating the magnetic parameters. 

As EMREs are commonly used in a cylindrical shape to produce actuating forces and moments, 

a boundary-value problem of EMRE cylinder under torsion-extension at finite deformation 

range was developed and solved semi-analytically. The solution accuracy was verified by 

comparing the results with those from a developed FEM for the purely mechanical loading 

(i.e., visco-hyperelastoc behavior of EMREs). In a series of parametric studies, the cylinder 
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was loaded by applying simultaneously uniaxial stretch and twist, and the resultant moment 

and axial force as well as the relaxation and creep behaviors were examined under different 

mechanical, electric and magnetic loads in detail. It was shown that EMREs have adaptive 

stiffness capability and great potential in mechanical/biomedical applications like adaptive 

actuators especially when their stiffness needs to be controllable.  
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Appendix 

To establish Eqs. (16.2) and (16.3) (i.e., electric and magnetic induction vectors), the 

derivatives of the principal invariants with respect to the electric field and magnetic field in the 

references configurations can be obtained based on the non-linear electro-magneto-mechanics 

as: 
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Analogous to the above relations, the explicit form of the total Cauchy stress is obtained as: 
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