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Abstract 
 

Type 2 diabetes (T2D) is a chronic metabolic disorder where failure to maintain normal 

glucose homeostasis is associated with, and exacerbated by, obesity and the concomitant 

elevated free fatty acid (FFA) concentrations typically found in these patients (Olokoba et 

al 2012). 463 million people are currently estimated to be living with diabetes, of which 

229 million are undiagnosed. Importantly, around 90% of all cases are T2D cases. 

Hyperglycaemia and hyperlipidaemia together contribute to a decline in pancreatic 

insulin-producing beta cell (β-cell) mass through activation of pro-inflammatory signalling 

pathways. Glucolipotoxicity (GLT) is the term given to the combined and damaging effect 

of increased glucose and FA levels on pancreatic β-cells (Poitout et al 2010). There are 

however a large number of molecules potentially able to modulate these pro-

inflammatory pathways, and the mechanism(s) by which GLT induces inflammation 

remains poorly defined.  

Utilising Illumina HiSeq next generation sequencing technology, I have analysed the β-cell 

transcriptome to identify those genes and proteins most sensitive to high glucose and FA 

environment. Data shows that of those molecules potentially able to activate 

inflammatory pathways, the S100 family of proteins are amongst the most highly 

upregulated by GLT. Independent PCR and immunoblot analysis have further confirmed 

upregulation of the three most highly expressed family members, namely S100A3, A4 and 

A5. Importantly, my data has established a link between S100A4 and NF-κB activation that 

is driven by glucose and FAs.  

In order to determine wider mechanisms involved in the activation of NF-κB by S100A4, 

predictive pathway interaction maps have been generated for S100A4 based on the 

RNAseq data. This approach has uncovered a potentially novel interaction with a pro-

inflammatory transcription factor not previously associated with T2D, HIF-1α, thereby 

establishing a link between inflammation and hypoxia, and by extent, between T2D and 

cancer. This provides a valuable strategy that can be further exploited to discover novel 

potential targets for therapeutic intervention in the treatment of T2D.  
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CHAPTER 1. Introduction 
 

1.1 Diabetes 

 

Diabetes mellitus (DM) describes a collection of metabolic disorders characterised by 

decreased insulin sensitivity and subsequent high blood glucose levels, known as 

hyperglycaemia. People with diabetes have an increased risk of developing a number of 

serious life-threatening health complications resulting in high medical care costs, 

decreased quality of life and increased mortality (Baena-Díez et al. 2016).  

 

1.1.1 Epidemiology 

 

For the past 20 years, the International Diabetes Federation (IDF) has been measuring the 

prevalence of diabetes in order to produce estimates of its global burden and its impact 

nowadays, and predict figures for 2045 (Cho et al. 2018). It was estimated that in 2019 

there were 463 million people (aged 18-99 years) with diabetes worldwide. It is important 

to note that almost half of all people (49.7%) living with diabetes are undiagnosed. 

(Michelstown cohort, University College Cork). Alarmingly, these figures are expected to 

rise to 700 million by 2045 (IDF).  

In 2017, approximately 5 million deaths of people in the 18-99 years age range worldwide 

were attributable to diabetes. Increased life expectancies have contributed significantly 

to this exponential rise, with diabetes now constituting the cause of almost 10% of global 

mortality (Cho et al. 2018). Diabetes has rapidly gained positions in the ranking of causes 

of death worldwide: in the year 2000 it was not included in the top 10 causes, whereas in 

2017 it has ascended to the sixth position, although still behind heart and pulmonary 

diseases, cancers and dementias (World Health Organisation, WHO).  

 

1.1.2 Health and economic consequences of diabetes 

 

People with diabetes have an increased risk of developing a number of health problems. 

Consistent high blood glucose levels can lead to serious diseases, mostly affecting the 
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cardiovascular system and the peripheral and autonomic nervous systems. Importantly, 

around two thirds of people suffering from diabetes die from cardiovascular disease (CVD) 

(Low Wang et al. 2016); diabetes is the most frequent cause of severe chronic kidney 

disease, and is the leading cause of end-stage renal disease in western countries 

(Shahbazian et al. 2013). Furthermore, diabetes is the leading cause of blindness globally 

as a consequence of diabetic retinopathy (Lee et al. 2015), and the leading cause of lower 

limb amputation due to diabetic nephropathy and a combination of other conditions 

(Narres et al. 2015). The mechanisms leading to these diabetic comorbidities will be 

detailed in section 1.2.2. 

The global healthcare expenditure on people with diabetes aged 18-99 was estimated to 

be US dollars 850 billion in 2017 and is expected to increase by 7% to US dollars 958 billion 

by 2045 (Cho et al. 2018). The diabetes prevalence estimates, together with the deaths 

attributable to diabetes and healthcare expenditure associated to it, present a large 

social, financial and health system burden worldwide, which needs to be addressed 

urgently. 

 

1.1.3 Types of diabetes and current treatments  

 

Diabetes is classified according to etiological type. There are four main groups: 

a) Type 1 Diabetes (T1D) 

T1D is an auto-immune condition, characterised by the destruction of the insulin 

producing pancreatic β-cells, due to the development of islet autoantibodies. It accounts 

for between 5-10% of all diabetes cases (IDF). T1D commonly originates in childhood or 

adolescence although it can appear at any age. Signs and symptoms of the severe insulin 

deficiency and hyperglycaemia characteristic of T1D include polydipsia (increased thirst), 

polyphagia (increased appetite), polyuria (increased urination), weight loss, and fatigue 

(Kahanovitz et al. 2017). Treatments for T1D include insulin therapy and pancreas or islet 

transplantation. In the case of insulin therapy, T1D patients need daily insulin injections 

in order to control their blood glucose levels. Failure to do so will lead to death 

(International Diabetes Federation). 
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b) Type 2 Diabetes (T2D) 

T2D is the most common form of diabetes, accounting for 80% to over 95% of cases, and 

has an increasing prevalence worldwide (Dardano et al. 2014). It usually appears in people 

over the age of 40. In fact, T2D used to be called adult-onset diabetes; however, the 

number of children being diagnosed with T2D has rapidly increased in the last 20 years, 

an observation that correlates with a striking increase in both the prevalence and the 

degree of obesity in children and adolescents in many populations (Han et al. 2010, 

Pulgaron et al. 2014). T2D is a metabolic disease characterised by chronic hyperglycaemia 

secondary to insulin resistance (IR) (Rojas et al. 2018). Development of T2D is affected by 

genetic and/or environmental factors, including lifestyle habits such as high fat diet and 

lack of exercise; this leads to decreased insulin secretion or IR, resulting in insufficient 

insulin effect. Symptoms include frequent and abundant urination, tingling in limbs and 

tiredness or lack of energy (International Diabetes Federation).  Risk factors for the 

development of T2D include weight, inactivity, family history and having been born to a 

mother with gestational diabetes (Mayo Clinic). T2D also used to be called non-insulin 

dependent diabetes, as treatment doesn’t include insulin therapy. Instead, people with 

T2D can often initially manage their condition through exercise and diet. However, over 

time most people will require administration of drugs such as metformin, for its anti-

hyperglycaemic properties but also for its ability to improve endothelial dysfunction, 

oxidative stress, insulin resistance, lipid profiles and fat redistribution (Rojas et al. 2013). 

If a treatment based on changes in the diet and oral medication is insufficient, insulin 

injections might be necessary. 

c) Gestational Diabetes Mellitus (GDM) 

Gestational diabetes is a form of diabetes consisting of high blood glucose levels during 

pregnancy, affecting 5-20% of pregnant women (Diabetes UK). GDM usually arises in the 

second or third trimester, and the reasons include an increase in hormones produced by 

the placenta, together with an increase in sexual hormones, in particular oestrogen, 

progesterone, and cortisol, that contribute to a disruption of the glucose-insulin balance, 

leading to IR (Alfadhli 2015). In addition, increased maternal adipose deposition, 

decreased exercise, and increased caloric intake contribute to this state of glucose 

intolerance. Glucose metabolism disorders often return to normal after delivery but there 

is an increased risk in developing T2D, metabolic syndrome and CVD in the future for the 

mother, and an increased risk of developing T2D in the child. Approximately half of the 
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women with a history of GDM develop T2D within five to ten years after delivery (Herath 

et al. 2017). Methods to decrease the risk of pregnancy-related health issues in women 

suffering from GDM includes controlling blood sugar levels through changes in the diet 

(for example by increasing the intake of low glycaemic index foods to avoid peaks of 

insulin) and increased physical activity, and if this can’t be achieved, medication or insulin 

injections may be required (National Health Service, NHS).  

d) Other types of diabetes include: 

 Maturity Onset Diabetes of the Young (MODY) includes several disorders caused by 

monogenic defects in β-cell function (Schober et al. 2009). It is caused by a mutation 

in a single gene, which is inherited in an autosomal dominant pattern. Hyperglycaemia 

appears at an early age (generally before age 25 years). This single-gene mutation 

impacts the ability of the pancreatic β-cells to produce or secrete insulin, with minimal 

or no defects in insulin action (American Diabetes Association 2017).  

 Neonatal Diabetes, a form of diabetes diagnosed under the age of 6 months. It differs 

from T1D in that it is not an autoimmune condition (Diabetes UK). 

T2D, accounting for 80% to over 95% of all the diabetes cases, is the primary focus of this 

research.  

 

1.2 Type 2 Diabetes 

 

Global prevalence of T2D is rapidly growing as a consequence of lifestyle changes, 

urbanization and population aging (Chen et al. 2012). There is a strong social correlation 

between the incidence of T2D and a dramatic shift towards sedentary lifestyle in the last 

decades (Blas et al. 2010). This includes higher exposure to obesogenic environments, 

such as lower levels of physical activity and the consumption of excess calories, starting 

from young ages, which can lead to other complications including obesity and CVD. 

Consequently, recently more and more children are being diagnosed with T2D (Pulgaron 

et al. 2014). 
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1.2.1 Etiology of T2D 

 

The prevailing theory for the pathogenesis of T2D describes it as a multifactorial disease, 

arising from a combination of the presence of T2D risk alleles in various genes, causing 

defective insulin secretion and insulin response, together with certain environmental 

factors including westernized food patterns, obesity, and sedentary lifestyle. This will be 

discussed in more detail below. 

a) Heritability 

Extensive evidence supports the principle of inherited genetic susceptibility as an 

important risk factor for the development of T2D. Importantly, different studies propose 

ranging contributions of heritability to the pathogenesis of T2D between 25% and 80%, 

evidencing that there is still a lot of research to be conducted regarding this aspect of the 

disease (Prasad et al. 2015). In any case, it has been seen that the method of genetic 

transmission of these risk alleles does not follow simple Mendelian patterns (Murea et al. 

2012). Moreover, certain ethnic groups have a higher risk of developing T2D, independent 

of metabolic risk factors profiles. These include Hispanics, African Americans, Pacific 

Islanders, and American Indians. Possible reasons for ethnic differences in susceptibility 

to T2D could be either shared or unique cultural, environmental and genetic effects 

(Murea et al. 2012). 

While the major environmental factors are well known, identification of the genetic 

factors has been a challenge. However, recent years have seen an explosion in the 

identification of genetic variants in risk and protection of T2D, thanks to the development 

of throughput technology that has allowed for genome-wide association studies (GWAS) 

and next-generation sequencing (NGS) (Prasad et al. 2015). While each identified variant 

explains only a very small proportion of the risk of T2D in the human population, they 

have greatly contributed to our understanding of disease pathogenesis (Prasad et al. 

2015). Most of the T2D risk alleles identified correspond to genes that have an impact on 

glucose stimulated insulin secretion, including adenylate cyclase 5 (ADCY5), forkhead box 

O1 (FOXO1), glucokinase (GCK), insulin like growth factor 2 mRNA binding protein 2 

(IGF2BP2) and serum/glucocorticoid regulated kinase 1 (SGK1), amongst others (Imamura 

et al. 2011). By 2011, GWAS had identified nearly 52 common risk variants that associate 

with T2D (Wheeler et al. 2011). Importantly, in the following years, advances in 

technology has allowed this number to increase to 153 risk variants, associated to more 
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than 120 loci (Prasad et al. 2015). Together, these genes comprise only 10% of the 

estimated heritability in T2D, suggesting that substantially larger association studies are 

needed to identify most T2D loci in the population. Consequently, the concept of "missing 

heritability" emerged along with novel hypotheses for the presence of other genetic 

determinants such as common copy number variations, or the interplay of different 

factors (epistasis, gene-environment interaction), to account for the unexplained 

heritability (Eichler et al. 2010).  

Two trends have recently emerged from the study of T2D genetics. The first one evidences 

that T2D genetic architecture is likely polygenic and characterized by many loci detectable 

only in hundreds of thousands of samples, arguing that much larger collections of genetic 

data will be necessary to discover disease-relevant variants in the population. The second 

trend states that the increasing number of genes and/or processes linked to T2D will only 

increase the diversity of approaches necessary to translate these associations to 

mechanistic insight, although common resources and workflows have begun to emerge 

(Flannick et al. 2016). 

More recently, GWAS were used to identify a genetic risk score that establishes the 

strongest association with T2D status in a population-based cohort, revealing that the 

genetic risk score had the potential to improve the accuracy of T2D risk prediction when 

added to alternative set of predictors (Lall et al. 2016). 

b) Environment 

Sedentary lifestyles and high-fat diets are behavioural factors that contribute to the high 

prevalence of T2D. The incidence of obesity among children has increased dramatically in 

recent decades, with about one-third of children in the USA currently being either 

overweight or obese (Pulgaron et al. 2014). Research has shown that youth who do not 

meet guidelines for dietary behaviour and physical activity have greater IR than those who 

do meet the guidelines (Huang et al. 2011). Moreover, it has been shown that lifestyle 

interventions (dietary modification, weight loss and exercise) in overweight adults with 

impaired glucose tolerance achieved 58% decline in the incidence of T2D (Tuomilehto et 

al. 2001). 
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1.2.2 Comorbidities of T2D 
 

T2D is a leading cause of severe morbidities and disabilities worldwide, including 

blindness, chronic renal impairment, CVD and lower limb amputation. A study by Jelinek 

et al. reveals that at least one diabetic complication was present in over 80% of the 

investigated diabetic cohort, and that two or more complications were present in 50% of 

the studied population, with diabetic retinopathy being the most common single 

complication, followed by  CVD (Jelinek et al. 2017). 

a) Diabetic retinopathy (DR) 

Diabetic retinopathy is one of the major microvascular complications of diabetes. It is 

currently the leading cause of blindness among adults in the western world, especially in 

patients who have had diabetes for a longer time (Chang et al. 2013). DR is characterised 

by the appearance of vascular and retinal lesions caused by chronic exposure to high 

blood glucose concentrations. Furthermore, it is well known that dyslipidemia is a major 

risk factor for the development of DR. For instance, van Leiden et al. reported that total 

levels of cholesterol and triglycerides, as well as body mass index (BMI),  contribute to the 

development of DR regardless of the glycaemic levels (van Leiden et al. 2002). 

b) Cardiovascular disease (CVD) 

Another common complication associated with T2D is CVD, which constitutes the main 

cause of death and disability among T2D patients: about two-thirds of deaths in people 

with diabetes are due to CVD, of which approximately 40% are from ischemic heart 

disease, 15% from congestive heart failure, and about 10% from stroke (Low Wang et al. 

2016). T2D patients typically have higher atherosclerotic plaque formation, higher 

atheroma volume and smaller coronary artery lumen diameter than non-diabetic 

individuals (Nicholls et al. 2008). There is also abundant epidemiologic data that supports 

an association between hyperglycaemia and increased cardiovascular risk (Elley et al. 

2008, Eeg-Olofsson et al. 2010), by which hyperglycaemia attenuates endothelial function 

and lowers nitric oxide (NO) bioavailability (Williams et al. 1998) while increasing 

endothelial cell leukocyte adhesion (Perkins et al. 2015) mediated in part by increased 

oxidative stress and inflammation. IR has also been associated with increased 

cardiovascular risk (Ferrannini et al. 2007). People with IR have higher rates of 

hypertension, dyslipidemia and impaired glucose tolerance (Eddy et al. 2009), which 

contribute to development, progression, and complexity of atherosclerosis. 
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c) Diabetic nephropathy (DN) 

DN, characterised by the presence of protein in urine (proteinuria), is one of the most 

serious long-term microvascular complications of T2D. It occurs in 20% to 40% of all 

diabetics (Gheith et al. 2016) and is responsible for a significant decline in their life 

expectancy (Ritz et al. 1999). DN is the leading cause of chronic kidney disease  and end-

stage renal disease, which constitutes the major workload of dialysis centres worldwide 

(Aldukhayel 2017).  

d) Diabetic foot ulceration and limb amputation 

Diabetic foot ulceration is a serious complication of T2D worldwide and the most common 

cause of hospitalization in diabetic patients (Volmer-Thole et al. 2016). The feet of 

diabetic patients are susceptible of developing a broad spectrum of clinical conditions, 

collectively known as diabetic foot syndrome (Frykberg et al. 2006), resulting from the 

combination of several diabetes-related complications. Feet deformity secondary to 

motor neuropathy, together with loss of protective sensation and impaired vision from 

diabetic retinopathy , increase the risk for minor feet trauma, leading to the appearance 

of diabetic foot ulcers (Reiber et al. 1999). Furthermore, impaired immunity related to 

chronic hyperglycaemia and subsequent infections will result in septic diabetic foot 

(Nather et al. 2008), which constitute over 90% of nontraumatic lower limb amputations 

(Tiwari et al. 2012). 

e) Other complications 

Other comorbidities of T2D also related to high blood glucose levels include slow wound 

healing (cuts and blisters can become serious infections if left untreated), hearing 

impairment, skin conditions (bacterial and fungal infections), sleep apnea (which can 

result in higher blood pressure), hypertension, Alzheimer’s disease and diabetic 

neuropathy, which can also lead to impotence (Mayo Clinic). 

 

1.2.3 Prevention of T2D 

 

T2D incidence is increasing worldwide, driven by a rapidly changing environment and 

lifestyle, leading to increasing rates of overweight and obesity. In the fight against 

diabetes, prevention is key and must be a central focus for health policy and government 
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action, where programs based on lifestyle modification, mainly focusing on diet and 

physical activity, should provide a cost-effective opportunity to target overweight, high-

risk individuals (Tuomilehto et al. 2001). 

Prevention of weight gain and/or successful long-term weight loss maintenance seems 

the easiest way to prevent development of T2D (Liu et al. 2015). Three successful long-

term intervention programs, the US Diabetes Prevention Program, the Finnish Diabetes 

Prevention Study, and the Chinese Da Qing Study, support the use of low-fat- and low-

carbohydrate-based diets for successful weight loss maintenance and for T2D prevention 

(Liu et al. 2015). However, in recent years, some, mostly developed, countries are focusing 

on novel dietary approaches based on the recognition that macronutrient quality and 

source, together with avoidance of processed foods (particularly processed starches and 

sugars), are more important considerations (Franz et al. 2017). 

The importance of nutrition in the management and prevention of T2D is clear. However, 

nutrition is also one of the most controversial and difficult aspects to manage. Firstly, 

diabetic patients’ adherence is at stake, as it is a psychologic challenge to be “on a diet” 

for life. These patients might be consistent for the initial stages but struggle to maintain 

a healthy diet for longer periods. Secondly, most physicians are not trained in nutrition 

interventions, constituting a barrier to counselling patients (Kahan et al. 2017). Although 

progress has been made in understanding the best dietary advice for diabetes, broader 

problems exist. For instance, most dietary guidelines recommend increasing vegetable 

and fruit intake and decreasing consumption of highly processed foods, but the high cost 

of the former and the lower cost of the latter makes it hard for people to choose the 

healthy option in many situations.  

The other point of focus in the prevention and management of T2D is physical activity. 

Abundant evidence shows that physical activity improves glycaemic control and decreases 

the risk of CVD and mortality in patients with T2D by increasing insulin sensitivity and 

glucose uptake in tissues like skeletal muscle (Hamasaki 2016, Short 2013). With regards 

to its prevention, the US Diabetes Prevention Program randomly assigned a cohort of 

3234 individuals with impaired glucose tolerance to one of three interventions: standard 

lifestyle recommendations plus metformin treatment, standard lifestyle 

recommendations plus placebo, or an intensive program of lifestyle modification 

involving walking and moderate physical activity. Results indicated that the intensive 
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program of lifestyle intervention was the most effective program, decreasing the 

incidence of diabetes by 58% after a 2.8-year follow-up (Knowler et al. 2002). 

 

1.2.4  Phases and diagnosis of T2D 

 

T2D has a slow onset, progressing from an early asymptomatic stage with IR, to mild 

postprandial hyperglycaemia, to T2D requiring pharmacological intervention. 

Understanding the progression of diabetes is essential for effective and specific diagnosis 

and subsequent treatment for each stage of the disease. 

a) Phases 

Pre-diabetes, defined as a stage in which blood glucose concentrations are higher than 

normal but lower than the diabetes threshold, represents a high-risk state for diabetes 

and CVD development (American Diabetes Association 2017). It comprises three groups 

of individuals, constituting three different diagnostic criteria: Those with impaired fasting 

glucose (100–125 mg/dL), those with impaired glucose tolerance (140–199 mg/dL at 2 

hours postprandial) and those with elevated levels of glycated haemoglobin (HbA1c) (39-

46 mmol/mol) (Di Pino et al. 2016, Wu et al. 2017). Subjects with pre-diabetes have shown 

a high conversion rate to T2D (Knowler et al. 2002). Diagnosis of pre-diabetes and early 

intervention are therefore essential to prevent or delay the development of the disease 

and its complications. 

Several studies support the observation that pre-diabetes is a risk factor for diabetes 

(Morris et al. 2013), CVD (Huang et al. 2016) and even cancer (Huang et al. 2014). 

However, little is known about the risk factors that trigger transition from pre-diabetes to 

T2D. A recent study by Wu et al. shows that critical factors determining this transition 

include poor metabolic health and increased BMI  (Wu et al. 2017). There is extensive 

evidence, however, that shows that this transition comes accompanied by progressive 

loss of β-cell mass and function (Seino et al. 2010), and consequently impaired insulin 

secretion together with insulin deficiency with or without IR (Babu et al. 2006). 

The presence of IR is considered to be an early primary defect in the progression towards 

T2D. It is characterised by an insufficient response of different tissues to a given 

concentration of insulin and by the consequent inability to induce glucose uptake and 

utilisation in these tissues (Kim et al. 2008).  
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b) Diagnosis 

Historically, the diagnosis of diabetes was based on fasting blood glucose levels of higher 

than 7mmol/L, any blood glucose levels above 11.1mmol/L, or an abnormal glucose test. 

However, this has now been modified to include levels of glycated haemoglobin (HbA1c) 

(Seino et al. 2010). According to guidelines outlined by the WHO, levels of HbA1c below 

42mmol/L indicate that a person is non-diabetic; levels between 42-47mmol/L indicate 

pre-diabetes, and levels higher than 48mmol/L indicate presence of T2D.  

However, these traditional markers of glucose homeostasis may not be conclusive, and 

their use may be biased by several clinical and analytical factors. Moreover, not all 

subjects with pre-diabetes develop T2D, and conversely, a significant number of patients 

progress to T2D without going through prediabetes (Unwin et al. 2002). For these reasons, 

there is growing interest in new serum biomarkers of hyperglycemia to be used as 

alternatives or in conjunction with traditional measures to identifying subjects at risk for 

T2D and CVD (Di Pino et al. 2016). The most successful candidate so far is the monitoring 

of one-hour post-load glycaemia, which also provides physiopathological information, 

since it presents a strong correlation with markers of β-cell function, insulin secretion and 

insulin sensitivity (Bianchi et al. 2013). 

 

1.2.5 Physiology of the pancreas and pancreatic β-cell homeostasis 

 

The pancreas is a secretory organ, located at the rear of the abdomen, and is divided into 

head, body and tail (Röder et al. 2016). This organ is unique in that it possesses both 

endocrine and exocrine functions: it is made up of 95% exocrine tissue and is therefore 

considered to be an exocrine gland, but it is also made up of 5% endocrine tissue (Das et 

al. 2014).   

Exocrine cells secrete pancreatic juice containing digestive enzymes (mainly amylase, 

pancreatic lipase and trypsinogen) into the pancreatic duct, which connects the pancreas 

to the duodenum. In contrast, pancreatic hormones (mainly insulin and glucagon) are 

released in an endocrine manner, directly into the bloodstream. The endocrine tissue 

component is made up of several types of cells, which are clustered together forming 

micro-organs known as islets of Langerhans. These islets are distributed throughout the 

pancreas, making up 2-3% of the total pancreatic mass (Striegel et al. 2015). They consist 
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of around 30% glucagon-producing α-cells and 60% insulin-producing β-cells. The 

remaining 10% is made up of δ-cells (somatostatin-producing), γ- or PP cells (pancreatic 

polypeptide-producing), and ε-cells (ghrelin-producing) (Ionescu-Tirgoviste et al. 2015). 

Both insulin and glucagon play pivotal roles in maintaining glucose homeostasis. Together, 

these hormones tightly regulate blood glucose concentrations to avoid prolonged hyper- 

or hypoglycaemia. In order to do this, insulin is secreted by β-cells when blood glucose 

levels are high, in that way inhibiting glycogenolysis (the breakdown of glycogen into 

glucose), gluconeogenesis (de novo hepatic glucose synthesis), lipolysis (the breakdown 

of lipids into glycerol and fatty acids -FAs-) and ketogenesis (the breakdown of FAs and 

ketogenic amino acids like Leucine and Lysine into ketone bodies). On the other hand, 

when blood glucose levels are low, glucagon is secreted by α-cells, thereby stimulating 

those same processes (Robertson et al. 2007). 

This tight control is regulated by the balance between glucose absorption from the 

intestine, production by the liver and uptake and metabolism by peripheral tissues such 

as muscle and adipose tissue (AT). A dysregulation of this tight mechanism leads to 

pathologic conditions, in particular to DM (Kahn et al. 2006)   

In adults in normal physiological conditions, β-cells have an estimated life-span of 

approximately 60 days, after which they undergo programmed cell death (apoptosis) 

(Bonner-Weir 2000). These β-cells are replaced through 2 different processes: replication 

(proliferation) of existing β-cells, and neogenesis of new β-cells derived from progenitor 

cells that bud from the ducts of the exocrine pancreas. This balance is crucial for the 

maintenance of glucose homeostasis, as the ability of the pancreas to produce enough 

insulin to meet the body’s requirements depends on the presence of the appropriate 

amount of β-cells (Sone et al. 2005).  

β-cell replication and survival is regulated by a combination of factors, including nutrients 

(especially glucose and free fatty acids -FFAs-) (Oh 2015), insulin and other growth factors 

such as insulin growth factor 1 (IGF1), incretin hormones such as glucagon-like peptide 1 

(GLP1) and transcription factors such as pancreatic duodenal homeobox1 (PDX1) 

(Prasadan et al. 2016). The role of each of these factors on the fate of β-cells is described 

below. 

 

 



32 
 

a) Nutrients 

Glucose and FFAs are two main nutrients in energy metabolism and are of particular 

interest in β-cell equilibrium. Controlled increased levels of these nutrients have been 

seen to increase β-cell viability and function. However, chronic hyperglycaemia and 

hyperlipidemia will induce glucotoxicity and lipotoxicity respectively (detailed in section 

1.3), impairing glucose and lipid metabolism and leading to β-cell damage (Halban et al. 

2014).  

i. Glucose 

Both in vivo and in vitro studies have shown that controlled levels of glucose stimulate β-

cell proliferation: mice and young rats subjected to glucose infusion for a short time (24-

48 hours) exhibited increased β-cell mass (Alonso et al. 2007, Assefa et al. 2014) due 

mainly to the rapid activation of neogenesis of new endocrine cells and suppression of β-

cell apoptosis (Bernard et al. 1999). The same effect was seen in the rat insulinoma 

pancreatic β-cell line INS-1 (Hügl et al. 1998), and in human islets (Maedler et al. 2006). 

The mitogenic effect of glucose is associated with its ability to induce insulin secretion. 

Insulin is a strong proliferation inducer in some cell types, including pancreatic β-cells 

(Movassat et al. 1997). In vitro, glucose induces cell survival and proliferation through 

modulation of intracellular signalling molecules of the insulin signalling pathway, 

including insulin receptor substrate 2 (IRS2), phosphatidylinositol 3 kinase (PI3K), protein 

kinase B (PKB), glycogen synthase kinase (GSK3), extracellular signalling related kinase 

(ERK1/2), and mammalian target of rapamycin (mTOR) (Figure 1.1) (Srinivasan et al. 2002, 

Demozay et al. 2011, Oh 2015). Another mechanism responsible for the survival and 

proliferation of β-cells is the glucose dependent β-cell membrane depolarisation and 

subsequent Ca2+ influx: increased glucose uptake results in increased ATP production from 

glycolysis, shifting the ATP/ADP ratio. This causes the ATP-sensitive K+ channels to close, 

depolarising the membrane and causing the Ca2+ channels to open, resulting in increased 

Ca2+ influx from the cytosol. This increase in intracellular Ca2+ levels induces activation of 

calcineurine, a calcium-dependent phosphatase, which interacts with nuclear factor of 

activated T-cells (NFAT), promoting the expression of cell-cycle regulators and increasing 

β-cell proliferation (Figure 1.1). Accordingly, mice with a β-cell specific deletion of the 

calcineurine phosphatase regulatory subunit, calcineurin b1 (Cnb1) developed age-

dependent diabetes, characterised by decreased β-cell proliferation and mass, diminished 

pancreatic insulin content and hypoinsulinemia (Heit et al. 2006). 



33 
 

 

Figure 1.1: Mitogenic effect of glucose. Glucose-induced plasma membrane depolarisation and 

subsequent Ca2+ influx induces activation of calcineurin, which interacts with NFAT and promotes 

expression of cell cycle regulators. Glucose also induces insulin secretion from the pancreas, which 

acts on insulin receptors on target tissues, causing autophosphorylation of the insulin receptor, 

which serves as docking sites for IRS1 and IRS2, which get phosphorylated. These serve as docking 

sites for GRB2, which activates ERK1/2 cascade leading to cell differentiation, proliferation and 

survival. IRS1 and IRS2 also serve as docking site for PI3K and its adaptor, PDK1. They recruit PKB 

to the membrane and phosphorylate it. Activation of PKB induces phosphorylation and inactivation 

of FOXO1, thereby activating PDX1 and cell proliferation. PKB also induces mTOR-mediated protein 

synthesis, as well as phosphorylation and inactivation of GSK3, thereby promoting glycogen 

synthesis. Finally, activated PKB also induces GLUT4 transporter translocation to the plasma 

membrane, allowing glucose uptake (Boucher et al. 2014). Abbreviations: ERK1/2 extracellular 

signalling- related kinase 1/2; FOXO1 forkhead box protein O1; GLUT4 glucose transporter 4; GSK3 

glycogen synthase 3; GRB2 growth factor receptor-bound protein 2; INS insulin; IR insulin receptor; 

IRS1, IRS2 insulin receptor substrate 1, 2; mTOR mammalian target of rapamycin; NFAT nuclear 

factor of activated T-cells; PDK1 protein kinase 3-phosphoinositide dependent protein kinase-1; 

PDX1 pancreatic duodenal homeobox 1; PI3K phosphatidylinositol 3-kinase; PKB protein kinase B. 

 

ii. Free fatty acids 

FFAs also play an important role on β-cell mass regulation. Acute exposure to FFAs 

stimulates insulin secretion and β-cell proliferation, while prolonged exposure decreases 
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glucose-stimulated insulin secretion and induces IR and β-cell dysfunction in both animal 

human models (Sharma et al. 2014).  

Increased enteric nutrient supply, especially in the form of fats, induces β-cell mass 

proliferation through two processes. The first one is by modulating insulin release through 

FA metabolism (Röder et al. 2016), and the second one is through increased production 

of incretin hormone GLP1 (Perfetti et al. 2000). 

The binding of long-chain FFAs such as oleic acid (18:1 cis-9, OA) to the G-protein-coupled 

free fatty acid receptor 1 (FFAR1) in β-cells leads to the activation of phospholipase C 

(PLC). PLC then hydrolyses phosphatidylinositol-4,5-bisphosphate (PIP2) into 

diacylglycerol (DAG) and inositol-1,4,5-triphosphate (IP3). IP3 then docks on a calcium 

channel in the endoplasmic reticulum (ER), inducing the release and subsequent increase 

of Ca2+ concentration in the cytosol. This eventually triggers insulin secretion, which then 

acts as a mitogenic agent, increasing β-cell proliferation and survival, as well as β-cell 

function, ultimately increasing β-cell mass as described in Figure 1.1 (Itoh et al. 2003, 

Fujiwara et al. 2005) (Figure 1.2). 

 

Figure 1.2: Effect of FFAs on β-cell mass regulation. OA binds to FFAR-1 in β-cells, leading to the 

activation of PLC, which hydrolyses PIP2 into DAG and IP3. IP3 then docks on a calcium channel in 

the ER and induces release and subsequent increase of Ca2+ concentration in the cytosol, which 

triggers insulin secretion from β-cells. Abbreviations: DAG diacylglycerol; ER endoplasmic 

ER 

FFAs 
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reticulum; FFAs free fatty acids; FFAR1 free fatty acid receptor 1; INS insulin; IP3 inositol-1,4,5-

triphosphate; PIP2 phosphatidylinositol-4,5-bisphosphate; PLC phospholipase C.  

 

b) Incretin hormones 

GLP1 is an incretin hormone secreted by the intestine after glucose and FA ingestion, 

which activates several processes in the pancreas, including glucose-stimulated insulin 

secretion and β-cell growth and survival. It mediates activation of the pancreas-

duodenum homeobox-1 PDX1 gene, which encodes a transcription factor whose 

expression is essential for the regulation of genes associated with pancreatic cell 

differentiation and maturation (Li et al. 2005). A study reveals that PDX1+/− mice exhibit 

progressive glucose intolerance in association with defective glucose-stimulated insulin 

secretion  (Brissova et al. 2002), whereas restoration of PDX1 expression in experimental 

models of murine diabetes enhances β-cell function and expands β-cell mass (Kushner et 

al. 2002). Apart from inducing PDX1 expression, GLP1 also mediates β-cell proliferation 

through transactivation of the epidermal growth factor receptor (EGFR) and subsequent 

activation of the PI3K signalling pathway (Buteau et al. 2003). 

c) Insulin and growth factors 

Insulin and insulin-like growth factors 1 and 2 (IGF1 and IGF2) also play an important role 

in the regulation of β-cell homeostasis. IGF1 binds to IGF1 receptor, stimulating its 

intrinsic tyrosine kinase activity, which in turn phosphorylates members of the IRS family. 

Upon phosphorylation, IRS1 and IRS2 activate the PI3K/PKB signalling pathway (Figure 

1.1), subsequently activating expression of PDX1 (Fujimoto et al. 2009). An in vitro study 

using mouse insulinoma MIN-6 cells shows that insulin receptor knockdown leads to 

decreased β-cell proliferation (Ohsugi et al. 2005). Furthermore, an in vivo study shows 

that mice with a specific deletion of the β-cell insulin receptor exhibit a progressively 

impaired glucose tolerance and diminished β-cell mass (Otani et al. 2003). Moreover, 

animal models deficient in IRS2 develop T2D because of failed β-cell compensation 

(Withers et al. 1998). Conversely, it has been seen that increased IRS2 expression 

promotes β-cell replication and prevents diabetes in mice (Hennige et al. 2003). These 

results suggest that IRS2 is essential for β-cell mass growth and β-cell compensation in 

order to meet the increased insulin demand that arises in the face of peripheral IR. 
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d) Transcription factors and other hormones 

β-cell commitment involves expression of a relatively well-defined hierarchy of 

transcription factors. As mentioned above, PDX1 plays a crucial role for β-cell function, 

regulating the early development and commitment of certain progenitor cells in the 

foregut to form a pancreatic bud (Gu et al. 2002). Other transcription factors involved in 

maintaining β-cell mass and function include neurogenin 3 (NGN3), neuronal 

differentiation factor 1 (NEUROD), paired box 4 (PAX4), NK homeoboxes (NKX2.2, NKX6.1, 

NKX6.2) and MAF BZIP transcription factors (MAFB, MAFA), amongst others, each 

affecting downstream developmental and functional aspects of the endocrine pancreas 

(Prasadan et al. 2016). For instance, lack of NGN3 in mice during development leads to 

the formation of a pancreas without an endocrine component, causing embryos to die 

soon after birth (Jenny et al. 2002). Disruption of NEUROD in mice caused perinatal 

lethality and impaired islet formation and maturation with a significant decline in β-cell 

mass (Naya et al. 1997). Loss of PAX4 expression in mice results in a lack of pancreatic β- 

and δ-cell development, causing death soon after birth due to diabetes (Brink et al. 2001). 

Many other transcription factors regulate the expansion and maturation of β-cells 

specifically. Sussel et al. reported that NKX2.2 mutant mice failed to develop β-cells and 

died soon after birth due to severe hyperglycaemia (Sussel et al. 1998), whereas it was 

also reported that lack of NKX6.1 led to decreased β-cell neogenesis from progenitor cells 

in the embryo, as well as to poor expansion of mature β-cells is adults (Sander et al. 2000). 

The MAF family proteins MAFA and MAFB also play a central role in later development 

and maturation of endocrine cells (Abdellatif et al. 2015). In the embryonic pancreas, a 

significant number of insulin-positive cells express MAFB, and as part of the β-cell 

maturation process, these cells transition from MAFB+/MAFA−/INS+ intermediate cells to 

MAFB−/MAFA+/INS+ mature β-cells, correlating with a high level of PDX1 expression 

(Nishimura et al. 2009).  

Other growth factors have been shown to regulate β-cell growth, survival, differentiation, 

and insulin secretion, including growth hormone (GH), prolactin (PRL), and IGF1, together 

with their receptors (GHR, PRLR, and IGF1R respectively) (Vasavada et al. 2006, Huang et 

al. 2014).  Binding of GH and PRL to their receptor triggers Janus kinase 2 (JAK2) activation, 

resulting in tyrosine phosphorylation of the receptor and subsequent activation of several 

intracellular signalling pathways, including signal transducers and activators of 

transcription (STATs), Ras/ERK, and PI3K/PKB (Waters et al. 2015). This leads to activation 

of cyclin 2, which is essential for β-cell proliferation (Friedrichsen et al. 2003).  
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1.2.6 Pancreatic β-cell compensation, dysfunction and death 

 

Total plasma insulin levels depend on insulin production and secretion by β-cells, which 

in turn depends on the total number of β-cells (β-cell mass) and the output of each of 

these cells (β-cell function) (Chen et al. 2017). 

Over the development of T2D, chronically elevated levels of blood glucose and FAs lead 

to IR. In order to overcome it, β‐cells need to increase insulin secretion in a compensatory 

manner, and this is achieved by an increase of both β‐cell mass and function (Kahn et al. 

1993). Glucose is considered to be the main driving force of increased β-cell mass during 

β-cell compensation. It has been seen that hyperglycaemia leads to increased glycolysis 

in both isolated rat islets and pancreatic INS-1 cells, and subsequent upregulation of Irs2 

expression as a result of increased cytosolic Ca2+ levels (Lingohr et al. 2006). Increased 

IRS2 protein levels and activity triggers a signalling cascade that enhances β-cell 

replication and survival via PI3K/PKB activation (Weir et al. 2007).  

Importantly, obesity plays a very significant role on the progression of the diabetic state: 

it has been shown that obese diabetic patients exhibit a higher degree of IR and 

compensatory hyperinsulinemia that lean diabetic patients (Kahn et al. 2006). In fact, 

several studies have reported that β‐cell mass is generally increased in overweight or 

obese non-diabetic rodent (Flier et al. 2001) and human (Hanley et al. 2010) subjects. 

However, only a small fraction of obese individuals with IR progresses to T2D (LeRoith 

2002), indicating that the determining factor for the development of T2D is not the 

presence of IR, but β-cell dysfunction (Ashcroft et al. 2012). 

β-cell compensation is able to keep glucose levels normalised for a period of time (Kim et 

al. 2008). However, this increased workload puts a lot of stress on β-cells, which will start 

to deteriorate gradually, involving loss of both β‐cell mass and function (Hanley et al. 

2010, Inaishi et al. 2016) (Figure 1.3). β‐cell dysfunction will lead to impaired glucose 

tolerance, which is reflected by the increase in fasting blood glucose in an asymptomatic 

but still potentially pathologic stage characterised by mild hyperglycaemia. The 

progression from this stage to early T2D is marked by a gradual decline in insulin secretion 

secondary to β-cell dysfunction (Fonseca 2009). It is only when β-cell function begins to 

fail, and insulin secretion decreases, that patients show levels of hyperglycaemia high 

enough for T2D diagnosis (Yagihashi 2012). 
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Currently, most clinical treatments of T2D are aimed to elevate insulin levels by increasing 

β-cell function. In the light of a potential exhaustive effect on β-cells, more basic research 

turns to study mechanisms to regenerate β-cell mass or to preserve β-cell function rather 

than increase it (Chen et al. 2017). 

 

 

Figure 1.3: Stressors of the pancreatic β-cell. In the excessive nutritional state characteristic of 

obesity, hyperinsulinemia arises, followed by IR and subsequent hyperglycaemia and 

hyperlipidemia. This increases metabolic load and induces chronic inflammation. The pancreatic 

islet response includes ER stress, oxidative stress, inflammatory stress and metabolic stress 

(glucolipotoxicity), leading to loss of islet cell integrity. If untreated, these stressors increase with 

time, promoting β-cell dysfunction and ultimately loss of β-cell mass, which marks the onset of 

T2D. Abbreviations: ER endoplasmic reticulum; GLT glucolipotoxicity; IR insulin resistance; T2D 

type 2 diabetes. 

 

β-cell compensation puts an excessive stress on β-cells, leading to failure in metabolism 

regulation and causing chronic exposure of β-cells to increased levels of glucose, FFAs and 

islet amyloid polypeptide (IAPP), as well as cytokines such as interleukin 1 beta (IL1β), as 

described below. This results in oxidative stress or ER stress induction in the β-cell, which 
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leads to the activation of signalling pathways of cell death, resulting in the eventual 

decline of β-cell mass (Ma et al. 2012) (Figure 1.3). 

Accordantly, progressive decline of β‐cell mass through apoptosis is a pathological 

hallmark of T2D. In fact, the extent of β‐cell mass deficit can be used to determine the 

clinical staging of diabetes (Seino et al. 2010): even before the diagnosis of diabetes, more 

than 50% of β‐cells have already disappeared in patients with impaired fasting glucose. In 

the case of overt diabetes, more than 70% of β‐cells appear to be diminished (Butler et 

al. 2003). 

There are many types of cell death. Some of the ones that that modulate survival of 

pancreatic β-cells are apoptosis, autophagy and pyroptosis (Scarlatti et al. 2009, Rojas et 

al. 2018). These are described below. 

a) Apoptosis 

The major cause of β-cell mass loss in models of diabetes is most likely a dramatically 

increased rate of β-cell apoptosis (Butler et al. 2007, Marchetti et al. 2007). As a 

consequence of β-cell dysfunction, diminished insulin signalling through the IGF pathway 

appears to be an important common mechanism leading to decreased PDX1 expression, 

a common feature in states of β-cell failure (Chang-Chen et al. 2008). As described in the 

previous section (1.2.5), insulin/IGF signalling is an important regulator of β-cell 

proliferation through activation of PDX1 expression via the IRS1/IRS2-PI3KPKB pathway 

(Fujimoto et al. 2009) (Figure 1.4A). Proof of this is that deletion of the β-cell insulin 

receptor  in mouse insulinoma MIN6 cells causes a decline in β-cell mass (Ohsugi et al. 

2005), while in vivo disruption of Irs2 in mice leads to β-cell failure due to decreased 

proliferation and an increased rate of apoptosis (Kubota et al. 2000). 

Chronic exposure to high glucose levels can also lead to β-cell apoptosis in a process 

termed glucotoxicity (Jonas et al. 2009), which induces oxidative stress, ER stress, and an 

inflammatory reaction in the β-cell (this will be described in detail in section 1.3.1). 

Chronically elevated glucose levels induce β-cell apoptosis through many mechanisms. 

One of them is through the upregulation of the FAS receptor (FASR), also known as 

apoptosis antigen 1 (APO1), or tumour necrosis factor receptor superfamily member 6 

(TNFRSF6). This is a death receptor, which induces caspase-8 and -3 activation and 

subsequent β-cell apoptosis (Maedler et al. 2001) (Figure 1.4B). A study by Kim et al. in 

MIN6 mouse pancreatic β-cells shows that exposure to chronic high glucose also induces 

β-cell apoptosis through decreased glucokinase (GCK) expression and therefore 
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decreased interaction with the mitochondria, which leads to increased BAX 

oligomerization, cytochrome C release, and caspase-3 activation (Kim et al. 2005). 

Another study using rat pancreatic INS-1 cells reported an increase in glucose-induced 

thioredoxin-interacting protein (TXNIP), a proapoptotic β-cell factor, which came 

accompanied by an increase in caspase-3 expression and activity (Chen et al. 2008). 

Another pathological hallmark of T2D is islet amyloid deposition, which has been linked 

to β-cell loss and apoptosis (Jurgens et al. 2011). IAPP is a regulatory peptide which is co-

secreted with insulin by the β-cell (Kahn et al. 1990). It inhibits glucagon secretion and has 

a dual role on insulin, inhibiting excessive stimulated insulin secretion (negative 

feedback), as well as inducing basal insulin secretion (positive feedback). It has the ability 

to aggregate into pancreatic islet amyloid deposits, which are seen particularly in 

association with T2D patients (Westermark et al. 2011). Studies have demonstrated that 

β-cell death is due to formation of IAPP aggregates, which form toxic oligomers capable 

of altering the structural and functional stability of the cellular membranes, resulting in β-

cell apoptosis (Lorenzo et al. 1994, Abedini et al. 2013). Furthermore, in vivo studies of 

IAPP deposition in transgenic rodent models have shown that this accumulation precedes 

fasting hyperglycaemia and is associated with decreased β-cell function and mass 

(Udayasankar et al. 2009). There is also evidence that IAPP induces β-cell death through 

ER stress. As mentioned, IAPP is co-secreted with insulin. Therefore, when β-cells are 

overcompensating for IR, hyperinsulinemia will come accompanied by increased levels of 

IAPP (Martel et al. 2017). Eventually, increased protein expression leads to the 

accumulation of unfolded proteins inside the ER, and consequently to ER stress (Huang et 

al. 2007). Chronic ER stress then activates three ER stress sensors, namely inositol 

requiring enzyme 1 (IRE1), protein kinase RNA-like endoplasmic reticulum kinase (PERK), 

and activating transcription factor 6 (ATF6). Activated IRE1 functions as an endogenous 

ribonuclease which splices the X-Box  protein 1 (XBP1)-coding gene, resulting in a form of 

XBP1 that drives transcription of genes encoding proteins involved in ER-associated 

protein degradation (Lee et al. 2003). Activated PERK phosphorylates its downstream 

target protein, the eukaryotic initiation factor 2  (EIF2), resulting in the inhibition of global 

protein translation (Yoshida et al. 2003). Finally, under ER stress, ATF6 translocates to the 

Golgi where it undergoes cleavage, yielding an active transcription factor, NATF6, which 

is subsequently translocated to the nucleus and activates ER stress response element 

related genes such as the CCAAT-enhancer-binding protein homologous protein (CHOP) 
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transcription factor, which promotes DNA fragmentation, stopping the cell cycle and 

inducing apoptosis (Westermark et al. 2011) (Figure 1.4C). 

 

 

Figure 1.4: Activation of apoptosis in β-cells. A) Increased β-cell dysfunction leads to decreased 

INS/IGF signalling, resulting in decreased PDX1 expression via attenuation of the IRS1/IRS2-PI3K-

PKB pathway, consequently leading to increased apoptosis. B) Increased circulating levels of 

glucose and FFAs (glucolipotoxicity) upregulate expression of FASR, which upon activation by TNFs 

recruits FADD and activate caspase-8, which then activates caspase-3, leading to apoptosis. C) 

IAPP, co-secreted with insulin, forms aggregates in β-cells, disrupting the cell membrane and 

inducing apoptosis. Furthermore, increased protein synthesis leads to ER stress, which induces 

IRE1, PERK and ATF6 activation. IRE1 activation leads to trascription of a form of XBP1 which 

induces expression of ERAD; activation of PERK induces phosphorylation of EIF2, resulting in the 

inhibition of global protein translation; ER stress induces ATF6 translocation to the Golgi, where it 

is cleaved to NATF6, which translocates to the nucleus and activates transcription of CHOP, an ER 

stress response element, promoting DNA fragmentation and inducing apoptosis. Abbreviations: 

ATF6 activating transcription factor 6; CHOP CCAAT-enhancer-binding protein homologous protein 

EIF2 eukaryotic initiation factor 2; ER endoplasmic reticulum; ERAD endoplasmic reticulum 

associated protein degradation; ERSE endoplasmic reticulum stress response element; FADD FAS-

associated protein with death domain; FASR FAS receptor; FFAs free fatty acids; FOXO1 forkhead 

box O1; IAPP islet amyloid polypeptide; IGF insulin-like growth factor; IGFR insulin-like growth 

factor receptor; INS insulin; IR insulin receptor; IRE1 inositol requiring enzyme 1; IRS1/2 insulin 

receptor substrate 1/2; PDK1 protein kinase 3-phosphoinositide dependent protein kinase-1; PDX1 
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pancreas-duodenum homeobox-1; PERK protein kinase RNA-like endoplasmic reticulum kinase; 

PI3K phosphatidylinositol 3 kinase; PKB protein kinase B; TNF tumour necrosis factor; XBP1 X-Box  

protein 1.  

b) Autophagy 

Autophagy is a key molecular mechanism for maintaining cellular physiology and 

promoting cell survival. It balances sources of energy in response to nutrient stress 

through sequestration of cytoplasmic material such as damaged organelles within a 

double membrane autophagosome, which then fuses with a lysosome that supplies acid 

hydrolases that degrade the contents (Parzych et al. 2013), while at the same time 

generating energy in the form of ATP (Glick et al. 2010).  

Autophagy has generally been considered to be a catabolic, energy generating pathway 

that allows the cell to adapt to environmental stress (Levine et al. 2008). However, more 

recently this process has been described as a double-edged sword, being able to promote 

both cell survival and/ or cell death (Yang et al. 2017).  It is now clear that autophagy is 

involved in the pathogenesis of several diseases such as cancer or infectious and 

autoimmune diseases (Levine et al. 2008), and its role in the pathogenesis of T2D and β-

cell death has also been investigated (Yang et al. 2017).  

Autophagy is triggered by low cytosolic ATP levels through induction of AMP-activated 

protein kinase (AMPK), and by hypoxia and ER stress through induction of regulated in 

development and DNA damage responses 1 (REDD1). Both signals inhibit mTOR through 

induction of tuberous sclerosis complex (TSC1/2) and subsequent inhibition of RAS 

homologous enriched in brain (RHEB) GTPase activity, ultimately inducing autophagy. 

Conversely, autophagy is inhibited by increased insulin/IGF signalling, as well as by other 

growth factor receptors that activate PI3K and PKB, leading to induction of mTOR activity 

and cell growth (Glick et al. 2010) (Figure 1.5). 

mTOR is a key player in nutrient sensing and in regulating cell growth and autophagy. It 

constitutes a control point downstream of growth factor and insulin signalling, hypoxia 

and ATP levels. mTOR is activated downstream of growth factor receptor signalling and 

subsequent activation of PI3K and PKB when nutrients are available, to promote cell 

growth and inhibit autophagy (Sabatini 2006) (Figure 1.5).  
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Figure 1.5: Regulation of autophagy in T2D. Low nutrient supply leads to low mitochondrial ATP 

generation. The low ATP/ADP ratio activates LKB1, which phosphorylates AMPK, inducing AMPK-

mediated activation of TSC1/2. Similarly, increased levels of oxidative and ER stress, as well as 

hypoxia, induce REDD1-mediated activation of TSC1/2. This leads to inhibition of RHEB and 

consequently to decreased mTOR activation and induction of autophagy. Conversely, INS/IGF 

signalling activates the PI3K/PKB pathway, which inhibits TSC1/2, thereby inducing mTOR activity 

and promoting cell growth. Abbreviations: ADT adenosine diphosphate; AMPK adenosine 

monophosphate-activated protein kinase; ATP adenosine triphosphate; ER endoplasmic reticulum; 

IGF insulin-like growth factor; IGFR insulin-like growth factor receptor; INS insulin; IR insulin 

receptor; IRS1/2 insulin receptor substrate 1/2; LKB1 Serin/Threonin kinase 11; mTOR mammalian 

target of rapamycin; PDK1 protein kinase 3-phosphoinositide dependent protein kinase-1; PI3K 

phosphatidylinositol 3 kinase; PKB protein kinase B; REDD1 regulated in development and DNA 

damage responses 1; RHEB RAS homologous enriched in brain; T2D type 2 diabetes; TSC1/2 

tuberous sclerosis complex. 

 

T2D progression through impaired pancreatic β-cell function and development of IR has 

been associated with dysregulation of mTOR signalling and autophagy (Laplante 2012, Lee 

et al. 2014). Several studies suggest that enhanced autophagy plays a protective role 

against nutrient surplus-induced oxidative and ER stress in pancreatic β-cells (Hur et al. 

2010, Bartolome et al. 2012). However, constitutively activated autophagy has 
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detrimental effects on pancreatic β-cells, causing autophagy-induced cell death (Demirtas 

et al. 2016). 

Interestingly, Fujimoto et al. have claimed to have unpublished data showing that PDX1+/- 

β-cells, as well as PDX1-diminished mouse insulinoma MIN6 cells present increased 

autophagy (Fujimoto et al. 2009), indicating that PDX1 also mediates β-cell survival 

through regulation of autophagy. 

c) Pyroptosis 

Pyroptosis is a pro-inflammatory response-mediated type of programmed cell death 

involving the formation of a macromolecular complex known as inflammasome, and 

subsequent caspase-1 activation (not related with apoptotic cell death) (Byrne et al. 

2013). An inflammasome is a protein complex that acts as a sensor for pathogen or 

damage-associated molecular patterns (PAMPs or DAMPs) (Saïd-Sadier et al. 2012).  

To date, several inflammasomes have been described: the NLRP3 inflammasome (made 

up of sensor molecule NLRP3, adaptor protein ASC and pro-caspase 1), the AIM2 

inflammasome (made up of sensor molecule AIM2, adaptor protein ASC and pro-caspase 

1), the NLRP1 inflammasome (constituted by sensor protein NLRP1 and pro-caspase 1), 

and the NLRP4 inflammasome (made up of sensor protein NLRP4 and pro-caspase 1). 

Among these, the NLRP3 inflammasome is the most extensively studied. Importantly, 

reactive oxygen species (ROS) generated by the mitochondria under situations of 

increased metabolic stress induce expression of IL1β, a pro-inflammatory cytokine related 

to IR and β-cell function, which activates the NLRP3 sensor protein (Gonzalez et al. 2018). 

When activated, NLRP3 interacts with the adaptor protein ASC and recruits and activates 

pro-caspase-1 to produce caspase-1, which mediates cell death through pyroptosis, a 

process involving fragmentation of DNA, pore formation in the plasma membrane and 

ultimately cellular lysis (Miao et al. 2011). 

d) Other mechanisms of β-cell loss 

Traditionally, it has been believed that loss of insulin-producing cells was solely caused by 

different mechanisms of cell death. However, there is growing evidence that β-cells can 

undergo de-differentiation (they display decreased expression of β-cell identity genes and 

increased expression of β-cell de-differentiation markers) and/or trans-differentiation to 

other islet cell types (especially to glucagon-producing α-cells) (Dor et al. 2013). An 

increase in the number of α-cells consequently leads to hyperglucagonemia, which is also 



45 
 

associated with T2D (Gromada et al. 2007).  There is evidence showing that loss of β-cell 

identity (decreased expression of key β-cell markers such as genes encoding transcription 

factors involved in the β-cell maturation process like MAFA, and proteins implicated in 

glucose-stimulated insulin secretion like GLUT2) with the conversion of β-cells into α-cells 

occurs in murine models of T2D (Talchai et al. 2012) and in human pancreatic islets ex vivo 

(Spijker et al. 2013).  More recently, new markers for β-cell de-differentiation have been 

identified, including two members of the fibroblast growth factor (FGF) family, FGF1 and 

FGF2, and several transcription factors, including SOX9, HES1, MYC, and tumour necrosis 

factor receptor superfamily member 11b (TNFRSF11B), as shown by their expression in 

the pancreas of T2D patients (Diedisheim et al. 2018). 

It is still unknown why β-cells variably respond to stress by de-differentiating, trans-

differentiating or dying. The differential response might depend on the type of stress, or 

might be associated with particular islet dysfunctions (Hudish et al. 2019). 

 

1.3 Glucolipotoxicity  

 

1.3.1 Glucotoxicity: adverse effect of glucose on pancreatic β-cells 

 

The level and duration of the hyperglycaemic state are crucial in determining the fate of 

β-cells. As mentioned in sections 1.2.5 and 1.2.6, prolonged hyperglycaemia has a 

proapoptotic effect on β-cells, which is referred to as glucose toxicity, or glucotoxicity. 

This term refers to the progressive and irreversible detrimental effects of chronically 

elevated glucose levels on β-cell function, which lead to decreased insulin gene expression 

and synthesis (Poitout et al. 2008). A number of stress-related mechanisms have been 

proposed to explain how chronically elevated glucose levels impair β-cell function and 

increase β-cell apoptosis rates (Oh 2015). 

a) Endoplasmic reticulum stress 

The ER is responsible for the synthesis of all secreted proteins including insulin, the most 

abundant protein produced by β-cells. As a result of insulin resistance, hyperglycaemia 

arises, with subsequent increased workload for production of insulin on β-cells (Hanley et 

al. 2010, Inaishi et al. 2016). This causes ER stress, which leads to translational attenuation 

of proinsulin and degradation of insulin mRNA, which, together with the accumulation of 
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unfolded proteins inside of the ER, triggers the activation of a defence mechanism 

executed by the β-cell known as unfolded protein response (Rojas et al. 2018). This 

pathway is responsible for enhancing protein folding capacity via increased production of 

chaperones and enzymes for protein maturation (Scheuner et al. 2008). This phenomenon 

is accompanied by an upregulation of ER-associated degradation proteins and 

components of autophagy to promote elimination of unfolded and aggregated proteins 

(Fonseca et al. 2011). However, this adaptive response can induce molecular mechanisms 

that lead to ER stress-induced β-cell apoptosis (Oh et al. 2013). 

Other ER stress responses include increased activation of IRE1 and ATF6 and subsequent 

expression of XBP1 and CCAAT-enhancer-binding protein (C/EBP) homologous protein 

(CHOP) (Figure 1.4), which lead to β-cell death and subsequent transition from pre-

diabetes to diabetes as it has been reported in β-cell lines and isolated islets from rat, 

mouse, and humans (Marchetti et al. 2007, Lipson et al. 2006). 

b) Mitochondrial dysfunction and oxidative stress 

In normal physiological conditions, pyruvate is generated as the final product of glycolysis 

in the cytosol. It then enters the mitochondria, where it is converted into acetyl-

coenzyme-A, which is further oxidized within the tricarboxylic acid (TCA) cycle, yielding 

reduced nicotinamide adenine dinucleotide (NADH) and reduced flavin adenine 

dinucleotide (FADH2). These products serve as electron donors for the mitochondrial 

electron transport chain, where ATP is produces, generating low levels of ROS (Liemburg-

Apers et al. 2015). However, chronically elevated glucose levels increase pyruvate 

production and subsequent mitochondrial activity, and consequently, the generation of 

ROS in islet cells, inducing oxidative stress (Oh et al. 2015). Moreover, because of the high 

demand for insulin production, β-cells are among the most metabolically active tissues 

and highly rely on oxidative phosphorylation for ATP production, thereby further 

increasing ROS generation. 

Importantly, pancreatic β-cells are susceptible to oxidative stress due to the lack or low 

expression levels of antioxidants such as catalase, glutathione peroxidase, and superoxide 

dismutase, enzymes that protect cells from ROS and subsequent downstream damage 

(Tiedge et al. 1997). The consequential imbalance from ROS overproduction and the low 

β-cell antioxidant capacity results in oxidative stress, which diminishes the activity of the 

glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Giacco et al. 

2010), thus increasing the concentrations of all the intermediate glycolytic compounds 
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upstream of GAPDH, as well as of the first metabolite of the glycolytic pathway, glucose 

(Du et al. 2003). Given the already overt hyperglycemia, and the increase in glucose 

concentration as a result of decreased GAPDH activity, the normal route for glycolysis gets 

saturated and excess glucose is shunted towards alternative ROS-generating pathways, 

further increasing oxidative stress. 

There are five pathways that can branch off the glycolytic pathway under chronic 

hyperglycaemic conditions (Robertson 2004). These pathways play a minor role in glucose 

metabolism under normoglycaemic conditions but can become major pathways to flux 

increased levels of glucose and other intermediates. These pathways are the polyol 

pathway (conversion of glucose to fructose) (Tang et al. 2012); the hexosamine pathway 

(conversion of fructose-6P to glucosamine-6P) (Lima et al. 2012); the protein kinase C 

(PKC) activation pathway (glyceraldehyde-3-phosphate from the breakdown of fructose 

1:6-bisphosphate increases synthesis of diacylglycerol (DAG), which activates PKC) 

(Teshima et al. 2014); the receptor for advanced glycation end products (RAGE) pathway 

(methylglyoxal formation from glyceraldehyde 3-phosphate modifies proteins by adding 

a glycated haemoglobin (HbA1c)) (Wells-Knecht et al. 1995); and the glyceraldehyde 

autoxidation pathway (autoxidation of glyceraldehyde-3-phosphate generates hydrogen 

peroxide and α-ketoaldehydes) (Wolff et al. 1987).  Ultimately, all five pathways have 

been linked to ROS production and subsequent oxidative stress, and consequently to the 

pathogenesis of diabetes and its complications (Robertson 2004). 

Indeed, it has been reported that ROS can induce IR (Yang et al. 2014), impair insulin 

synthesis (Robertson et al. 1992), and impair insulin secretion (Karunakaran et al. 2013). 

Additionally, isolated islets from T2D patients display increased expression of markers of 

oxidative stress compared with healthy controls, including nitrotyrosine and 8-hydroxy-2-

deoxyguanosine, correlating with the degree of IR or impaired insulin secretion (Del 

Guerra et al. 2005). Furthermore, it has been seen that treatment of islets, Zucker diabetic 

fatty (ZDF) rats and db/db mice with anti-oxidants such as N-acetylcysteine (NAC) results 

in decreased production of markers for oxidative stress, improved insulin gene expression 

and improved glycaemic control (Poitout et al. 2008).  

Another molecular mechanism through which chronic hyperglycaemia can cause 

deteriorating β-cell function is via decreased expression of PDX1 and MAFA (Robertson 

2004, Rojas et al. 2018). The possibility that oxidative stress is responsible for the 

decreased expression of PDX1 and MAFA was highlighted by early studies showing that 
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NAC treatment of β-cell lines and rodent models of T2D protected against diminished 

PDX1 and MAFA gene expression and loss of insulin gene expression and secretion 

induced by exposure to high glucose concentrations (Tanaka et al. 1999, Tanaka et al. 

2002). 

c) Inflammation 

It has been reported that prolonged exposure of human islets to hyperglycaemia triggers 

β-cell production of IL1β, a pro-inflammatory cytokine, and subsequent activation of 

nuclear factor kappa B (NF-κB), which triggers the activation of an inflammatory response 

that culminates in autocrine apoptosis (Maedler et al. 2002). It has been seen that anti-

inflammatory therapies with the use of IL1β antagonists can preserve some β-cell 

functional mass in T2D (Donath 2014). This topic will be described in detail in section 1.4.2. 

 

1.3.2 Lipotoxicity: adverse effect of fatty acids on pancreatic β-cells 

 

In normal physiological conditions, lipids play multiple and very important biological 

functions. They constitute the main energy reserve, serve as a signalling molecules, 

constitute the basis for steroid hormone biosynthesis, and are the major components of 

biological membranes (Jo et al. 2016). In β-cells, lipids are metabolised through the 

mitochondrial β-oxidation pathway to provide energy. However, in hyperglycaemic 

conditions, β-oxidation is diminished, decreasing the rate of lipid detoxification, which 

results in an accumulation of intracellular lipid metabolites such as long-chain acyl-CoA, 

which mediates the toxic effects of chronically elevated FFAs (Véret et al. 2014). Acute FA 

overload in β-cells amplifies insulin secretion, but, similarly to the effects of elevated 

levels of glucose for a prolonged period, chronically elevated levels of FAs cause β-cell 

dysfunction, a process that has been termed lipotoxicity (Giacca et al. 2011). It has been 

seen that prolonged exposure of isolated islets of non-diabetic rats or insulin-secreting 

cell lines to elevated levels of FAs is associated with impairment of insulin gene expression 

and inhibition of glucose-stimulated insulin secretion (Zhou et al. 1994), inhibition of 

expression of cell differentiation genes (Giacca et al. 2011), and induction of β-cell death 

through  apoptosis (Kharroubi et al. 2004) as shown by increased DNA fragmentation, 

caspase-3 activity and expression of apoptotic genes (Oh 2015). A number of mechanisms 

have been proposed to explain how chronically elevated levels of FAs impair β-cell 

function and increase β-cell apoptosis rates. 
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a) Formation of ceramide and other lipid derivatives  

Increased intracellular lipid storage due to elevated circulating levels of FAs increases de 

novo synthesis of ceramides as well as de novo synthesis of long chain Acyl-CoAs, such as 

palmitoyl-CoA. While ceramides are capable of decreasing insulin expression through the 

activation of c‐Jun N‐terminal kinase (JNK) and subsequent phosphorylation of IRS 

Serine/Threonine residues (Rojas et al. 2018), long chain Acyl-CoAs have been seen to 

inhibit several steps in the glycolytic pathway, including glucokinase activity, thereby 

attenuating insulin signalling (Sokolowska et al. 2019). Furthermore, it has been seen that 

treatment of INS-1 β-cells with palmitic acid (16:0, PA), the most common saturated fatty 

acid (SFA) found in animals and plants (Carta et al. 2015), induces ceramide synthesis and 

accumulation by a dual mechanism involving the enzymes serine palmitoyl-transferase 

and ceramide synthase 4, resulting in the formation of ceramides with specific N-acyl 

chain lengths (Véret et al. 2011), which have also been seen to induce β-cell death through 

apoptosis. Importantly, elevated levels of ceramide have been reported in the islets of 

ZDF rats, and early studies show that treatment with fumonisin B1, a ceramide synthase 

inhibitor, prevents β-cell apoptosis induced by increased ceramide biosynthesis 

(Shimabukuro et al. 1998). Furthermore, ceramides inhibit PKB by blocking its 

phosphorylation, allowing FOXO1 to repress PDX1 activity, thereby decreasing insulin 

synthesis, as well as β-cell proliferation and survival (Boslem et al. 2012) (Figure 1.4A).  

b) Endoplasmic reticulum stress  

ER stress has been linked to β-cell apoptosis in situations of chronic exposure to high levels 

of FAs (Biden et al. 2014), with a reported increase in the presence of ER stress markers 

in pancreatic islets of T2D patients (Marchetti et al. 2007). The mechanism underlying the 

generation of ER stress induced by SFAs such as PA in β-cells involves processes such as 

the loss of Ca2+ ions and protein overload.   

The ER constitutes the main intracellular Ca2+ reservoir. Controlled release of Ca2+ ions 

into the cytosol is a critical step for insulin synthesis, making β-cells particularly sensitive 

to ER stress (Hara et al. 2014). It was recently reported that sorcin, a Ca2+ sensor protein 

in the ER, is downregulated under lipotoxic stress conditions (Marmugi et al. 2016). 

Additionally, lipotoxicity disrupts ER-to-Golgi protein trafficking due to protein overload, 

resulting in impaired proinsulin maturation and loss of insulin content (Preston et al. 

2009), and consequently to ER stress-induced apoptosis. This is triggered through several 
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mechanisms, including perturbation of membrane lipid composition, which promotes 

IRE1 and PERK activation (Volmer et al. 2013), leading to apoptosis (Figure 1.4A).  

c) Mitochondrial dysfunction and oxidative stress 

Increased circulating FA levels leads to incomplete mitochondrial FA oxidation and 

increases ROS production, resulting in oxidative stress and lipotoxicity (Tumova et al. 

2016). Increased ROS levels are the determinant triggering factor for β-cell dysfunction. 

MIN-6 cells and rat islets exposed to FAs for 48 hours exhibit diminished glucose-

stimulated insulin secretion, an effect that can be reversed with the use of antioxidants 

such as taurine. It has also been seen that the use of NAC and tempol as antioxidants 

prevents the impairment in β-cell function induced by FAs in vivo during hyperglycaemic 

clamping, and in vitro in isolated rat islets treated with OA (Oprescu et al. 2007). The 

molecular mechanisms of ROS-mediated lipotoxicity have been analysed using RINm5F 

and INS-1 β-cells, as well as primary islets; only long-chain (>C14) saturated, non-esterified 

FAs were described to be toxic to β-cells (Elsner et al. 2011). In fact, a study by Busch et 

al. demonstrated that expression levels of the stearoyl-CoA desaturase enzyme correlates 

with β-cell resistance to the proapoptotic effect of PA, indicating that the capacity to 

desaturate FA might have a protective effect against lipotoxicity (Busch et al. 2005). 

d) Inflammation 

It has been reported that FAs can induce inflammatory toxicity by directly activating 

inflammatory pathways in pancreatic islets, demonstrating that lipotoxicity may interact 

with inflammatory factors that initiate, sustain, and cause β-cell loss (Donath et al. 2013).  

This topic will be described in detail in section 1.4.2. 

e) Autophagy 

Under normal conditions, autophagy is inhibited by mTOR, a modulator activated by 

INS/IGF signalling or in states of sufficient nutrients.  On the other hand, upon induction 

of ER stress or increased ROS exposure, autophagy is stimulated to protect the cell by 

clearing accumulated damaged components (Oh et al. 2018), as it has been reported in 

cultured β-cells after prolonged PA exposure (Martino et al. 2012). However, FAs have 

been shown to interfere with autophagic flux under diabetic conditions, suggesting that 

when there is excessive autophagy, the cellular defence mechanism may turn to the 

apoptotic pathway (Pugazhenthi 2014). 
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f) Other mechanisms 

FA signalling can affect transcriptional or translational levels of anti-/pro-apoptotic or 

survival genes. It has been observed that PA is able to directly inhibit PDX1 and MAFA 

expression, repressing β-cell survival (Poitout et al. 2008), as well as to induce 

translational repression of the myeloid cell leukaemia sequence 1 protein (MCL1), an anti-

apoptotic factor of the BCL2 family (Allagnat et al. 2011). Furthermore, it has been seen 

that FFA signalling can block glucose-induced β-cell proliferation in vivo in mice and in 

vitro in rat INS-1 pancreatic β-cells through induction of cell cycle inhibitors (Pascoe et al. 

2012). 

 

1.3.3 Glucolipotoxicity: toxic effect of chronic exposure to high glucose and fatty 

acids 

 

We have seen the adverse effects that both chronically increased levels of glucose alone 

(glucotoxicity), and FAs alone (lipotoxicity) have on pancreatic β-cells. The term 

glucolipotoxicity refers to the combination of both high blood glucose and FA levels, and 

the harmful effects that this combination has on pancreatic β-cells regarding both 

function and survival (Poitout et al. 2010). Importantly, both in vitro (Briaud et al. 2001) 

and in vivo (Briaud et al. 2002) studies have shown that the effect of lipotoxicity is 

synergistically increased in the presence of concomitantly elevated glucose levels. Reports 

also indicate that treatment with a lipid lowering drug does not protect animals from islet 

dysfunction and diabetes, whereas the use of a glucose lowering drug does (Tanaka et al. 

2002), suggesting that lipotoxicity requires concomitant hyperglycaemia to damage islet 

function, whereas glucotoxicity can exert harmful effects on islets in the absence of 

elevated circulating FAs (Fujimoto et al. 2009, Somesh et al. 2013). In any case, the 

combined effect of glucotoxicity and lipotoxicity is greater than any of them alone 

(Bagnati et al. 2016).  
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1.4 Obesity, Inflammation and T2D 

 

Obesity is a worldwide pandemic that continues to grow at an alarming rate. It is a serious 

health problem that increases morbidity and mortality of a variety of acute and chronic 

diseases, most notably T2D and CVD (Vachharajani et al. 2009). Some of the detrimental 

consequences of obesity have been attributed to the induction of a low-grade chronic 

inflammatory state that results in the production and secretion of inflammatory 

mediators from the enlarged pool of activated adipocytes, the main cell type found in AT, 

thus contributing to the pathogenesis of several obesity-related diseases including T2D 

(Dandona et al. 2004).  

 

1.4.1 Obesity as a chronic inflammatory disease: dysregulation of adipose tissue 

 

The obesity-induced low-grade inflammatory response is triggered by an excess of 

nutrients, which cause AT and pancreatic β-cells to secrete pro-inflammatory cytokines, 

(Alexandraki et al. 2006), as it has been reported in obese humans and linked to IR 

(Alexandraki et al. 2006). Furthermore, T2D-associated complications in kidneys, arteries, 

and eyes are also characterised by inflammatory processes (Guarner et al. 2014). 

AT is made up of a wide variety of cell types, including adipocytes, pre-adipocytes, tissue 

matrix, nerve tissue, stromal-vascular cells, macrophages, endothelial cells and fibroblasts 

(Frayn et al. 2003). As obesity develops and AT depositions grow, a variety of cell 

populations begin to exhibit an inflamed or stressed state, becoming activated (Johnson 

et al. 2012). This becomes apparent though various mechanisms: induction of hypoxia due 

to lack of oxygen availability as a consequence of rapid tissue expansion (Johnson et al. 

2012), mitochondrial uncoupling and subsequent oxidative stress through increased 

production of ROS due to excess nutrient processing (Wojtczak et al. 1993), and 

production of a variety of anti- and pro-inflammatory adipokines and cytokines by the 

activated pool of adipocytes (Johnson et al. 2012). 

a) Hypoxia 

Rapid AT expansion causes a decrease in oxygen availability, exposing cells to hypoxia 

(Johnson et al. 2012). This will result in activation of hypoxia inducible factor 1α (HIF-1α), 

a transcription factor that activates transcription of several apoptosis-related genes 
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including p53, p21 and BCL2 (Carmeliet et al. 1998), as well as other factors and proteins 

involved in several other pathologies. For instance, HIF-1α  activates transcription of 

vascular endothelial growth factor (VEGF), GLUT and plasminogen activator inhibitor 1 

(PAI1), contributing to the development and progression of several types of cancer (Liu et 

al. 2012). HIF-1α also blocks adipocyte secretion of anti-inflammatory adipokines such as 

adiponectin, thereby contributing to the establishment of a pro-inflammatory milieu 

(Fakhruddin et al. 2017). This topic is described in detail in section 1.6. 

b) Mitochondrial dysfunction and oxidative stress 

In section 1.3 we saw how hyperglycaemia and hyperlipidemia can induce mitochondrial 

dysfunction and oxidative stress in the β-cell through increased ROS production. This 

excess of nutrients, as well as presence of an obesogenic environment, can also cause 

mitochondrial uncoupling in hypertrophied adipocytes with the subsequent increase in 

ROS production both from increased mitochondrial function and from increased NADPH 

oxidase activity (Wojtczak et al. 1993). This triggers abnormal signalling pathways 

involving NF-κB activation and subsequent induction of inflammatory cytokines, 

chemokines, adhesion molecules and growth factors, causing numerous complications 

including vascular dysfunction, atherosclerosis and inflammation.  

 

1.4.2 Inflammation and T2D: activation of the NF-κB transcription factor 

 

Exposure of tissues to harmful stimuli such as microbial pathogens, irritants, or toxic 

cellular components, including toxic levels of glucose and FAs, trigger an inflammatory 

response. These events are controlled by a variety of extracellular molecular regulators, 

mainly cytokines and chemokines, that mediate recruitment of immune cells to the site 

of inflammation, which in the case of T2D could be AT or the pancreas (Turner et al. 2014).  

a) Adipose tissue 

Rapid growth of AT causes the release of AT-specific inflammatory cytokines, referred to 

as adipokines. This process is primarily mediated by the activation of NF-κB, the central 

pro-inflammatory transcription factor, and results in low-grade inflammation throughout 

AT (Illán-Gómez et al. 2012).  
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Adipokines, together with AT-secreted hormones, are the link between obesity and 

obesity-related complications, including T2D (Gnacińska et al. 2009). Amongst the AT-

secreted hormones we can find leptin, which stimulates secretion of tumour necrosis 

factor α (TNFα) from circulating monocytes, and resistin, which is associated with an 

increased production of pro-inflammatory cytokines from macrophages and pro-

inflammatory adipokines from adipocytes through NF-κB activation (Vachharajani et al. 

2009) (Figure 1.6). AT-secreted adipokines include TNFα, IL6, and C reactive protein (CRP), 

with its production being in turn enhanced in response to TNFα and IL6, hence amplifying 

the pro-inflammatory cascade (Vachharajani et al. 2009). Under stimulation of TNFα, 

adipocytes are also able to secrete chemokines, which induce macrophage activation 

(switch from anti-inflammatory (M2) to pro-inflammatory (M1) type macrophages) and 

infiltration into AT (Figure 1.6). In fact, despite the ability of the adipocytes to secrete pro-

inflammatory cytokines (adipokines), it is the activated macrophages infiltrated in the AT 

the ones responsible for the main release of these mediators (Weisberg et al. 2003). These 

include TNFα, IL1, IL6 and monocyte chemoattractant protein 1 (MCP1) (Jung et al. 2014), 

which impair adipocyte insulin sensitivity and stimulate further activation and infiltration 

of peripheral monocytes and macrophages into AT (Amrani et al. 1996) (Figure 1.6). 

NF-κB is a redox-sensitive transcription factor that can be activated by a wide variety of 

stimuli, including oxidative stress (Sanz et al. 2010). ROS-mediated activation of NF-κB can 

activate transcription of a wide range of pro-inflammatory and profibrotic genes, causing 

vascular dysfunction, atherosclerosis, and inflammation.  These include, as mentioned 

above, cytokines such as TNFα, IL1β, IL2, IL6 and IL12; adhesion molecules including E-

selectin and vascular and intracellular cell adhesion molecules (VCAM1, ICAM1); growth 

factors including transforming growth factor β (TGFβ); and chemokines, including MCP1 

(Pedruzzi et al. 2012) (Figure 1.6). 
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Figure 1.6: ROS-mediated activation of inflammation in AT. Rapid growth of AT causes 

mitochondrial dysfunction and subsequent induction of ROS production. This activates the NF-κB 

transcription factor, which induces AT production and secretion of several hormones including 

leptin and resistin, and adipokines such as TNFα, IL6 and CRP. Amongst them resistin induces pro-

inflammatory cytokine production from macrophages and pro-inflammatory adipokine production 

from adipocytes through NF-κB activation, while leptin induces TNFα secretion from monocytes. 

TNFα produced by AT induces AT production of chemokines, which will attract and activate 

macrophages, which switch from anti-inflammatory (M2) to pro-inflammatory (M1), leading to 

macrophage infiltration into AT and further production of pro-inflammatory cytokines such as 

TNFα, IL6 and IL1, and chemokines such as MCP1, all of which impair AT insulin sensitivity. ROS-

mediated activation of NF-κB directly activates transcription of cytokines TNFα, IL1β, IL2, IL6 and 

IL12, adhesion molecules E-selectin and VCAM1, ICAM1, TGFβ, and MCP1. Abbreviations: AT 

adipose tissue; CRP C reactive protein; IL6 interleukin 6; MCP1 monocyte chemoattractant protein 

1; NF-κB nuclear factor kappa κB; ROS reactive oxygen species; TGFβ transforming growth factor 

β; TNFα tumour necrosis factor α; VCAM1, ICAM1 vascular and intracellular cell adhesion 

molecules. 

 

While some of the mechanisms involving the roles of pro- and anti-inflammatory 

cytokines still remain to be fully resolved, it is clear that dysregulated production of 

adipokines caused by excess AT, together with AT dysfunction, contributes to the 

development of obesity-related metabolic diseases such as T2D (Villarroya et al. 2018). 
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b) Pancreas 

Growing evidence from recent studies suggests that an important determining factor for 

β-cell dysfunction and failure in T2D is chronic pancreatic islet inflammation (Westwell-

Roper et al. 2014). Interestingly, several reports have indicated that FAs potentiate 

inflammatory toxicity by directly activating inflammatory pathways in pancreatic islets, 

demonstrating that lipotoxicity may interact with inflammatory factors that initiate, 

sustain, and cause β-cell loss (Donath et al. 2013).  Different types of FA have different 

effects on the lipotoxicity of β-cells (Acosta-Montaño et al. 2018). As mentioned before, 

only SFAs have been associated with adverse health effects. In particular, in section 1.3.2 

we described how PA has a major role in β-cell failure through mechanisms including the 

induction of ceramide formation, the build-up of proinsulin in the ER lumen and 

subsequent generation of ER stress, the induction of mitochondrial dysfunction and 

subsequent increase in oxidative stress, the attenuation of β-cell proliferation capacity, 

and the induction of autophagy and β-cell apoptosis. However, PA has also been seen to 

induce chemokine (CXCL1 and CCL3) and cytokine (IL6 and IL8) expression within 

pancreatic islets in vitro through NF-κB activation and induction of ER stress (Igoillo-Esteve 

et al. 2010), promoting an inflammatory response. By contrast, unsaturated fatty acids 

(UFAs), such as OA, are generally associated with protective effects (Acosta-Montaño et 

al. 2018). Interestingly, treatment of monocytes with docosahexaenoic acid (DHA), a 

polyunsaturated fatty acid (PUFA), has been described to inhibit PA-induced monocyte 

secretion of pro-inflammatory cytokines such as IL1β (Snodgrass et al. 2016). However, 

the effects of DHA on IL1β release form β-cells remains to be determined.  

Interestingly, an elevated number of islet-associated macrophages and an increased 

expression of IL1β have been reported in pancreatic islets from T2D subjects (Richardson 

et al. 2009, Eguchi et al. 2017). Moreover, recent evidence shows that enhanced 

macrophage infiltration results in an evident increase in pro-inflammatory cytokine 

production through NF-κB activation, resulting in β-cell release of chemokines, which 

drive recruitment of neutrophils, monocytes, and lymphocytes to the pancreas in obesity 

(Lackey et al. 2016, Collier et al. 2017). Accordingly, it has been seen that depletion of 

resident islet macrophages in HFD-fed mice lowers IL1β expression and improves β-cell 

insulin secretion (Westwell-Roper et al. 2014), while inhibition of IL1β signalling with the 

use of IL1β antibodies or antagonists for the IL1Ra receptor, decreases immune cell 

infiltration and improves β-cell function and glucose homeostasis in rats with T2D (Ehses 

et al. 2009, Böni-Schnetzler et al. 2019).  
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As mentioned in section 1.2.6, β-cell dedifferentiation has been proposed as a mechanism 

underlying β-cell mass loss in T2D. A recent study shows that this mechanism might be 

triggered by the action of pro-inflammatory cytokines including IL1β, IL6 and TNFα. In this 

study, exposure of cultured human and mouse islets to IL1β induced downregulation of 

the identity maintaining transcription factor FOXO1. Furthermore, treatment with anti-

IL1β, anti-TNFα or the NF-κB inhibitor sodium salicylate was shown to improve insulin 

secretion of isolated islets in vivo (Nordmann et al. 2017).  

 

1.4.3 The NF-κB transcription factor 

 

NF-κB is a critical transcription factor involved in a broad range of biological processes, 

including immune and inflammatory responses, cell survival, stress responses and 

maturation of various cell types. While NF-κB activation is required to protect organisms 

from harmful environmental effects, defects in its regulation can lead to various diseases 

including chronic inflammation and cancer (Shih et al. 2011).  

NF-κB is a family of ubiquitously expressed transcription factors, consisting of hetero- or 

homodimers of 5 Rel homology domain (RHD)-containing polypeptides (RelA or p65, RelB, 

c-Rel, p50 and p52) and their stoichiometric inhibitor proteins, IκBs. The RHD contained 

in the 5 subunits mediates dimerization, DNA binding, interaction with IκBs and nuclear 

translocation. The five monomers can form at least 15 different dimers which are cell 

type- and stimulus-specific, of which the most common is the one formed by p50 or p52 

with RelA (p65), also known as NF-κB1 (Christian et al. 2016). The RelA, RelB and c-Rel 

subunits also contain a transactivation domain (TAD) which is responsible for the 

transcriptional activity of dimers containing these subunits (Hoffmann et al. 2006). On the 

other hand, the p50 and p52 subunits are regulated by processing of precursor proteins 

p105 and p100 respectively, and they do not contain a TAD. In fact, when they 

homodimerize they act mainly as transcriptional repressors (Christian et al. 2016).  

The classical inhibitor proteins of NF-κB consist of the single polypeptide IκBs: IκBα, IκBβ 

and IκBɛ. In resting cells, IκB binds and sequesters NF-κB dimer in the cytoplasm, thereby 

preventing nuclear translocation and subsequent DNA binding and transcriptional 

activation (Shih et al. 2011).  
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NF-κB activation can be mediated through two mechanisms, giving rise to different cell 

responses. Firstly, the rapid and reversible inflammatory and immune response that leads 

to transcriptional activation of proinflammatory factors typically occurs through the 

activation of the canonical pathway. Secondly, the slower and irreversible developmental 

response including immune cell differentiation and maturation typically occurs through 

activation of the non-canonical pathway (Shih et al. 2011). However, this pathway has 

recently been described to also regulate several aspects of innate and adaptive immune 

responses, as evidenced by the fact that dysregulated non-canonical NF-κB activation can 

also contribute to the pathogenesis of inflammatory diseases (Sun 2017). 

In most cell types, NF-κB is activated through the canonical pathway, where stimuli from 

diverse immune receptors such as TNFR, IL1R or toll-like receptor (TLR) leads to activation 

of a trimeric inhibitor of κB kinase (IKK) complex, composed of catalytic (IKKα and IKKβ) 

and regulatory (IKKγ) subunits. This complex phosphorylates IκB, which gets ubiquitinated 

and subsequently undergoes proteasomal degradation. NF-κB1 is released, allowing its 

translocation to the nucleus, thereby activating expression of various inflammatory 

mediators including TNFα, IL6 and MCP1 (Lee et al. 2014) (Figure 1.7).  

Importantly, NF-κB activity is increased in obese subjects, and it has been seen that its 

inhibition improves IR (Yuan et al. 2001). In non-obese individuals, NF-κB signalling is 

mainly activated through lipopolysaccharide (LPS)-mediated activation of TLR4. However, 

in obesity, increased levels of circulating FFAs also signal through TLR4 (Shi et al. 2006), 

further activating NF-κB (Novotny et al. 2012) (Figure 1.7). Additionally, TNFα and IL1β, 

both increased in AT of obese and diabetic rodents, signal through TNFR and IL1R 

respectively to activate NF-κB, mediating the proinflammatory response (Lackey et al. 

2016). 

Activation of the non-canonical NF-κB pathway is initiated by ligands of a subset of the 

TNFR superfamily members including CD40 (Sun 2017). This ligand-receptor interaction 

will activate the NF-κB-inducing kinase (NIK), which phosphorylates and activates the IKK 

catalytic subunit IKKα. IKKα then phosphorylates p100, which gets ubiquitinated and 

subsequently undergoes selective proteasomal degradation of its C-terminal, leading to 

the generation of p52. This allows the formation of the RelB:p52 dimer, also known as NF-

κB2, which is insensitive to inhibition by IκB, and thus localizes to the nucleus (Sun 2011) 

(Figure 1.7), mediating processes such as survival of B cells (Gardam et al. 2008), 

generation and function of T helper (TH) cells (Yu et al. 2014), differentiation of monocytes 
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(Dejardin 2006), production of chemokines (Xia et al. 1997), and glucagon responses in 

hepatocytes (Sheng et al. 2012). However, when this pathway is overactivated due to the 

elevated production of its inducing agents, pathological conditions arise: Anomalous B cell 

survival renders resistant self-reactive B cells, contributing to the accumulation of 

autoantibodies associated with inflammatory diseases (Mackay 2004); chronic production 

of chemokines promotes recruitment of inflammatory cells (Maijer et al. 2015); and 

atypical glucagon responses are associated with metabolic diseases (Sheng et al. 2012). 

It is also worth mentioning that signalling through TNFR receptors can stimulate both the 

canonical and the non-canonical NF-κB pathway, and mediate biological processes that 

involve the functional cooperation between both pathways (Sun 2017). 

Importantly, it has been seen that TNFR5 (also known as CD40) expression and 

subsequent downstream NF-κB activation is increased in pancreatic β-cells under 

conditions of glucolipotoxicity, but also in isolated mouse islets from HFD-fed mice, as 

well as in isolated human islets (Bagnati et al. 2016). CD40-CD40L interactions are 

required for many immune processes including cytokine and chemokine production, and 

CD40-CD40L signalling is involved in the pathophysiology of many inflammatory diseases, 

including atherosclerosis, inflammatory bowel disease, rheumatoid arthritis and diabetes 

(Peters et al. 2009). CD40 and its ligand, CD40L are expressed in immune cells (B cells, T 

cells, dendritic cells and monocytes) but also in non-immune cells such as platelets, 

endothelial cells, fibroblasts and pancreatic β-cells. CD40 expression in  β-cells is increased 

upon exposure to proinflammatory cytokines including TNFα, IL1β and IFNγ, all 

abundantly present in the diabetic pancreas (Barbé-Tuana et al. 2006). CD40L can be 

found soluble in plasma (derived from activated platelets) or bound to the membrane of 

immune cells. In diabetic conditions, these immune cells infiltrate pancreatic β-cells, 

allowing CD40-CD40L interaction and activating the NF-κB signalling pathway (Seijkens et 

al. 2013). 
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Figure 1.7: Canonical and non-canonical NF-κB signalling. Activation of the canonical NF-κB 

pathway is initiated through TNFR, IL1R or TLR signalling, leading to activation of the IKK complex. 

IKK phosphorylates IκB, which gets ubiquitinated and undergoes proteasomal degradation. NF-κB1 

is released, allowing its translocation to the nucleus, thereby activating expression of TNFα, IL6 and 

MCP1 amongst other inflammatory mediators. Activation of the non-canonical NF-κB pathway is 

initiated by ligands of a subset of the TNFR superfamily members including CD40. Ligand binding 

will activate NIK, which phosphorylates and activates IKKα. IKKα then phosphorylates p100, which 

gets ubiquitinated and undergoes selective proteasomal degradation of its C-terminal, leading to 

the generation of p52. This allows the formation of NF-κB2, which is insensitive to inhibition by IκB, 

and thus localizes to the nucleus, mediating processes involving immune cell maturation. 

Abbreviations: FFA free fatty acids; IL1β/1/2/6/12 interleukin 1β/1/2/6/12; IL1R interleukin 1 

receptor; IκB inhibitor of kappa B; IKK inhibitor of kappa B kinase; LPS lipopolysaccharide; MCP1 

monocyte chemoattractant protein 1; NF-κB nuclear factor kappa B; NIK nuclear factor kappa B 

inducing kinase; TGFβ transforming growth factor β; TH T-helper; TLR4 toll-like receptor 4; TNF/α 

tumour necrosis factor/α; TNFR tumour necrosis factor receptor. 
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1.5 S100 Proteins 

 

1.5.1 Structure, expression, regulation and function 

 

The S100s are a multigenic family encoding a set of non-ubiquitous Ca2+-modulated 

proteins, which are implicated in multiple intracellular and/or extracellular regulatory 

activities (Donato 2001). To date, at least 25 such proteins have been identified, with 

varying expression and distribution amongst different tissues and cell types (Marenholz 

et al. 2004).  

a) Molecular structure 

Each S100 protein is encoded by an individual gene (Marenholz et al. 2004). Of the 25 

human S100 genes, 19 (group A S100 proteins) are located within chromosome 1q21 

(Figure 1.8A). Other members map to different regions, including 7q22-q3 (S100A11P), 

21q22 (S100B), Xp22 (S100G), 4p16 (S100P), and 5q13 (S100Z) (Marenholz et al. 2004). 

Every member of the S100 protein family has a similar molecular mass of 10–12 KDa, and 

they each share 25-65% similarity in their amino acid sequence. They exist as anti-parallel 

homo and heterodimers, with each monomer consisting of two helix-loop-helix EF-hands 

(EF-1 and EF-2) connected by a hinge region and flanked by conserved hydrophobic 

residues at the C- and N-terminal ends (Schäfer et al. 1996) (Figure 1.8B).  

In the last 15 years, three-dimensional structures of S100 proteins have been determined 

in the Ca2+-free (apo), Ca2+-bound, and target-bound states (Réty et al. 1999, Otterbein et 

al. 2002). These studies have revealed that upon Ca2+ binding, the S100 proteins undergo 

a conformational change that allows interaction with a target protein. As mentioned 

above, the S100 protein exists in a dimeric form, with each monomer containing two EF-

hand motifs. The N-terminal EF-hand comprises helix I, Ca2+-binding site I and helix II, 

separated by a flexible hinge region from the C-terminal EF-hand that includes helix III, 

Ca2+-binding site II and helix IV (Santamaria-Kisiel et al. 2006). Ca2+ binding to site I results 

in alterations of its backbone conformation, adopting a ‘Ca2+-ready’ state. This involves a 

~40° rotation of helix III, resulting in a more open structure and allowing the exposure of 

a broad hydrophobic region including residues from helices III and IV in the C-terminal EF-

hand and linker region. This regulates protein activity by enabling the S100 proteins to 

interact with a variety of target proteins including receptors and other S100 members, as 

well as other molecules (Chazin 2011, Zimmer et al. 2013). 
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Some S100 members are proposed to interact with the same target molecules. For 

instance, S100A1, S100A6 and S100B bind annexin A6 (Arcuri et al. 2002), while S100A1, 

S100A2, S100A4 and S100B interact with the tumour suppressor p53 (Mueller et al. 2005, 

Fernandez-Fernandez et al. 2005). This might not be surprising given the significant 

sequence similarities between most of the S100 proteins. However, there is a fine level of 

discrimination that avoids random interaction of targets with all S100 proteins. Structural 

studies of S100-target complexes have shown that S100 family members use different 

mechanisms for target recognition despite the similar conformational change induced by 

Ca2+ binding in all S100 family members (Bhattacharya et al. 2003, Lee et al. 2008, Kiss et 

al. 2012, Ozorowski et al. 2013). Moreover, the region exposed upon Ca2+ binding 

comprises the most variable portions of the S100 sequences (hinge and C-terminal 

regions), which is enough to discriminate against different target proteins (Santamaria-

Kisiel et al. 2006). The distribution of hydrophobic and charged residues, together with 

differences in surface geometries, contribute to the variety of target binding patterns 

observed amongst S100 family members (Ozorowski et al. 2013, Wafer et al. 2013). 

 

Figure 1.8: A) S100 gene cluster on chromosome 1q21. Most human S100 genes are located on 

chromosome 1q21. Genes located in the cluster region are indicated. p and q indicate the short 

and the long arm of the chromosome, respectively. Human S100B, S100P, S100Z and S100G are 

located on chromosomes 21q22, 4p16, 5q14 and Xp22 respectively (not shown). B) Dimer 

molecular structure of S100 proteins. All members of the S100 protein family contain a pair of EF-

hand domains (EF-1 and EF-2), involved in intracellular Ca2+ binding. The binding of metal ions 

(Ca2+, Zn2+ and Cu2+) results in a conformational change that exposes a hydrophobic region that 

interacts with other proteins including receptors, other S100 members and several other 

components (Srikrishna et al. 2011).  

A B 
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b) Expression pattern of S100 proteins 

Members of the S100 gene family show different patterns of both cell and tissue-specific 

expression (Appendix 1). Expression of S100 proteins is strictly regulated in order to 

maintain immune homeostasis (Donato 2003). Calprotectin (S100A8/A9), for example, is 

constitutively expressed in monocytes, neutrophils, and dendritic cells (Averill et al. 2011). 

However, upon activation, it is also expressed in fibroblasts (Rahimi et al. 2005), mature 

macrophages (Ingersoll et al. 2009), vascular endothelial cells (Yao et al. 2010) and 

keratinocytes (Grimbaldeston et al. 2003).  In addition, epigenetic mechanisms also play 

a key role in regulating their gene expression  (Lindsey et al. 2007), with methylation of 

DNA CpG islands being a common method of gene transcription repression. Accordingly, 

DNA hypomethylation has been reported to significantly induce expression of several 

members of the S100 members in prostate and gastric cancer (Wang et al. 2007, Wang et 

al. 2010). 

c) Function of the S100 proteins 

The S100 proteins have been implicated in the control of a broad range of intracellular 

and/or extracellular functions including regulation of cell apoptosis, proliferation, 

differentiation, migration/invasion, energy metabolism, Ca2+ homeostasis, protein 

phosphorylation and inflammation in different cell types (Donato et al. 2013). Some of 

the S100 protein functions are outlined below. 

i) S100 proteins as damage associated molecular pattern (DAMP) molecules 

After cell damage/stress or activation of neutrophils and macrophages, S100 proteins are 

released to the extracellular space, where they play a key role in the regulation of immune 

homeostasis, post-traumatic injury and inflammation (Xia et al. 2018). They can act as 

DAMP molecules to activate immune cells and endothelial cells by binding to TLRs and 

RAGE (Figure 1.9). For example, binding of S100A8/A9 to TLR4 initiates a signalling 

cascade that regulates inflammation, cell proliferation, differentiation and tumour 

development in an NF-κB-dependent manner (Vogl et al. 2007). Furthermore, S100A12 

binding to RAGE has been described to induce expression of vascular and intercellular 

adhesion molecule 1 (VCAM1 and ICAM1) on endothelium, while also increasing NF-κB-

induced expression of proinflammatory cytokines such as TNFα by other inflammatory 

cells (Hofmann et al. 1999).  

DAMPs play a key role in the pathogenesis of many inflammatory diseases such as 

rheumatoid arthritis, osteoarthritis or atherosclerosis. Importantly, S100A4, S100A8/9, 
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S100A11 and S100A12 have been found to be upregulated in the synovial tissue, synovial 

fluid, or serum of rheumatoid arthritis patients (Klingelhöfer et al. 2007, Baillet et al. 2010, 

Cerezo et al. 2017). S100A8/A9 expression was also found to be increased in the synovium 

of a collagenase-induced osteoarthritis mouse model (Cremers et al. 2017), while 

S100A12 levels were significantly increased in the synovial fluid of osteoarthritis patients 

compared to healthy controls (Wang et al. 2013). Lastly, S100 proteins are also involved 

in the pathogenesis of atherosclerosis. S100A8, S100A9, and S100A12 have an important 

role in the mediation of inflammation and have been reported to increase atherosclerosis 

in human and rodent models through interactions with RAGE, which plays an important 

role in endothelial dysfunction and inflammation (Harja et al. 2008, Oesterle et al. 2015). 

DAMPs also play a role in the pathogenesis of neurodegenerative diseases. S100B serum 

levels have been found to be intimately related to the severity of diseases such as 

Alzheimer’s disease (Chaves et al. 2010) and Parkinson’s disease (Schaf et al. 2005). 

Interestingly, it has also been reported that S100A10, also known as p11, increases 

expression of the 5-hydroxytryptamine 1B serotonin receptor (5-HT1B) in HeLa cells and 

brain tissue and that its expression is decreased in rodent models of depression 

(Svenningsson et al. 2006).  

ii) S100 proteins in macrophage migration, invasion and differentiation 

Macrophages play a crucial role in tumour growth and metastasis through modulation of 

local inflammation, inhibition of anti-tumour immunity and stimulation of angiogenesis 

(Sica et al. 2007). They are recruited to tumour sites by chemoattractants such as 

chemokine ligands (CCL) 3-8, VEGF and macrophage inflammatory protein 1 alpha 

(MIP1α) (Dandekar et al. 2011). An increasing number of findings show that many S100 

proteins contribute to leukocyte adhesion and migration. For instance, as well as inducing 

pro-inflammatory cytokine production in macrophages through the activation of the NF-

κB and p38 mitogen activated protein kinase (MAPK) pathways (Sunahori et al. 2006), the 

release of S100A8/A9 has been suggested to facilitate monocyte and neutrophil migration 

(Eue et al. 2000); S100A12 has been shown to induce the production of pro-inflammatory 

cytokines IL6 and IL8 through RAGE-dependent NF-κB activation, resulting in the 

recruitment of monocytes (Sorci et al. 2013, Yang et al. 2007); S100A10 has been reported 

to mediate macrophage migration to tumour sites, as shown by decreased plasmin 

generation and matrix metalloproteinase (MMP) 9 activation in macrophages in S100A10-

deficient mice (O’Connell et al. 2010); Finally, S100A9 is capable of inhibiting myeloid cell 
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differentiation through generation of ROS (Cheng et al. 2008), while S100A8 and S100A9 

have been shown to mediate the cell arresting effect of TNFα on the differentiation of 

myeloid-derived suppressor cells into dendritic cells and macrophages in a RAGE-

dependent manner (Sade-Feldman et al. 2013).  

 

d) S100 proteins in disease 

As we have seen, S100 proteins play a major role in the development of numerous 

inflammatory conditions such as rheumatoid arthritis or osteoarthritis. However, the 

greatest contribution of S100 proteins to pathology is in the cancer field. There is 

abundant evidence showing that a dysregulated expression of a variety of S100 proteins 

is a common feature in many types of cancer (Bresnick et al. 2015). Some of these will be 

described below. 

i) S100 proteins as biomarkers for specific diseases 

Since S100 proteins can be detected in body fluids, they may be used as biomarkers where 

there is altered expression level associated with a specific disease (Foell et al. 2003). For 

instance, S100A4 has recently been reported as a novel biomarker and a critical regulator 

of glioma stem cells, with its enhanced expression contributing to the presentation of a 

metastatic phenotype (Chow et al. 2017); increased serum levels of S100A6 have been 

reported in gastric cancer patients (Zhang et al. 2014); S100A7 levels have been found to 

be increased in cerebrospinal fluid and brain of Alzheimer’s disease subjects (Qin et al. 

2009); S100A12 serum levels have been seen to correlate with extensive coronary 

atherosclerosis in patients with coronary artery disease, diabetes mellitus and chronic 

kidney disease. Increased S100A12 plasma levels have also been associated with diabetic 

retinopathy and macrovascular events in T2D patients (Dong et al. 2015); increased serum 

concentrations of S100A8/A9 have been detected in obese individuals (Mortensen et al. 

2009) and in patients with coronary artery diseases (Ionita et al. 2009); Importantly, 

S100A8/A9 has also proven to be a useful biomarker as its faecal detection can be used 

to differentiate inflammatory bowel disease from irritable bowel syndrome (Konikoff et 

al. 2006); finally, S100B has been considered as a prognostic marker of the acute phase of 

neurologic damage after traumatic brain injury and large volume cerebral infarction 

(Thelin et al. 2016), and it has been associated with some genetic disorders as it was found 

to be overexpressed in patients with Down syndrome (Lu et al. 2011), an even to certain 

mood disorders as a consequence of glial pathology (Schroeter et al. 2013). 
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Figure 1.9: Extracellular S100s signalling. S100 proteins are released from inflammatory cells 

including fibroblasts, macrophages, lymphocytes and neutrophils in response to inflammation and 

stress. They signal through a range of cell surface receptors to activate several inflammatory 

signalling pathways which ultimately activate transcription of proinflammatory factors including 

TNF-α, IL-1β, IL-6 and IL-8, as well as other mechanisms that lead to ROS formation and apoptosis. 

S100B signals through FGFR to activate the PI3K/PKB pathway. Most S100s signal through RAGE to 

activate the JAK/STAT, PI3K/PKB and ERK/NF-κB pathways. EGFR-mediated signalling can also 

activate the PI3K/PKB and ERK/NF-κB pathways. GPCR-mediated signalling can also activate NF-κB 

although the mechanism involved in unknown. S100A10 signals through the 5-HT1B receptor to 

activate ILK and NF-κB, while CD36-mediated signalling activates the JNK/AP1 pathway. 

Abbreviations: 5-HT1B 5-hydroxytriptamine 1B serotonin receptor; AP1 activator protein 1; CD36 

cluster of differentiation 36; EGFR epidermal growth factor receptor; ERK extracellular signalling-
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related kinase; FGFR fibroblast growth factor receptor; GPCR G protein coupled receptor; IL 

interleukin; ILK integrin-linked protein kinase; JAK Janus kinase; JNK c-Jun N-terminal kinase; NF-

κB nuclear factor κB; PI3K phosphatidyl inositol 3 phosphate; PKB protein kinase B; RAGE receptor 

for advanced glycation end products; STAT signal transducer and activator of transcription; TLR4 

toll-like receptor 4; TNF-α tumour necrosis factor alpha. 

 

ii) S100 proteins as therapeutic targets in disease 

As described above, the S100 proteins interact with an extensive range of protein targets 

and contribute to a great variety of intracellular and extracellular functions (Donato et al. 

2013), thereby regulating multiple cellular processes such as proliferation, differentiation 

and migration and/or invasion. Consequently, the S100 proteins play key roles in a wide 

range of pathologies including cancers, autoimmune diseases and chronic inflammatory 

disorders. 

The identification of an increasing number of S100-target molecules has provided key 

insights into the chemical and physical factors regulating target selectivity, which can be 

used for the development of specific S100 therapeutic strategies. Accordingly, an 

increasing number of studies indicate that S100 proteins may serve as therapeutic targets 

for certain disease conditions, as indicated below.  

A great number of S100 proteins bind to TLR4 (Vogl et al. 2007, Foell et al. 2013, Cerezo 

et al. 2014) and RAGE (Leclerc et al. 2009) (Figure 1.9). Among them, S100A8/S100A9, 

whose levels are found to be elevated in the serum of patients suffering from rheumatoid 

arthritis and other inflammatory conditions (Austermann et al. 2018), elicits most of its 

effects via these receptors (Vogl et al. 2007, Björk et al. 2009). While the S100A8/S100A9 

heterodimer can bind TLR4, high extracellular Ca2+ concentrations induce the formation 

of S100A8/S100A9 tetramers (Brini et al. 2013), which blocks its interaction with TLR4, 

providing an autoinhibitory mechanism for modulating S100A8/9 biological activity (Vogl 

et al. 2018). 

Substantial evidence shows that tissue and serum levels of many S100 proteins correlate 

with disease severity during tissue or local inflammation (Donato et al. 2013, Kessel et al. 

2013). In addition, we have seen how extracellular S100 proteins can function as DAMPs, 

triggering proinflammatory responses and inducing autoimmune conditions and 

inflammatory disorders (Foell et al. 2007, Donato et al. 2013, Xia et al. 2018). Function-

blocking antibodies targeting cell surface receptors and ligands have been widely used as 
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therapeutics for the treatment of numerous pathologies including cancers and immune 

disorders (Brufsky 2010, Saif 2013, König et al. 2016, Hofmann et al. 2018). Given the 

extensive literature showing that extracellular S100 proteins mediate inflammatory 

responses in many pathological conditions, mostly through cell receptor signalling 

(Bresnick et al. 2015, Austermann et al. 2018), the use of S100 neutralizing antibodies may 

provide a novel and effective therapeutic strategy to treat these conditions. To date, 

antibodies targeting S100A8/A9, S100A4, S100A7, and S100P have demonstrated efficacy 

for several pathological conditions (Björk et al. 2009, Grum-Schwensen et al. 2015, Padilla 

et al. 2017, Dakhel et al. 2014). Some of these are described in further detail below. 

S100A8/A9 is the best characterized S100 family dimer with respect to extracellular 

functions. Elevated extracellular S100A8/S100A9 levels are strongly associated with 

inflammatory and autoimmune diseases, including rheumatoid arthritis, systemic 

sclerosis (Austermann et al. 2018) and diabetic nephropathy (Burkhardt et al. 2009), 

amongst others. Furthermore, it has been seen that elevated S100A8/A9 expression in 

the tumour microenvironment or in plasma correlates with aggressive disease (Tidehag 

et al. 2014, Miller et al. 2017). In particular, as described earlier, extracellular S100A8/A9 

plays a central role in the recruitment of myeloid cells and myeloid-derived suppressor 

cells, thereby promoting the establishment of a pre-metastatic niche, as well as tumour 

growth (Cheng et al. 2008, Ichikawa et al. 2011). It also induces the expression of serum 

amyloid 3, which recruits CD11b+ myeloid cells to pre-metastatic sites (Hiratsuka et al. 

2008), enabling the formation of a proinflammatory environment that recruits circulating 

tumour cells; It has been seen that S100A8 and S100A9 neutralizing antibodies block the 

recruitment of both myeloid cells and circulating tumour cells (Hiratsuka et al. 2006, 

Hiratsuka et al. 2008), as well as blocking their interaction with TLR4 or RAGE, thereby 

inhibiting TNFα release (Björk et al. 2009). It has also been reported that peptibodies 

(peptide-Fc fusion proteins) directed towards S100A8 and S100A9 decrease tumour-

related complications in multiple cancer models (Qin et al. 2014). Moreover, S100A4 and 

S100B have been shown to participate in neoplastic disorders by binding to p53 and 

suppressing its phosphorylation, thereby leading to its downregulation (Fernandez-

Fernandez et al. 2005). Therefore, targeting these proteins and suppressing their 

interaction would restore p53 tumour suppression function. Together, these findings 

highlight the potential use of function blocking or neutralising antibodies as both 

therapeutic and diagnostic reagents. 
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Moreover, early studies reported that several anti-allergic drugs are able to bind to 

S100A12 and S100A13 and block downstream RAGE signalling and subsequent NF-κB 

activation (Shishibori et al. 1999).  

In addition to direct interaction strategies to modulate S100 proteins in disease, covalent 

modification may also regulate the extracellular functions of S100 proteins. For instance, 

transglutaminase 2 (TG2)-mediated crosslinking of S100A11 dimers is necessary for 

activation of p38 MAPK signalling in chondrocytes (Cecil et al. 2008). In addition, several 

S100 proteins have been seen to be S-nitrosylated, including S100B (Bajor et al. 2016), 

S100A1 (Lenarčič et al. 2012) and S100A8/A9 (Lim et al. 2010). Finally, sumoylation and 

phosphorylation of S100 proteins have also been reported (Miranda et al. 2010, Schenten 

et al. 2018). Therefore, targetting these modifications may also constitute an indirect way 

to modulate S100 structure or function, thus impacting upon disease pathology and 

progression.  

Although growing evidence shows details of many S100 proteins regulation, further 

studies are required to fully reveal the underlying mechanisms by which S100 proteins 

participate in a variety of disease conditions. Therefore, future directions in this area 

should focus on the development of therapeutic approaches targeting S100 proteins, 

verification of their therapeutic potential in both preclinical and clinical settings, and 

elucidation of their underlying mechanisms of action. 

 

1.5.2 S100A4 

 

Of all the S100 family members, S100A4 is one of the the most extensively studied, and 

constitutes the focus of this thesis. S100A4 is also known as metastasin (MTS1), PEL98, 

18A2, 42A, P9KA, CAPL, calvasculin and fibroblast-specific protein (FSP1) (Watanabe et al. 

1992). The human S100A4 gene is located on chromosome 1q21, and consists of four 

exons that encode a protein with 101 amino acid residues (Ravasi et al. 2004). It is 

ubiquitously expressed, and is present both intra- and extracellularly, with intracellular 

levels being high both in the cytoplasm and in the nucleus (Malashkevich et al. 2008). 

S100A4 plays an important role in many physiological functions including cell motility, 

adhesion and proliferation, but also in various pathological processes such as invasion and 

metastasis (Roh et al. 2014). Intracellular S100A4 binds to cytoskeletal proteins including 
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F-actin and non-muscle myosin heavy chains (Ford et al. 1997), both of which are involved 

in cellular stability and/or migration (Tarabykina et al. 2007). By contrast, extracellular 

S100A4 regulates the expression of extracellular matrix (ECM)-remodelling enzymes such 

as MMPs, which are involved in facilitating cellular migration in different tissues (Schmidt-

Hansen et al. 2004), and most importantly, it can also signal through membrane receptors 

to activate proinflammatory pathways (Cerezo et al. 2011). 

 

1.5.2.1 S100A4 signalling  

 

a) Extracellular S100A4 

Under various pathological stimuli, numerous inflammatory cells including lymphocytes, 

macrophages and neutrophils upregulate their own expression and release of S100A4 into 

the extracellular space in the form of plasma membrane-derived macrovesicles 

(Ambartsumian et al. 2016). It is not clear how extracellular S100A4 exerts its effects, but 

it has been shown to bind several different cell-membrane receptors including RAGE, 

EGFR, TLR4 and IL10 receptor (IL10R) (Donato et al. 2013, Grotterød et al. 2010) (Figures 

1.9 and 1.10). 

RAGE is a membrane spanning protein of the immunoglobulin superfamily.  Although its 

basal expression is low in most tissue types, it can be upregulated as a cellular response 

to pathogenic environments such as inflammatory conditions (Yan et al. 2009). Increased 

expression of RAGE and some of its ligands has been found in atherosclerotic lesions from 

diabetic subjects who died suddenly from cardiovascular complications (Burke et al. 

2004). Furthermore, multiple studies indicate that RAGE is expressed at low levels in the 

human kidney in physiological conditions, but that its expression is increased in kidney 

failure-related diseases, including diabetes (Suzuki et al. 2006). 

RAGE are well-established interaction partners of S100A4 (Chaabane et al. 2015). In 

addition to inducing smooth muscle proliferation in atherosclerosis (Chaabane et al. 

2015), it has been reported that binding of extracellular S100A4 to these receptors 

increases the migratory and invasive capabilities of colorectal cancer cells via activation 

of MAPK/ERK and NF-κB, and via hypoxia signalling through upregulation of hypoxia-

inducible factor 1α (HIF-1α) (Dahlmann et al. 2014) (Figure 1.10). 

Extracellular S100A4 signalling activates several major proinflammatory pathways, 

including the MAPKs p38 and ERK1/2 (Novitskaya et al. 2000, Cerezo et al. 2014). This 
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triggers leukocyte migration and recruitment during immune responses, inducing a self-

amplifying pro-inflammatory cycle through the upregulation of several pro-inflammatory 

cytokines (IL1β, IL6, and TNFα), acute phase reactants, granulocyte colony-stimulating 

factors, and well-known inflammation-associated S100 family members including S100A8 

and S100A9, thereby establishing an inflammatory milieu (Cerezo et al. 2011).  

Extracellular S100A4 also triggers the activation of another major proinflammatory 

transcription factor, namely NF-κB (Grotterød et al. 2010, Yammani et al. 2006). 

Interestingly, both NF‐κB (Bond et al. 2001) and MAPKs ERK1/2 (Boyd et al. 2005) are key 

transcriptional regulators of several MMPs (Borghaei et al. 2009), and consequently 

possible mediators of S100A4‐induced stimulation of cell migration and metastasis (Figure 

1.10).  

The underlying mechanisms of S100A4-mediated activation of MAPKs and NF‐κB are not 

completely understood. In chondrocytes, these signalling events depend on interaction 

with RAGE (Yammani et al. 2006), whereas S100A4‐induced signalling in primary neurons 

and endothelial cells seems RAGE‐independent (Kiryushko et al. 2006). It has been widely 

demonstrated that extracellular S100A4 specifically activates NF‐κB in human cancer cell 

lines through the classical NF‐κB activation pathway (Boye et al. 2008, Kim et al. 2017) to 

promote cell migration and metastasis. Although little is known about the role of S100A4 

in the activation of the inflammatory processes mediated by NF‐κB in many autoimmune 

diseases, fibrosis, and other disorders, it has been recently proposed that S100A4 

constitutes a link between cancer-related metastasis and inflammation (Ambartsumian et 

al. 2016). Accordingly, a link between T2D and cancer, mediated through inflammation, is 

proposed in the final chapter of this thesis (chapter 6).  

 

b) Intracellular S100A4 

Intracellular S100A4 was firstly identified in tumour cells, and accordingly, extensive 

evidence shows that an upregulation in S100A4 intracellular levels correlates with 

increased tumour cell motility (Takenaga et al. 2006, Tsukamoto et al. 2013). Besides 

tumour cells, intracellular S100A4 is expressed in normal cells and tissues, including 

fibroblasts and cells of the immune system (Li et al. 2010). For instance, it has been seen 

to be expressed in astrocytes, where its levels increase after injury, inducing astrocyte 

migration and repair responses  (Takenaga et al. 2006). Importantly, a model of S100A4 (-

/-) mice shows impaired recruitment of macrophages to inflammation sites in vivo, 
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whereas macrophages derived from these mice showed defective chemotaxis in vitro (Li 

et al. 2010). Overall, these findings indicate that intracellular S100A4 plays a major role in 

conferring migratory capacity to cells, mainly to non-metastatic tumour cells during an 

epithelial to mesenchymal transition, as well as to cells of the immune system including 

lymphocytes, neutrophils and macrophages during the progress of the immune response 

(Garrett et al. 2006). 

One of the mechanisms through which this intracellular S100A4 upregulation is thought 

to take place is through TGF-β-induced expression (Matsuura et al. 2010). Secretion of 

proinflammatory cytokines and other factors such as TGF-β by activated immune cells and 

fibroblasts signal through the SMAD2/SMAD3 pathway to induce expression of 

intracellular S100A4, which is then able to interact with cytoskeleton–associated target 

molecules such as acto-myosin filaments, tropomyosin or non-muscle myosin heavy chain 

IIA (NMIIA) (Figure 2).  This interaction destabilises the myosin II assembly, promoting its 

dissociation and remodelling, ultimately resulting in enhanced migration (Dulyaninova et 

al. 2005). In the case of fibroblasts and immune cells, this enhanced migration allows 

subsequent infiltration into the affected regions, inducing the release of inflammatory 

factors and thereby contributing to the aggravation of pathological processes (Helfman et 

al. 2005).  Additionally, intracellular S100A4 is also able to bind to p53. This interaction 

inhibits p53 phosphorylation and subsequent activation, thereby modulating 

transcription of cell cycle-regulating genes, and consequently stimulating apoptosis 

(Garrett et al. 2006). Importantly, intracellular interactions of S100A4 with the mentioned 

cytoskeleton target molecules as well as with p53 are Ca2+-dependent, thus linking the 

cellular functions of these proteins with changes in intracellular Ca2+ concentrations and 

consequently with the energetic status of the cells (Garrett et al. 2006). 
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Figure 1.10: Intracellular and RAGE-mediated extracellular S100A4 signalling. Extracellular 

S100A4, released from fibroblasts, macrophages, lymphocytes, neutrophils, vascular cells, and 

other bone marrow derived cells, signals through RAGE, leading to increased phosphorylation of 

MAPKs and subsequent activation of NF-κB, inducing expression of pro-inflammatory genes. On 

the other hand, TGFβ secreted from immune cells induces intracellular expression of S100A4, 

which can combine with numerous target molecules, such as NMIIA, tropomyosin, p53, and actin, 

to form complexes that facilitate the remodelling of microtubes and microfilaments to enhance 

cell motility and chemotaxis, contributing to the infiltration of fibroblasts, immune cells and 

vascular cells into the affected region. In addition, binding of intracellular S100A4 to p53 promotes 

cell proliferation and collagen expression via MAPK activation and phosphorylation of ERK. Finally, 

extracellular S100A4 signalling through RAGE can also activate hypoxia signalling through 

upregulation of HIF-1α. Abbreviations: ERK extracellular signalling-related kinase; HIF-1α hypoxia 

inducible factor 1α; MAPK mitogen-activated protein kinases; NF-κB nuclear factor κB; NMIIA non-

muscle myosin heavy chain IIA; RAGE receptor for advanced glycation end products; TGFβ 

transforming growth factor β. 
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1.5.2.2 S100A4 in disease  

 

a) S100A4 in cancer 

Cancer is a significant worldwide health problem in both economically developing and 

developed countries (Torre et al. 2015), and its burden is expected to further increase due 

to growing and aging global populations, especially in developing countries. 

Environmental factors such as increased pollution, together with unhealthy lifestyles such 

as tobacco smoking, alcohol consumption, unhealthy diet and lack of exercise amongst 

others further increase the risk of developing cancer. There were 14.1 million new cancer 

cases and 8.2 million cancer deaths worldwide in 2012 (Torre et al. 2015). In the last years, 

the number of cancer cases and deaths have increased worldwide, making it the second 

leading cause of death behind cardiovascular disease. To date, strategies for cancer 

prevention have been effective against only a relatively small proportion of human 

cancers through vaccination, early intervention, or changes in the lifestyle. However, most 

human cancers continue to develop, progress, and metastasize due to the absence of 

effective management strategies (Torre et al. 2015).  

Cancer metastasis is a multi-step process in which a number of proteins have been 

identified to be involved at the molecular level (Jin et al. 2017), including S100A4 (Garrett 

et al. 2006). S100A4 has gained increasing attention for its role in the development of 

different types of cancers (Hou et al. 2018). It has been well established that S100A4, 

secreted from both tumour and non-malignant cells, plays an important role in the 

regulation of angiogenesis, cell migration and inflammation (O’Connell et al. 2011, 

Dahlmann et al. 2016). It was first shown to be associated with tumour metastasis in 1989 

(Ebralidze et al. 1989), and later, it was found that transfection of S100A4 could enhance 

the tumorigenic potential and induce the metastatic phenotype in vivo (Davies et al. 

1994). 

Overexpression of S100A4 as an indicator of poor prognosis and high metastatic potential 

was first proposed in human breast cancer in the year 2000 (Rudland et al. 2000). Since 

then, S100A4 has been found to be overexpressed in many cancers, which has been 

strongly associated with poor prognosis of many tumour types including brain, medullar 

thyroid, breast, colorectal, ovarian, liver, prostate, pancreatic, bladder, lung, 

oesophageal, gallbladder, and gastric cancers as well as in osteosarcoma, leukaemia and 

malignant melanoma (Gongoll et al. 2002, Taylor et al. 2002, Gross et al. 2014, Chen et al. 

2014, Bresnick et al. 2015,  Zakaria et al. 2016). Detection of S100A4 expression becomes 
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therefore a promising candidate biomarker in cancer early diagnosis and prediction of 

cancer metastasis (Fei et al. 2017).  

As described earlier, intracellular S100A4 expressed by cancer cells, fibroblasts and 

immune cells, forms covalent interactions with target molecules including actin, NMIIA 

and tropomyosin (Fei et al. 2017), all of which are associated with cell migration, 

metastasis and tumour cell spread (Tarabykina et al. 2007, Li et al. 2010). Other S100A4-

binding target proteins include p53, methionine aminopeptidase 2, and liprin-β1,  

although only a few of them have been confirmed in vivo (Bresnick et al. 2015). Amongst 

them, it has been reported that S100A4 binds to p53 both in vitro and in vivo, resulting in 

inhibition of p53 phosphorylation and consequently, in decreased p53 activation, and that 

this leads to apoptosis induction, loss of p53 function in tumours and a more aggressive 

phenotype during tumour progression (Grigorian et al. 2001).  

As an extracellular protein, S100A4 released from tumour and/or stromal cells can alter 

the tumour microenvironment by stimulating angiogenesis and attracting immune cells 

to the growing tumour lesions (Ambartsumian et al. 2001), as well as by promoting the 

secretion of various cytokines and growth factors. Importantly, studies using breast 

adenocarcinoma and cervical carcinoma cell lines (Mueller et al. 1999) have shown that 

extracellular S100A4 can signal through RAGE to induce nuclear translocation of 

intracellular S100A4, which can also act as a transcription factor for various genes, 

including those encoding adherence junction proteins, and thereby regulating cell motility 

(Hsieh et al. 2004).  

S100A4 has been described as a metastasis-inducing but not a tumour-initiating 

oncogene, as it was observed that it did not influence tumorigenesis in S100A4-transgenic 

mice, but could promote metastasis when overexpressed in the primary tumour 

(Ambartsumian et al. 1996). After carrying out experiments with transgenic mice, it was 

also suggested that S100A4 needs to couple with an oncogene in order to induce cancer 

(Davies et al. 1996). The proposed mechanism by which S100A4 promotes metastasis in 

many cancer types is via epithelial-to-mesenchymal transition (EMT), a complex 

molecular process involving a change in cell morphology and function in which cells 

acquire fibroblastic phenotype and stem cell features (Smith et al. 2016). TGFβ, a key 

triggering factor of the EMT process, induces upregulation of S100A4 through the 

activation of the SMAD pathway (Matsuura et al. 2010), decreasing expression of 
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epithelial cell markers and increasing expression of mesenchymal cell markers (Ning et al. 

2018).  

S100A4 was initially described to promote EMT through downregulation of the cell-

adhesion molecule E-cadherin (Keirsebilck et al. 1998). Since then, other mechanisms of 

S100A4-induced activation of EMT have been described in different types of cancer: for 

example, in colorectal cancer, S100A4-induced EMT is mediated by TGFβ-induced 

activation of PI3K/PKB/mTOR/ribosomal protein S6 kinase beta 1 (p70S6K) signalling 

pathway (Wang et al. 2014); in pancreatic cancer, it is mediated by the sonic hedgehog-

gli1 (SHH-GLI1) signalling pathway (Xu et al. 2014); in gallbladder cancer, overexpression 

of c-Myc and MMP14 induces loss of E-cadherin expression followed by an increase in 

S100A4 expression (Kohya et al. 2003); in prostate cancer, NF-κB-dependent 

transcriptional activation of MMP9 induces S100A4-mediated cell invasion and malignant 

phenotypes (Saleem et al. 2006); In osteosarcoma, S100A4-induced tumour invasion and 

metastasis is also mediated via the dysregulation of MMPs and the expression of tissue 

inhibitors of metalloproteinases (TIMPs) (Bjørnland et al. 1999); finally, in leukaemia, 

preferentially expressed antigen of melanoma (PRAME) suppresses heat shock protein 

HSP27 and S100A4 expression, inducing cell apoptosis and inhibiting cell proliferation and 

tumorigenicity (Tajeddine et al. 2008).  

b) S100A4 in non-tumour pathophysiologies 

Even though S100A4 is best known for its significant role in promoting cancer progression 

and metastasis, upregulation of S100A4 expression has also been associated with various 

non-tumour pathophysiological processes such as tissue fibrosis, inflammation, immune 

reaction, neuroprotection and cardiovascular events (Fei et al. 2017), although the 

underlying mechanisms remain unclear.  

Numerous studies indicate that the S100A4-mediated EMT plays a vital role in the 

occurrence and development of both tumour and non-tumour pathophysiologies. The 

EMT process can be categorized into three subtypes depending on the phenotype of 

the output cells (Kalluri et al. 2009). Type I EMT (non-pathological tissue development) 

involves the transition of primordial epithelial cells into motile mesenchymal cells that 

eventually form the basic body of gastrulation, and which are then re-induced as 

secondary epithelial cells; type II EMT (pathological conditions) involves the transition of 

secondary epithelial or endothelial cells to resident or inflammation-induced fibroblasts 

in response to persistent inflammation and fibrosis; finally, type III EMT is part of the 
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metastatic process by which epithelial carcinoma cells in their primary nodule form 

migrate to a distant site via blood circulation to reform as a secondary tumour nodule 

(Zeisberg et al. 2009). 

S100A4 regulates tissue fibrosis associated with type II EMT via various mechanisms. The 

initiation of S100A4 expression in epithelial cells that have undergone EMT promotes the 

generation of ECM components such as collagen, elastin, and other proteins, providing a 

basis for the onset of tissue fibrosis (Okada et al. 2017). Furthermore, TGFβ-induced 

S100A4 expression stimulates fibroblasts to secrete fibronectin, contributing to the 

formation of a pro-inflammatory niche (Tomcik et al. 2015). S100A4 is therefore 

considered to be a specific fibroblast maker, and thus is frequently used to monitor or 

predict the mechanism of tissue fibrosis (Smith et al. 2016). Simultaneously, extracellular 

S100A4 secreted in response to inflammatory cytokines signals through RAGE, promoting 

the recruitment and chemotaxis of macrophages, neutrophils, and leukocytes via the 

activation of the MAPK and NF-κB pathways (Grotterød et al. 2010), thereby activating a 

self-amplifying pro-inflammatory cycle by upregulating several pro-inflammatory 

cytokines, including IL1β, IL6, and TNFα, and thus regulating inflammation and immune 

functions (Li et al. 2010, Zhou et al. 2015). S100A4 also participates in angiogenesis, thus 

inducing its metastasis-promoting mechanisms via interaction with annexin 2 and 

stimulation of MMP production (Schmidt-Hansen et al. 2004, Semov et al. 2005). 

Interestingly, it has been reported that certain members of the S100 protein family have 

obesity-facilitating properties. For instance, S100B promotes obesity by impairing insulin 

sensitivity (Fujiya et al. 2014), while overexpression of S100A16 can enhance adipogenesis 

in 3T3-L1 preadipocytes (Liu et al. 2011). S100A4 expression is also known to be involved 

in the pathogenesis of several autoimmune diseases and other inflammatory conditions 

such as rheumatoid arthritis, systemic sclerosis, psoriasis (Klingelhöfer et al. 2007), 

diabetic retinopathy (Abu El-Asrar et al. 2014) and inflammatory myopathies (Cerezo et 

al. 2011). Given that S100A4 white adipose tissue (WAT) expression has been reported to 

associate positively with expression of genes involved in inflammation and immune cell 

activation, as well as with those involved in ECM formation, organization and migration 

(Arner et al. 2018), and given that obesity has been described to be a state of low-grade 

chronic inflammation (Castro et al. 2017), it is reasonable to hypothesise that S100A4 may 

also have obesity-facilitating properties.  
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Adipokine secretion from WAT has been linked to WAT dysfunction and metabolic 

complications of obesity. Fat cell size is potentially an important factor linking 

dysfunctional WAT to metabolic disease (Laforest et al. 2015). Irrespective of body fat 

level, WAT can be composed of many small fat cells (hyperplasia) or few but large fat cells 

(hypertrophy), with the latter being closely associated with IR, risk of T2D and other 

metabolic abnormalities (Arner et al. 2010). The correlation between S100A4 expression 

and fat cell size suggests that S100A4 may be a marker of WAT hypertrophy, which could 

in turn explain its association with IR (Arner et al. 2018). S100A4 could therefore be 

classified as a novel adipokine that associates with a pernicious adipose phenotype, 

including adipocyte hypertrophy and increased expression and secretion of 

proinflammatory factors (Arner et al. 2018).  

The known association between S100A4 and cancer, together with the proposed 

association between S100A4 and obesity, raises the possibility that it may at least in part 

be involved in linking obesity/IR with cancer. It is known that in cancer cells, WNT/β-

catenin signalling increases S100A4 gene transcription, leading to an increase in tumour 

progression and invasiveness (Stein et al. 2006a). Conversely, the inhibition of this 

pathway attenuates S100A4 mRNA levels, and hence cell migration and invasion (Stein et 

al. 2011). Other factors known to be involved in regulating S100A4 expression in different 

cancer cell types are C/EBPβ (Aguilar-Morante et al. 2015), c-Myb (Liu et al. 2014) and 

SHH (Xu et al. 2014).  

Whilst the pathways involved in the transcriptional regulation of S100A4 in different AT 

cells are yet to be fully elucidated, given the commonality between obesity/IR and WAT 

dysfunction to both T2D and certain types of cancer, it is tempting to speculate 

involvement of S100A4 in both. Indeed, the auto-inflammatory component of T2D is, in 

part, associated with the excessive AT proliferation that causes hypoxia in AT (Gonzalez 

et al. 2018). Rapid AT expansion causes a decrease in oxygen availability, exposing cells to 

hypoxia. This will result in activation of HIF-1α, a transcription factor that activates 

transcription of several apoptosis-related genes, as well as other factors including S100A4. 

Given that HIF-1α can also participate in the ROS response that results from 

hyperglycaemia in diabetes, this may therefore represent a unifying molecular 

mechanism in diabetes (this is described in more detail in section 1.6 and Figure 1.11). 
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1.5.2.3 S100A4 therapeutics 

 

S100A4 has proven to be a valuable biomarker and therapeutic target for many types of 

cancer. As a biomarker, the detection of S100A4 levels in tumour tissues or in body fluids 

could predict prognosis and metastasis of cancer patients in the early stages, whereas as 

a target, the inhibition of S100A4 expression can decrease metastasis in vivo (Hernández 

et al. 2013). Several molecular targetting strategies for S100A4 have been developed. The 

use of these new techniques has made it possible to discover, for instance, the exact 

atomic structure of the interaction between intracellular S100A4 and NMIIA (Kiss et al. 

2012). However, there is a currently unmet clinical need to develop new therapeutic 

agents that function to modulate S100A4 expression and activity. 

S100A4 expression is intimately associated with the proliferation, aggressive phenotype 

and metastatic behaviour of numerous types of human cancers, and is an indicator of 

poor outcome of cancer patients. Therefore, targetting S100A4 expression or biological 

function may provide a novel approach to fight metastatic cancer, improve prognosis and 

increase survival rates of cancer patients, as well as to combat non-tumour 

pathophysiological processes such as tissue fibrosis, inflammation, immune reaction, 

neuroprotection and cardiovascular disease.  

Applicable therapies to decrease the S100A4-mediated metastatic potential include 

inhibition of S100A4 expression using miRNA-, siRNA- or shRNA-based knockdown of 

S100A4, the use of neutralizing antibodies, or the use of specific small molecule inhibitors. 

Furthermore, it was reported in 1996 that ribozyme-based knockdown of S100A4 

successfully decreased the S100A4-mediated osteosarcoma metastatic phenotype 

(Maelandsmo et al. 1996). More recently, it has been seen that shRNA-mediated 

knockdown of S100A4 decreases metastasis formation in colorectal cancer in vivo 

(Dahlmann et al. 2012), and that siRNA-mediated S100A4 knockdown significantly 

decreased proliferation, induced apoptosis and inhibited the invasive potential of 

anaplastic thyroid cancer cells in vitro, and abdominal cavity metastasis and tumour 

growth in vivo (Zhang et al. 2016).  

Moreover, miR-3189-3p mimics have been seen to intensify the effects of S100A4 siRNA 

on the inhibition of proliferation and migration of gastric cancer cells (Bian et al. 2018). 

S100A4 neutralising antibodies have been shown to decrease tumour metastasis and to 

inhibit T-cell migration in pre-metastatic lungs, (Grum-Schwensen et al. 2015) and in 
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mouse models of breast cancer (Klingelhöfer et al. 2012), as well as to block pancreatic 

tumour growth in immunocompromised mice vivo (Hernández et al. 2013).  

As mentioned earlier, transcription of S100A4 is controlled by the WNT/β-catenin 

pathway (Dahlmann et al. 2016), therefore, compounds that block the formation of the 

β-catenin complex or promote its degradation such as calcimycin (Sack et al. 2011), 

niclosamide (Sack et al. 2011),  or sulindac (Dahlmann et al. 2016) will be able to inhibit 

S100A4 transcription. In fact, it has been seen that in vitro treatment of colorectal cancer 

cells with niclosamide, an antihelminthic agent, lowers WNT-dependent S100A4 

expression and subsequently inhibits tumour cell migration, invasion, proliferation and 

colony formation (Sack et al. 2011). Importantly, the use of niclosamide as a therapeutic 

agent against S100A4 is not only restricted to anti-cancer therapies, as it has also been 

seen to decrease NADPH oxidase, mTOR and NF-κB activity in murine activated primary 

microglia, a model or neuroinflammation (Serrano et al. 2019). Sorafenib, an inhibitor of 

numerous kinases, have also been reported to downregulate expression of S100A4 and 

block osteosarcoma progression and metastasis in vitro by targeting the Raf/MEK/ERK 

pathway (Walter et al. 2014). Finally, treatment with interferon-gamma (IFNγ) has also 

been seen to downregulate S100A4 mRNA in osteosarcoma, breast, and colon carcinoma 

cells (Andersen et al. 2003). 

 

1.6 Hypoxia and T2D 

 

The term hypoxia is defined as the failure of the tissues, for any reason, to receive an 

adequate supply of oxygen (Cafaro 1960). Oxygen concentration is closely associated with 

cellular proliferation, division and survival, and is generally maintained by homeostatic 

mechanisms operating at the cellular and tissue levels (Taylor et al. 2017, Fratantonio et 

al. 2018). 

Hypoxia is a characteristic of both physiological and pathological immunological niches. 

Some examples of the former are the bone marrow, lymphoid tissue, placenta and 

intestinal mucosa, where physiological hypoxia controls innate and adaptive immunity by 

modulating immune cell proliferation, development, and effector function, largely via 

transcriptional changes driven by hypoxia-inducible factors (HIFs) (Taylor et al. 2017). 

Conversely, in pathological immunological niches such as tumours and chronically 
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inflamed, infected or ischaemic tissues, pathological hypoxia can drive tissue dysfunction 

and disease development through immune cell dysregulation (Taylor et al. 2017). 

a) Hypoxia-induced adipose tissue dysfunction 

As mentioned above, hypoxia is the deprivation of oxygen from tissues. This is a common 

issue found in obese patients, particularly in AT, and is thought to be one of the 

mechanisms by which pro-inflammatory adipose signalling is initiated and maintained 

(Hodson et al. 2013). The association between hypoxia and obesity involves an 

hypertrophic process by which adipose cell size increases up to 140–180μm, which is 

more than the 100μm diffusion distance of oxygen, resulting in a diminished oxygen 

supply to this tissue (Jang et al. 2013).  

The activation of the hypoxic response in AT also involves the build-up of ECM, which 

brings inflammatory cells and overall dysregulation to AT (Sun et al. 2012). Importantly, 

one of the key indicators of obesity-related hypoxia in AT is the release of adipokines that 

cause widespread systemic inflammation (Tkacova et al. 2013).  A study shows that 

inhibition of HIF-1 signalling in AT of HFD-fed mice resulted in improvements in obesity 

and IR, and that these improvements were associated with the induction of adiponectin, 

an anti-inflammatory adipokine secreted by AT, and with the subsequent increase in 

insulin sensitivity (Jiang et al. 2011).  

b) Hypoxia-induced pancreatic dysfunction 

Cellular oxygen consumption is a determinant factor of intracellular oxygen levels. 

Because of the increased mitochondrial respiration under high glucose conditions, 

pancreatic β-cells consume large amounts of oxygen in a short time, inducing a hypoxic 

state (Sato et al. 2011). Accordingly, pancreatic islets of diabetic mice, but not those of 

control mice, showed moderate levels of hypoxia through higher expression of HIF-1α 

transcription factor and its target genes, which was accompanied by a selective 

downregulation of MAFA and PDX1, amongst others, all of which play important roles in 

β-cell function (Sato et al. 2014). Consistent with the altered expression of these genes, 

abnormal insulin secretion and increased apoptosis was detected in hypoxic mouse 

pancreatic MIN6 cells. In addition, hypoxia also inhibits the adaptive unfolded protein 

response in β-cells through activation of JNK and DNA-damage inducible transcript 3 

(DDIT3), a process associated with impaired ER-to-Golgi protein trafficking and 

subsequent increased apoptosis (Bensellam et al. 2016). Importantly, hypoxia has 

recently been seen to activate the NLRP3 inflammasome and NF-κB signalling in LPS-
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primed mouse MIN6 cells, a process mediated through upregulation of ROS and 

thioredoxin-interacting protein (TXNIP) (Chen et al. 2018). These results suggest that 

hypoxia is a novel stressor of β-cells and that hypoxic stress plays a key role in the 

deterioration of β-cell function. 

 

1.6.1 HIF-1α and T2D 

 

Hypoxia is a hallmark of inflamed, infected or damaged tissue. The adaptation to 

insufficient tissue oxygenation is regulated by HIFs, which are the key mediators of the 

cellular response to hypoxia. However, these factors are also associated with pathological 

conditions such as inflammation, bacteriological infection or cancer.  In addition, HIFs are 

central regulators of many innate and adaptive immunological responses, including 

migration, antigen presentation, production of cytokines and antimicrobial peptides, 

phagocytosis, and cellular metabolic reprogramming (Krzywinska et al. 2018).  

HIF is a heterodimeric transcription factor composed of two subunits, an oxygen sensitive 

HIF-α subunit and a constitutively expressed HIF-β subunit. H1F1 (histone cluster 1, H1a) 

is part of the HIF family, and is a key controlling element in many hypoxic responses. In 

normoxic conditions, the oxygen-dependent prolyl hydroxylases (PHDs) hydroxylate HIF-

1α, priming it for poly-ubiquitination by the von Hippel-Lindau (VHL) tumour suppressor 

complex, which leads to its proteasomal degradation (Franke et al. 2013). In situations of 

hypoxia however, PHDs are inactivated, therefore HIF-1α is stabilized. It is then able to 

translocate to the nucleus, where it binds to its heterodimerization partner HIF-1β and 

other co-factors, and together they induce transcription of target genes involved in a 

broad range of physiological functions including angiogenesis, erythropoiesis, 

metabolism, autophagy and apoptosis (Biddlestone et al. 2015), such as erythropoietin 

(EPO), VEGF, GLUT and PAI1 (Fakhruddin et al. 2017) by binding to hypoxia responsive 

elements (HRE) in their promoter region (Figure 1.11). Increased levels of these factors 

are considered to aggravate ECM deposition and induce recruitment of inflammatory 

cells, bringing overall dysregulation to AT (Sun et al. 2012). In AT, HIF-1α also blocks 

adipocyte secretion of anti-inflammatory adipokines such as adiponectin, contributing to 

the formation of a hypoxia-induced inflammatory milieu as well as contributing to insulin 

resistance. Furthermore, since HIF-1α is also capable of increasing transcription of 

profibrotic genes, it can greatly contribute to the pathogenesis of some diabetic-
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associated complications such as renal fibrosis (Haase 2012). Importantly, in addition to 

hypoxia, other factors found to be upregulated in diabetes such as angiotensin II, TGFβ, 

PKC, and ROS, can also activate HIF-1α even in nonhypoxic conditions (Jarad et al. 2009) 

(Figure 1.11). 

 

Figure 1.11: Oxygen-dependent and inflammatory factors-mediated regulation of HIF-1α. In 

normoxic conditions, PHDs hydroxylate HIF-1α, priming it for poly-ubiquitination by VHL, which 

leads to its proteasomal degradation. In situations of hypoxia however, PHDs are inactivated, 

therefore HIF-1α is stabilized and translocates to the nucleus, where it binds to HIF-1β and other 

co-factors. Together, they bind to HRE in the promoter region of target genes including EPO, PAI1, 

VEGF and GLUT. Increased levels of these factors aggravate ECM deposition and induce 

recruitment of inflammatory cells. In AT, HIF-1α also blocks adipocyte secretion of anti-

inflammatory factors. In addition to hypoxia, other factors found to be upregulated in diabetes 

such as TGFβ, PKC, and ROS, can also activate HIF-1α even in nonhypoxic conditions. Abbreviations: 

EPO erythropoietin; GLUT glucose transporter; HIF-1α hypoxia inducible factor 1α; HRE hypoxia 

responsive elements; PAI1 plasminogen activator inhibitor 1; PHDs prolyl hydroxylases; PKB 

protein kinase B; ROS reactive oxygen species; TGFβ transforming growth factor β; VEGF vascular 

endothelial growth factor; VHL von Hippel-Lindau ubiquitin-ligase. 

 

1.6.2 HIF-1α and S100A4 

 

As mentioned in section 1.5.2.2, available knowledge on the role of S100A4 in cancer is 

much more extensive than on its role in diabetes. Interestingly, S100A4 has been found 

to be upregulated in gastric cancer cells after being exposed to hypoxia (Zhang et al. 
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2010). Moreover, recent evidence shows that hypoxia-induced S100A4 expression 

promotes hepatocellular carcinoma metastasis and EMT formation (Dou et al. 2016). It 

has been seen that exposure of several different types of tumour cells to hypoxia 

increases hypomethylation of the first intron of the S100A4 gene, facilitating the binding 

of HIF-1α to HRE in the S100A4 promoter region, thereby increasing S100A4 expression 

and consequently inducing tumour cell invasiveness and metastasis (Liu et al. 2010, 

Horiuchi et al. 2012, Fei et al. 2017), showing that S100A4 is a target gene for HIF-1α 

regulation. 

Even though the effect of hypoxia and HIF-1α on S100A4 expression in the diabetic 

panorama has not been fully explored yet, all the evidence linking inflammation and 

cancer with diabetes suggests that HIF-1α-induced S100A4 expression might also play an 

important role in the pathogenesis of diabetes.  

 

1.7 Transcriptome profiling and bioinformatic analysis 

 

The transcriptome is the collection of transcripts in a given living organism and represents 

the link between the information encoded in the DNA and the phenotype. mRNA 

regulation depends on the action of a combination of cis-acting proteins that bind to gene 

flanking regions. (Licatalosi et al. 2010).  

The transcriptome has for long been considered to primarily consist of ribosomal RNA 

(rRNA, 80-90%), transfer RNA (tRNA, 5-15%), messenger RNA (mRNA 2-4%) and a small 

fraction of intra- and intergenic noncoding RNA (ncRNA, 1%) with undefined regulatory 

functions (Lindberg et al. 2010). However, recent evidence has shown that the amount of 

noncoding genetic material increases with organism complexity, ranging from 0.25% in 

prokaryotic species to 98.8% in humans (Taft et al. 2007). Additional complexity is added 

by the fact that most of the transcripts identified so far are cell- and tissue-specific and 

can vary depending on various environmental factors such as in response to growth 

factors or other stimuli. Transcriptome analysis will therefore open the doors towards a 

more complete knowledge of many biological issues such as the onset and progression of 

disease. 

The main goal of transcriptome analysis is to identify, characterise and register all the 

transcripts expressed within a specific cell/tissue and in a given condition, but more 
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importantly, it can also allow the quantification of the differential expression of 

transcripts in both physio- and pathological conditions, which can constitute the 

molecular basis of a disease (Costa et al. 2010). 

Tools for analysing RNA such as Northern Blot or reverse transcription PCR (RT-PCR) have 

been available for years. However, rapid and high throughput analysis of the 

transcriptome became possible only after the development of more advanced techniques 

such as gene expression microarrays (detailed in section 1.7.1). These techniques offer 

the possibility to perform a complete transcriptional characterisation of all organisms. 

Moreover, they allow transcriptome profiling of model of diseases both in vitro and in vivo 

in an unbiased and highly sensitive manner, without previous knowledge of the genes 

involved, offering crucial information for the study of the pathogenesis of a wide variety 

of diseases. 

 

1.7.1 Microarrays vs RNA sequencing (RNAseq) 

 

a) Microarrays  

Expression microarrays are high throughput techniques that allow simultaneous 

measurement of the expression of a set of genes. The starting point is an array of short 

oligonucleotide probes complementary to the transcripts whose presence is to be 

investigated, and immobilised on a solid substrate. Probe design is based on genome 

sequence and usually multiple probes are designed per gene. Transcripts are extracted 

from cells or tissues, labelled with fluorescent dyes, hybridised to the arrays, washed and 

scanned with a laser. Probes that correspond to transcribed RNA hybridise to their 

complementary target, and measurement of light intensity is used to quantify gene 

expression (Malone et al. 2011). 

However, this technique has some limitations. Firstly, it needs to rely on existing 

knowledge of genome sequence, so it cannot be used to identify novel genes. Secondly, 

it shows lack of reproducibility within microarrays designed by different companies, and 

it has been seen that the use of different laser scanners introduces variation in the 

fluorescent readout of the same samples (Tan et al. 2003). More importantly, because of 

background noise and cross-hybridization, microarrays have difficulty detecting genes 
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with low expression levels, and thus cannot distinguish “no” from “low” expression (Zhao 

et al. 2014). 

Nonetheless, microarrays have been successfully and extensively used for the 

identification of differentially expressed genes in different conditions. Accordingly, 

several studies have investigated the effect of β-cell exposure to high concentrations of 

glucose and have identified clusters of genes differentially expressed at specific glucose 

concentrations (Bensellam et al. 2009). 

b) RNA sequencing  

The development of high throughput next-generation sequencing has revolutionized 

transcriptomics by enabling RNA analysis through the sequencing of complementary DNA 

(cDNA) (Wang et al. 2009). This method, termed RNA sequencing (RNAseq), has important 

advantages over previous approaches and has revolutionized our understanding of the 

complex and dynamic nature of the transcriptome. Rather than using molecular 

hybridisation to detect transcript molecules of interest, RNAseq analyses transcripts 

present in the starting material by direct sequencing.  

After sequencing, the resulting reads are either aligned to a reference genome or 

assembled de novo without the genomic sequence to produce a genome-scale 

transcription map including both the transcriptional structure and expression level for 

each gene (Wang et al. 2009).   

c) RNAseq vs microarray 

The use of RNAseq presents some advantages over the use of microarrays. Because 

RNAseq provides direct access to the sequence, this technique can be used to study 

species for which a full genome sequence is not available. Moreover, it allows detection 

of expressed regions of the genome that correspond to novel genes, not currently 

identified. Another strength of RNAseq is the possibility of quantifying individual 

transcript isoforms and single nucleotide variants (SNV) which is highly important as 

genetic polymorphism has been shown to be vital in the identification of defective genes 

associated with inherited diseases (Zhao et al. 2014). Moreover, RNAseq has very low, if 

any, background signal because cDNA sequences can be uniquely mapped to single 

regions of the genome (Wang et al. 2009). Finally, RNAseq shows a higher sensitivity in 

direct measurement of low abundant transcripts, as well as in detection of changes in 

expression of these transcripts under different conditions (Zhao et al. 2014).  
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However, RNAseq also presents several disadvantages compared to microarrays, 

including their higher cost. Another important concern about this technique is the depth 

to which sequencing needs to be performed (how many times a single sample must be 

sequenced) in order to effectively sample the transcriptome. For highly expressed genes, 

small amounts of sequencing are sufficient, but for genes with medium and low 

expression levels, many reads are necessary. Another consideration about arrays and 

sequencing is the quantity and size of the data. In expression arrays, raw data consists of 

image files that may be around 30MB per array. These are then transformed into text files 

containing the fluorescence intensities for each gene. For RNAseq however, the Illumina 

instrument generates more than 600GB of data files, so far more complex bioinformatic 

tools are necessary to analyse the data output (Zhao et al. 2014). 

Importantly, RNAseq has been used to characterise the β-cell transcriptome, allowing the 

identification of β-cell specific genes, splicing events and intergenic RNA that could play 

an important role in the regulation of β-cell function (Ku et al. 2012). In addition, this 

technique has also allowed identification of long noncoding RNAs in human pancreatic 

islets, some of which were found to be dysregulated in diabetes (Morán et al. 2012). 

Recently, several single-cell RNAseq studies have also been used to generate 

transcriptional profiles of β-cells from human pancreas of healthy and T2D individuals, 

identifying alterations in gene expression in T2D, as well as identifying novel genes that 

had not been previously associated with T2D (Segerstolpe et al. 2016, Xin et al. 2016). 

Furthermore, another study investigated the effects of FA exposure on the β-cell, 

revealing that PA changed the expression of 1325 genes in human islets, (in particular 

linked to ER stress, ubiquitin and proteasome function, autophagy and apoptosis); 

inhibited transcription factors involved in the regulation of the β-cell phenotype (including 

PAX4 and GATA6); and shifted alternative splicing of 3525 transcripts (Cnop et al. 2014).  
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1.8 Aims 

 

1.8.1 Analyse the RNAseq data to identify key factors upregulated in 

glucolipotoxicity 

 

The main aim of this project is to use the RNAseq data obtained previously in our 

laboratory (Bagnati et al. 2016) to identify differentially expressed genes resulting from 

the combined effect of high glucose and high fatty acid (FAs) exposure of rat INS-1 

pancreatic β-cells. Furthermore, Metacore and other bioinformatic software will be used 

to construct specific pathway interaction maps between the most differentially expressed 

genes in glucolipotoxic (GLT) conditions compared to control. It is hypothesised that 

significant links between these upregulated genes will arise, which will give us insight into 

the underlying mechanisms involved in the pathogenesis of T2D. 

 

1.8.2 Validate the RNAseq data for differential expression of selected genes 

 

In order to validate the differential expression of several selected genes from the RNAseq 

data, INS-1 cells will be incubated in control and GLT conditions for 72 hours, and 

subsequently, changes in mRNA and protein expression levels of selected genes will be 

observed through qPCR and western blot. Together with the bioinformatic analysis 

results, it is hypothesised that this will allow identification of key factors driving GLT-

induced damage to β-pancreatic cells, including S100A4, making it the main focus of this 

project.  

 

1.8.3  Investigate a potential link between S100A4 and inflammation through NF-

κB activation 

 

After validating the increased expression of selected genes, including S100A4, in GLT 

conditions compared to control, the next step will be to establish a link between S100A4 

upregulation and NF-κB activity, and consequently associate it with the activation of 

inflammatory pathways. To this end, the GLT-induced increase in NF-κB protein 

expression, nuclear localisation and concomitant transcriptional activity will be measured 
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through western blot, indirect immunofluorescence and transcription factor activity assay 

respectively. After this, siRNA transient knockdown technology will be used on INS-1 cells 

to determine the effect that S100A4 has on NF-κB protein expression, nuclear localisation, 

and transcriptional activity. It is hypothesised that S100A4 upregulation will ultimately 

drive an increase in NF-κB activity, and that S100A4 knockdown will reverse this effect. 

 

1.8.4 Identify interaction partners of S100A4 

 

With the use of the pathway interaction map obtained through RNAseq data 

bioinformatic analysis, potential interacting partners of S100A4 will be identified. siRNA 

technology will be used on INS-1 cells to transiently knockdown one of these interacting 

partners, namely HIF-1α, and its effect on S100A4 and NF-κB will be assessed. Further 

analysis of the pathway interaction map will allow the identification of additional factors 

linked to HIF-1α transcriptional activity. Their role in the GLT-induced NF-κB activation 

process will also be tested with the use of siRNA technology and subsequent 

measurement of its effects on HIF-1α, S100A4 and NF-κB. It is hypothesised that 

suppression of this newly identified factor, namely the KPNA2 importin, which is 

potentially responsible for HIF-1α nuclear translocation, will decrease HIF-1α 

transcriptional activity, and consequently S100A4 expression and NF-κB activation. 

 

1.8.5 Establish a link between T2D and cancer through S100A4 and inflammation 

 

The PC3 prostate cancer cell line will be used throughout the project parallelly to INS-1 

cells and subjected to the same experiments and treatments (DFO-induced hypoxia). The 

aim of this last part of the thesis is to observe and compare the effects of hypoxia and 

subsequent activation of HIF-1α transcriptional activity, S100A4 expression and NF-κB-

induced inflammatory pathways activation in cancer cells to its effects on pancreatic β-

cells. Given the well-established role of S100A4 on cancer initiation and progression, 

concordant results on INS-1 cells will strengthen our main hypothesis, by which S100A4 

will be in part responsible for the initiation of the inflammatory process characteristic of 

T2D. 
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CHAPTER 2: Materials and Methods 
 

2.1 Materials  
 

All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and all plasticware 

purchased from Thermo Fisher (Waltham, MA, USA) unless otherwise stated. 

The INS-1 cell line was obtained from Philippe Halban's group, who made the initial 

characterisation of the cell line in 1993 (Neerman-Arbez et al. 1993). 

The PC3 cell line was obtained from the John Van Geest Cancer Research Centre 

(Nottingham Trent University), who originally obtained it from ATCC. 

 

2.2 Solutions  
 

Table 2.1: Name and composition of solutions used throughout the project. 
 

SOLUTION COMPOSITION 

Roswell Park Memorial 
Institute complete media 
(RPMI complete media) 

RPMI-1640 (#R7755) plus 26mM sodium bicarbonate 
(NaHCO3, #S5761), 10mM Hepes (#H7006), 50µM β-
mercaptoethanol (#M6250), 1% v/v sodium pyruvate 

(C3H3NaO3, Thermo Fisher #11360039), 1% v/v 
penicillin/streptomycin (Thermo Fisher #10378016), 10% 
v/v fetal bovine serum (FBS, Thermo Fisher #16000044) 

100mM oleic acid stock 
solution  

0.0304g oleic acid (OA, #O7501), 0.5ml ethanol, 0.5ml 
dH2O (final ethanol concentration in media: 0,001% v/v)* 

100mM palmitic acid stock 
solution  

0.0255g palmitic acid (PA, #P0500), 1ml ethanol (final 
ethanol concentration in media: 0,002% v/v)* 

Glucolipotoxic media (GLT 
media) 

RPMI complete media (composition detailed above) plus 
16mM glucose (#G7021), 200µM OA (from stock detailed 
above), 200µM PA (from stock detailed above), 2% w/v 

bovine serum albumin (BSA, #A4303) 

Dulbecco's Modified Eagle 
Medium (DMEM) 

DMEM (Thermo Fisher #12491-015) plus 15mM Hepes, 
10% v/v FBS, 1% v/v penicillin/streptomycin/L-glutamine 

(Thermo Fisher #10378016) 

100mM deferoxamine 
stock solution 

0.066g deferoxamine (DFO, #D9533), 1ml dH2O 

10mM MG132 stock 
solution 

0.0048g MG132 (#M8699), 1ml dH2O 

Radioimmunoprecipitation 
assay buffer (RIPA buffer) 

150mM sodium chloride (NaCl, #S5886), 0.1% Triton X-
100 (#X100), 0.5% sodium deoxycholate (C24H39NaO4, 
#D6750), 0.1% sodium dodecyl sulfate (SDS, #L3771), 

50mM Tris-base (#RDD008), pH 8.0 + protease inhibitor 

tablet (Roche, #5892970001) 
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Protein loading buffer 950µl 4X Laemmli buffer (Bio-Rad #1610747), 50µl β-
mercaptoethanol 

Lower buffer 1.5M Tris-base, pH 8.8 

Upper buffer 0.5M Tris-base, pH 6.8 

Running Buffer 250mM Tris-base, 1.92M glycine (#G8898), 35mM SDS, 
pH 8.3 

Transfer buffer 60% 5X Trans Blot Turbo transfer solution (Bio-Rad 
#1704270), 20% dH2O, 20% ethanol 

Phosphate buffered saline 
(PBS) 10X 

137mM NaCl, 2.7mM potassium chloride (KCl, #P9333), 
10mM sodium phosphate dibasic (Na2HPO4, #S3264), 

2mM potassium phosphate monobasic (KH2PO4, #P9791), 
pH 7.2 

Tris-buffered saline (TBST) 
10X 

1.5M NaCl, 0.5M Tris-base, 0.05% Tween-20 (#P1379), pH 
7.6 

TAE buffer 10X 400mM Tris-acetate (#T1258), 10mM Ethylenediamine 
tetra-acetic acid (EDTA, Thermo Fisher #AM9912), pH 8.2 

Paraformaldehyde 
solution, (PFA) 

4% w/v PFA (#441244), 1% v/v sodium hydroxide (NaOH, 
#71687) 

 
*Final ethanol concentration in the culture media are practically negligible so its presence 
will have no effect on cell viability. 
 

2.3 Cell culture 
 

2.3.1 Cell lines 

 

a) INS-1 

The main cell line used in this project is the pancreatic β-cell line INS-1, derived from a rat 

insulinoma by x-ray irradiation. INS-1 cells display important characteristics of the 

pancreatic β-cell, including high insulin content and responsiveness to glucose within a 

physiological range. However, despite being responsive to glucose, the total amount of 

insulin content in the proliferative cells is only about 20% of that of primary β-cells (Skelin 

et al. 2010). The reason for using this cells line is based on its display of β-cell 

characteristics. Other insulinoma cell line commonly used in β-cell research is RINm5F. 

However, this cell line has been reported to display abnormal glucose transport and 

glucose sensitivity (Halban et al. 1983), making it unsuitable for our research. 

b) PC3 

The second cell line used in this project is the cell line known as PC3. It is an androgen-

independent human prostate cancer cell line derived from bone metastasis (Kaighn et al. 

1979). It is widely used in prostate cancer research, and in this project, it is used for its 
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high expression of S100A4, and as a positive control for the role of S100A4 in the 

activation of NF-κB-mediated inflammation. 

 

2.3.2 Growth conditions and cell passaging 

 

a) INS-1  

INS-1 cells were cultured in RPMI-1640 media containing 11mM D-glucose and 

supplemented with 10mM HEPES, 26mM sodium bicarbonate and 50µM β-

mercaptoethanol, and adjusted to pH 7.4. The complete media was then supplemented 

with 10% v/v FBS, 1% v/v sodium pyruvate and 1% v/v Penicillin/Streptomycin. Cells were 

cultured in T75 flasks and incubated at 37ᵒC and 5% CO2. 

b) PC3 

PC3 cells were cultured in DMEM media containing 25mM D-glucose and supplemented 

with 15mM HEPES, 10% v/v FBS and 1% v/v Penicillin/Streptomycin/L-Glutamine. Cells 

were cultured in T75 flasks and incubated at 37ᵒC and 5% CO2. 

Passaging of both cell lines was conducted when 80-85% confluent. The media was first 

aspirated, and the adherent cells were washed twice with 5ml of sterile phosphate 

buffered saline (PBS). The cells were detached by adding 2ml of trypsin-EDTA 0.05% 

(Thermo Fisher, MA, USA, #25300062) in the case of INS-1 cells, or 2ml of diluted in PBS 

(1:10) 10X trypsin (#T4549) in the case of PC3 cells, and incubated at 37oC for 5 minutes. 

Cells were harvested in 10 ml media (complete RPMI for INS-1 cells or DMEM for PC3 cells) 

and centrifuged at 400 x g for 5 minutes. The supernatant was discarded, and the pellet 

resuspended in 10ml media. A fraction of the suspension containing 1,000,000 cells was 

added to a new T75 flask containing 15ml of fresh media for cell maintenance, and either 

200,000 cells were added to each well of a 6-well plate containing 2ml of fresh media, or 

100,000 cells were added to each well of a 12-well plate containing 1ml of fresh media for 

experiments set-up. Cell counting methodology is described below. 

 

It is worth mentioning that, even though the glucose concentrations used here are much 

higher than the normal physiological glucose concentrations (4.0-6.0mM for humans), 

they are the established glucose concentrations used in rodent models of diabetes, for 

which 5.0 to 11.0mM is physiological, while 20.0-25.0mM is considered pathological 
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(Martino et al. 2012). Regarding FFA concentrations, 200µM would not be considered 

pathological in humans (physiological levels range from 200µM to 4mM). However, in 

rodents, anything above 100µM is considered pathological (Martino et al. 2012). 

 

2.3.3 Cell counting 

 

In order to seed the cells in flasks or in 6 or 12 well plates, cells were counted manually. 

After centrifugation and resuspension in fresh media (described above), 10μl of cell 

suspension was added to a Neubauer chamber (Figure 2.1). Cells in the four 1mm x 1mm 

squares were counted, and the average calculated, resulting in the number of cells 

present in 0.1mm3, or 0.1µl. This number was then multiplied by 10,000 to obtain the 

number of cells per ml. 

 

Figure 2.1: Schematic representation of a Neubauer chamber for cell counting. Cells in the four 

1mm x 1mm squares were counted, the average calculated, and the result multiplied by 10,000 to 

obtain the number of cells per ml. 

 

2.3.4 Glucolipotoxic treatment of INS-1 cells 

 

In order to replicate the extracellular glucolipotoxic (GLT) milieu characteristic of T2D, the 

RPMI-1640 media was supplemented with 16mM D-glucose (to achieve a final 

concentration of 27mM), 200µM sodium oleate (oleic acid) and 200µM palmitic acid 

(Bagnati M et al. 2016). To do this, a 100mM stock solution of each fatty acid was prepared 

as described in Table 2.1. 200µM of each fatty acid were first conjugated to 2% BSA, which 

was then used to supplement the RPMI-1640 media together with the additional glucose. 

This media was then incubated in a water bath at 37ᵒC for 45 minutes to allow the fatty 

acids to conjugate to the BSA. Finally, the media was filtered before adding it to the INS-1 
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cells 24 hours after being seeded, which were then incubated in GLT media for a further 

72 hours before harvesting them for subsequent experiments. 

 

2.3.5 Hypoxic treatment of INS-1 and PC3 cells 

 

In order to mimic the hypoxic state characteristic of the proinflammatory environment 

during obesity-induced T2D (in the case of INS-1 cells) and the hypoxic state characteristic 

of growing tumours (in the case of PC3 cells), DFO (final concentration 100µM) was added 

to the cells 24 hours after being seeded (a 100mM stock was prepared by dissolving it in 

dH2O, aliquoted in 1-time use aliquots and frozen at -20ºC). Cells were then incubated for 

72 hours to match the GLT treatment timeframe. 

2.3.6 Cryo-conservation and cell recovery 
 

Both INS-1 and PC3 cells were collected and cyro-conserved when they reached 80-85% 

confluency. The media was aspirated, and cells were washed twice with sterile PBS, 

detached by adding trypsin-EDTA and incubated at 37oC for 5 minutes. The cells were 

harvested in their respective media and centrifuged at 400 x g for 5 minutes. The 

supernatant was aspirated, and the pellet was resuspended in 10ml of their respective 

media. Cells were counted as described above and then centrifuged again at 400 x g for 5 

minutes, and finally resuspended in the required volume of synth-a-freeze (Thermo 

Fisher, MA, USA, #A1254201) in order to obtain a concentration of 1,000,000 cells per ml. 

1ml of cell suspension was then transferred to each cryovial, which  were stored in a Mr. 

Frosty container (Thermo Fisher, MA, USA, #5100-0001) at -80ᵒC for 48 hours and then 

transferred into liquid nitrogen for long term storage. 

 

When needed, cryo-vials were taken out of the liquid nitrogen tank and rapidly defrosted 

in a water bath at 37ºC. The suspension of cells was then added drop by drop to a T75 

flask containing 15ml of fresh pre-warmed media and the flask was incubated at 37ºC and 

5% CO2 until ready to passage again.  A few passages were allowed after defrosting before 

setting up any experiments with the cells. 
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2.3.7 Mycoplasma detection 

 

INS-1 and PC3 cells were regularly checked for mycoplasma infection using an EZ-PCR 

mycoplasma test kit (Biological Industries, CT, USA, #20-700-20) following manufacturer’s 

instructions. Briefly, a sample of cell culture supernatant was used to sediment possible 

mycoplasma, after which a PCR was carried out to amplify any possible mycoplasma 

present in the sample. The PCR product was then analysed through agarose gel DNA 

electrophoresis, and the gel visualized using GeneSnap software (Syngene, Bangalore, 

India).  

No positive  mycoplasma results were obtained in the cell cultures used for the 

experiments described in this thesis. 

 

2.4 Protein analysis 
 

2.4.1 Cell lysis 

 

As mentioned before, 200,000 cells were seeded into 6-well plates and incubated in the 

appropriate conditions (control, glucolipotoxic or hypoxic). Following the incubation 

period (72 hours), cells were washed in cold PBS and lysed in 200µl RIPA buffer (Table 2.1) 

containing a 1x protease inhibitor tablet per 10ml RIPA buffer (Roche Applied Sciences, 

Basel, Switzerland, #5892970001) over ice. Cell scrapers were used to harvest cells from 

the surface of the plates and disrupt cellular integrity. Lysates were transferred to 1.5ml 

Eppendorf tubes, kept on ice for 40 minutes and vortexed for 1 minute every 5 minutes. 

The tubes were then centrifuged at 16,000 x g for 10 minutes at 4ºC to pellet cell debris 

and the supernatant containing the protein lysate was transferred to a clean 1.5ml 

Eppendorf tube and stored at -20ᵒC until used for subsequent analysis, or at -80ºC for long 

term storage. 

2.4.2 Bicinchoninic acid (BCA) assay 

 

Protein concentration of cell lysates was measured using Pierce™ BCA (bicinchoninic acid) 

Protein Assay Kit (Thermo Fisher, MA, USA, #23225). This is a colorimetric assay technique 

that involves two steps: first, a biuret reaction results in faint blue colour from the 

reduction of cupric ion to cuprous ion. Second, the chelation of BCA with the cuprous ion 

results in an intense purple colour. The BCA/copper complex is water-soluble and exhibits 
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a strong linear absorbance at 562nm with increasing protein concentrations. The purple 

colour can be measured at any wavelength between 540nm and 590nm. The BCA assay 

has a broad dynamic range, being capable of measuring protein concentrations of 

0.5μg/ml to 1.5mg/ml in a linear manner. A BSA stock (2mg/ml) from the kit was used to 

make serial dilutions for protein standards preparation according to manufacturer’s 

instructions, with concentrations of 2, 1.5, 1, 0.75, 0.5, 0.25, 0.125, 0.025 and 0mg/ml, in 

order to construct a standard calibration curve for protein quantification. 

To conduct the assay, a 10µl aliquot of the protein sample (diluted in RIPA buffer if 

necessary if protein concentration is too high) or BSA standard was added to a 96-well 

plate, to which 200µl of combined BCA assay kit reagent was added (49 parts reagent A + 

1 part reagent B). The plate was incubated at 37ºC for 30 minutes, after which absorbance 

at 595nm was determined using an iMark™ Microplate Absorbance Reader (Bio-Rad, CA, 

USA), and the sample’s protein concentration calculated from the standard calibration 

curve. 

2.4.3 Bradford assay 

 

In order to determine nuclear protein concentration for subsequent NF-κB activity assay 

(detailed in section 2.8), the Pierce™ BCA Protein Assay Kit could not be used, as the 

nuclear extraction buffer (NEB) from the Nuclear/Cytosol Fractionation kit (Biovision, CA, 

USA, #K266) used to dissolve the nuclear extract contains Dithiothreitol (DTT), a reducing 

agent which binds to the Cu2+ ions present in the BCA mixture, therefore artificially 

contributing to the signal. Instead, Bradford reagent was used. 

The Bradford method is a dye-based assay in which the dye, Coomassie blue, binds to the 

protein present in the sample. The interaction causes the dye to shift from its 

reddish/brown form (absorbance maximum at 465nm) to its blue form (absorbance 

maximum at 610nm). The difference between the two forms of the dye is greatest at 

595nm, so that is the optimal wavelength to measure the dye-protein complex. The 

Bradford assay is linear over a short range, typically from 0mg/mL to 2mg/mL, often 

making dilutions of a sample necessary before analysis. A 0.15M solution of NaCl was used 

to make serial dilutions of a 10mg/ml BSA stock in order to create a standard curve for 

protein determination, with concentrations of 2, 1.5, 1, 0.75, 0.5, 0.25, 0.125, 0.025 and 

0mg/ml. 
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To conduct the assay, a 20µl aliquot of the nuclear protein extract (diluted in NEB if 

necessary if protein concentration is too high) or BSA standard is added to a 96-well plate, 

to which 200µl of Bradford reagent is added. The plate incubated at room temperature 

for 2 minutes, time in which a blue-coloured product is formed. Absorbance at 595nm 

was measured within 5 minutes using an iMark™ Microplate Absorbance Reader (Bio-Rad, 

CA, USA), and the sample’s protein concentration calculated from the standard calibration 

curve. 

2.4.4 SDS-PAGE 

 

Acrylamide/bisacrylamide (#A3574) gels were hand poured using the Bio-Rad system. 

Different resolving gel percentages were used depending on the size of the protein of 

interest: higher percentage gels for detection of low molecular weight protein (10-30KDa) 

and lower percentage gels for detection of high molecular weight proteins (90-130KDa).  

Firstly, a resolving gel was prepared as shown in Table 2.2 and poured between two glass 

plates 1mm apart, with a layer of 70% ethanol poured on top to displace any air bubbles. 

The gel was allowed to polymerise for 30 minutes at room temperature. After 

polymerising, the ethanol was discarded by tilting the clamp stand holding the glass plates 

and a stacking gel was prepared as shown in Table 2.2. The mix was then poured on top 

of the resolving gel with a ten teeth comb in place to form the wells and the gel was 

allowed to polymerise for another 30 minutes. 

 

Table 2.2: Recipes for different percentages of acrylamide/bisacrylamide gels used in western 

blotting. Volumes are calculated for 2 gels. 
 

 Resolving Stacking 

Components 7.5% 10% 15% 20% 4% 

H2O 4.85 ml 4.0 ml 2.35 ml 720 µl 3.1 ml 

30% Acrylamide/ 
Bisacrylamide (29:1) 

2.5 ml 3.33 ml 5.0 ml 6.68 ml 650 µl 

Tris-Base 1.5M 2.5 ml 2.5 ml 2.5 ml 2.5 ml - 

Tris-Base 0.5M - - - - 1.25 ml 

APS (10%) (#A7460) 50 µl 50 µl 50 µl 50 µl 25 µl 

SDS (20%) 50 µl 50 µl 50 µl 50 µl 25 µl 

TEMED (#T9281) 7.5 µl 7.5 µl 7.5 µl 7.5 µl 5 µl 

 

The prepared gels were placed into electrophoretic tanks and these were submerged in 

running buffer (Table 2.1) and allowed to equilibrate for 15 minutes at room temperature. 

Between 20-30µg protein was denatured by adding 4x Laemmli loading buffer containing β-
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mercaptoethanol and being incubated at 95°C for 5 minutes. The combs were removed from 

the stacking gel and the denatured protein was loaded on the gel alongside 5µl of a 

molecular weight marker (Bio-Rad, CA, USA, #1610374). The gel was electrophoresed at 

a constant voltage of 90V for 120 minutes. Subsequently, proteins were transferred to a 

0.2µm pore nitrocellulose membrane (Bio-Rad, CA, USA, #1620112) using Bio-Rad transfer 

buffer (Table 2.1) and a Bio-Rad Trans-Blot Turbo Transfer unit, using a semi-dry transfer 

program either for mixed (7 minutes), high (10 minutes) or low (5 minutes) molecular 

weight proteins. Successful transfer was confirmed using Ponceau S solution (#P7170) 

before immunoblotting. Briefly, the membrane was incubated in 5 ml of Ponceau solution 

for one minute, removed and gently washed three times with TBST until bands were 

visible. 

 

2.4.5 Immunoblotting 

 

Nitrocellulose membranes were blocked in 5% BSA/TBST for 1 hour at room temperature 

in a rocking platform to prevent non-specific binding. The nitrocellulose membrane was 

incubated with the primary antibody diluted at the required concentration (Table 2.3) in 

5% BSA/TBST overnight at 4ᵒC on a tube roller. Membranes were washed in TBST three 

times for 10 minutes before being incubated in the appropriate secondary antibody (anti-

mouse IgG, anti-rabbit IgG or anti-chicken IgG) diluted at the required concentration (see 

Table 2.3) in 5% BSA/TBST for 1 hour at room temperature and gentle rocking. The 

membrane was then washed three times in TBST for 10 minutes prior to visualization. The 

membrane was removed from the incubating tray and 2ml of ECL solution (Amersham, 

GE Healthcare, IL, USA, #RPN2235) was added to the membrane, which was then 

incubated for 2 minutes in the dark. Specific protein bands were detected by 

chemiluminescence using the Image Reader LAS 4000 (Fujifilm). 
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Table 2.3: Details and concentrations for the different primary and secondary antibodies used in 

western blotting. 
 

Type Antibody Company 
Catalogue 

number 
Source 

Concen-
tration 

Speci- 
ficity 

1ary 

β-Actin Cell Signaling 8H10D10 Mouse 1:1000 h, m, r 

α-Tubulin Cell Signaling 3873 Mouse 1:4000 h, m, r 

S100A3 Thermo Fisher PA5-39372 Rabbit 1:1000 h, m, r 

S100A4 Sigma HPA007973 Rabbit 1:250 h, m, r 

S100A5 Biorbyt orb128695 Rabbit 1:1000 h, m, r 

NF-κB Thermo Fisher PA5-16545 Rabbit 1:200 h, m, r 

HIF-1α Thermo Fisher PA1-16601 Rabbit 1:1000 h, m, r 

HIF-1α Thermo Fisher H1alpha67 Mouse 1:500 h, m, r 

KPNA2 Abcam ab37628 Chicken 1:2000 h, m, r 

H2A Abcam ab18975 Rabbit 1:1000 h, m, r 

 
 

2ary 

α-mouse  
IgG 

Bio-Rad 172-1011 Goat 1:2000 - 

α-rabbit 
IgG 

Bio-Rad 170-6515 Goat 1:5000 - 

α-chicken 
IgG 

Abcam ab6753 Rabbit 1:5000 - 

 

 

2.4.6 Band densitometry 

 

In order to measure and quantify the levels of the protein of interest present in the 

sample, bands densitometry was quantified using Aida Image Analyzer (Elysia-Raytest) 

and normalized to actin levels. In brief, the program was used to draw circles around the 

bands corresponding to the protein of interest, which were assigned a densitometry value 

proportional to the intensity of the band. The same procedure was carried out for the 

actin bands, and the value obtained was used to normalise the levels of the protein of 

interest. 

2.4.7 Indirect immunofluorescence 

 

Another technique for measuring protein levels and changes in expression, as well as 

changes in subcellular localisation is indirect immunofluorescence. 200,000 or 100,000 

cells were seeded on sterile glass coverslips in 6 or 12-well plates respectively, and 24 

hours later, the appropriate conditions were applied for 72 hours. After the incubation 

period, cells were washed with cold PBS and fixed with 4% paraformaldehyde in PBS 

(Table 2.1) for 10 minutes at room temperature. Cells were washed three times for 10 

minutes with PBS (all the washes from this point were done in these same conditions) and 
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permeabilized with 0.2% Triton X-100 in PBS for 2-5 minutes at room temperature. Cells 

were washed and then blocked with 5% BSA/PBS for 1 hour at room temperature in a 

rocking platform to prevent non-specific binding. The primary antibody was then added 

to the cells in blocking solution at the required concentration (Table 2.4) and cells were 

incubated for 1 hour at room temperature in a rocking platform. Cells were then washed 

before being incubated with the appropriate Alexa fluor 488 conjugated secondary 

antibody: anti-mouse IgG (Thermo Fisher, MA, USA), anti-rabbit IgG (Thermo Fisher, MA, 

USA) or anti-chicken IgG (Abcam, Cambridge, UK) (Table 2.4) in the dark for 1 hour at room 

temperature in a rocking platform. Cells were then washed again before being incubated 

in Hoechst 33258 solution (Thermo Fisher, MA, USA, #H1398) at 0.5µg/ml for 5 minutes 

at room temperature in the dark and in a rocking platform. Cells were then washed one 

last time and coverslips were placed facing down on slides with a drop of mounting 

solution (90% glycerol in PBS). Slides were allowed to dry at room temperature for 1 hour 

in the dark before being stored at 4ºC. 

 

Table 2.4: Details and concentrations for the different primary and secondary antibodies used in 

immunofluorescence. 
 

Type Antibody Company 
Catalogue 

number 
Source 

Concen-
tration 

Specificity 

1ary 

S100A4 Sigma HPA007973 Rabbit 1:250 h, m, r 

NF-κB 
Thermo 
Fisher 

PA5-16545 Rabbit 1:100 h, m, r 

HIF-1α 
Thermo 
Fisher 

H1alpha67 Mouse 1:50 h, m, r 

KPNA2 Abcam ab37628 Chicken 1:250 h, m, r 

488 α-
mouse IgG 

Thermo 
Fisher 

A32766 Donkey 1:1000 h, m, r 

Fluorescent 
2ary 

488 α-
rabbit IgG 

Thermo 
Fisher 

A21206 Donkey 1:1000 - 

488 α-
chicken IgG 

Abcam ab150169 Goat 1:1000 - 
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2.5 RNA analysis 
 

2.5.1 Primer design and sequence information 

 

Primers for real time qPCR were designed using a combination of NCBI gene search, 

Primer Quest Tool (Integrated DNA Technologies, IA, USA) and NCBI primer blast. First, 

NCBI gene search was used to obtain specific mRNA sequences for the genes and species 

of interest. Then, this mRNA sequence was input into Primer Quest Tool, which was used 

to obtain potential primer pairs for each gene. Finally, each potential pair was input into 

NCBI primer blast to test the specificity of each pair. For each gene, a pair of primers was 

chosen which did not amplify any other unwanted transcript. Specific forward and reverse 

primers were designed 18-25bp long, with a GC content no higher than 55% and a melting 

temperature of 57-62°C, to obtain a 100-140bp amplicon. Primers were purchased from 

Sigma-Aldrich and tested using PCR (detailed in section 2.5.2). Sequences of all the 

primers used can be found in Table 2.5. 

 

 

Table 2.5: Details of primers used for quantitative PCR. 
 

Species Target 

gene 

Sequence (F) Tm 

(F) 

Sequence (R) Tm 

(R) 

Product 

size 

 

 

 

 

 

 

Rat 

GAPDH CATCTCCCTCAC

AATTCCATCC 

58.5 GAGGGTGCAGCGAAC

TTTAT 

58.3 100 

S100A3 CCGGGAGTGTG

ACTACAATAAA 

57.8 TTTGAAGTACTCGTG

GCAGTAG 

58.1 124 

S100A4 AACCTCTCTGTT

CAGCACTTC 

57.9 GTGGAAGGTGGACAC

TATTACAT 

57.9 102 

S100A5 GTCCTCTCTCTT

CCTTCAGAGTA 

58.2 GCTACCCTCTCTCCCT

GAATA 

57.8 107 

HIF-1α GGTGGATATGT

CTGGGTTGAG 

57.8 AGGGAGAAAATCAAG

TCGTGC 

58.6 128 

RELA CAGATACCACTA

AGACGCACC 

58.2 TCCTTCCCCACAAGTT

CATG 

57.4 127 

 

Human 

GAPDH CGGTGACTAAC

CCTGCGCT 

62.3 GCCCAATACGACCAA

ATCAGAGAAT 

61.4 140 

S100A4 CTCTACAACCCT

CTCTCCTCA 

57.6 AAGGTGGACACCATC

ACATC 

57.5 105 
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2.5.2 Primer validation 

 

A Taq-polymerase master mix (Qiagen, Hilden, Germany, #201203) was prepared containing 

both forward and reverse primers and the sample cDNA.  This mix was put into the thermo 

cycler (see Tables 2.8 and 2.9 for reaction set up and amplification conditions respectively) 

and a PCR was conducted to check for single product amplification. PCR products were 

then electrophoresed in a 2% agarose gel (method described in section 2.3.7) at 70V for 

30 minutes. The gel was then visualized using GeneSnap software (Syngene, Bangalore, 

India). 

Table 2.6: PCR reactions setup for primer check. 

Reagent Volume per reaction (µl) 

Taq PCR Master Mix 10 

FP 10µM 0.8 

RP 10µM 0.8 

cDNA (25ng) 0.33 

dH2O up to 20µl 8.07 

 

Table 2.7: Cycling conditions for primer check PCR. 

Phase Temperature (ºC) Time Cycles 

Initial denaturation 94 3 min 1 

Denaturation 94 45 secs  
35 Annealing 61.5 45 secs 

Extension 72 30 secs 

Final extension 72 10 min 1 

 

2.5.3 Sample preparation 
 

INS-1 and PC3 cells were seeded and treated in control, glucolipotoxic or hypoxic 

conditions in either 6-well plates or T75 flasks. Following the treatment incubation period, 

cells were detached using trypsin-EDTA. The cells were then centrifuged at 400 x g for 5 

minutes to form a pellet. 1ml of sterile PBS was used to resuspend the pellet and a 

maximum of 5 x 105 cells were transferred to a new 1.5ml tube, which was centrifuged at 

400 x g for 5 minutes again to collect cells for RNA extraction. 
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2.5.4 RNA extraction 

 

To extract RNA from INS-1 and PC3 cells, a RNeasy® Micro Kit (Qiagen, Hilden, Germany, 

#74004) was used. Cells were harvested, centrifuged and counted as described before, 

and then a volume corresponding to 500,000 cells was collected in a 1.5ml Eppendorf 

tube and centrifuged again. The pellet was then homogenised in 350µl of RLT buffer (cell 

lysis buffer). 1 volume of 70% ethanol (350µl) was then added and mixed well by pipetting. 

This step promotes selective binding of RNA to the RNeasy membrane. The resulting cell 

suspension was transferred to a RNeasy® Mini spin column in a 2ml collection tube and 

centrifuged for 15 seconds at 8000 x g. The flow through was discarded. In order to 

remove contaminant genomic DNA from the RNA solution, a DNase incubation mix (10µl 

DNase I in 70µl RDD buffer) (Qiagen, Hilden, Germany, #79254) was added drop by drop 

directly to the spin column membrane, which was incubated at room temperature for 15 

minutes. After the incubation, 350µl of RW1 buffer was added to wash the membrane-

bound RNA, and the spin column was centrifuged for 15 seconds at 8000 x g. The collection 

tube containing the flow through was discarded. The column was placed in a new 2ml 

collection tube and 500µl RPE buffer was added to the column to remove traces of salts 

left on the column due to buffers used earlier. The column was then centrifuged at 8000 x 

g for 15 seconds and the flow through was discarded. 500µl of 80% ethanol was then 

added to the spin column to help wash away the salts, and then the column was 

centrifuged for 2 minutes at 8000 x g. The collection tube containing the flow through was 

discarded and replaced. The spin column was then centrifuged with the lid open for 5 

minutes at 16,000 x g to dry the membrane. The collection tube was discarded and 

replaced with a 1.5ml new collection tube. 20µl RNase free water was then added to the 

centre of the membrane and the column was centrifuged for 1 minute at 16,000 x g to 

elute the RNA. This was then stored at -80ºC until used for subsequent analysis. 

2.5.5 RNA quantification 

 

RNA concentration and quality were analysed by adding 1µl of the sample to a NanoDrop 

spectrophotometer (Thermo Fisher, MA, USA). A conversion factor based on the 

extinction coefficient for RNA (A260 of 1.0 = 40µg/ml) was used to calculate RNA 

concentration, which correlates with absorbance at 260nm in a linear manner according 

to the Beer-Lambert law. To assess the quality and purity of the sample, measurements 

at 280nm (wavelength at which aromatic amino acids absorb) and 230nm (wavelength at 



104 
 

which other contaminants such as guanidine thiocyanate, common in nucleic acid 

purification kits, absorb) were also taken. The ratios A260/ A280 and A260/ A230 can be used 

to assess RNA quality and purity, where a ratio of 2 or above is indicative of a pure RNA 

sample. 

2.5.6 cDNA synthesis 

 

In order to carry out quantitative PCR, single stranded complementary DNA (cDNA) is 

needed. cDNA synthesis was carried out using the extracted RNA as starting material, 

using High Capacity cDNA Reverse Transcription kit (Thermo Fisher, MA, USA, #4368814). 

In each reaction 1.5µg of total RNA was used for reverse transcription. See Tables 2.10 

and 2.11 for reaction set up and amplification conditions respectively. 

Table 2.8: Reagents and volumes used for reverse transcription PCR for cDNA synthesis. 
 

Reagent Volume (µl) 

Reverse Transcription buffer 2 

dNTPs 0.8 

Random Primers 2 

Reverse Transcription enzyme 1 

RNA (1.5µg) 

RNase free H2O (up to 20µl) 

 

Table 2.9: Cycling conditions for reverse transcription PCR for cDNA synthesis. 
 

Phase Temperature (ºC) Time 

Primer annealing 25 10 min 

DNA polymerization 37 120 min 

Enzyme deactivation 85 5 min 

Maintenance 4 ∞ 

 

2.5.7 Quantitative PCR (qPCR) 

 

Quantitative PCR (qPCR) measures the amount of PCR product generated per cycle using 

a fluorescent label. QuantiNova SYBR® Green PCR kit (Qiagen, Hilden, Germany, #208054) 

was used for qPCR. During the amplification step (40 cycles long), a fluorescent dye binds 

to the DNA molecules and fluorescence values are recorded for each cycle. The 

fluorescence signal is directly proportional to the DNA concentration over a broad range, 

and the point at which fluorescence is first detected as statistically significant above the 

background is called the cycle threshold or CT value. The higher the initial amount of 
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sample DNA, the sooner the accumulated product is detected and therefore the lower the 

CT value. A negative control containing no cDNA was examined alongside each sample, 

therefore any signal detected would be sign of contamination. GAPDH was used as 

reference gene for target gene expression normalization. See Tables 2.12 and 2.13 for 

qPCR reaction set up and cycling conditions respectively. 

Table 2.10: Reagents and volumes for master-mix used in RT-qPCR. 
 

Reagent Volume (µl) 

2X SYBR green mix 10 

Forward Primer (10µM) 1 

Reverse Primer (10µM) 1 

cDNA 0.33 (25ng) 

RNase free H2O 7.67 (up to 20µl) 

 

Table 2.11: Cycling conditions for RT-qPCR. 
 

 

 

 

2.5.8 qPCR data analysis 

 

The qPCR data obtained was analyzed using the 2-ΔΔCT method, a relative quantification 

strategy that calculates a ratio between the target and reference gene. The reference 

gene used throughout the qPCR experiments was GAPDH. A CT value obtained from 

computer software Rotor Gene Q series (Qiagen, Hilden, Germany) was converted into 

ΔCT to calculate the relative fold change of a treated sample against a control sample, 

known as calibrator. The calibrators for the qPCR reactions carried out in this project were 

the control (untreated samples).  

The fold change relative to the calibrator sample was calculated as follows: 
 

1. ΔCT = CT target gene – CT reference gene (normalization to housekeeping gene, GAPDH, to 

minimize sample to sample variation). 

2. ΔΔCT = ΔCT sample (treated) - ΔCT calibrator (untreated). 
 

3. 2-ΔΔCT = gene fold change of treated sample relative to the calibrator sample. 
 

 

Temperature (ºC) Time Cycles 

95 5 secs  
40 61.5 12 secs 

72 20 secs 
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2.6 RNA sequencing 
 

RNA sequencing technology is providing new biological insight into the transcriptome. It 

is a high throughput sequencing method that can be used to determine gene structure 

(including the identification of exons and introns) and gene-splicing patterns, as well as 

other post transcriptional modifications. It also allows the detection of rare and novel 

transcripts and the quantification of any changing expression transcript levels, which 

means that this technique can be used to study the effect of a particular treatment on 

transcriptome regulation.  

2.6.1 Sample and library preparation 

 

RNA sequencing was conducted using INS-1 cells. In order to do this, cells were left 

untreated or were treated using GLT conditions for 72 hours. After this time, RNA was 

extracted and RNA quality and integrity were assessed using an Agilent Bioanalyser 

(Agilent, CA, USA). This device determines abundance of 18S and 28S ribosomal RNA 

(rRNA) to assess the integrity of RNA. 28S and 18S exist in equal concentrations in the cell, 

but 28S is double fluorescent. As RNA degradation occurs, there is a gradual decrease in 

the 18S to 28S ribosomal band ratio. Consequently, a 28S/18S ratio of 2 is considered to 

be good quality RNA. Only RNA meeting the above criteria was sent to Sarah Lamble 

laboratory in Oxford for the subsequent stages of library preparation and sequencing, 

using an Illumina mRNAseq Sample preparation kit (Illumina, CA, USA). To create the 

library, mRNA was fragmented, and fragments were converted to cDNA using reverse 

transcriptase and random primers.  

 

Adapters were then ligated to the end of the cDNA fragments, allowing them to be 

hybridized to a single read flow cell. A quality control analysis of the library was then 

performed, based on the quantification of DNA concentration, using Agilent Bioanalyzer 

(Agilent, CA, USA). 

 

The library was then used to perform paired-end sequencing over one lane of a flow cell 

on an Illumina-HiSeq 2000 instrument (Illumina, CA, USA) in Oxford. This technology relies 

on the attachment of randomly fragmented genomic DNA to a flat and transparent 

surface. Attached DNA fragments were amplified to create an ultra-high-density 

sequencing flow cell with millions of clusters, each containing ~1000 copies of the same 
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template. Finally, these templates were sequenced using four-colour DNA SBS 

(Ssequencing By Synthesis) technology that uses reversible terminators with removable 

fluorescent dyes. 

 

2.6.2 RNAseq data analysis 

 

The resulting raw RNAseq data was analysed by Dr. Rob Lowe (Blizard Institute, Barts and 

The London School of Medicine and Dentistry, London, UK). The Illumina instrument 

produced quality-scored base calls. The sequencing output files (compressed FASTQ files) 

were then used for the secondary analysis.  

Reads were aligned to a reference genome using Top Hat v 2.0.9: 

http://tophat.cbcb.umd.edu.  

Reads aligned to exons, genes and splice junctions were quantified using the reference 

genome “rn4”, extracted from UCSC: 

http://genome.ucsc.edu/goldenPath/credits.html#rat_credits.  

Data visualisation and interpretation as well as gene and transcript expression 

quantification were conducted using the HTseq-count program: 

http://www-huber.embl.de/users/anders/HTSeq/doc/count.html.  

In order to correct for in-sample distributional differences within the read counts (such as 

differences in total counts), and within sample gene-specific effects (such as gene length 

or GC-content effects), a normalization process was performed using the program DEseq: 

http://www.bioconductor.org/packages/devel/bioc/html/DESeq.html  

Finally, the differential expression statistical significance was calculated by comparing the 

experimental read values to the control samples, and p-values were subsequently 

adjusted using the Bonferroni formula. 

 

2.6.3 RNAseq pathway analysis 
 

In order to identify enriched pathways and functions between the differentially expressed 

genes, the RNAseq data was loaded in several pathway analysis programs, namely 

Panther (http://www.pantherdb.org/) and Metacore (https://clarivate.com/cortellis/). 

 

Panther and Metacore allow the identification of enriched pathways, molecular functions, 

biological processes, cellular components, protein classes and associated diseases 

amongst a given list of genes. The programs calculate the number of genes that are 

http://tophat.cbcb.umd.edu/
http://genome.ucsc.edu/goldenPath/credits.html#rat_credits
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
http://www.bioconductor.org/packages/devel/bioc/html/DESeq.html
http://www.pantherdb.org/
https://clarivate.com/cortellis/
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enriched within a specific pathway and give also the statistical significance of any 

enrichment. Enrichment is considered statistically significant when there are more genes 

in the list associated with a particular pathway than it would be expected by chance based 

on the total number of genes associated with that pathway. 

 

 

2.7 Small interfering RNA (siRNA) transfection 
 

Small interference RNA (siRNA) technology was used to transiently knockdown cellular 

proteins. A pool of 4 different siRNAs (Dharmacon, GE Healthcare, CO, USA) alongside a 

transfection reagent (chosen after an optimisation process testing three different 

transfection reagents, listed below) were used for each target molecule. Briefly, 100,000 

INS-1 and PC3 cells were seeded into separate 12-well plates 24 hours before transfection 

in order to be 40-50% confluent at the time of transfection. siRNA-transfection reagent 

complexes were prepared for each sample to be transfected (one complex per well of the 

12-well plate) as described below for each transfection reagent. Parallelly, negative 

controls were carried out preparing scrambled siRNA (ssRNA)-transfection reagent 

complexes which were added to the negative control wells to ensure that the effect of a 

specific siRNA knockdown is only due to its specificity and not to the addition of an 

exogenous nucleic acid. 

2.7.1 Lipofectamine RNAiMAX 

 

siRNA-Lipofectamine RNAiMAX (Thermo Fisher, MA, USA, #13778030) complexes were 

prepared as follows: In a 1.5ml sterile tube, 2µl of siRNA (10µM) were diluted in 50µl of 

serum-free Optimem media (Invitrogen, CA, USA, #51985-026) and mixed gently. In a 

separate 1.5ml sterile tube, 3µl of Lipofectamine RNAiMAX were diluted in 50µl of serum-

free Optimem media and mixed gently. The two solutions were combined, and the 

complex was incubated at room temperature for 5 minutes. Media was removed from the 

cells and replaced with 900µl of complete RPMI-1640 media. Subsequently, the 100µl of 

the transfection solution prepared earlier was added. Following a 24 hours incubation 

period, the transfection solution was removed and 1ml of either complete RPMI-1640 

(control conditions), GLT media (glucolipotoxic conditions) or complete media + DFO 

(hypoxic conditions) was added to the cells and was incubated for 72 hours. Subsequent 

validation of knockdown was carried out using western blot. 
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2.7.2 TransIT-X2 

 

siRNA-TransIT-X2 (Mirus Bio, WI, USA, #MIR6003) complexes were prepared as follows: 

In a 1.5ml sterile tube, 2.5µl of siRNA (10µM) and 3µl of TransIT-X2 were diluted in 100µl 

of serum-free Optimem media and mixed gently. The complex was incubated at room 

temperature for 20 minutes. Media was removed from the cells and replaced with 900µl 

of complete RPMI-1640 media. Subsequently, the 100µl of the transfection solution 

prepared earlier was added. Following a 24 hours incubation period, the transfection 

solution was removed and 1ml of either complete RPMI-1640 (control conditions), GLT 

media (glucolipotoxic conditions) or complete media + DFO (hypoxic conditions) was 

added to the cells and incubated for 72 hours. Subsequent validation of knockdown was 

carried out using western blot.   

 

2.7.3 INTERFERin 

 

siRNA-INTERFERin (Polyplus, Illkirch-Graffenstaden, France) complexes were prepared as 

follows: In a 1.5ml sterile tube, 2µl of siRNA (10µM) and 4µl of INTERFERin were diluted in 

200µl of serum-free Optimem media (Invitrogen, CA, USA) and mixed gently. The complex 

was incubated at room temperature for 10 minutes. Media was removed from the cells 

and replaced with 1ml of complete RPMI-1640 media. Subsequently, the 200µl of the 

transfection solution prepared earlier was added. Following a 24 hours incubation period, 

the transfection solution was removed and 1ml of either complete RPMI-1640 (control 

conditions), GLT media (glucolipotoxic conditions) or complete media + DFO (hypoxic 

conditions) was added to the cells and was incubated for 72 hours. Subsequent validation 

of knockdown was carried out using western blot. 

 

 

2.8 NF-κB activity 
 

NF-κB activity is measured in this project as it is responsible for the regulation and 

transcription of multiple genes involved in the mediation of immune and inflammatory 

responses. The kit used, the Trans-AM NF-κB p65 Transcription Factor Assay kit (Active 

Motif, CA, USA, #40596), detects and quantifies transcription factor activation via an ELISA 

assay. This assay was carried out according to manufacturer’s instructions, which are 

described in detail below (see section 1.8.2). In essence, the active form of the 
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transcription factor present in our samples binds to a consensus sequence immobilized in 

an oligonucleotide-coated plate. A primary antibody specific for the epitope on the active 

form of the NF-κB transcription factor is added, followed by subsequent incubation with 

adequate secondary antibody. Finally, addition of developing solution triggers a 

colorimetric reaction which can be easily quantified. 

2.8.1 Nuclear extraction 

 

Nuclear extracts are required for the NF-κB transcription factor assay, as they contain the 

activated NF-κB form. Nuclear extracts were obtained using the Nuclear/Cytosol 

Fractionation kit according to manufacturer’s instructions, as described in detail below. 

All buffers required for the extraction were prepared in advance according to 

manufacturer’s instructions. 

 

200,000 INS-1 and PC3 cells were cultured separately in 6-well plates and 24 hours later, 

either complete RPMI-1640 (control conditions), GLT media (glucolipotoxic conditions) or 

complete media + DFO (hypoxic conditions) was added for 72 hours. After the incubation 

period, the cells were detached from the plate surface using trypsin-EDTA and centrifuged 

at 400 x g for 5 minutes to form a cell pellet. This pellet was resuspended and washed in 

PBS and a maximum of 2 x 106 cells were transferred to a new tube. The suspension was 

centrifuged again, the supernatant discarded and 200µl of cytosol extraction buffer-A 

(CEB-A) was added to the pellet, which was fully resuspended by vortexing vigorously for 

15 seconds. The suspension of cells was then incubated on ice for 10 minutes. Following 

this incubation, 11µl of ice-cold cytosol extraction buffer-B (CEB-B) was added, the tube was 

vortexed for 5 seconds, incubated on ice for 1 minute and then vortexed again for another 

5 seconds. The tube was then centrifuged for 5 minutes at 16,000 x g at 4ºC and the 

supernatant (cytosolic fraction) was immediately transferred to a clean 1.5ml tube and 

placed on ice. The pellet containing the nuclei was resuspended in 80µl of ice-cold nuclear 

extraction buffer (NEB), vortexed vigorously for 15 seconds and returned to ice. This was 

repeated every 10 minutes for 40 minutes, after which the tube was centrifuged at 17,000 

x g for 10 minutes at 4ºC. The supernatant (nuclear extract) was transferred to a clean 

1.5ml tube and immediately used for nuclear protein concentration determination 

through Bradford assay and for NF-κB activity assay. 
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2.8.2 NF-κB activity assay 

 

To measure NF-κB activity, the Trans-AM NF-κB p65 Transcription Factor Assay kit was 

used. All buffers (complete lysis buffer, complete binding buffer and washing buffer) and 

reagents were prepared according the manufacturer’s instructions, either prior to the 

assay or prior to the step in which they were needed. In brief, 30µl of complete binding 

buffer was added to each well of the oligonucleotide-coated plate included in the kit. 20µl 

of sample containing 20µg of nuclear protein (diluted in lysis buffer if necessary) was 

added to the sample wells. A nuclear extract from Jurkat cells stimulated with tissue 

plasminogen activator (TPA) and calcium ionophore (CI) is included in the kit and is used 

as a positive control: 20µl of diluted Jurkat nuclear extract (1µl extract + 19µl lysis buffer) 

was added to the positive control wells. 20µl complete lysis buffer was added to the 

negative control (blank) wells. The plate was incubated at room temperature for 1 hour 

with gentle agitation on a plate rocker. The wells were then washed 3 times with diluted 

wash buffer and the plate tapped on paper towel to remove excess liquid. Subsequently, 

100µl of diluted NF-κB antibody (1:1000) (included in the kit) was added to each well. The 

plate was incubated for 1 hour at room temperature without agitation. The wells were 

then washed 3 times with diluted wash buffer. 100µl of diluted HPR-conjugated secondary 

antibody (1:1000) (included in the kit) was then added to each well and the plate was 

incubated at room temperature for 1 hour without agitation. After this incubation, the 

wells were washed 4 times with diluted wash buffer, followed by the addition of 100µl of 

developing solution to each well. This was incubated for 3 minutes at room temperature 

in the dark before adding 100µl of stop solution to each well. Absorbance was measured 

at 450nm within 5 minutes using the iMark™ Microplate Absorbance Reader (Bio-Rad, CA, 

USA). 

 

2.9 Statistical analysis 
 

To determine statistical significance of results obtained in this thesis, statistical analysis 

using a two-tailed, unpaired T-test for analysis of two independent conditions was carried 

out using Microsoft Excel. A p-value of <0.05 was considered to be significant. Results are 

expressed as mean ± standard error of the mean (SEM). All results presented are derived 

from at least three independent experiments unless stated otherwise.  
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CHAPTER 3: Bioinformatic analysis and validation of RNAseq 

data 
 

3.1 Effect of glucolipotoxicity on β-cell function and integrity 
 

As detailed in chapter 1, T2D is a metabolic disorder with an increasing prevalence 

worldwide, mainly caused by the combination of chronic exposure to glucolipotoxicity and 

a sedentary lifestyle (Golson et al. 2010, Oh et al. 2013). Under chronically elevated 

concentrations of glucose and Fas, IR arises and β-cells initially respond by increasing 

secretion of insulin in a compensatory manner, a process which is accompanied by an 

increase in β-cell mass (Butler et al. 2003). However, this eventually leads to β-cell 

dysfunction, impairment of insulin secretion and production, and ultimately β-cell death, 

which leads to T2D (Mason et al. 1999, Ježek et al. 2018). 

T2D is the most common type of diabetes, accounting for approximately 90% of all 

diabetic cases (Ortega et al. 2017). Over 80% of T2D patients are obese, with increased 

circulating glucose and FFA levels. The underlying molecular mechanisms for the 

development of T2D include ER stress, oxidative stress, lipotoxicity, and glucotoxicity, 

which ultimately trigger an inflammatory response (Oh 2015). Inflammation is a 

characteristic feature of many disease conditions that has initial beneficial effects such as 

encouraging tissue regeneration or preventing spread of infection, however, prolonged 

or chronic inflammation may aggravate a disease condition via tissue destruction. This is 

likely to be the case in the pathogenesis of T2D (Donath et al. 2009).  Importantly, 

elevation of inflammatory markers such as cytokines and C-reactive protein (CRP) (Pereira 

et al. 2006) and other inflammatory mediators such as TNFα (Peraldi et al. 1996) and IL6 

(Nieto-Vazquez et al. 2008) have been shown to be a feature of diabetes pathogenesis. 

Although some of the underlying molecular mechanisms involved in β-cell dysfunction 

have been described, additional studies are required to discover new molecules involved 

in the process of activation of inflammatory pathways. These new molecules could 

potentially constitute novel targets for specific therapeutic strategies. 

The aim of this study was to characterise the effects that chronic exposure of pancreatic 

β-cells to glucolipotoxicity has on inflammation-induced β-cell dysfunction. In order to do 

so, I focussed my research on identifying inflammatory gene expression changes caused 

by glucolipotoxic conditions. 
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Several studies associate dietary FAs with prevention or progression of non-transmissible 

chronic conditions such as T2D and cardiovascular diseases (Anderson et al. 2009). For 

instance, saturated FAs (SFAs) such as palmitic acid (16:0, PA), myristic acid (14:0, MA) 

and stearic acid (18:0, SA) have been associated with adverse health effects (Carta et al. 

2017), while unsaturated FAs (UFAs) such as oleic acid (18:1, OA) and palmitoleic acid 

(16:1, PAO) are generally related to protective effects, like prevention of β-cell apoptosis, 

regulation of plasma glucose concentrations and enhancement of insulin sensitivity 

(Acosta-Montaño et al. 2018).  

To replicate glucolipotoxic conditions, INS-1 rat pancreatic β-cells were exposed to 

elevated glucose and FA levels. The two FA used were palmitic acid and oleic acid (PA and 

OA), which are the most abundant FAs in human nutrition and therefore in blood 

circulation (Donath et al. 2009). PA is most abundant in meat and dairy products, and it 

can also be sourced from plants and microorganisms. It is one of the main FA involved in 

the lipotoxicity during T2D progression: it has been seen that prolonged exposure of β-

cells to PA impairs insulin gene expression, inhibits β-cell secretory capacity and increases 

apoptosis (Hagman et al. 2005). On the other hand, OA is found mainly in animal and 

vegetable fats and oils. Despite there being evidence that OA has anti-apoptotic and anti-

inflammatory protective properties, here it is used as a damaging agent given the 

increased concentration at which it is used and the chronic exposure to which cells are 

subjected. 

More specifically, INS-1 cells were incubated for 72 hours in glucolipotoxic conditions 

(RPMI-1640 media supplemented to 27mM glucose, 200μM OA and 200μM PA), and in 

control conditions (complete RPMI-1640 media containing 11mM glucose). This compares 

to human models of glucolipotoxicity in which 11-20mM glucose is normally used as high 

glucose, and 4-6mM glucose for control conditions (Tsonkova et al. 2018).  

Cell viability was initially assessed though observation of morphological changes. 

Although this is not an experimentally accepted method to do so, previous experiments 

carried out in our laboratory demonstrated that a 72 hour incubation of INS-1 cells in 

these conditions did not affect cell cycle, did not activate caspase 3 and did not induce 

apoptosis (data not shown). Accordingly, results in Figure 3.1 show that INS-1 cells 

cultured in control conditions for 72 hours display a stretched and pointed shape and 

grow in a single monolayer (Figure 3.1A), while a 3-day treatment with GLT induces 

morphological changes: cells turn more rounded in shape and tend to aggregate and grow 
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upwards rather than in the characteristic monolayer (Figure 3.1C). Although a 72 hour 

treatment with GLT did not visibly affect cell viability (cells were still attached and 

growing) (Figure 3.1C), a prolonged 168 hours (7 days) exposure to GLT results in β-cell 

death as it can be observed from the increasing number of floating cells (Figure 3.1D), 

while control cells remained healthy after the same incubation period (Figure 3.1B).  

 

Figure 3.1: INS-1 cell morphology in control and GLT conditions for different incubation periods. 

Control or GLT treatment is added to the cells 24 hours after passage and experimental procedures 

carried out 72 hours later (A, C). Cells were left for 168 hours in both conditions to show changes 

in cell viability after a prolonged exposure to GLT (B, D). Scalebar 1cm:50µm. 

 

3.2 Effect of glucolipotoxicity on β-cell gene expression 
 

In order to gain further insight into the complex nature of diabetogenesis and to discover 

novel mechanisms that can affect activation of inflammatory pathways leading to β-cell 

dysfunction, a transcriptome profiling of the β-cell in conditions of glucolipotoxicity 

compared to control was performed using RNA sequencing. 

 

A B 

C D 

Control 72 hours 

GLT 72 hours GLT 168 hours 

Control 168 hours 
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3.2.1 RNA sequencing and pathway analysis 
 

Previously in our laboratory, INS-1 cells were incubated for 72 hours in RPMI-1640 media 

supplemented to 27mM glucose alone (high glucose), in 200μM OA and 200μM PA alone 

(high fatty acids), or in the combination of both high glucose and high FAs 

(glucolipotoxicity), as well as in complete RPMI media for control conditions (Bagnati et 

al. 2016). Subsequently, RNA was isolated, and the samples converted to a library of cDNA 

fragments. High-throughput technology was then used to sequence each fragment. After 

sequencing, the resulting reads were aligned to a reference genome to produce a 

genome-scale transcription map including both the transcriptional structure and 

expression level for each gene (Wang et al. 2009), described in detail in section 2.6. Data 

analysis was carried out comparing three independent experiments for each condition. 

Statistically significant data (p<0.05) was analysed for gene expression change using the 

Panther Classification System (http://pantherdb.org/). When genes were classified 

according to pathways, it was found that expression of a substantial number of genes 

linked to apoptosis and related processes such as oxidative stress and most notably 

inflammatory and immune response was affected by glucotoxic, lipotoxic and 

glucolipotoxic conditions (Figures 3.2, 3.3 and 3.4 respectively). As mentioned before, 

evidence shows that there must be increased glucose levels in order to observe adverse 

lipotoxic effects (Somesh et al. 2013). Importantly, both in vitro (Briaud et al. 2001) and 

in vivo (Briaud et al. 2002) studies have shown that the effect of lipotoxicity is 

synergistically increased in the presence of concomitantly elevated glucose levels. 

Accordingly, our data shows that the effect on the activation of inflammatory pathways 

was greater when both high glucose and high FAs were combined, inducing 

glucolipotoxicity (Figure 3.4). This can be most clearly observed in the figures by the 

increased expression of genes linked to “inflammation mediated by chemokines and 

cytokines” (represented in light green) shown in glucolipotoxic conditions (17.5%) 

compared to their expression in glucotoxic (8%) and lipotoxic (9,6%) conditions. 

 

http://pantherdb.org/
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Figure 3.2: Inflammation markers differentially expressed in glucotoxicity compared to control 

conditions. Panther pathway analysis was used to construct a chart showing the significantly 

differentially expressed genes involved in inflammation-related processes in high glucose 

conditions compared to control. White space represents non-inflammation related genes which 

are also differentially expressed in these conditions. 

 

Figure 3.3: Inflammation markers differentially expressed in lipotoxicity compared to control 

conditions. Panther pathway analysis was used to construct a chart showing the significantly 

differentially expressed genes involved in inflammation-related processes in high fatty acids 

conditions compared to control. White space represents non-inflammation related genes which 

are also differentially expressed in these conditions. 
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Figure 3.4: Inflammation markers differentially expressed in glucolipotoxicity compared to 

control conditions. Panther pathway analysis was used to construct a chart showing the 

significantly differentially expressed genes involved in inflammation-related processes in 

glucolipotoxic conditions compared to control. White space represents non-inflammation related 

genes which are also differentially expressed in these conditions. 

 

3.2.2 S100s are overexpressed in glucolipotoxicity according to RNAseq data 

 

Amongst the most significantly differentially expressed genes in the whole β-

transcriptome, several members of the S100 family were identified to be upregulated in 

GLT conditions compared to control. The most differentially expressed S00 members were 

S100A3, S100A4 and S100A5, with a 2.1-, 9.3- and 6.2-fold increased expression 

respectively (Figure 3.5, Table 3.1). 
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Figure 3.5: S100A3, S100A4 and S100A5 differential gene expression in high glucose, high fatty 

acids and glucolipotoxic conditions compared to control obtained from the RNAseq data. 

Previously in our laboratory, cells were incubated for 72 hours in RPMI (control), RPMI + 27mM 

glucose (high glucose), RPMI + 200µM OA and 200µM PA (high FAs), or RPMI + 27mM glucose, 

200µM OA and 200µM PA (GLT). RNA was isolated, the sample converted to a library of cDNA 

frabgments which were then sequenced in a high-throughput manner to obtain short sequences. 

Resulting reads were aligned to a reference genome to produce a genome-scale transcription map 

including expression levels for each gene in the different conditions (Wang et al. 2009). Data was 

analysed and expressed as means + SEM of 3 independent experiments, *p<0.05. Abbreviations: 

FAs fatty acids; GLT glucolipotoxicity; OA oleic acid; PA palmitic acid. 

 

Table 3.1: Fold change of S100A3, S100A4 and S100A5 gene expression in high glucose, high fatty 

acids and glucolipotoxicity compared to control obtained from the RNAseq data. Data analysis 

was done comparing three independent experiments. *p<0.05. 

 Fold change 

Gene High Glucose High Fatty Acids Glucolipotoxicity 

S100A3 1.29 0.77 2.12* 

S100A4 4.8 0.96 9.3* 

S100A5 6.08 0.86 6.21* 

 

 

 

S100A3                  S100A4                    S100A5 
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3.2.3 Validation of RNAseq data: mRNA levels of S100A3, S100A4 and S100A5 are 

increased in GLT 

 

In order to validate the RNAseq data, INS-1 cells were incubated for 72 hours in control 

RPMI media containing 11mM glucose, or RPMI media supplemented to 27mM glucose, 

200μM OA and 200μM PA. Only GLT conditions were used compared to control as it were 

the conditions in which a higher differential expression was observed, as well as being 

more representative of the diabetic environment. Cells were subsequently lysed and total 

RNA was extracted and quantified as described in chapter 2. RNA was transcribed to cDNA 

and qPCR was performed using primers specific for S100A3, S100A4 and S100A5. Figure 

3.6 shows the increased expression of the 3 members in conditions of glucolipotoxicity. I 

detected a 2-fold increase (p<0.05) in S100A3, a 4.2-fold increase (p<0.0005) in S100A4, 

and a 4.9-fold increase (p<0.05) in S100A5 mRNA levels in glucolipotoxicity compared to 

control. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Differential expression of S100A3, S100A4 and S100A5 mRNA levels in 

glucolipotoxicity compared to control. INS-1 cells were incubated for 72 hours in RPMI (control) 

or RPMI + 27mM glucose, 200µM OA and 200µM PA (GLT), subsequently lysed and total RNA 

extracted. qPCR was performed using primers specific for each gene. Data represent ∆∆Ct values 

expressed as a fold change compared to cells grown in control conditions and normalised to GAPDH 

internal control. Data is expressed as means + SEM of 3 independent experiments (*p<0.05, 

***p<0.0005). Abbreviations: OA oleic acid; PA palmitic acid.  
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3.2.4 Validation of RNAseq data: Protein levels of S100A3, S100A4 and S100A5 are 

increased in GLT 
 

In order to validate the RNAseq data, and the qPCR results for mRNA expression levels, 

INS-1 cells were incubated in control RPMI media and in RPMI media supplemented to 

27mM glucose, 200μM OA and 200μM PA for 72 hours, lysed and total protein extracted 

and quantified as described in chapter 2. Lysates were electrophoresed on 15% 

polyacrylamide gels, and proteins were transferred to a nitrocellulose membrane. Specific 

antibodies for S100A3, S100A4 and S100A5 were used to incubate the membranes 

overnight. Figure 3.7 shows the increased protein expression of the three S100 members 

in conditions of glucolipotoxicity. Bands were observed at the correspondent molecular 

weights (around 12KDa for S100A3 and S100A4, and around 30KDa for S100A5). Bands 

were quantified and normalised to internal actin control using Image J, and a 2.2-fold 

increase (p<0.05) for S100A3, a 3.1-fold increase (p<0.005) for S100A4, and a 1.7-fold 

increase (p<0.05) for S100A5 protein levels were observed. 

 

 

 

 

 

 

 

 

 

Figure 3.7: Differential expression of S100A3, S100A4 and S100A5 protein levels in 

glucolipotoxicity compared to control. INS-1 cells were incubated for 72 hours in RPMI (control) 

or RPMI + 27mM glucose, 200µM OA and 200µM PA (GLT), subsequently lysed. Lysates were 

separated on 15% polyacrylamide gels. Proteins were transferred to nitrocellulose membranes, 

which were then incubated with S100A3, S100A4 or S100A5 specific antibodies. A) Western blot 

of each S100 member, representative of 3 independent experiments; B) Quantification of anti-

S100 western blot bands, normalised to internal actin control. Data is expressed as means + SEM 

of 3 independent experiments (*p<0.05, **p<0.005). Abbreviations: OA oleic acid; PA palmitic acid. 

A B 
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3.3 Discussion  
 

The term glucolipotoxicity refers to the combined and deleterious effects of elevated 

glucose and FA levels on pancreatic β-cell function and viability (Poitout et al. 2010). 

Prolonged exposure of β-cells to high concentrations of glucose and FAs leads to a 

progressive impairment of β-cell function, more precisely to defects in insulin expression 

and secretion, and ultimately to β-cell death (Mason et al. 1999).  

In order to mimic conditions of glucolipotoxicity, rat pancreatic INS-1 β-cells were initially 

cultured in four different conditions: control, high glucose (27mM), high FAs (200μM OA 

and 200μM PA) and high glucose and high FAs combined (27mM glucose, 200μM OA and 

200μM PA), for 72 hours. Previous work in our laboratory demonstrated that a 72-hour 

incubation in these conditions did not affect negatively the cell cycle, and did not cause 

activation of caspase 3 or subsequent induction of apoptosis either (data not shown). 

However, a study by Zhou et al. reported an increase in apoptosis with progressive 

activation of caspase 3 in INS-1 cells after incubation with 30mM glucose and 200µM PA 

for 72 hours (Zhou et al. 2014). In contrast with our experimental procedures, this 

research group did not use OA as part of the GLT treatment, which is considered to have 

protective effects against inflammation and apoptosis (Acosta-Montaño et al. 2018). Also, 

considering that this is the most abundant FA in the human diet, our experimental 

conditions are more representative of physiological situations. Furthermore, the 

increased glucose concentration may also play a role in the induction of apoptosis. 

Similarly, El-Assaad et al. showed that incubation of INS-832/13 rat insulinoma β-cells as 

well as human islet β-cells with different combinations of glucose and FAs induced 

apoptosis (El-Assaad et al. 2003). However, this was seen using 300-400µM PA, which is 

double the concentration that was used in the present study, higher than what you would 

observe in a pathological situation, and therefore not completely representative of the 

diseased state. 

Furthermore, previous data from our laboratory showed that incubation of INS-1 cells for 

72 hours in GLT conditions induces a decrease in insulin mRNA levels and insulin content 

and secretion (data not shown). Importantly, data indicated that high glucose was the 

main driver of the attenuation of insulin levels and secretion, whereas FAs alone exerted 

little or no effects. On the other hand, the combination of glucose and FAs together 

potentiated the effect of glucose in impairing insulin secretion and production. These 

results are in line with previous investigations showing that FAs exert a negative effect on 
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β-cell function only in the presence of concomitant elevated glucose concentrations 

(Jacqueminet et al. 2000, Briaud et al. 2002, Somesh et al. 2013). 

In brief, our experimental glucolipotoxic conditions do not affect cell viability, but impair 

β-cell function, especially insulin secretion and production (previous data obtained in our 

laboratory). This indicates that GLT induces an early stage of β-cell dysfunction, in which 

apoptosis is not induced, but in which some other pathological mechanism is initiated.  

As these experimental conditions induce an early stage of β-cell dysfunction and failure, 

studying the differential gene expression induced by glucolipotoxicity may lead to the 

discovery of novel molecules involved in this process. RNA sequencing performed 

previously in our group identified thousands of genes differentially expressed in 

conditions of 27mM glucose alone, 200µM OA and 200µM PA alone, and the combination 

of high glucose and high FAS compared to control. When significantly differentially 

expressed genes were classified according to pathways, it was found that expression of a 

substantial number of genes linked to apoptosis and inflammatory and immune response 

was affected by glucolipotoxicity (Figures 3.2, 3.3 and 3.4). Again, previous data from our 

group shows that the effect on the activation of inflammatory pathways was greater when 

high glucose and high FAs were combined. 

Among all the differentially expressed genes in the RNAseq data, I focussed my attention 

on S100A3, S100A4 and S100A5, three members of the S100 family of non-ubiquitous 

Ca2+-modulated proteins. S100A3 has been linked to tumorigenesis and tumour 

aggressiveness in several types of cancer (Liu et al. 2013, Tao et al. 2017); S100A4 has 

been shown to play an important role in many physiological and pathological functions 

including cell motility, adhesion, proliferation, invasion, metastasis and inflammation 

(Cerezo et al. 2011, Roh et al. 2014); On the other hand, little is known about the biological 

roles of S100A5, but it is known that it might also be involved in inflammation and 

olfactory signalling (Wheeler et al. 2017). 

Out of the three members, S100A4 resulted to be the most highly upregulated in the 

RNAseq data, in which it was upregulated almost 5 times in high glucose and more than 9 

times in GLT conditions (Table 3.1), but did not change when cells were treated only in 

high FAs conditions, again in accordance with the observation that in order to exert its 

lipotoxic effects, FAs need concomitant high glucose concentrations. 

Given that our results, as well as the evidence mentioned above, indicate a greater toxic 

effect when high glucose and high FA concentrations are combined, and that these 
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conditions are more representative of the diabetic environment than high glucose alone 

or high FAs alone, all the experiments from now on will be carried out only in conditions 

of glucolipotoxic compared to control. 

The next step in our investigation was to validate the RNAseq data by demonstrating that 

both mRNA and protein levels of the three studied S100 members are increased in 

glucolipotoxicity conditions. 

With regards to mRNA levels, our data confirms a statistically significant increase of all 

three members of the S100 family, albeit to a slightly lesser extent than the increase 

observed in the previously published RNAseq data (Bagnati et al. 2016), especially in the 

case of S100A4 and S100A5 (4.1 versus 9.3-fold increase and 4.9 versus 6.2-fold increase 

respectively) (Figure 3.6).  

With regards to protein levels, again, our data shows a statistically significant increase of 

all three members of the S100 family, although to a lower degree than the increase 

observed in the previously published RNAseq data (Bagnati et al. 2016), especially for 

S100A4 and S100A5 (3.1 versus 9.3-fold increase and 1.7 versus 6.2-fold increase 

respectively). However, limited studies have explored the mRNA to protein expression 

correlation and the results have been relatively inconsistent (Guo et al. 2008). There are 

mainly three reasons for the poor correlations generally reported between the level of 

mRNA and the level of protein. Firstly, there are many complicated and varied post-

transcriptional mechanisms involved in the process of mRNA translation to protein that 

are not yet sufficiently well-defined to be able to extrapolate protein levels from mRNA; 

secondly, some protein might be damaged or degraded in the extraction process; and/or 

thirdly, there is a significant amount of error and noise in both protein and mRNA 

experiments that limit our ability to get a clear picture (Baldi et al. 2001). Furthermore, 

the technologies used to quantify protein abundance still lag behind the more sensitive, 

high-throughput experimental techniques used to determine mRNA expression levels 

(Greenbaum et al. 2003). In spite of this observation, fold increases in our results are 

statistically significant, and more relevant than mRNA levels as functional proteins are the 

ones which exert biological functions. 

Taken together, these results indicate that chronic exposure of INS-1 cells to elevated 

levels of glucose and FAs leads to the upregulation of S100A3, S100A4 and S100A5 at both 

mRNA and protein level. Given that out of the three members, S100A4 was the most 

highly upregulated member in the RNAseq data and in our protein expression results, and 
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that it has a very well established role in many other pathologies, especially in cancer and 

other inflammatory diseases (Fei et al. 2017), from now on the focus of this thesis will be 

this S100 member. In addition, the potential role of S100A4 in diabetes and 

glucolipotoxicity has not been described before, which makes it an interesting subject for 

further investigations and a candidate for potential therapeutic intervention. 

In conclusion, these preliminary results open the way to the investigations that are going 

to be described in the next chapters, in order to characterise the function of S100A4 in 

the pancreatic β-cell in relation to glucolipotoxicity-induced inflammation and its role in 

the development of T2D.  
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CHAPTER 4: Investigation of a potential link between S100A4 

and inflammation through activation of NF-κB 
 

4.1 NF-κB 
 

NF-κB is a key transcription factor involved in a broad range of biological processes, 

including immune and inflammatory responses, cell survival, stress responses and 

maturation of various cell types (Shih et al. 2011).  

The NF-κB family consists of 5 members of ubiquitously expressed transcription factors, 

divided in two groups:  Class I members NF-κB1 (p50/p105) and NF-κB2 (p52/p100), and 

Class II members RelA (p65), RelB, cRel. These subunits are able to associate with each 

other to form at least 15 different homo- or heterodimers, which are cell type- and 

stimulus-specific (Oeckinghaus et al. 2009). The most common dimer is composed of 

either p50 or p52 and p65 (Christian et al. 2016) (Figure 4.1B). Each subunit contains a Rel 

homology region (RHR) consisting of two folded domains, the amino-terminal domain 

(NTD) and the dimerization domain (DimD), and a carboxy-terminal region containing the 

nuclear localisation signal (L) (Figure 4.1A). The RelA, RelB and cRel subunits also contain 

a transcription activation domain (TAD), a region whose protein structure is incompletely 

understood, and which is responsible for the increase in NF-κB target gene expression 

resulting from NF-κB induction. Dimers containing at least one of these subunits will 

therefore function as transcriptional activators (Hoffmann et al. 2006, Huxford et al. 

2009), activating the expression of various inflammatory mediators including TNFα, IL1β, 

IL6, and MCP1, amongst others (Lorenzo et al. 2011), giving place to the initiation of a 

broad inflammatory response (Figure 4.1B). The p50 and p52 subunits do not contain a 

TAD. As a result, NF-κB complexes consisting of p50 and/or p52 homo or heterodimers 

are able to translocate to the nucleus and bind to DNA but fail to activate target gene 

expression. In fact, they have been seen to function as transcriptional repressors 

(Christian et al. 2016).  
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Figure 4.1: The NF-κB family. A) Structural domains. Each subunit contains a Rel homology region 

(RHR) consisting of two folded domains, the amino-terminal domain (NTD) and the dimerization 

domain (DimD), and a carboxy-terminal region containing the nuclear localisation signal (L). The 

RelA, RelB and cRel subunits also contain a transcription activation domain (TAD) responsible for 

the transcriptional activity of dimers containing these subunits B) Possible dimerization 

combinations. The most common dimer is the one formed by either p50 or p52 together with RelA 

(p65). This form of NF-κB is able to activate transcription of a wide range of genes involved in the 

regulation of inflammation, including inflammatory cytokines, chemokines and adhesion 

molecules. It is also able to mediate inflammation through the regulation of cell proliferation, 

apoptosis and differentiation.  

 

In most cell types, NF-κB is activated through the canonical pathway, where stimuli from 

diverse immune receptors lead to induced phosphorylation and degradation of the NF-κB 

inhibitors IκBs, allowing the release of NF-κB, and its translocation to the nucleus (Lee et 

al. 2014). 

In obesity and T2D, NF-κB activity is increased due to elevated levels of circulating FAs, 

which signal through TLR4 to activate the canonical NF-κB pathway (Shi et al. 2006, 

Novotny et al. 2012). Other cytokines and proinflammatory factors such as TNFα and IL1β 

A 
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are also increased in AT of obese and diabetic subjects, and signal through TNFR and IL1R 

respectively to activate NF-κB, also through the canonical pathway (Lackey et al. 2016). 

This was described in further detail in chapter 1, section 1.4.3. 

Although there is extensive knowledge on a wide variety of factors that activate NF-κB 

signalling to initiate the inflammatory response, there are still many other factors whose 

role on NF-κB activity has not yet been revealed. The aim of this section is to identify 

S100A4 as a novel factor able to activate or increase NF-κB activity in a glucolipotoxic 

model of T2D.  

 

4.2 S100A4 and NF-κB  
 

S100A4 has recently gained increasing attention for its role in the development of several 

pathologies through regulation of angiogenesis (Semov et al. 2005), cell migration 

(Garrett et al. 2006) and inflammation (O’Connell et al. 2011, Dahlmann et al. 2016). 

Upregulation of S100A4 expression has mainly been associated with many tumour-related 

processes (Fei et al. 2017), but also to various non-tumour pathophysiological processes 

such as tissue fibrosis, inflammation, immune reaction, neuroprotection and 

cardiovascular events (Fei et al. 2017), and consequently to several autoimmune diseases 

and other inflammatory conditions including rheumatoid arthritis (Klingelhöfer et al. 

2007), diabetes retinopathy (Abu El-Asrar et al. 2014) and inflammatory myopathies 

(Cerezo et al. 2011). However, its role in obesity-related inflammation has not been well 

described yet.  

Importantly, S100A4 binds to several cell-membrane receptors including RAGE, EGFR, 

TLR4 and IL10R (Donato et al. 2013, Grotterød et al. 2010) to activate various 

proinflammatory factors, including NF-κB (Yammani et al. 2006, Grotterød et al. 2010). 

This has been reported to take place in many cancer cell lines through induction of IKK-

mediated phosphorylation and subsequent degradation of the NF-κB inhibitor IκBα (Boye 

et al. 2008), resulting in the activation of a self-amplifying pro-inflammatory cycle through 

the upregulation of NF-κB mediated pro-inflammatory cytokines expression (Li et al. 2010, 

Zhou et al. 2015).  

RAGE, a membrane spanning protein of the immunoglobulin superfamily, presents a low 

expression in most tissue types. However, it has been seen to be upregulated in 

inflammatory conditions (Yan et al. 2009). Consequently, the combination of elevated 
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S100A4 levels in GLT conditions together with the presumed upregulated expression of 

RAGE in pathological situations suggests that S100A4 signalling may have an important 

role in the process of NF-κB activation and inflammation in glucolipotoxicity-induced 

diabetes. 

 

4.3 Results 
 

4.3.1 NF-κB expression and activity are increased in glucolipotoxicity 

 

NF-κB is the main proinflammatory factor whose activation leads to the onset of the 

immune response. In order to determine whether NF-κB levels and activity were induced 

by glucolipotoxicity, I first measured NF-κB protein expression through western blot, as 

well as its subcellular localisation through indirect immunofluorescence. Finally, its 

transcriptional activity was measured through an NF-κB specific activity assay.  

To do so, INS-1 cells were incubated for 72 hours in RPMI (control) or RPMI + 27mM 

glucose, 200µM OA and 200µM PA (GLT), lysed and total protein extracted and quantified 

as described in chapter 2. Figures 4.2A and 4.2B show the increased NF-κB protein 

expression in GLT compared to control. Bands were quantified and normalised to internal 

actin control, and a small but significant 1.3-fold increase (p<0.05) in NF-κB protein levels 

was observed. However, increased protein expression levels do not necessarily correlate 

with increased activity. INS-1 cells were therefore also cultured on coverslips in control or 

GLT conditions for 72 hours and subsequently incubated with specific NF-κB antibody 

followed by incubation with fluorescent secondary antibody as described in chapter 2 in 

order to determine its subcellular localisation through immunofluorescence. Figure 4.2C 

shows increased expression and increased nuclear localisation of NF-κB in GLT conditions, 

which indicates that GLT induces translocation of NF-κB, suggesting an induction of its 

transcriptional activity. 
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Figure 4.2: Effect of GLT on NF-κB protein levels and nuclear localisation. INS-1 cells were 

incubated for 72 hours in control or GLT conditions, subsequently lysed and total protein extracted. 

Lysates were electrophoresed on 12% polyacrylamide gels, and proteins were transferred to a 

nitrocellulose membrane. A specific antibody for NF-κB was used to incubate the membrane 

overnight. INS-1 cells were also cultured on coverslips in control or GLT conditions for 72 hours, 

after which they were fixed and incubated with specific NF-κB antibody, followed by incubation 

with fluorescent secondary antibody and nuclear DNA staining. Cells were visualised under a 

fluorescent microscope and pictures taken A) Representative western blot of 3 independent 

experiments; B) Quantification of anti-NF-κB western blot bands, normalised to internal actin 

control. C) Representative image from 3 independent experiments. Scalebar 1cm:50µm. Data is 

expressed as means + SEM of 3 independent experiments (*p<0.05) 

 

In order to measure the increase in NF-κB activity induced by GLT quantitatively instead 

of qualitatively as shown in Figure 4.2C, an NF-κB transcription factor activity assay was 

performed. In brief, INS-1 cells were cultured in control and GLT conditions for 72 hours, 

after which their nuclear compartment was extracted using a nuclear/cytosol 

fractionation kit as described in chapter 2. Nuclear fractions are used instead of the total 

protein lysate as the active form of NF-κB would be contained in the nuclear fraction. 

Furthermore, this particular assay is specific for the p65/p50 dimer, which specifically 

activates transcription of proinflammatory cytokines. 

B 
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The efficiency of the nuclear extraction was tested by measuring nuclear protein content 

in the nuclear extracts through western blot. of the After nuclear/cytosol fractionation, 

nuclear extracts were electrophoresed, and proteins were transferred to a nitrocellulose 

membrane. The membrane was then incubated in anti-histone H2A antibody to measure 

H2A presence in both nuclear and cytosolic fractions. Results in Figure 4.3 show low 

detection of H2A in the cytosolic fraction, while its presence in the nuclear fraction is 

substantial. Being an epigenetic marker, it should only be present in the nuclear fraction, 

however histones are synthesised in the cytosol so some may be present there. 

Furthermore, nuclei are damaged during extraction so some nuclear material may escape 

to the cytosolic fraction. These results indicate that the cytosolic/nuclear fractionation 

was successful, and therefore experiments using the nuclear fraction are reliable. 

 

Figure 4.3: Histone H2A expression in cytosolic and nuclear fractions. INS-1 cells were incubated 

for 72 hours in control or GLT conditions, after which cells were lysed using a nuclear/cytosolic 

fractionation kit. Lysates were electrophoresed on 12% polyacrylamide gels, and proteins were 

transferred to a nitrocellulose membrane. A specific antibody for H2A was used to incubate the 

membrane overnight. A) Representative western blot; B) Quantification of anti-H2A western blot 

bands, normalised to internal tubulin control. 

 

Nuclear extracts were then used for the transcription factor assay, which was performed 

according to manufacturer’s instructions as detailed in chapter 2. Results in Figure 4.4 

show that there is a significant 52% increase in NF-κB activity resulting from exposure of 

INS-1 cells to GLT conditions, confirming our results in Figure 4.2.  

A B 
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Figure 4.4: Effect of GLT on NF-κB activity. INS-1 cells were cultured in control or GLT conditions 

for 72 hours, after which cells were lysed using a nuclear/cytosolic fractionation kit. The nuclear 

compartment was added to the oligonucleotide coated wells of the activity assay plate, which was 

then incubated with specific NF-κB antibody and subsequent secondary antibody. Absorbance was 

read at 450nm to quantify NF-κB activity. Data is expressed as means + SEM of 3 independent 

experiments (*p<0.05). 

 

4.3.2 S100A4 activates NF-κB 
 

As observed in Figures 4.2 and 4.4, the replication of chronic glucolipotoxic conditions in 

INS-1 cells induces an increase in NF-κB protein expression, nuclear localisation and 

transcriptional activity. The next step was to investigate whether these changes were 

being induced by S100A4. To test this hypothesis, a transient knockdown of S100A4 was 

carried out using siRNA as described in chapter 2. Briefly, ssRNA/siRNA conjugated with 

transfection reagent was added to the INS-1 cells 24 hours after seeding, for a period of 

24 hours. Media was then removed and control or GLT conditions were applied for 

another 72 hours, after which either total protein or nuclear fractions were obtained for 

subsequent western blot analysis or transcription factor activity assay respectively.  

An optimisation process for S100A4 knockdown was initially carried out using 3 different 

transfection reagents (RNAiMAX, Transit-X2 and INTERFERin), and 3 different incubation 

periods (24, 48 and 72 hours), only in control conditions. The level of knockdown was 

checked through western blot (Figure 4.5). 
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Figure 4.5: Optimisation process for S100A4 knockdown. INS-1 cells were seeded, and 24 hours 

later the complex RNAiMAX-ssRNA/siRNA was added to the cells for 24 hours. Media was then 

removed and replaced with control RPMI media for 24, 48 or 72 hours. Total protein was extracted, 

and lysates were separated on 15% polyacrylamide gels. Proteins were transferred to 

nitrocellulose membranes, which were then incubated with S100A4 specific antibody. A, C, E) 

Western blot of S100A4 after treatments for 24, 48 and 72 hours respectively, showing level of 

knockdown with the 3 different transfection reagents; B, D, F) Quantification of anti-S100A4 

western blot bands, normalised to internal actin control, for 24, 48 and 72 hours treatments 

respectively.  
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Results in Figure 4.5 show that a 24-hour incubation period did not result in effective 

knockdown with any of the three transfection reagents (7% knockdown with RNAiMAX, 

no knockdown with Transit-X2 and 20% knockdown with INTERFERin) (Figures 4.5A and 

B). A 48-hour incubation period rendered a higher degree of knockdown with RNAiMAX 

(49%) but proved ineffective with both Transit-X2 and INTERFERin (Figures 4.5C and D). 

Finally, a 72-hour incubation period resulted in a 70% knockdown with RNAiMAX, while 

no knockdown was achieved with the other two transfection reagents (Figures 4.5E and 

F). In conclusion, the most effective transfection reagent for S100A4 knockdown was 

RNAiMAX, and the optimal incubation period was 72 hours, rendering a 70% S100A4 

knockdown, as shown in Figure 4.5F. These were therefore the conditions selected to 

carry out all S100A4 knockdown experiments in INS-1 cells. 

After the optimisation process, S100A4 was knocked down using RNAiMAX and an 

incubation period of 72 hours, following the manufacturer’s instructions as described in 

chapter 2, and subsequently, total protein was obtained in order to measure NF-κB 

protein expression through western blot, again only in control conditions (Figures 4.6A 

and 4.6B). S100A4 knockdown was also conducted on INS-1 cells cultured on coverslips 

for 72 hours, after which cells were subjected to incubation with fluorescent antibody for 

immunofluorescence imaging (Figure 4.6C).  

Results show that, following S100A4 knockdown (70%, **p<0.005) there was no 

significant decrease in NF-κB protein expression in control conditions (Figures 4.6A and 

4.6B), as well as no changes in NF-κB subcellular localisation (Figure 4.6C). 
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Figure 4.6: Effect of S100A4 knockdown on NF-κB protein levels and subcellular localisation in 

control conditions. INS-1 cells were seeded, and 24 hours later the complex RNAiMAX-

ssRNA/siRNA was added to the cells for 24 hours. Media was then removed and replaced with 

control RPMI media for 72 hours. Total protein was then extracted, and lysates were separated on 

15% polyacrylamide gels. Proteins were transferred to nitrocellulose membranes which were then 

incubated with S100A4 or NF-κB specific antibodies. INS-1 cells were also cultured on coverslips, 

24 hours later the complex RNAiMAX-ssRNA/siRNA was added to the cells and media replaced after 

24 hours with control RPMI media for 72 hours. After fixing, cells incubated with specific S100A4 

or NF-κB antibodies, followed by incubation with fluorescent secondary antibody and nuclear DNA 

staining. Cells were visualised under a fluorescent microscope and pictures taken. A) 

Representative western blot of 3 independent experiments; B) Quantification of anti-S100A4 and 

anti-NF-κB western blot bands, normalised to internal actin control. C) Representative images from 

3 independent experiments. Scalebar 1cm:50µm. Data is expressed as means + SEM of 3 

independent experiments (**p<0.005). 

As there were no apparent changes on NF-κB protein expression caused by S100A4 

knockdown in control conditions, the same experiment was carried out, but this time 

using GLT conditions compared to control, as the absence of any effect could be due to 

the low basal expression and inactivity of NF-κB in control conditions. Again, S100A4 was 

knocked down as described above, this time applying control or GLT conditions after the 
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24-hour incubation with RNAiMAX-ss/siRNA complex, and subsequently, total protein 

was obtained to measure NF-κB protein expression through western blot (Figures 4.7A 

and 4.7B). INS-1 cells were also cultured on coverslips in control and GLT conditions for 

72 hours and subjected to incubation with fluorescent antibody for indirect 

immunofluorescence (Figures 4.7C and 4.7D).  

 

 

 

 

Figure 4.7: Effect of S100A4 knockdown on NF-κB protein levels and subcellular localisation in 

GLT conditions compared to control. INS-1 cells were seeded, and 24 hours later the complex 

RNAiMAX-ssRNA/siRNA was added to the cells for 24 hours. Media was then removed and control 

or GLT conditions were applied for 72 hours. Total protein was extracted, and lysates were 

separated on 15% polyacrylamide gels. Proteins were transferred to nitrocellulose membranes 

which were then incubated with S100A4 or NF-κB specific antibodies. INS-1 cells were also cultured 

on coverslips, 24 hours later the complex RNAiMAX-ssRNA/siRNA was added to the cells and 24 

hours later media was removed and control or GLT conditions were applied for 72 hours. After 

fixing, cells were incubated with specific S100A4 or NF-κB antibodies, followed by incubation with 

fluorescent secondary antibody and nuclear DNA staining. Cells were visualised under a fluorescent 

microscope and pictures taken.  A) Representative western blot of 3 independent experiments; B) 

Quantification of anti-S100A4 and anti-NF-κB western blot bands, normalised to internal actin 

control. C) Representative images from 3 independent experiments. Scalebar 1cm:50µm. Data is 

expressed as means + SEM of 3 independent experiments (*p<0.05, **p<0.005). 
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Results in Figures 4.7A and 4.7B show that NF-κB protein expression increases in GLT as 

we saw before, but is not affected by S100A4 knockdown. However, when we look at NF-

κB subcellular localisation in control conditions (Figure 4.7C), NF-κB expression or nuclear 

localisation does not change in S100A4-knocked down cells, but we can observe a 

decrease in NF-κB nuclear expression and localisation in GLT treated cells in which S100A4 

has been knocked down.  

Together, these results suggest that S100A4 might have a role in NF-κB activation in GLT 

conditions without affecting its protein expression levels. This could include regulation of 

the inhibitor of NF-κB (IκBα) through its phosphorylation by the IκBα kinase (IKK) as it has 

been described before (Boye et al. 2008). In order to test this hypothesis, protein levels 

of IKK were measured in control and GLT conditions +/- siS100A4, as well as the 

subsequent degradation of IκBα in the same conditions (Figure 4.8). 

  

Figure 4.8: Effect of S100A4 knockdown on IKK, IκBα and NF-κB protein levels in GLT conditions 

compared to control. INS-1 cells were seeded, and 24 hours later the complex RNAiMAX-

ssRNA/siRNA was added to the cells for 24 hours. Media was then removed and control or GLT 

conditions were applied for 72 hours. Total protein was extracted, and lysates were separated on 

15% polyacrylamide gels. Proteins were transferred to nitrocellulose membranes which were then 

incubated with S100A4, IKK, IκBα or NF-κB specific antibodies. A) Representative western blot of 3 

independent experiments; B) Quantification of anti-S100A4, anti-IKK, anti-IκBα and anti-NF-κB 

western blot bands, normalised to internal tubulin control. Data is expressed as means + SEM of 3 

independent experiments (*p<0.05, **p<0.005). 

 

As mentioned before, even though NF-κB protein levels are not affected by S100A4 

knockdown in GLT, the decrease in its nuclear localisation observed by 

immunofluorescence indicates that its activity is decreased. There is evidence that 
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S100A4 activates NF-κB in many cancer cell lines through induction of IKK-mediated 

phosphorylation and subsequent degradation of the NF-κB inhibitor IκBα (Boye et al. 

2008). Here I wanted to check whether S100A4 knockdown affected the levels of IKK and 

IκBα. Results in Figure 4.8 show that IKK expression increases in GLT and decreases in 

S100A4-knocked down cells in GLT, suggesting that the mechanism by which S100A4 

activates NF-κB in a glucolipotoxic environment is through activation of IKK. 

Simultaneously, protein levels of IκBα were measured, which should increase in S100A4-

knocked down cells due to the decrease in IKK levels. As Figure 4.8 shows, this is also the 

case for IκBα, although the change is not statistically significant. Altogether, these results 

indicate that S100A4 is able to increase NF-κB activation through induction of IKK activity 

and subsequent degradation of IκBα. 

A more direct method of measuring NF-κB activity is with the use of the NF-κB activity 

assay. To this end, nuclear extracts of S100A4-knocked down cells in control and GLT 

conditions were obtained and used to carry out the assay (Figure 4.9). 

 

 

Figure 4.9: Effect of S100A4 knockdown on NF-κB activity in GLT conditions compared to control. 

INS-1 cells were seeded, and 24 hours later the complex RNAiMAX-ssRNA/siRNA was added to the 

cells for 24 hours. Media was then removed and control or GLT conditions were applied for 72 

hours, after which cells were lysed using a nuclear/cytosolic fractionation kit. The nuclear 

compartment was added to the oligonucleotide coated wells of the activity assay plate, and then 

incubated with specific NF-κB antibody and subsequent secondary antibody. Developing solution 

and subsequent stop solution was added to the wells, after which absorbance was read to measure 

NF-κB activity. Data is expressed as means + SEM of 3 independent experiments (*p<0.05). 
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Figure 4.9 shows that NF-κB activity increases in GLT conditions compared to control by 

46% in cells treated with an ssRNA. This shows that the use of an ssRNA is not producing 

any effect per se, as it is the same result that we observed when measuring NF-κB activity 

in GLT compared to control (Figure 4.4). Interestingly, this effect is reversed by 109% when 

S100A4 is knocked down in GLT, indicating that S100A4 is indeed responsible for the 

activation of NF-κB. 

 

4.4 Discussion and future directions 
 

In this section, I wanted to explore a possible direct link between S100A4 and NF-κB. As 

mentioned before, S100A4 expression is known to be involved in the pathogenesis of 

several autoimmune diseases and other inflammatory conditions (Klingelhöfer et al. 2007, 

Cerezo et al. 2014). Existing knowledge on the well-established role of S100A4 in 

inflammatory diseases could suggest that S100A4 may also be involved in the 

pathogenesis of obesity-related diabetes, given that obesity has been described to be a 

state of low-grade chronic inflammation (Castro et al. 2017). Binding of S100A4 to RAGE 

has been seen to induce activation of NF-κB in human cancer cell lines through the 

classical NF‐κB activation pathway (Boye et al. 2008, Kim et al. 2017) (detailed in chapter 

1, section 1.4.3). However, very little is known about the role of S100A4 in the activation 

of the inflammatory processes mediated by NF‐κB in many autoimmune diseases, fibrosis, 

and other disorders, which makes this a very exciting area to study and potentially exploit 

in future therapeutic intervention. 

The results obtained in this section demonstrate that NF‐κB protein expression and 

nuclear localisation increase in response to elevated glucose and FAs, indicating that 

glucolipotoxicity might be involved in the activation of NF‐κB. Functional studies were 

carried out in order to confirm this hypothesis, in which NF‐κB activity was measured using 

an NF‐κB activity assay. Results showed that NF‐κB activity increases by around 50% in 

conditions of glucolipotoxicity, confirming recently published work in our laboratory 

(Bagnati et al. 2016). 

In order to determine whether S100A4 plays a role in this GLT-induced expression and 

activation of NF‐κB, siRNA was used to transiently knockdown S100A4 and observe the 

effects that this had on NF-κB protein expression, subcellular localisation and activation. 

After a knockdown optimisation process, results showed that a 70% knockdown of 
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S100A4 did not have any effect on NF-κB protein expression or subcellular localisation in 

control conditions, which could be explained by the fact that NF-κB displays low basal 

expression and activity in control conditions, therefore knocking S100A4 down will not 

have any effect. However, when incubated in glucolipotoxic conditions, even though 

S100A4 knockdown did not affect NF-κB protein expression, it reversed the increased 

nuclear localisation induced by GLT. These results suggest that S100A4 might have a role 

in NF-κB activation in GLT conditions without affecting its protein expression, maybe 

through the regulation of IKK activity. In order to test this hypothesis, protein levels of IKK 

in control and GLT conditions +/- siS100A4 were measured, as well as the subsequent 

degradation of IκBα. Results show that IKK levels decreased in S100A4-knocked down cells 

in GLT, and that consequently, IκBα levels increased in these conditions. Experiments 

involving the measurement of IĸB phosphorylation by IKK in S100A4-knocked down cells 

in control and GLT conditions could be carried out in order to confirm this hypothesis, as 

it would be a more direct way of determining the inhibitory activity of IĸB rather than 

measuring its protein levels. 

Finally, in the last section of this chapter, the role of S100A4 on NF-κB activation was 

assessed by performing an NF-κB activity assay +/- S100A4. Results show that S100A4 

knockdown completely reverses the GLT-induced increase in NF-κB activity, indicating 

that S100A4 is responsible for this event. 

In conclusion, results shown in this chapter indicate that S100A4 is likely involved in the 

glucolipotoxic-induced inflammatory process characteristic of T2D through an increase in 

NF-κB activation. 

Additional experiments to further confirm the validation of our hypothesis include the 

measurement of IĸB phosphorylation by IKK in S100A4-knocked down cells, as mentioned 

above, to confirm whether the activation of NF-κB by S100A4 involves induction of IKK 

activity. 

Another more direct way to measure the effect of S100A4 knockdown on NF-κB activity 

could be to carry out a reporter assay based on NF-κB responsive promoter elements 

driving expression of a secreted luciferase, such as the one carried out by Badr et al. (Badr 

et al. 2009). A fluorescent reader would then be used to measure expression levels of the 

luciferase, with fluorescence signal positively correlating with NF-κB activity. Similarly, the 

measurement of NF-κB target gene expression through qPCR would also constitute 

another direct way of measuring NF-κB activity. Target genes that could be looked at 
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include Tumour Necrosis Factor Receptor Associated Factor 2 (TRAF2), Growth Arrest and 

DNA Damage-Inducible β (GADD45B) and Inhibitor of NF-κB kinase subunit β (IKKβ), all of 

them involved in stress or apoptosis-related pathways. Another direct way of measuring 

NF-κB transcriptional activity would be chromatin immunoprecipitation (ChIP), or 

performing western blot analysis against NF-κB p65 subunit. 

Finally, measurement of RAGE mRNA and protein expression levels in INS-1 cells in control 

and GLT conditions, followed by knockdown or inhibition of RAGE signalling could also be 

carried out in order to block S100A4-mediated activation of NF-κB. This however, poses 

the problem that S100A4 is also able to signal through other receptors such as EGFR, TLR4 

and IL10R, to activate NF-κB (Grotterød et al. 2010), therefore no change in NF-κB 

activation would be observed after RAGE knockdown.  

RAGE is known to be involved in a variety of pathophysiological processes including 

immune/inflammatory disorders, tumours, and abnormalities associated with diabetes as 

arteriosclerosis or abnormal wound healing (Schlueter et al. 2003). RAGE expression is 

dependent on cell type and developmental stage. It is constitutively expressed during 

embryonic development, but then its expression decreases in adult life (Brett et al. 1993). 

RAGE is only expressed at low levels in a wide range of adult cells in physiological 

conditions, including endothelial cells, cardiomyocytes, neutrophils, macrophages, 

lymphocytes and dendritic cells (Ott et al. 2014), as well as in the adult central nervous 

system (CNS), glia and neurons (Huttunen et al. 2000).  However, RAGE has been seen to 

be upregulated in inflammatory conditions (Yan et al. 2009).  

Unfortunately, its expression is not included in the RNAseq data, probably because it is 

not one of the most differentially expressed genes. However, it would be interesting to 

see if its expression changes in glucolipotoxicity. Furthermore, knockdown or inhibition of 

RAGE signalling and subsequent measurement of NF-κB activity would indicate whether 

S100A4 signals through RAGE to activate NF-κB, although, as mentioned before, S100A4 

could signal through other receptors to activate NF-κB (Grotterød et al. 2010). 
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CHAPTER 5: Identification of interaction partners of S100A4 
 

5.1 S100A4 interaction network construction 
 

As detailed in chapter 3, in order to gain further insight into the complex nature of 

diabetogenesis and to discover novel mechanisms that can affect activation of 

inflammatory pathways that lead to β-cell dysfunction, a transcriptome profiling of the 

pancreatic β-cell in conditions of glucolipotoxicity compared to control was performed 

using RNA sequencing. Analysis of the transcriptome allowed the identification of 

differentially expressed genes in conditions of glucolipotoxicity, including S100A4.  

Whilst it has been established that S100A4 is linked to NF-κB, I sought to identify 

additional molecules that interact with the S100A4 gene in the β-cell environment in order 

to potentially elucidate key pathways by which S100A4 expression could be regulated in 

INS-1 pancreatic β-cells.  

Together with our collaborators in Barts and The London School of Medicine and 

Dentistry, we used MetaCore™ (Clarivate Analytics) to generate a pathway interaction 

map for S100A4 (Figure 5.1). MetaCore™ is a bioinformatic analysis programme which 

combines gene expression data input, in our case the RNAseq data produced previously 

in our laboratory, with data available in other databases to produce relevant pathways 

and networks associated with the specific genes of interest, and providing information 

about their pathological relevance. 
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Figure 5.1: MetaCore™ interaction network for S100A4. RNAseq data was input into MetaCore™ 

analysis software, and S100A4 was selected as the target gene upon which the interaction analysis 

was to be made. The interaction network shows the most relevant interactions between S100A4 

and other genes included in the RNAseq data, as well as the directionality of the interaction 

(depicted by the direction of the arrows), the effect of the interaction (red arrow indicates negative 

interaction, green arrow indicates positive interaction), and whether a gene is significantly 

differentially expressed in GLT conditions compared to control (depicted by the blue -

downregulation- or red -upregulation- circle at the top right hand corner of each icon). 

 
This interaction network is a very powerful and useful tool, as it allows the identification 

of the most likely interacting partners of our genes of interest, in this case S100A4. 

Interestingly, Figure 5.1 shows that S100A4 interacts with HIF-1α, with the direction of 

the interaction indicated by the arrow suggesting that HIF-1α could modulate S100A4 

expression.  
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5.2 HIF-1α as an interacting partner of S100A4 
 

As detailed in chapter 1, section 1.6, pathological hypoxia can drive tissue dysfunction and 

disease development through immune cell dysregulation (Taylor et al. 2017). Hypoxia is a 

common issue found in obese patients, particularly in AT and pancreas, and is thought to 

be one of the mechanisms by which pro-inflammatory signalling is initiated and 

maintained (Gonzalez et al. 2018).  

Because of the high demand for mitochondrial respiration under high glucose conditions, 

pancreatic β-cells consume large amounts of oxygen in a short time, inducing a hypoxic 

state (Sato et al. 2011). Accordingly, pancreatic islets of diabetic mice showed moderate 

levels of hypoxia through increased expression of HIF-1α and its target genes (Sato et al. 

2014).  

Adaptation to insufficient tissue oxygenation is regulated by HIFs, which are the key 

mediators of the cellular response to hypoxia. However, these factors are also associated 

with pathological conditions such as inflammation, bacteriological infection or cancer 

(Krzywinska et al. 2018). The HIF-1α transcription factor is activated in response to cellular 

hypoxia and induces transcription of various pro-inflammatory genes (Fakhruddin et al. 

2017) and subsequent recruitment of inflammatory cells (Sun et al. 2012).  

Interestingly, HIF-1α has been linked to regulation of S100A4 expression in several 

different types of tumour cells after exposure to hypoxia. The mechanism by which this 

process takes place involves hypoxia-induced hypomethylation of the first intron of the 

S100A4 gene, facilitating the binding of HIF-1α to HREs in the S100A4 promoter region, 

thereby increasing S100A4 transcription levels (Liu et al. 2010, Horiuchi et al. 2012, Fei et 

al. 2017). 

Importantly, Figure 5.1 suggests that HIF-1α could also act as a transcription factor to 

modulate S100A4 expression in the pancreatic β-cell in the glucolipotoxic environment 

characteristic of T2D. 
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5.3 Results 
 

5.3.1 HIF-1α is upregulated in glucolipotoxic conditions 
 

Firstly, in order to test the proposed hypothesis by which HIF-1α is involved in the 

upregulation of S100A4 expression in INS-1 cells exposed to GLT, the RNAseq data was 

analysed to obtain readings for HIF-1α expression in glucolipotoxicity. A 1.25-fold increase 

in HIF-1α expression was observed, a moderate but significant increase (Figure 5.2). 

 

Figure 5.2: Differential expression of HIF-1α mRNA levels in GLT conditions compared to control 

obtained from the RNAseq data. Cells were incubated for 72 hours in control or GLT conditions. 

RNA was isolated and the sample converted to a library of cDNA fragments, which were then 

sequenced in a high-throughput manner to obtain short sequences. Resulting reads were aligned 

to a reference genome to produce a genome-scale transcription map including expression levels 

for each gene in the different conditions (Wang et al. 2009). Data is expressed as means + SEM of 

3 independent experiments, ***p<0.0005. 

 

In order to validate the RNAseq expression data for HIF-1α, INS-1 cells were incubated in 

control or GLT conditions for 72 hours. An extra control treatment consisting in adding 

deferoxamine (DFO) to RPMI media was used parallelly to the control RPMI and GLT 

treatments, in order to stabilise HIF-1α and examine whether the results obtained in GLT 

treated cells are comparable to the results obtained in the DFO control cells. 

The HIF-1 transcription factor consists of 2 subunits: a constitutively active HIF-1β subunit 

and a highly regulated HIF-1α subunit. In normoxic conditions, the HIF-1α subunit is 

hydroxylated by prolyl hydroxylases (PHDs), which mark it for proteasomal degradation. 
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However, under hypoxic conditions, PHDs are inhibited, therefore HIF-1α is able to 

translocate to the nucleus, where it dimerises with HIF-1β and together they bind to HREs 

in the promoter region of target genes (Franke et al. 2013). As mentioned in chapter 1, 

section 1.6, HIF-1α is induced in diabetic pathological conditions (Sato et al. 2011). 

Therefore, the GLT treatment should increase HIF-1α expression and activity. In order to 

check whether GLT-induced changes are attributable to HIF signalling, DFO was used as a 

control treatment to stabilise HIF-1α. 

In brief, INS-1 cells were treated with 100µM DFO, as described in chapter 2. This agent 

chelates the Iron3+ ions necessary for the PHDs to hydroxylate the HIF-1α subunit 

(O’Rourke et al. 1996), thereby preventing HIF-1α degradation. 

After both GLT and DFO treatments, cells were lysed, and total protein extracted and 

quantified as described in chapter 2. Protein extracts were electrophoresed on 4–20% 

Mini-PROTEAN® TGX™ precast polyacrylamide gradient gels (BioRad) to allow 

visualisation of both low and high molecular weight proteins (S100A4 is 14KDa, HIF-1α is 

110KDa) (Figure 5.3).  

 

 

 

 

Figure 5.3: Effect of GLT and DFO on HIF-1α, S100A4 and NF-κB protein levels. INS-1 cells were 

incubated for 72 hours in control, GLT or DFO conditions, and subsequently lysed. Lysates were 

separated on 4–20% polyacrylamide gradient gels. Proteins were transferred to nitrocellulose 

membranes, which were then incubated with HIF-1α, NF-κB and S100A4 specific antibodies. A) 

Western blot representative of several trials with different HIF-1α antibodies; B) Quantification of 

western blot bands, normalised to internal actin control.  

 

 

B A 

DFO 
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As it can be observed from Figure 5.3, HIF-1α protein levels are undetectable through 

western blot, even after trying with different antibodies (only representative image 

shown). However, interestingly, results show that both S100A4 and NF-κB are 

upregulated in DFO conditions, as well as in GLT, as we saw earlier.  

HIF-1α protein expression and subcellular localisation was then measured through 

indirect immunofluorescence (Figure 5.4). Interestingly, results show that HIF-1α 

expression and nuclear localisation increases both in GLT and DFO conditions.  

All in all, these results show that the observable effect of the GLT treatment is similar to 

the effect produced by adding DFO to the cells, suggesting that GLT-induced changes 

could be driven by an increase in HIF-1α activity. 

 

Figure 5.4: Effect of GLT and DFO on HIF-1α protein levels and subcellular localisation. INS-1 cells 

were cultured on coverslips. After 24 hours, media was removed and control, GLT or DFO 

conditions were applied for 72 hours. After fixing, cells were incubated with specific HIF-1α 

antibody, followed by incubation with fluorescent secondary antibody and nuclear DNA staining. 

Cells were visualised under a fluorescent microscope and pictures taken. Figure shows  

representative images from 3 independent experiments. Scalebar 1cm:50µm. 
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5.3.2 HIF-1α is involved in the regulation of S100A4 expression 
 

Our hypothesis states that HIF-1α acts as a transcription factor to activate S100A4 

expression in INS-1 β-cells. In order to test it, siRNA technology was used to transiently 

knockdown HIF-1α in GLT and DFO conditions, and subsequently measure S100A4 and NF-

κB mRNA levels through qPCR, as well as their protein levels through 

immunofluorescence. mRNA levels were measured to verify the extent of HIF-1α 

knockdown as it could not be detected through western blot. Similarly, changes in protein 

levels were only assessed through immunofluorescence. Finally, the effect of HIF-1α 

knockdown on NF-κB activation in GLT compared to DFO and control conditions was also 

assessed by performing an NF-κB activity assay. 

Firstly, the level of HIF-1α knockdown was validated through qPCR, given that its protein 

levels could not be detected though western blot. Figure 5.5 shows that mRNA levels of 

HIF-1α increase both in GLT and DFO treated cells in accordance with our 

immunofluorescence results (Figure 5.4), and more importantly that mRNA levels of HIF-

1α decreased in siHIF-1α treated cells by 80%, 64% and 66%  in control, GLT and DFO 

conditions respectively, proving that the knockdown was effective. 

 

Figure 5.5: HIF-1α mRNA levels in ss/siHIF-1α treated cells in control, GLT and DFO conditions. 

INS-1 cells were seeded, and 24 hours later the complex RNAiMAX-ssRNA/siRNA was added to the 

cells for 24 hours. Media was then removed and control, GLT or DFO conditions were applied for 

72 hours. RNA was then extracted, and qPCR conducted using specific primers for HIF-1α. Data 

represent ∆∆Ct values expressed as a fold change compared to cells grown in control conditions 

and normalised to GAPDH internal control. 
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Given that mRNA levels do not always correlate with protein levels, and that it could not 

be detected through western blot, the level of HIF-1α knockdown was also validated 

through immunofluorescence. Figure 5.6 shows that HIF-1α protein expression and 

nuclear localisation increases in GLT and DFO, and decreases in siHIF-1α treated cells, in 

accordance with the qPCR results from the validation of HIF-1α knockdown shown in 

Figure 5.5. 

It is worth mentioning that, despite of the background illumination being to some extent 

higher in the pictures corresponding to the GLT treatment, the increase in HIF-1α protein 

expression and nuclear localisation is still very significant compared to control conditions. 

 

Figure 5.6: HIF-1α protein levels and subcellular localisation in HIF-1α-knocked down cells in 

control, GLT and DFO conditions. INS-1 cells were seeded, and 24 hours later the complex 

RNAiMAX-ssRNA/siRNA was added to the cells for 24 hours. Media was then removed and control, 

GLT or DFO conditions were applied for 72 hours. After fixing, cells were incubated with specific 

HIF-1α antibody, followed by incubation with fluorescent secondary antibody and nuclear DNA 

staining. Cells were visualised under a fluorescent microscope and pictures taken. Figure shows 

representative images from 3 independent experiments. Scalebar 1cm:50µm. 
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Once HIF-1α knockdown had been validated, mRNA levels of S100A4 and NF-κB in HIF-1α-

knocked down cells were measured (Figure 5.7). 

 

Figure 5.7: Effect of HIF-1α knockdown on S100A4 and NF-κB mRNA levels in control, GLT and 

DFO conditions. INS-1 cells were seeded, and 24 hours later the complex RNAiMAX-ssRNA/siRNA 

was added to the cells for 24 hours. Media was then removed and control, GLT or DFO conditions 

were applied for 72 hours. RNA was then extracted, and qPCR conducted using specific primers for 

HIF-1α, S100A4 or the NF-κB subunit RelA. Data represent ∆∆Ct values expressed as a fold change 

compared to cells grown in control conditions and normalised to GAPDH internal control. 

 

Figure 5.7 shows that HIF-1α knockdown decreases S100A4 mRNA levels in all conditions, 

which suggests that our hypothesis stating that HIF-1α acts as a transcription factor for 

S100A4 expression is right. Interestingly, it can be observed that the increase in S100A4 

expression in ssRNA-treated cells is much greater in GLT that in DFO, and that the 

decrease in S100A4 expression induced by HIF-1α knockdown is much greater in DFO than 

in GLT conditions. Both observations indicate that it may be driven by HIF-1α but that 

there must be some other component in GLT inducing its increase. Contrarily, the increase 

in NF-κB expression in ssRNA treated cells is greater in DFO than in GLT conditions, while 

its levels are unaffected by HIF-1α knockdown, which goes in line with our previous 

findings that NF-κB protein expression is not affected by S100A4 knockdown either (Figure 

4.7). Anyhow, as mentioned earlier, NF-κB mRNA or protein levels do not correlate with 

its activity levels. These will be assessed further on. 
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In order to measure the effect of HIF-1α knockdown on S100A4 and NF-κB at the protein 

level, and given that I could not measure HIF-1α protein levels through western blot, I 

carried out indirect immunofluorescence on HIF-1α-knocked down cells and looked at the 

differential S100A4 (Figure 5.8A) and NF-κB (Figure 5.8B) protein expression and 

subcellular localisation. 

 

 

A 
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Figure 5.8: Effect of HIF-1α knockdown on S100A4 and NF-κB protein levels and subcellular 

localisation in control, GLT and DFO conditions. INS-1 cells were seeded, and 24 hours later the 

complex RNAiMAX-ssRNA/siRNA was added to the cells for 24 hours. Media was then removed 

and control, GLT or DFO conditions were applied for 72 hours. After fixing, cells were incubated 

with specific S100A4 (A) or NF-κB (B) antibody, followed by incubation with fluorescent secondary 

antibody and nuclear DNA staining. Cells were visualised under a fluorescent microscope and 

pictures taken. Figure shows representative images from 3 independent experiments. Scalebar 

1cm:50µm. 

In accordance with our previous data, Figure 5.8A shows that S100A4 expression increases 

in GLT. Furthermore, it can be observed that its nuclear localisation also increases in GLT. 

And more importantly, it can also be observed that treatment with DFO induces the same 

changes, and that knockdown of HIF-1α reverses them, indicating that HIF-1α is involved 

in S100A4 expression. In the case of NF-κB, Figure 5.7 shows that mRNA levels were 

unaffected by HIF-1α knockdown. However, Figure 5.8B shows that its expression and 

nuclear localisation increases in GLT, as seen earlier (Figure 4.2), and that DFO produces 

the same effect. Importantly, this increase is reversed in HIF-1α-knocked down cells. This 

strengthens our theory of the proposed mechanism of action by which HIF-1α would act 

as a transcription factor for S100A4, which then activates NF-κB. 

B 
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5.3.3 HIF-1α is involved in the induction of NF-κB activity through regulation of 

S100A4 

 

Our results up until this point show that NF-κB mRNA or protein levels are not affected by 

S100A4 or HIF-1α knockdown. However, it is important to note that NF-κB is a 

transcription factor, therefore its ultimate regulating mechanism is its activity, not its 

mRNA or protein levels. Measurement of its nuclear localisation through 

immunofluorescence is however a good way of indirectly measuring its activity, and 

results indicate that NF-κB nuclear localisation increases both in GLT and DFO, and 

decreases when either S100A4 or HIF-1α are knocked down (Figures 4.2, 4.7 and 5.8). 

A functional study measuring NF-κB activity is therefore needed in order to validate the 

aforementioned proposed mechanism of action. Accordingly, INS-1 cells were seeded, 

HIF-1α was knocked down, control, GLT or DFO conditions were applied as usual, and an 

NF-κB activity assay was conducted.  

 

Figure 5.9: Effect of HIF-1α knockdown on NF-κB activity in control, GLT and DFO conditions. INS-

1 cells were seeded, and 24 hours later the complex RNAiMAX-ssRNA/siRNA was added to the cells 

for 24 hours. Media was then removed and control, GLT or DFO conditions were applied for 72 

hours, after which cells were lysed using a nuclear/cytosolic fractionation kit. The nuclear 

compartment was added to the oligonucleotide coated wells of the activity assay plate, and then 

incubated with specific NF-κB antibody and subsequent secondary antibody. Developing solution 

and subsequent stop solution was added to the wells, after which absorbance was read to measure 

NF-κB activity. Data is expressed as means + SEM of 3 independent experiments (*p<0.05). 
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Results in Figure 5.9 show that, as hypothesised, NF-κB activity increases in GLT and DFO 

treated cells (by 28% and 11% respectively), and this effect is reversed by HIF-1α 

knockdown (by 39% and 188% respectively), proving that HIF-1α induces expression of 

S100A4, which then activates NF-κB. 

 

5.3.4 Identification of Karyopherin α2 (KPNA2) as an importin involved in HIF-1α 

nuclear translocation 
 

Nuclear transport occurs through large nuclear pore complexes in the nuclear membrane. 

While small factors can diffuse passively through these pores, transport of large (∼40 kDa) 

factors must be mediated by shuttle proteins, termed importins or karyopherins (Stewart 

2007). The human genome encodes seven isoforms of importin α which are grouped into 

three subfamilies known as α1, α2 and α3 (Table 5.1) (Kelley et al. 2010). Karyopherin 

alpha 2 (KPNA2), also known as importin α1, is ∼58 kDa and comprises 529 amino acids. 

It contains an N-terminal hydrophilic importin β-binding domain, a central hydrophobic 

region consisting of 10 armadillo repeats (which binds to the Nuclear Localisation Site -

NLS- of the cargo protein), and a short acidic C-terminus with no reported function (Huang 

et al. 2013). 

Table 5.1: The karyopherin α protein family. 

Subfamily Protein 
name 

Alternative names Gene name Accession number 

 
α1 

Importin α1 Karyopherin α2, 
hSRP1α, Rch1, Qip2, 

NPI-3 

KPNA2 P52292  

Importin α8 Karyopherin α7 KPNA7 A9QM74 

 
α2 

Importin α3 Karyopherin α4, Qip1 KPNA4 O00629  

Importin α4 Karyopherin α3, 
hSRP1γ, Qip2 

KPNA3 O00505  

 
 

α3 

Importin α5 Karyopherin α1, NPI-1, 
SRP1, hSRP1 

KPNA1 P52294  

Importin α6 Karyopherin α5 KPNA5 O15131  

Importin α7 Karyopherin α6, NPI-2 KPNA6 O60684  

 

https://www.ncbi.nlm.nih.gov/protein/P52292
https://www.ncbi.nlm.nih.gov/protein/A9QM74
https://www.ncbi.nlm.nih.gov/protein/O00629
https://www.ncbi.nlm.nih.gov/protein/O00505
https://www.ncbi.nlm.nih.gov/protein/P52294
https://www.ncbi.nlm.nih.gov/protein/O15131
https://www.ncbi.nlm.nih.gov/protein/O60684
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Despite their similarity in amino acid sequence and 3D structure, importin α isoforms 

display notable substrate specificity in vivo (Pumroy et al. 2015), conferring preferential 

nuclear entry of viral and cellular cargoes linked to human diseases. Furthermore, there 

are studies that link altered importin α to many forms of cancer (Kim et al. 2000). In most 

cases, the upregulation of the KPNA2 gene indicates poor prognosis and poor survival 

rates, making it a useful biomarker (Zheng et al. 2010, Winnepenninckx et al. 2006). 

Accordingly, siRNA-mediated knockdown of importin α1 has proven effective in 

decreasing proliferation of cancerous cells in some cases (Wang et al. 2011). 

Importantly, importin α1 (KPNA2) has also been linked to nuclear translocation of several 

members of the HIF factors family, including HIF-1α (Depping et al. 2008). If we go back 

to the interaction network in Figure 5.1, we can see that there is an importin α directly 

linked to HIF-1α, which is also directly linked to S100A4. Moreover, gene expression of 

this importin is upregulated as indicated by the red circle next to its symbol, suggesting 

an involvement of KPNA2 in HIF-1α nuclear transport in glucolipotoxic conditions. 

In order to test this hypothesis, I first analysed the RNAseq data for KPNA2 differential 

expression in glucolipotoxicity compared to control. As the interaction network does not 

specify which of all the importins α is involved in this link, I analysed the expression of all 

the importin α isoforms included in the RNAseq data (Figure 5.10). 

 

Figure 5.10: Differential expression of KPNA isoforms mRNA levels in GLT conditions compared 

to control obtained from the RNAseq data. Cells were incubated for 72 hours in control or GLT 

conditions, RNA was isolated, and the sample converted to a library of cDNA fragments, which 

were then sequenced in a high-throughput manner to obtain short sequences. Resulting reads 

were aligned to a reference genome to produce a genome-scale transcription map including 

expression levels for each gene in the different conditions (Wang et al. 2009). Data is expressed as 

means + SEM of 3 independent experiments, *p<0.05, **p<0.005, ***p<0.0005. 

KPNA1      KPNA2     KPNA3      KPNA4     KPNA5      KPNA6 
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Interestingly, Figure 5.10 shows that KPNA2 is the most highly upregulated isoform of the 

importin α family, with a 2.7-fold increase in glucolipotoxic conditions. It is therefore 

highly likely that this is the member that is included in the interaction network shown in 

Figure 5.1. 

Subsequently, the increase in KPNA2 protein expression in INS-1 cells cultured in GLT, and 

DFO conditions was determined through western blot. Figure 5.11 shows that KPNA2 

protein is slightly but significantly upregulated in both conditions, validating the RNAseq 

data regarding the GLT treatment, and suggesting that HIF-1α is also involved in the 

regulation of its expression. 

 

 

 

 

 

 

Figure 5.11: Effect of GLT and DFO on KPNA2 protein levels. INS-1 cells were incubated for 72 

hours in control, GLT or DFO conditions, and subsequently lysed. Lysates were separated on 12% 

polyacrylamide gels. Proteins were transferred to nitrocellulose membranes, which were then 

incubated with KPNA2 specific antibody. A) Western blot, representative of 3 independent 

experiments; B) Quantification of anti-KPNA2 western blot bands, normalised to internal actin 

control. Data is expressed as means + SEM of 3 independent experiments (*p<0.05). 

 

In order to determine whether KPNA2 is involved in HIF-1α translocation to the nucleus 

and subsequent activation of S100A4 expression, siRNA technology was used to 

transiently knockdown KPNA2, and changes in HIF-1α, S100A4 and NF-κB protein 

expression and subcellular localisation were assessed through immunofluorescence. 

However, as we have seen, protein levels do not always correlate with transcription factor 

activity, therefore the effect of KPNA2 knockdown on NF-κB activity was also measured 

with the use of an NF-κB activity assay.  

A B 
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Firstly, KPNA2 knockdown levels were validated at the protein level through western blot 

analusis. Figure 5.12 shows that a 28%, 24% and 23% knockdown was achieved in control, 

GLT and DFO treated cells respectively. 

 

 

Figure 5.12: KPNA2 protein levels in ss/siKPNA2 treated cells in control, GLT and DFO conditions. 

INS-1 cells were seeded, and 24 hours later the complex RNAiMAX-ssRNA/siRNA was added to the 

cells for 24 hours. Media was then removed and control, GLT or DFO conditions were applied for 

72 hours. Total protein was then extracted, and lysates were separated on 12% polyacrylamide 

gels. Proteins were transferred to nitrocellulose membranes, which were then incubated with 

KPNA2 specific antibody. A) Representative image of a western blot of KPNA2 knockdown; B) 

Quantification of anti-KPNA2 western blot bands, normalised to internal actin control. Data is 

expressed as means + SEM of 3 independent experiments (*p<0.05, **p<0.005, ***p<0.0005). 

 

Validation of KPNA2 upregulation in GLT and DFO-treated cells, as well as the level of 

KPNA2 knockdown in siRNA treated cells was also assessed through immunofluorescence. 

Figure 5.13 shows that KPNA2 expression increases in GLT and DFO, and decreases in 

siKPNA2 treated cells, correlating with the western blot results. 

A 

B 
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Figure 5.13: KPNA2 protein levels and subcellular localisation in ss/siKPNA2 treated cells in 

control, GLT and DFO conditions. INS-1 cells were seeded, and 24 hours later the complex 

RNAiMAX-ssRNA/siRNA was added to the cells for 24 hours. Media was then removed and control, 

GLT or DFO conditions were applied for 72 hours. After fixing, cells were incubated with specific 

KPNA2 antibody, followed by incubation with fluorescent secondary antibody and nuclear DNA 

staining. Cells were visualised under a fluorescent microscope and pictures taken. Figure shows 

representative images form 3 independent experiments. Scalebar 1cm:50µm. 

 

Once established that I had achieved a significant level of knockdown of KPNA2 in all 

conditions, I next measured the changes that the decreased levels of KPNA2 triggered in 

HIF-1α (Figure 5.14A), S100A4 (Figure 5.14B) and NF-κB (Figure 5.14C) protein expression 

and subcellular localisation through immunofluorescence. Results show that KPNA2 

knockdown reverses the GLT and DFO-driven increase in expression and nuclear 

localisation of HIF-1α (Figure 5.14A), which in turn causes a decrease in S100A4 protein 

expression (Figure 5.14B), which ultimately causes a decrease in NF-κB nuclear 

localisation (Figure 5.14C). 
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Figure 5.14: Effect of KPNA2 knockdown on HIF-1α, S100A4 and NF-κB protein expression and 

cellular localisation in control, GLT and DFO conditions. INS-1 cells were seeded, and 24 hours 

later the complex RNAiMAX-ssRNA/siRNA was added to the cells for 24 hours. Media was then 

removed and replaced with control, GLT or DFO media for 72 hours. After fixing, cells were 

incubated with specific HIF-1α, S100A4 or NF-κB antibodies, followed by incubation with 

fluorescent secondary antibody and nuclear DNA staining. Cells were visualised under a fluorescent 

microscope and pictures taken. Figure shows representative images of 3 independent 

experiments. Scalebar 1cm:50µm. 

 

However, even though a decreased nuclear localisation of HIF-1α can be observed in 

KPNA2 knockdown cells (Figure 5.14A), if we are blocking HIF-1α translocation to the 

nucleus we should be seeing an increase in its cytoplasmic localisation. However, this is 

not particularly apparent from Figure 5.14A. It was therefore hypothesised that HIF-1α 

gets degraded as it accumulates in the cytoplasm. As mentioned in section 5.3.1, HIF-1α 

undergoes proteasomal degradation when marked by PHDs in normoxic conditions. I 

decided to use MG132, a proteasome inhibitor (Han et al. 2009, Goldberg 2012), to inhibit 

HIF-1α degradation, which would allow detection of HIF-1α in the cytoplasm.  

C 
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In brief, a 10mM stock of MG132 was prepared in distilled water (Table 2.1). Cells were 

seeded, KPNA2 was knocked down and control, GLT or DFO conditions applied for 72 

hours as usual. MG132 was then added at a final concentration of 10µM for the last six 

hours prior to cell fixation. Results in figure 5.15 show a modest increase in HIF-1α 

cytoplasmic localisation when cells were treated with MG132, compared to HIF-1α 

expression and localisation when MG132 is not added (Figure 5.14A). 

 

Figure 5.15: Effect of MG132 proteasome inhibitor on HIF-1α protein expression and subcellular 

localisation in KPNA2 knockdown cells in control, GLT and DFO conditions. INS-1 cells were 

seeded, and 24 hours later the complex RNAiMAX-ssRNA/siRNA was added to the cells for 24 

hours. Media was then removed and control, GLT or DFO conditions were applied for 72 hours. For 

the last 6 hours of the incubation, MG132 was added to the cells at a final concentration of 10µM 

to inhibit HIF-1α proteasomal degradation. After fixing, cells were incubated with specific HIF-1α 

antibody, followed by incubation with fluorescent secondary antibody and nuclear DNA staining. 

Cells were visualised under a fluorescent microscope and pictures taken. Figure shows 

representative images of 3 independent experiments. Scalebar 1cm:50µm. 

 



161 
 

Finally, a functional study is needed in order to confirm the effect of KPNA2 knockdown 

on NF-κB activity. INS-1 cells were seeded, KPNA2 was knocked down, control, GLT or DFO 

conditions applied as usual, and an NF-κB activity assay performed. Results in Figure 5.16 

show that NF-κB activity increases in GLT and DFO treated cells (by 40% and 61% 

respectively) as seen before (Figure 4.4 and Figure 5.9), and that this effect is reversed by 

KPNA2 knockdown (by 80% and 72% respectively). 

 

Figure 5.16: Effect of KPNA2 knockdown on NF-κB activity in control, GLT and DFO conditions. 

INS-1 cells were seeded, and 24 hours later the complex RNAiMAX-ssRNA/siRNA was added to the 

cells for 24 hours. Media was then removed and control, GLT or DFO conditions were applied for 

72 hours, after which cells were lysed using a nuclear/cytosolic fractionation kit. The nuclear 

compartment was added to the oligonucleotide coated wells of the activity assay plate, and then 

incubated with specific NF-κB antibody and subsequent secondary antibody. Developing solution 

and subsequent stop solution was added to the wells, after which absorbance was read to measure 

NF-κB activity. Data is expressed as means + SEM of 3 independent experiments (*p<0.05, 

**p<0.005). 

 

5.4 Discussion and future directions 
 

The study of the transcriptome has allowed a better understanding of the molecular 

changes involved in the onset of diabetic pathological conditions. Previously in our 

laboratory, RNAseq technology was used to characterise the molecular changes in the 

pancreatic β-cell after exposure to high concentrations of glucose and FAs, whilst in this 

thesis, the resulting RNAseq data was used to identify new molecules that could be 

involved in the impairment of β-cell function through pathway analysis.  
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Chapter 3 describes how S100A4 was identified as a protein involved in the GLT-induced 

activation of NF-κB and subsequent activation of inflammatory pathways. In order to 

avoid the onset of inflammation-driven T2D pathogenesis, S100A4-induced NF-κB 

activation could be targeted. One way to achieve this is through the downregulation or 

inhibition of S100A4 with the use of siRNA, microRNA or other inhibitors, as it has been 

done in several cancer and other studies involving different pathologies (Zhang et al. 

2011, Liang et al. 2014, Zhang et al. 2016, Liu et al. 2012). As described earlier, the 

canonical pathway of NF-κB activation involves various steps, including the 

phosphorylation, ubiquitination, and degradation of IκBα. Thus, another way of regulating 

S100A4-induced NF-κB activation could be to use inhibitors or regulators of kinases as 

reported previously (Qu et al. 2015) to target IKK-mediated phosphorylation of IκBα. 

Finally, a third way of regulating S100A4-mediated activation of NF-κB activation could be 

to modulate S100A4 at the transcriptional level, through the identification of molecules 

or transcription factors that directly interact with its regulatory regions. 

In order to identify a wider network of interacting partners and pathways, an interaction 

network was constructed for S100A4 together with our collaborators in Barts and The 

London School of Medicine and Dentistry based on our RNAseq data. This was done with 

use of Metacore™, which is able to identify genes directly linked to S100A4 in our 

glucolipotoxic model of T2D. The resulting network was used to identify HIF-1α as a novel 

factor linked to S100A4 in a diabetic scenario, and to infer the directionality of this link, 

by which HIF-1α acts on S100A4. 

There is evidence that, in hypoxic conditions, HIF-1α binds to HREs in the promoter region 

of S100A4 to activate its expression in some cancer cases (Horiuchi et al. 2012, Reimann 

et al. 2015) as well as in other types of cells when exposed to hypoxia (Liu et al. 2012). 

Herein, I wanted to determine whether HIF-1α could also regulate S100A4 expression in 

hypoxic conditions characteristic of T2D, something that had not been proposed before. 

In order to do so, after validating HIF-1α increased expression and nuclear localisation in 

INS-1 cells exposed to GLT and DFO conditions, HIF-1α was knocked down, and S100A4 

expression levels were measured. Results show that they decreased both at the mRNA 

and the protein level, indicating that HIF-1α could be acting as a transcription factor for 

S100A4 expression.  

Given that HIF-1α knockdown decreased S100A4 expression levels, a decrease in NF-κB 

expression and activity would also be expected. Even though there was no change in NF-
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κB mRNA levels after HIF-1α knockdown, mRNA levels do not necessarily equate protein 

levels or transcriptional activity. Therefore, indirect immunofluorescence was carried out, 

revealing that NF-κB nuclear localisation, which is indicative of transcriptional activity and 

which was seen to increase in GLT- and DFO-treated cells, decreased when HIF-1α was 

knocked down. Furthermore, the NF-κB activity assay reveals that its transcriptional 

activity also decreases when HIF-1α is diminished, strengthening our proposed 

mechanism of S100A4 induced-NF-κB activation via HIF-1α-mediated upregulation of 

S100A4 expression in hypoxic conditions. 

An alternative method of blocking HIF-1α-induced S100A4 expression other than knocking 

HIF-1α down was then explored. Interestingly, importin KPNA2 had previously been linked 

to nuclear translocation of several members of the HIF factors family, including HIF-1α 

(Depping et al. 2008). Moreover, KPNA2, which has been found to be uniformly 

upregulated in several cancer types (Rachidi et al. 2013), has recently been the subject in 

an oral squamous cell carcinoma (OSCC) study in which it has been knocked down, 

resulting in inhibition of autophagy and subsequent suppression of cell migration, by 

blocking p53 nuclear translocation (Lin et al. 2018).  

Our interaction network for S100A4 shows that there is an importin-α directly linked to 

HIF-1α and to S100A4. After analysing the RNAseq data, KPNA2 was identified as the most 

highly upregulated importin α in the dataset, suggesting an involvement of KPNA2 in HIF-

1α nuclear transport in glucolipotoxic conditions. I therefore decided to knockdown 

KPNA2 and determine the effects on HIF-1α subcellular localisation and consequently, on 

S100A4 protein expression and NF-κB activity. 

After validating KPNA2 knockdown, a decrease in HIF-1α, S100A4 and NF-κB expression 

and nuclear localisation was observed, suggesting that KPNA2 is indeed involved in HIF-

1α nuclear translocation.  

However, as mentioned before, inhibition of HIF-1α nuclear translocation would imply its 

cytoplasmic accumulation, which is not obvious from our results in Figure 5.14A. It was 

hypothesised that, not being able to translocate to the nucleus, HIF-1α was subject to 

proteasomal degradation. Accordingly, it has been seen that during prolonged exposure 

to hypoxia, HIF-α increases mRNA levels of PHDs, constituting a direct, negative regulatory 

mechanism that leads to HIF-α degradation, which limits its cytoplasmic accumulation in 

chronic hypoxic conditions (Marxsen et al. 2004). In order to test this, MG132, a 

proteasome inhibitor (Han et al. 2009, Goldberg 2012), was used to block HIF-α 
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degradation. This would allow its detection the cytoplasm through immunofluorescence. 

Results in Figure 5.15 show a modest increase in HIF-1α cytoplasmic localisation after 

KPNA2 knockdown when cells were treated with MG132, suggesting that our hypothesis 

is correct. 

Subsequently, in order to validate whether the decrease in NF-κB nuclear localisation 

after KPNA2 knockdown correlated with a decrease in its transcriptional activity, I carried 

out an NF-κB activity assay in KPNA2-knocked down cells in control, GLT and DFO 

conditions and observed an increase in its activity driven by both GLT and DFO treatment, 

which was reversed when KPNA2 was knocked down (by 80% and 72% respectively) 

(Figure 5.16). 

However, it could be argued that the decrease in NF-κB nuclear localisation and 

transcriptional activity after KPNA2 knockdown could be due to the impairment of its own 

nuclear translocation through the KPNA2 importin, rather than due to the decreased HIF-

1α induction of S100A4 expression and subsequent NF-κB activation. However, nuclear 

translocation of the NF-κB (p50/p65) transcription factor has been seen to be mediated 

by importins α3, 4, 5 and 6 (Fagerlund et al. 2008, Fagerlund et al. 2005), but not α1, so 

by knocking down KPNA2 we are only blocking HIF-1α nuclear translocation without 

affecting that of NF-κB. 

 

Although promising, these results are somewhat preliminary due to the inability to 

quantify changes in HIF-1α through western blot, as well as the unreliability posed by the 

eye-based quantification of all the immunofluorescence images. Therefore, further 

research is needed in order to validate the link between HIF-1α and S100A4 other than 

blocking HIF-1α nuclear translocation through KPNA2 knockdown. Some experiments that 

could be done include inhibiting HIF-1α with the use of agents such as chetomin, a 

dithiodiketopiperazine metabolite that inhibits HIF binding to the transcriptional 

coactivator p300, thereby attenuating hypoxia-dependent transcription (Staab et al. 

2007, Viziteu et al. 2016); or chrysin, an antioxidant flavonoid with anti-inflammatory and 

antitumor properties that  inhibits HIF-1α protein synthesis through AKT signalling (Fu et 

al. 2007); or dimethyl-Bisphenol A, an endocrine-disrupting chemical that promotes 

degradation of HIF-1α protein by dissociating Hsp90 from HIF-1α (Kubo et al. 2004). 

Another possible experiment could be to induce methylation of the S100A4 promoter 

region in order to block HIF-1α binding to its HREs (Horiuchi et al. 2012), thereby lowering 

its expression. 
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CHAPTER 6: Investigation of a potential link between T2D and 

cancer through HIF-1α and S100A4 
 

6.1 Type 2 diabetes and cancer 
 

6.1.1 Epidemiologic association between T2D and cancer 

 

T2D and cancer are two heterogeneous, multifactorial, severe, and chronic diseases with 

alarming increasing incidence worldwide. Abundant epidemiologic data show that people 

with diabetes present a significantly higher risk for developing many different forms of 

cancer, although potential biologic links between the two diseases are only partly 

understood (Giovannucci et al. 2010).  

The relative risks portrayed by T2D are greatest for pancreas, liver and endometrium 

cancers, and smaller but still significant for colon, rectum, breast and bladder cancers. On 

the other hand, it has been reported that presence of T2D correlates inversely with 

incidence of prostate cancer (Vigneri et al. 2009). Other cancers such as lung cancer do 

not appear to be influenced by the presence of diabetes, and evidence for other cancers 

such as kidney or lymphoma is inconclusive (Giovannucci et al. 2010).  

As mentioned, several meta-analyses indicate that the greatest association is between 

T2D and pancreas and liver cancer. This is most likely due to the increased exposure of 

these organs to hyperinsulinemia, a characteristic trait of T2D, given the established role 

of insulin as a growth factor with well-known metabolic and mitogenic effects 

(Giovannucci et al. 2010). Accordingly, a recent study shows that, amongst T2D subjects, 

association with cancer incidence was more relevant for insulin-treated patients (Ballotari 

et al. 2017).  

Some epidemiological studies suggest that on top of being a risk factor, presence of T2D 

may also significantly increase mortality in cancer patients (Barone et al. 2008, Lipscombe 

et al. 2008). Importantly, high pre-diagnosis CRP levels, an indirect marker of IR, have 

been associated with poor survival rates for prostate (Ma et al. 2008) and colorectal 

cancer (Wolpin et al. 2009). 

Other factors associated with T2D such as obesity, hyperglycemia or increased oxidative 

stress have also been proposed to contribute to increased cancer risk (Giovannucci et al. 

2010). However, it remains unclear whether the diabetes-cancer link is direct (for example 



166 
 

due to hyperglycemia), whether diabetes is a marker of underlying biological factors that 

influence cancer risk (for example IR and hyperinsulinemia), or whether this link is indirect 

and due to shared risk factors between both diseases, such as obesity (Giovannucci et al. 

2010). 

6.1.2 Common risk factors between T2D and cancer  
 

Potential risk factors common to both cancer and T2D can be modifiable or non-

modifiable. Non-modifiable factors include ageing (disease incidence increases with age) 

(de Magalhães 2013), sex (men have slightly higher risk of developing T2D and certain 

types of cancer) (Kim HI et al. 2018, Wu et al. 2018), and ethnicity (African Americans 

present the highest risk of T2D and some types of cancer due to socioeconomical and/or 

biological differences and genetic factors) (MD Anderson Cancer Centre). On the other 

hand, modifiable factors include obesity (it is considered the main cause for IR and T2D, 

and is associated with a much higher risk for many types of cancer) (Nguyen et al. 2011, 

Dobbins et al. 2013), diet (low red and processed meat and high vegetable, fruit and whole 

grain-based diets are associated with a protective role against T2D and a lower risk for 

many types of cancer, while energy-dense diets rich in sugary and highly-processed foods 

contribute to obesity and consequently T2D and cancer)  (Barclay et al. 2008, Kastorini et 

al. 2009), physical activity (a protective role for increased physical activity in T2D and 

cancer has been established) (Hamasaki 2016, Clague et al. 2012), alcohol consumption 

(excess consumption has been linked to increased T2D risk, while a protective role has 

been described for moderate consumption; on the other hand, even moderate alcohol 

consumption has been seen to increase the risk of many types of cancer) (Howard et al. 

2004, Baliunas et al. 2009, Connor 2017), and smoking (it has been associated with the 

development of T2D and its cardiovascular-related complications, while it accounts for 

71% of all trachea, bronchus, and lung cancer deaths and is associated with many other 

types of cancer) (Chang 2012, Jacob et al. 2018). 

 

6.1.3 Underlying mechanisms of the T2D-cancer link 
 

As mentioned above, it remains unclear whether the link between T2D and cancer is due 

to their shared risk factors such as obesity, or whether diabetes itself, together with its 

characteristic metabolic imbalances (hyperinsulinemia, hyperglycemia and chronic 
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inflammation), and the changes induced by the use of anti-diabetic drugs, increase the 

risk for some types of cancer (Giovannucci et al. 2010). 

a) Hyperinsulinemia 

Insulin is a well-known growth factor with mitogenic effects (Giovannucci et al. 2010). 

Most cancer cells express insulin and IGF1 receptors, which, in addition to their metabolic 

functions, are also capable of stimulating cancer cell proliferation, protection from 

apoptotic stimuli, invasion and metastasis, upon insulin signalling (Denley et al. 2007). 

Furthermore, hyperinsulinemia could indirectly promote carcinogenesis through its 

effects on IGF1. Insulin decreases hepatic production of IGF binding proteins (Renehan et 

al. 2006), resulting in increased circulating levels of IGF1, a more potent mitogenic and 

anti-apoptotic factor than insulin (Weinstein et al. 2009). Accordingly, available 

epidemiological data indicates that insulin secretion rate and IGF1 levels influence cancer 

risk and/or progression (Pollak 2012). 

b) Hyperglycemia 

Glucose constitutes one of the most important sources of energy for tumour cells (Dang 

2012). Cancer cells rewire their metabolism to promote growth, survival and proliferation 

through increased glucose uptake and its fermentation to lactate rather than the much 

more efficient oxidative phosphorylation pathway, even in the presence of functioning 

mitochondria and sufficient oxygen levels. This process is known as the Warburg effect, 

or aerobic glycolysis (Liberti et al. 2016). Interestingly, increased HIF-1 levels due to 

hypoxia or to increased growth factor stimulation have been seen to upregulate 9 of the 

10 enzymes involved in the glycolytic pathway, favouring the conversion of pyruvate to 

lactate rather than its entry into the TCA cycle (Semenza 2003). 

Hyperglycemia in T2D might be responsible for the excess glucose supply for tumour cells, 

also contributing to apoptosis resistance, oncogenesis, and resistance to chemotherapy 

(Duan et al. 2014). Additionally, the excess nutrient supply  can lead to high production of 

ROS from increased mitochondrial respiration, which can lead to DNA damage and 

subsequent mutations (Zhang et al. 2007). 

c) Chronic inflammation 

Excess nutrient availability in the T2D milieu leads to chronic low-grade inflammation 

characterised by an increase in activated monocyte, macrophage and inflamed AT-

secretion of cytokines such as TNFα and IL6 (Gonzalez et al. 2012, Roubicek et al. 2009), 
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both of which have been shown to promote tumour invasiveness and metastasis via 

secretion of MMPs (Kitamura et al. 2007). Moreover, IL6 is also able to enhance cancer 

cell proliferation, survival and invasion via activation of STAT signalling (Yu et al. 2009). 

6.1.4 Influence of diabetes treatments on cancer risk 
 

T2D is associated with overweight and obesity, and commonly progresses from a pre-

diabetic state characterized by IR and hyperinsulinemia, to overt diabetes with chronic IR 

and subsequent β-cell failure and diminished insulin secretion. This gives rise to 

progressive hyperglycemia, making glucose control one of the central goals for effective 

diabetes management, resulting in increased use of pharmacologic agents over time and 

the eventual need for insulin therapy in approximately half of all T2D patients (Jabbour 

2008). 

There are several glucose-lowering therapeutic drugs currently available for treating T2D. 

The most widely used agent, metformin, lowers hepatic glucose production by acting on 

the liver via AMPK activation (Rena et al. 2017). Other agents increase endogenous insulin 

secretion by directly acting on pancreatic β-cells, as is the case of sulfonylureas (Stumvoll 

et al. 2005), or they increase the action of insulin secretion-inducing peptides, as is the 

case of incretin mimetics  (Bloomgarden 2007). At late stage of T2D, insulin deficiency due 

to increased IR and progressive pancreatic β-cell failure makes the administration of 

exogenous insulin necessary (Mayfield et al. 2004).  

a) Metformin and cancer risk 

Besides its glucose-lowering and insulin-sensitising effects, metformin has been shown to 

inhibit cell proliferation, decrease colony formation, and cause partial cell cycle arrest in 

cancer cell lines in vitro (Liu et al. 2009, Dowling et al. 2007), and to decrease mammary 

tumour growth in vivo in rodent models (Anisimov et al. 2005). Interestingly, in vivo 

studies also show that the anti-neoplastic effect of metformin is not so obvious in mice 

on a control diet compared to its effect on mice on a high-energy diet associated with 

hyperinsulinemia (Algire et al. 2008), suggesting that the anti-neoplastic activity of 

metformin might be linked to its insulin-lowering action. More importantly, results from 

a growing number of observational human studies indicate that metformin treatment in 

T2D patients decreases incidence and mortality of several types of cancer compared to 

other anti-diabetes treatments (Currie et al. 2009, Decensi et al. 2010, Landman et al. 

2010). Altough the mechanism underlying the anti-tumour effect of metformin has not 
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been well established, preclinical studies have determined that metformin impairs cellular 

metabolism and suppresses oncogenic signalling pathways such as the receptor tyrosine 

kinase, PI3K/Akt, and mTOR pathways (Yu et al. 2017). Collectively, these studies show 

that metformin constitutes a promising anti-cancer agent. 

b) Thiazolidinediones and cancer risk 

Thiazolidinediones (TZDs) are insulin-sensitizing peroxisome proliferator–activated 

receptor (PPAR)γ agonists that are usually used to treat T2D in combination with other 

treatments as they do not increase insulin secretion or lower glucose levels directly when 

used alone (Giovannucci et al. 2010). 

In vitro studies indicate that PPARγ agonists have several anti-tumour activities, including 

inhibiting growth and inducing apoptosis and cell differentiation (Ohta et al. 2001). 

However, some in vivo studies with rodents indicate that other PPAR agonists can also 

potentiate tumorigenesis and metastasis (Rubenstrunk et al. 2007). Human data on 

cancer risk associated with TZDs treatment is inconclusive, as shown by several 

epidemiologic studies, which show that TZDs may increase, decrease, or have no effect 

on the risk of cancer incidence or progression (Koro et al. 2007, Colmers et al. 2012, 

Monami et al. 2014).  

c) Secretagogues and cancer risk 

Secretagogues such as sulfonylureas bind to specific cell receptors and directly stimulate 

insulin release from β-cells. While they constitute one of the most effective agents in 

lowering glycosylated haemoglobin levels, these drugs can cause hypoglycemia and 

weight gain (Bodmer et al. 2008).  

A small number of observational studies revealed a higher incidence of cancer or cancer 

death among diabetic individuals treated with sulfonylureas compared with those treated 

with other anti-diabetes agents (Currie et al. 2009, Monami et al. 2009). Available data 

regarding the effect of secretagogues on cancer risk is however inconclusive.  

d) Insulin and its analogues and cancer risk 

Because of the progressive loss of β-cell function characteristic of T2D, between 40–80% 

of T2D patients will ultimately be considered for insulin therapy in order to treat 

hyperglycemia (Jabbour et al. 2008). Subcutaneous injection of insulin results in an 

effective and immediate attenuation of hyperglycemia, but also possibly amplifying the 
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link between hyperinsulinemia and cancer risk. As mentioned before, high levels of 

circulating insulin may enhance cancer initiation and propagation due to its mitogenic 

effects, and thus treatments with exogenous insulin and insulin secretagogues are likely 

to increase cancer risk.  

6.1.5 Influence of cancer treatments on T2D risk 

 

On the other hand, drugs used to treat cancer can also influence diabetes, either causing 

it or worsening it. Glucocorticoids are traditional anti-cancer treatments, and are well 

known to cause acute hyperglycemia (Hwangbo et al. 2017), resulting from either 

autoimmune destruction of β-cells or dysregulation of the insulin signalling pathway 

(Shariff et al. 2019). This will eventually lead to IR, worsening a condition of pre- or 

undiagnosed diabetes, or transforming mild diabetes into a clinically severe illness 

(Vigneri et al. 2009). Anti-androgens, another common anti-cancer drug, can also cause a 

variety of metabolic abnormalities including decreased insulin sensitivity and altered lipid 

profile, thereby increasing the risk of diabetes and cardiovascular disease (Saylor et al. 

2009). An increasing number of targeted anti-cancer compounds are being tested for their 

ability to interfere with glucose metabolism, acting at different levels on the signalling 

substrates common to IGF1 and insulin receptors. However, since IGF1 signalling plays a 

key role in both tumour progression and glucose homeostasis, therapies targeting the IGF 

system for its pro-cancer effect may at the same time cause hyperglycemia (Vigneri et al. 

2009). 

 

6.2 Link between T2D and cancer through HIF-1α, S100A4 and inflammation 
 

It has been widely recognised and studied that one of the most important common factors 

between T2D and cancer is obesity. Hyperinsulinemia and hyperglycemia are two 

predominant complications in both diseases. However, other factors such as abnormal 

circulating levels of adipokines (such as leptin and adiponectin) and cytokines (such as 

TNFα and interleukins), all of them important players in the regulation of inflammation, 

are also present in obesity and T2D, and their contribution to cancer risk and progression 

cannot be over-looked (Cohen et al. 2012). 

For example, leptin is produced primarily by WAT and its levels correlate positively with 

WAT mass, which means that its levels are increased in obesity (Paz-Filho et al. 2011). 
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Leptin regulates energy homeostasis by mediating food intake and expenditure through 

its action on the hypothalamus (Morton 2007); however, it also stimulates cell growth, 

migration, and invasion (Garofalo et al. 2006) through several mechanisms, including 

angiogenesis (through the induction and activation of VEGF, FGF2, MMP2 and MMP9) 

(Park et al. 2001) and suppression of apoptosis (through a BCL2-dependent mechanism) 

(Artwohl et al. 2002). Additionally, leptin can increase macrophage production of 

cytokines, further stimulating cancer cells (Trayhurn et al. 2004).  

Importantly, leptin expression is induced by hypoxia via HIF-1 signalling (Grosfeld et al. 

2002), which, as we have seen, is increased both in tumour and diabetic environments. 

There is broad evidence linking hypoxia and HIF-1α to induction of inflammation, both in 

cancer (D’Ignazio et al. 2017) and diabetic environments (previously detailed in chapter 

1, section 1.6), and this mechanism is very likely, at least in part, mediated by S100A4, as 

it has been seen that HIF-1α induces S100A4 expression in cancer cells (Horiuchi et al. 

2012), which in turn induces activation of NF-κB (Kim et al. 2017), which activates the 

broad inflammatory cascade characteristic of these pathologies.  

Results so far indicate that HIF-1α-mediated induction of S100A4 expression is responsible 

for the initiation of this inflammatory process through NF-κB activation in INS-1 β-

pancreatic cells. In the following section, the PC3 prostate cancer cell line will be used to 

induce HIF-1α-mediated NF-κB activation via DFO-mediated stabilisation of HIF-1α. The 

aim is to explore how comparable the changes induced in both cell lines are, given that 

there is evidence that HIF-1α-induced expression of S100A4 is able to activate NF-κB and 

the subsequent inflammatory cascade in several cancer cell lines. 

 

6.3 Results 
 

6.3.1 Cancer cell line screening for S100A4 expression 
 

Different samples of various cancer cell lines, very kindly provided by several groups in 

the IBRC (Interdisciplinary Biomedical Research Centre, Nottingham Trent University), 

were collected to test for S100A4 expression levels. The obtained cell lines included the 

prostate cancer cell lines PC3, LNCaP and DU145 (provided by Dr. Elisabetta Verderio 

Edwards), the human osteosarcoma cell line U2OS (provided by Dr. Amanda Coutts) and 

the breast cancer cell line MCF-7 (provided by Dr. Selman Ali).  
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Cells were provided in the form of a pellet, which was lysed, and total protein extracted 

and quantified as described in chapter 2. Lysates were electrophoresed on 15% 

polyacrylamide gels and proteins were transferred to a nitrocellulose membrane. Specific 

antibody for S100A4 was used to incubate the membrane overnight. Figure 6.1 shows a 

significant S100A4 expression in the PC3 cell line and a moderate expression in the MCF-

7 cell line, but no apparent expression in the rest of the cancer cell lines. I therefore 

decided to use the PC3 cancer cell line to carry out the experiments in this section.  

 

Figure 6.1: S100A4 relative protein expression in different cancer cell lines. Cell pellets were lysed, 

total protein was extracted, and lysates were separated on 15% polyacrylamide gels. Proteins were 

transferred to nitrocellulose membranes, which were then incubated with S100A4 specific 

antibody. A) Representative western blot of 3 independent experiments; B) Quantification of anti-

S100A4 western blot bands, relative to tubulin expression, with PC3 expression normalised to 1. 

Data is expressed as means + SEM of 3 independent experiments (**p<0.005, ***p<0.0005). 

 

6.3.2 Morphological effect of DFO treatment in PC3 cells 

 

PC3 cells were treated with 100µM DFO for 72 hours as described in chapter 2 to stabilise 

HIF-1α, as in normal conditions HIF-1α would get degraded in contact with oxygen, in the 

same way as INS-1 cells were treated with GLT to induce inflammation and with DFO to 

stabilise HIF-1α and compare the effects of both treatments.  

Cell viability was initially assessed though observation of morphological changes. Results 

in Figure 6.2 show that a 72 hours treatment with DFO induces morphological changes in 

PC3 cells (cells turn more rounded in shape and tend to aggregate and grow upwards 

rather than in the characteristic monolayer) without significantly decreasing cell viability 

(number of cells attached is comparable in both conditions), which is very similar to the 

effect that we observed in chapter 3 with the GLT treatment of INS-1 cells. 

A B 
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Figure 6.2: PC3 cells in control and DFO conditions. 100µM DFO is added 24 hours after passage 

and experimental procedures carried out 72 hours later. As the pictures indicate, cells are still 

viable after 72 hours both in control and DFO conditions, although they present phenotypic 

differences. Scalebar 1cm:50µm. 

 

6.3.3 Effect of DFO on HIF-1α expression in PC3 cells 

 

In order to determine whether HIF-1α is involved in the upregulation of S100A4 protein 

expression in PC3 cells as our results suggest is the case for INS-1 cells, the first step would 

be to look at HIF-1α expression. PC3 cells were incubated in DMEM or DMEM + DFO media 

(to stabilise HIF-1α) for 72 hours, after which cells were lysed, and total protein extracted 

and quantified as described in chapter 2. Protein extracts were electrophoresed on 4–

20% Mini-PROTEAN® TGX™ precast polyacrylamide gradient gels (Bio-Rad) (Figure 6.3).  

 

Figure 6.3: Effect of DFO treatment on HIF-1α protein levels. PC3 cells were incubated for 72 hours 

in control or 100µM DFO conditions and subsequently lysed. Lysates were separated on 4–20% 

polyacrylamide gradient gels. Proteins were transferred to nitrocellulose membranes, which were 

then incubated with HIF-1α specific antibody. A) Western blot for HIF-1α, representative of 3 

independent experiments; B) Quantification of western blot bands for HIF-1α, normalised to 

internal actin control. Data is expressed as means + SEM of 3 independent experiments 

(**p<0.005). 

A B 
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As we can observe in Figure 6.3, HIF-1α protein levels are practically undetectable in 

control conditions in PC3 cells, but when cells are treated with DFO, HIF-1α levels escalate 

dramatically (12-fold increase), showing that in absence of a HIF-1α stabiliser, HIF-1α gets 

degraded very rapidly in presence of oxygen. 

Subsequently, PC3 cells were seeded on coverslips and treated in control or DFO 

conditions for 72 hours, after which they were subjected to an immunofluorescence assay 

in order to observe the previously mentioned changes in HIF-1α expression, as well as any 

changes in its subcellular localisation induced by the DFO treatment. Results in Figure 6.4 

show that indeed, DFO induces an increase in HIF-1α expression and nuclear localisation, 

as predicted. 

 

Figure 6.4: Effect of DFO treatment on HIF-1α protein levels and subcellular localisation. PC3 cells 

were cultured on coverslips and media replaced after 24 hours with DMEM or DMEM + 100µM 

DFO media for 72 hours. After fixing, cells were incubated with specific HIF-1α antibody, followed 

by incubation with fluorescent secondary antibody and nuclear DNA staining. Cells were visualised 

under a fluorescent microscope and pictures taken. Figure shows representative images from 3 

independent experiments. Scalebar 1cm:50µm. 

 

6.3.4 Effect of DFO on S100A4 expression in PC3 cells 
 

After validating the increased HIF-1α expression and nuclear localisation induced by DFO, 

S100A4 expression changes induced by this treatment were measured in PC3 cells. Results 

show that both mRNA (Figure 6.5A) and protein (Figures 6.5B and 6.5C) S100A4 levels 

increase in DFO-treated PC3 cells, correlating with the observed results in GLT- and DFO-
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treated INS-1 cells (Figures 3.6, 3.7 in chapter 3, and Figure 5.3 in chapter 5 respectively), 

indicating that GLT-induced changes are comparable to HIF-1α activity-induced changes.  

 

Figure 6.5: Effect of DFO treatment on S100A4 mRNA and protein levels. PC3 cells were incubated 

for 72 hours in DMEM or DMEM + 100µM DFO media. A) mRNA was extracted, and qPCR was 

performed using primers specific for S100A4. Data represent ∆∆Ct values expressed as a fold 

change compared to cells grown in control conditions and normalised to GAPDH internal control. 

B) Cells were lysed, total protein extracted and separated on 15% polyacrylamide gels. Proteins 

were transferred to nitrocellulose membranes, which were then incubated with S100A4 specific 

antibody. Image shows a western blot representative of 3 independent experiments. C) 

Quantification of western blot bands normalised to internal actin control. Data is expressed as 

means + SEM of 3 independent experiments (*p<0.05).  

 

6.3.5 NF-κB expression and activity in PC3 cells 

 

After validating the increased expression of S100A4 induced by the DFO treatment, I 

wanted to determine whether this increase affected NF-κB protein expression, subcellular 

localisation, and transcriptional activity, as it did in INS-1 cells.  

In order to do so, PC3 cells were cultured for 72 hours in control and DFO conditions, lysed 

and total protein extracted and quantified as described in chapter 2. Figure 6.6A show the 

increased NF-κB protein expression in DFO compared to control. When bands were 

A B 

C 
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quantified and normalised to internal actin control, I observed a significant 2.4-fold 

increase (p<0.05) in NF-κB protein levels (Figure 6.6B). To observe any subcellular 

localisation changes induced by DFO, PC3 cells were also cultured on coverslips in control 

or DFO conditions for 72 hours and subsequently incubated with specific NF-κB antibody 

followed by incubation with fluorescent secondary antibody as described in chapter 2. 

Figure 6.6C shows increased expression and increased nuclear localisation of NF-κB in 

DFO-treated cells, which indicates that presence of HIF-1α induces nuclear translocation 

of NF-κB, suggesting an induction of its transcriptional activity, a mechanism probably 

mediated by the increase in S100A4 expression. 

 

Figure 6.6: Effect of DFO treatment on NF-κB protein levels and nuclear localisation. PC3 cells 

were incubated for 72 hours in control or 100µM DFO conditions, subsequently lysed and total 

protein extracted. Lysates were electrophoresed on 12% polyacrylamide gels, and proteins were 

transferred to a nitrocellulose membrane. A specific antibody for NF-κB was used to incubate the 

membrane overnight. PC3 cells were also cultured on coverslips in control or DFO conditions for 

72 hours, after which they were fixed and incubated with specific NF-κB antibody, followed by 

incubation with fluorescent secondary antibody and nuclear DNA staining. Cells were visualised 

under a fluorescent microscope and pictures taken A) Representative western blot of 3 

independent experiments; B) Quantification of anti-NF-κB western blot bands, normalised to 

internal actin control. C) Representative images from 3 independent experiments. Scalebar 

1cm:50µm. Data is expressed as means + SEM of 3 independent experiments (*p<0.05); 
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In order to determine whether the DFO-induced increase in NF-κB protein expression and 

nuclear localisation observed in Figure 6.6 correlates with an increase in NF-κB activity, 

PC3 cells were cultured in control and DFO conditions for 72 hours, after which their 

nuclear compartment was extracted using a nuclear/cytosol fractionation kit as described 

in chapter 2, and used for the assay. Data shows that there is a significant 82% increase in 

NF-κB activity resulting from exposure of PC3 cells to DFO, correlating with the observed 

increased nuclear expression and thereby confirming our hypothesis (Figure 6.7).  

 

Figure 6.7: Effect of DFO treatment on NF-κB activity. PC3 cells were cultured in control or 100 

µM DFO conditions for 72 hours, after which cells were lysed using a nuclear/cytosolic fractionation 

kit. The nuclear compartment was added to the oligonucleotide coated wells of the activity assay 

plate, and then incubated with specific NF-κB antibody and subsequent secondary antibody. 

Developing solution and subsequent stop solution was added to the wells, after which absorbance 

was read to measure NF-κB activity. Data is expressed as means + SEM of 3 independent 

experiments (**p<0.005). 

 

6.3.6 S100A4 knockdown effect on NF-κB 

 

Up until now, results show that HIF-1α stabilisation in PC3 cells results in an increase in 

S100A4 expression (Figure 6.5) and in increased NF-κB protein expression, nuclear 

localisation and transcriptional activity (Figures 6.6 and 6.7 respectively). In order to 

determine whether these changes are being triggered by increased HIF-1α-induced 

S100A4 expression as we observed in INS-1 cells, a transient knockdown of S100A4 was 

carried out using siRNA as described in chapter 2. Briefly, ssRNA/siRNA conjugated with 
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transfection reagent was added to PC3 cells 24 hours after seeding, for a period of 24 

hours. Media was then replaced with DMEM or DMEM + DFO media for another 72 hours, 

after which either total protein or nuclear fraction was obtained for subsequent western 

blot analysis or NF-κB activity assay respectively. Cells were also cultured on coverslips to 

observe the effect of S100A4 knockdown on NF-κB subcellular localisation. 

An optimisation process for S100A4 knockdown was initially carried out using the same 

three different transfection reagents that were used for the optimisation process of 

S100A4 knockdown in INS-1 cells (RNAiMAX, Transit-X2 and INTERFERin), and the same 

three different incubation periods (24, 48 and 72 hours), only in control conditions, in the 

same way as it was done for INS-1 cells (Figure 6.8). 
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Figure 6.8: Optimisation process for S100A4 knockdown in PC3 cells. PC3 cells were seeded, and 

24 hours later the complex RNAiMAX-ssRNA/siRNA was added to the cells for 24 hours. Media was 

then removed and replaced with control DMEM media for 24, 48 or 72 hours. Total protein was 

then extracted, and lysates were separated on 15% polyacrylamide gels. Proteins were transferred 

to nitrocellulose membranes, which were then incubated with S100A4 specific antibody. A, C, E) 

Western blot of S100A4 after treatments for 24, 48 and 72 hours respectively, showing level of 

S100A4 knockdown with the 3 different transfection reagents; B, D, F) Quantification of anti-

S100A4 western blot bands, normalised to internal actin control, for 24, 48 and 72 hours 

treatments respectively.  

 

Preliminary results in Figure 6.8 show that a 24-hour incubation did not result in effective 

knockdown for any of the three transfection reagents (Figures 6.8A and B). A 48-hour 

incubation rendered no significant knockdown with RNAiMAX or INTERFERin, while it 

resulted in a 56% knockdown with Transit X2 (Figures 6.8C and D). Finally, a 72-hour 

incubation resulted in a 84% knockdown of S100A4 using RNAiMAX, while the other two 

transfection reagents were once more unsuccessful in knocking down S100A4 (Figures 

6.8E and F). In conclusion, the most effective transfection reagent was RNAiMAX, and the 

optimal incubation period was 72 hours, which was convenient as these are the same 

conditions as the ones used with INS-1 cells, so experiments with both cell lines could be 

carried out simultaneously. All the experiments involving S100A4 knockdown will 

therefore be carried out using these conditions. These were therefore the conditions 

selected to carry out all S100A4 knockdown experiments in PC3 cells. 

It is worth mentioning that some of the bar graph representations of the blot bands do 

not seem to relate to the corresponding bands. This is probably due to the low basal 

expression levels of S100A4, especially for those corresponding to the INTERFERin 

treatment. However, the most relevant results are those corresponding to the RNAiMAX 

treatment, as it resulted to be the most effective, and band quantification levels for this 

treatment seem much more accurate.  

After the optimisation process, S100A4 was knocked down in the optimum conditions as 

described above and subsequently, total protein was obtained to measure NF-κB protein 

expression through Western Blot, firstly only in control conditions (Figures 6.9A and 6.9B). 

PC3 cells were also cultured on coverslips in control conditions for 72 hours after S100A4 

knockdown and subjected to incubation with fluorescent antibody for 

immunofluorescence imaging (Figure 6.9C).  
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Figure 6.9: Effect of S100A4 knockdown on NF-κB protein levels and subcellular localisation in 

control conditions. PC3 cells were seeded, and 24 hours later the complex RNAiMAX-ssRNA/siRNA 

was added to the cells for 24 hours. Media was then removed and replaced with control media for 

72 hours. Total protein was then extracted, and lysates were separated on 15% polyacrylamide 

gels. Proteins were transferred to nitrocellulose membranes, which were then incubated with 

S100A4 or NF-κB specific antibodies. PC3 cells were also cultured on coverslips, 24 hours later the 

complex RNAiMAX-ssRNA/siRNA was added to the cells, and media replaced after 24 hours with 

control media for 72 hours. After fixing, cells incubated with specific NF-κB antibody, followed by 

incubation with fluorescent secondary antibody and nuclear DNA staining. Cells were visualised 

under a fluorescent microscope and pictures taken A) Representative western blot of 3 

independent experiments; B) Quantification of anti-S100A4 and anti-NF-κB western blot bands, 

normalised to internal actin control. C) Representative images from 3 independent experiments. 

Scalebar 1cm:50µm. Data is expressed as means + SEM of 3 independent experiments (**p<0.005). 
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Results in Figures 6.9A and 6.9B show that following S100A4 knockdown (72%, *p<0.05) 

in control conditions there was no significant change in NF-κB protein expression. 

However, when looking at Figure 6.9C, we can observe that there is no apparent change 

in NF-κB protein expression or nuclear localisation, suggesting no induction of NF-κB 

activity. 

DFO conditions compared to control were then used to try to increase NF-κB activity and 

in this way be able to perceive more clearly the changes induced by S100A4 knockdown. 

Again, S100A4 was knocked down as described above, this time adding DMEM or DMEM 

+ DFO media for 72 hours after the 24 hours incubation with RNAiMAX-ss/siRNA complex, 

and subsequently, total protein was obtained to measure NF-κB protein expression 

through western blot (Figures 6.10A and 6.10B). PC3 cells were also cultured on coverslips 

in control and DFO conditions for 72 hours after S100A4 knockdown and subjected to 

incubation with S100A4 (Figure 6.10C) or NF-κB (Figure 6.10D) antibodies and subsequent 

secondary fluorescent antibody for immunofluorescence imaging (Figure 6.10C).  

 

 

 

 

 

 

 

 

 

 



182 
 

 

 

 

 

 

 

 

 

 

Figure 6.10: Effect of S100A4 knockdown on NF-κB protein levels and subcellular localisation in 

DFO conditions compared to control. PC3 cells were seeded, and 24 hours later the complex 

RNAiMAX-ssRNA/siRNA was added to the cells for 24 hours. Media was then removed and replaced 

with DMEM or DMEM + 200µM DFO media for 72 hours. Total protein was then extracted, and 

lysates were separated on 15% polyacrylamide gels. Proteins were transferred to nitrocellulose 

membranes, which were then incubated with S100A4 or NF-κB specific antibodies. PC3 cells were 

also cultured on coverslips, 24 hours later the complex RNAiMAX-ssRNA/siRNA was added to the 

cells, and media replaced after 24 hours with DMEM or DMEM + 100µM DFO media for 72 hours. 

After fixing, cells were incubated with specific S100A4 or NF-κB antibody, followed by incubation 
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with fluorescent secondary antibody and nuclear DNA staining. Cells were visualised under a 

fluorescent microscope and pictures taken.  A) Representative western blot of 3 independent 

experiments; B) Quantification of anti-S100A4 and anti-NF-κB western blot bands, normalised to 

internal actin control. C, D) Representative images for S100A4 and NF-κB from 3 independent 

experiments. Scalebar 1cm:50µm. Data is expressed as means + SD of 3 independent experiments 

(*p<0.05). 

  

Results in Figure 6.10 show that NF-κB protein expression (A and B) and nuclear 

localisation (D) visibly increase in DFO-treated cells, as we saw earlier in Figure 6.6. 

However, S100A4 knockdown does not reverse this effect, neither at the protein level nor 

when looking at NF-κB nuclear localisation. 

Together, these results do not offer a conclusive role for S100A4 on NF-κB activation in 

PC3 cells. However, as mentioned before, what is really important is the changes in NF-κB 

transcriptional activity induced by S100A4. This was therefore measured with the use of 

a NF-κB activity assay, for which nuclear extracts of S100A4-knocked down cells in control 

and DFO conditions were obtained. Results are shown in Figure 6.11. 

 

Figure 6.11: Effect of S100A4 knockdown on NF-κB activity in DFO conditions compared to 

control. PC3 cells were seeded, and 24 hours later the complex RNAiMAX-ssRNA/siRNA was added 

to the cells for 24 hours. Media was then removed and replaced with DMEM or DMEM + 200µM 

DFO media for 72 hours, after which cells were lysed using a nuclear/cytosolic fractionation kit. 

The nuclear compartment was added to the oligonucleotide coated wells of the activity assay plate, 

and then incubated with specific NF-κB antibody and subsequent secondary antibody. Developing 

solution and subsequent stop solution was added to the wells, after which absorbance was read 

to measure NF-κB activity. Data is expressed as means + SEM of 3 independent experiments 

(***p<0.0005). 

*** 
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Figure 6.11 shows that NF-κB activity increases in DFO conditions by over 90%, as shown 

earlier in Figure 6.7. However, as results in Figure 6.10 predicted, S100A4 knockdown does 

not reverse the increase in NF-κB activity, indicating that there must be some other 

mechanisms or molecules involved in NF-κB activation on PC3 cells other than S100A4. 

 

6.4 Discussion and future directions 
 

The main purpose of this section was to compare the effects of S100A4 on NF-κB 

activation in a cancer cell line, in this case using the prostate cancer cell line PC3, to its 

effects on the pancreatic β-cell line INS-1, given that evidence for a link between cancer 

and T2D is rapidly gaining strength (Giovannucci et al. 2010), with S100A4 being a very 

strong candidate as one of the main factors driving this cancer-T2D link. 

There is broad evidence linking hypoxia and HIF-1α to induction of inflammation, both in 

cancer (D’Ignazio et al. 2017) and diabetic environments (detailed in chapter 1, section 

1.6), and this mechanism is very likely mediated by S100A4, as it has been seen that HIF-

1α induces S100A4 expression in various cancer, including ovarian cancer (Horiuchi et al. 

2012), which in turn induces activation of NF-κB in several cancer cell lines, including 

osteoblasts (Kim et al. 2017), which activates the broad inflammatory cascade 

characteristic of both pathologies.  

It is known that binding of S100A4 to RAGE induces activation of NF-κB in human cancer 

cell lines (Boye et al. 2008, Kim et al. 2017). However, very little is known about the role 

of S100A4 in the activation of the inflammatory processes mediated by NF‐κB in other 

disorders, including T2D. In this chapter, the effects of S100A4 on NF-κB activation were 

therefore compared between both cell lines, to try to point at S100A4 as the main inducer 

of the inflammatory process characteristic of both pathologies. 

After screening a number of cancer cell lines for S100A4 protein expression, I decided to 

use the PC3 prostate cancer cell line as it was the one which showed the highest 

expression levels of S100A4. DFO was used as a HIF-1α stabiliser for its ability to chelate 

the Iron3+ ions necessary for hydroxylation by PHDs (allowing subsequent ubiquitination 

and proteasomal degradation of HIF-1α) (O’Rourke et al. 1996), in order to induce an 

inflammatory state, comparable to the effect of the GLT treatment on INS-1 cells.  
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Results indicate that DFO is able to stabilise and increase expression and nuclear 

localisation of HIF-1α in PC3 cells, as demonstrated for other cancer cell lines (Zhang et al. 

2014) as well as in in vivo studies of other pathologies (Li et al. 2014). 

The results obtained in this section also reveal that S100A4 mRNA and protein expression 

increase in DFO conditions (by 1.5 and 2.1 times respectively), indicating that HIF-1α might 

be involved in the upregulation of S100A4 by acting as a transcription factor that binds to 

HREs in its promoter region. Subsequently, I show that DFO is also able to induce an 

increase in NF‐κB protein expression (2.4-fold increase) and nuclear localisation, as well 

as an increase in its activity (80% activity increase), as shown by the NF‐κB activity assay 

results. 

In order to determine whether S100A4 plays a role in this DFO-induced expression and 

activation of NF‐κB, siRNA was used to transiently knockdown S100A4, to observe the 

effects this has on NF-κB protein expression, subcellular localisation and activation. After 

a knockdown optimisation process in which the best conditions to knockdown S100A4 

were identified, results showed that a 72% knockdown in control conditions did not cause 

any significant change in NF-κB protein expression or nuclear localisation. Furthermore, 

when cells were treated with DFO, S100A4 knockdown was still not able to reverse the 

DFO-induced increase in NF-κB protein expression or nuclear localisation.  

A possible explanation for these results might be that, being a cancer cell line, NF-κB will 

be active even in control conditions. Given that HIF-1α is barely detectable without the 

use of its stabiliser DFO, and that NF-κB expression and activity is still considerable in these 

conditions, there must be some other mechanisms involved in the activation of NF-κB 

other than HIF-1α-induced S100A4. Consequently, the knockdown of S100A4 will not 

produce a significant decrease in NF-κB expression or activity. 

Furthermore, as mentioned before, NF-κB has only been seen to be activated by S100A4 

in several cancer cell lines, while no S100A4-mediated activation of NF-κB has been 

detected in other cancer cell lines (Boye et al. 2008). Therefore, it is possible that S100A4 

is not involved in NF-κB activation in PC3 cells either. 

Overall, our results do not offer a conclusive role for HIF-1α-induced S100A4 on NF-κB 

activation in PC3 cells, and further research is necessary in order to establish a firmer 

relationship. 
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Other experiments that could be carried out to test this hypothesis include measuring IKK 

protein levels and IκBα phosphorylation levels in control and DFO conditions +/- siS100A4, 

given that there is evidence that S100A4 mediates NF-κB activation through induction of 

IKK-mediated IκBα phosphorylation and subsequent degradation in many cancer cell lines 

(Boye et al. 2008), and that we have seen that this is how S100A4 induces NF-κB activation 

in INS-1 cells (Figure 4.8). 

As mentioned in the INS-1 section, another way to measure the effect of S100A4 on NF-

κB activity could be to carry out a reporter assay based on NF-κB responsive promoter 

elements driving expression of a secreted luciferase (Badr et al. 2009). A fluorescent 

reader would then be used to measure expression levels of the luciferase following 

S100A4 knockdown, with fluorescence signal positively correlating with NF-κB activity. 

Also, measurement of RAGE mRNA and protein expression levels in PC3 cells in control 

and DFO conditions, followed by knockdown or inhibition of RAGE signalling with the use 

of anti-RAGE antibodies could also be carried out in order to block S100A4-mediated 

activation of NF-κB. However, as mentioned before, S100A4 is also able to signal through 

other receptors such as EGFR, TLR4 and IL10R to activate NF-κB (Grotterød et al. 2010), 

so this approach would most likely offer no conclusive results for the role of S100A4 on 

NF-κB activation. 

Finally, experiments involving the knockdown of HIF-1α and KPNA2 and subsequent 

measurement of S100A4 expression and NF-κB expression, localisation and activity, as it 

was done with the INS-1 cells, would reveal whether KPNA2 is responsible for the nuclear 

translocation of HIF-1α, and whether HIF-1α acts as a transcription factor to induce 

S100A4 expression in PC3 cells. 
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CHAPTER 7: Summary of findings and implications of research 
 

Diabetes is one of the main causes of death worldwide, contributing to almost 10% of 

global mortality (Cho et al. 2018). Furthermore, the rate at which diabetes incidence and 

prevalence is increasing is alarming. Over the last decades, our laboratory and many 

others around the globe have heavily contributed to our understanding of the 

mechanisms involved in the onset and development of this disease; however, an even 

greater global effort is needed in order to fully understand the pathogenesis of diabetes 

in order to develop efficient new treatments for its eradication, or at least, to slow down 

its progress. The main goal of this PhD project was to help discover new factors involved 

in the pathogenesis of T2D, and more precisely in the inflammatory process that is 

characteristic of the disease. The findings and results presented here expand our 

knowledge on this topic. 

In the first part of the thesis, S100A4 was identified as an upregulated factor in pancreatic 

INS-1 cells cultured in conditions of glucolipotoxicity, which was used in this project to 

mimic the diabetic environment. S100A4 had previously been extensively studied in a 

cancer environment, in which it functions to increase tumour progression and metastasis 

through enhancement of chemotactic behaviour, stimulation of angiogenesis, attraction 

of immune cells and promotion of secretion of cytokines and growth factors (Fei et al. 

2017). However, knowledge on its role on the pathogenesis of T2D is limited. Interestingly, 

evidence indicated that S100A4 could play an important role in diabetes, as it had been 

associated with some comorbidities of T2D such as diabetic retinopathy (Abu El-Asrar et 

al. 2014), as well as with other inflammatory diseases including rheumatoid arthritis, 

systemic sclerosis, allergy, psoriasis and cancer (Ambartsumian et al. 2019). 

Initial data presented in this thesis confirms that S100A4 is upregulated in glucolipotoxic 

conditions. Subsequent knockdown experiments reveal that S100A4 is able to induce 

inflammation through activation of the main proinflammatory transcription factor, NF-κB, 

whose activity was increased in glucolipotoxic conditions and decreased after S100A4 

knockdown. These results indicate that S100A4 is potentially an important player in the 

development of diabetes as a proinflammatory disease. These findings are also consistent 

with in vivo studies which have demonstrated that S100A4 mediates macrophage 

recruitment to sites of inflammation and chemotaxis (Li et al. 2010). 
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Through bioinformatic analysis and interaction pathway construction based on the 

RNAseq data obtained previously in our laboratory, a possible mechanism by which 

S100A4 upregulation might be mediated in glucolipotoxic conditions has been identified. 

The interaction maps generated indicate a link between S100A4 and HIF-1α, a 

transcription factor which functions as the main hypoxia effector, and whose role in T2D 

is incompletely defined. Our findings show that HIF-1α is also upregulated in 

glucolipotoxic conditions, in all probability as a consequence of increased excess nutrient-

induced metabolic stress and subsequent ROS production (Cerychova et al. 2018). 

Importantly, HIF-1α knockdown experiments show that S100A4 decreases, suggesting 

that its upregulation could be mediated through HIF-1α-induced transcriptional activity. 

This had been seen before in some cancer cell lines (Horiuchi et al. 2012), and implies that 

S100A4 expression could be modulated with the use of HIF-1α inhibitors, an approach 

that is currently under investigation as anti-cancer therapy (Yu et al. 2017, Ban et al. 

2017). 

My research sought to uncover the mechanism by which HIF-1α translocates to the 

nucleus to activate S100A4 transcription. There is evidence pointing at KPNA2 as the 

nuclear transporter responsible for HIF-1α translocation in other cell types (Depping et al. 

2008). The KPNA2 knockdown experiments presented here indicate that it might also be 

involved in HIF-1α transport in INS-1 pancreatic cells, however further experiments are 

needed in order to confirm this. Future lines of research should focus on validating these 

preliminary results in primary islets, which, if proven true, could open a range of 

possibilities for therapy mechanisms focused on blocking HIF-1α transport and 

consequently its transcriptional activity. 

The latter part of this thesis focused on finding a link between T2D and cancer through 

HIF-1α and S100A4, in order to compare the effects of S100A4 in both diseases, and with 

the hope of being able to extrapolate what has already been done in cancer therapy to 

T2D treatment such as the use of HIF-1α inhibitors (Yu et al. 2017). Firstly, a cancer cell-

line was identified in which S100A4 basal expression was high, namely the prostate cancer 

cell line PC3. Treatment with DFO was added in order to induce a hypoxic state through 

stabilisation of HIF-1α, comparable to the glucolipotoxic treatment that was used with the 

INS-1 cells. Results revealed that HIF-1α stabilisation (evidenced by increased protein 

expression and nuclear localisation) results in S100A4 upregulation, suggesting the 

involvement of HIF-1α in the induction of S100A4 expression. S100A4 was then knocked 

down and NF-κB activity measured. Results revealed that, even though NF-κB activity 
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increased after DFO treatment, the knockdown of S100A4 was not able to reverse its 

activation, most probably due to the fact that NF-κB was already constitutively active in 

the cells’ basal state, or that it was being overactivated by some other stimuli in the 

proinflammatory milieu characteristic of cancer cells. Therefore, further research is 

necessary to confirm the link between S100A4 and NF-κB in the PC3 cancer cell-line.  

In conclusion, the findings presented in this thesis have contributed to our understanding 

of the causes of T2D, and provide further insight into the molecular mechanisms 

responsible for the pathogenesis of the worldwide pandemic that T2D represents. By 

discovering novel factors and mechanisms implicated in these processes, this work opens 

the door to a range of new possibilities for future research in molecular therapy.  
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Appendix 1 
 

S100 
protein 

Other 
names 

Expression Function Interactions Associated pathologies Regulation References 

S100A1 S100 alpha Skeletal muscle fibres, 
cardiomyocytes and 
certain neuronal 
populations. 

Extracell: internalized into neurons and delivered to 
endosomes, Golgi and lysosomes. Enhances Ca2+ influx 
in cardiomyocytes. Intracell: associates with cytoskeletal 
components, interacts with SR Ca2+-ATPase and RyR2 in 
the heart, improving contractile performance. 

Extracell: RAGE. 
Intracell: SERCA, RyR1 
& 2, Fructose-
bisphosphate aldolase 

 S100A1 deficiency results in 
abnormal SR Ca2+ content and 
fluxes, deterioration of cardiac 
performance and heart failure 

Inhibitory 
transcription 
factors 
downstream of 
GPCRs and PKC 

Rohde et al. 2010, 
Hernández-Ochoa 
et al. 2009, Reppel 
et al. 2005 

S100A2 S100L, 
CAN19 

Urothelium, respiratory, 
gastrointestinal and 
squamous epithelium. 

Extracell: chemotactic factor for eosinophils. Intracell: 
binds to p53 and potentiates tumour-suppressing 
activity. 

Extracell: RAGE. Downregulated in many 
cancers, but upregulated in 
others 

- van Dieck et al. 
2009, Komada et 
al. 1996 

S100A3 S100E Hair root cells and some 
astrocytomas 

Epithelial cell differentiation and Ca2+-dependent hair 
cuticular barrier formation. 

RARα Involved in HCC tumorigenesis 
and tumour aggressiveness 

- Kizawa et al. 2008, 
Tao et al. 2017, 
Gianni et al. 2018 

S100A4 Metastasi
n1 (Mts1), 
Calvasculi
n 

Tumour and stromal cells, 
myeloid cells, adipocytes, 
fibroblasts, immunocytes, 
vascular cells. 

Extracell: key role in tumour cell survival and metastasis. 
Activates NF-κB, inducing production of pro-
inflammatory cytokines and migration of neutrophils, 
monocytes, and macrophages. Activates ERK1/2, 
modulating growth and survival. Intracell: induces MMP 
expression and interacts with cytoskeletal proteins 
NMIIA, tropomyosin and actin to promote cell 
migration. 

Extracell: RAGE, EGFR, 
Gαq-coupled receptor. 
Intracell: NMIIA, 
tropomyosin, actin, 
p53, S100A1, annexin2 

Upregulated in many cancers Upregulated by β-
catenin/T-cell 
factor complex 

Boye et al. 2010,  
Stein et al. 2006a, 
Kiryushko et al 
2006 

S100A5 S100D - - RAGE Upregulated in bladder cancer 
and recurrent grade I 
meningiomas 

- Yao et al. 2007 

S100A6 Calcyclin 
(CACY) 

Epithelial cells, fibroblasts 
and different kinds of 
cancer cells 

Extracell: activates RAGE and promotes apoptosis and 
generation of ROS. Stimulates insulin release from 
pancreatic islet cells. Intracell: interacts with caldesmon, 
calponin, tropomyosin and kinesin to modulate cell 
proliferation, cytoskeletal dynamics and tumorigenesis.  

Extracell: RAGE Overexpressed in AT. - Leśniak et al. 2009 

S100A7 Psoriasin1 
(PSOR1) 

Keratinocytes Extracell: signals through RAGE to activate NF-κB, 
inducing production of pro-inflammatory cytokines and 
migration of neutrophils, monocytes, and macrophages. 
Intracell: promotes aggressive features in breast cancer 
by stimulating Akt and NF-κB. 

Extracell: RAGE Overexpression induces 
leukocyte infiltration linked to 
inflammatory skin diseases 
such as psoriasis. 

Upregulated in 
breast cancer by 
proinflammatory 
cytokines and in 
keratinocytes by 
IL-17, IL-22 and 
flagellin. 

Emberley et al. 
2005, West et al. 
2010 
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S100A8 Calgranuli
n-A 
(CAGA), 
Calprotect
in 1L1 

Macrophages, dendritic 
cells, microvascular 
endothelial cells, 
epithelial cells and 
fibroblasts upon 
activation 

Extracell: regulates inflammation. Chemotactic factor for 
neutrophils. Induces cell differentiation and TNF-α and 
IL-1β production in myeloid cells. Scavenges intracellular 
ROS and stabilizes NO in neutrophils, protecting from 
oxidative damage in inflammatory lesions. Intracell: 
stimulates keratinocyte differentiation and exerts anti-
inflammatory effects. 

Extracell: GPCR, TLR4, 
Scavenger receptor 
CD36. Intracell: 
telomerase 

Overexpressed in inflammatory 
and autoimmune conditions.  

Induced by pro-
inflammatory 
stimuli, TLR 
agonists and 
oxidative stress in 
an IL-10-
dependent 
manner.  

Hsu et al. 2012, 
Lagasse et al. 1992, 
Lim et al. 2014, 
Averill et al. 2012 

S100A9 Calgranuli
n-B 
(CAGB), 
Calprotect
in L1H 

Monocytes, neutrophils 
and dendritic cells; 
Fibroblasts, mature 
macrophages, vascular 
endothelial cells and 
keratinocytes upon 
activation 

Extracell: involved in leukocyte migration, chemotactic 
for neutrophils. Induces TNF-α, IL-1β, IL-6 and IL-8 in 
macrophages via NF-κB activation. Intracell: inhibits 
myeloid differentiation and accumulation of myeloid-
derived suppressor cells via ROS generation, 
contributing to tumour growth. Regulates 
S100A8/S100A9 activities. 

Extracell: RAGE, TLR4, 
Scavenger receptor 
CD36 

Anti-inflammatory in healthy 
state, while oxidative stress 
activates its pro-inflammatory 
functions. Contributes to the 
pathogenesis of autoimmune 
diseases. 

Upregulated by 
oxidative stress, 
corticosteroids, 
cytokines and 
growth factors.  

Hsu et al. 2012, 
Vogl et al. 2004, 
Ryckman et al. 
2003, Sunahori et 
al. 2006 

S100A8/ 
S100A9 

Calprotect
in 

Monocytes, neutrophils 
and dendritic cells; 
Fibroblasts, mature 
macrophages, vascular 
endothelial cells and 
keratinocytes upon 
activation 

Extracell: anti-microbial properties. Chemotactic for 
neutrophils. Regulates inflammation, cell proliferation, 
differentiation and tumour development via NF-κB-
mediated pro-inflammatory cytokine production in 
monocytes and macrophages. Intracell: inhibits myeloid 
cell differentiation. Facilitates FA transport. Cytoplasmic 
Ca2+sensor linking Ca2+influx to phagosomal ROS 
production. Induces microtubule polymerization and F-
actin cross-linking.   

Extracell: RAGE, 
Scavenger receptor 

Overexpression promotes 
resistance to TNF-α-induced 
apoptosis and induces 
malignant progression through 
ROS production. Mediates 
differentiation of psoriatic 
keratinocytes. Overexpressed 
in atherosclerotic lesions and 
cardiovascular events. 

Regulated 
through an 
autoinhibitory 
process resulting 
in restriction of 
inflammation. 

Steinckwich et al. 
2011, Németh et 
al. 2009, Averill et 
al. 2012, Vogl et al. 
2018 

S100A10 Calpactin-
1 (CAL-1L) 

Macrophages Regulator of cellular plasmin production: plasminogen 
receptor, mediates macrophage recruitment into 
tumour sites in response to inflammatory stimuli. Bound 
to annexin 2, serves as binding scaffold for pathogens 
and host proteins, assisting their trafficking and 
anchorage to the plasma membrane. Plays important 
roles in angiogenesis and endothelial cell function.  

Annexin2, serotonin 
1B receptor 

Downregulated in depressive-
like states. Implicated in the 
action of antidepressant drugs 
and electroconvulsive seizures 
due to its interaction with 
serotonin receptors. 

Induced by EGF, 
TGF-α, IFN-γ, NGF, 
KGF, RA and 
thrombin, and by 
the oncogenes 
PML-RARα and 
Kras. 

Rescher et al. 
2008, Warner-
Schmidt et al. 
2010, Surette et al. 
2011,  Madureira 
et al. 2012 

S100A11 S100C, 
Calgizzarin 

Chondrocytes, luteal 
cells, oviductal epithelial 
cells 

Extracell: promotes chondrocyte hypertrophic 
differentiation and stimulates RAGE-dependent type X 
collagen and IL-8 production. Intracell: When 
phosphorylated by PKC-α, Ca2+-bound S100A11 inhibits 
cell growth through activation of the cell cycle 
modulator p21WAF1/CIP1.  

Extracell: RAGE. 
Intracell: Nucleolin, 
Rad54B 

Signal through RAGE to 
activate p38 MAPK, 
accelerating chondrocyte 
hypertrophy and matrix 
catabolism to promote 
osteoarthritis progression. 

Induced/released 
by chondrocytes 
exposed to IL-1β, 
TNF-α, and CXCL8  

Murzik et al. 2008, 
Cecil et al. 2008. 
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S100A12 Calgranuli
n-C 
(CAGC) 

Constitutively expressed 
in neutrophils, 
monocytes and early 
macrophages. Induced in 
endothelial and epithelial 
cells and 
proinflammatory 
macrophages under 
inflammatory condition. 

Extracell: Activates NF-κB, inducing production of pro-
inflammatory cytokines, TNF-α, and chemokines for 
neutrophil, monocyte and lymphocyte recruitment. 
Intracell: modulates interactions between cytoskeletal 
elements and membranes. Inhibits aggregation of 
aldolase and GAPDH.  

Extracell: RAGE, GPCR, 
Scavenger receptor. 
Intracell: Aldolase, 
Nox-1.  

Expression in epithelial cells is 
associated with growth arrest. 
Overexpression causes VSMC 
dysfunction and aortic 
aneurysms, linked to leukocyte 
influx. 

TNF-α, IL-6 and 
endotoxin induce 
its expression in 
monocytes/macro
phages; LPS in 
smooth muscle 
cells. 

Vogl et al. 1999, 
Yang et al. 2001, 
Yang et al. 2007, 
Hofmann et al. 
2010 

S100A13 - Fibroblasts, osteoblasts 
and melanoma cells  

Involved in stress-induced release of FGF-1 and IL-1α 
from several cell types. Promotes its own intracellular 
translocation, possibly via RAGE signalling. Plays a key 
role in tumour growth, angiogenesis and metastasis. 

Extracell: RAGE. 
Intracell: FGF-1, p40 
Syt1 

Overexpression associated 
with high intratumoral 
angiogenesis and poor 
prognosis in patients with 
stage I NSCLC. 

Induced by 
FGF1 and IL-
1α upon 
intracellular stress 
conditions. 

Landriscina et al. 
2001, Hsieh et al. 
2004, Miao et al. 
2018 

S100A14 - Lymphocytes, epithelial 
cells 

Extra: at low doses stimulates proliferation, at high 
doses stimulates apoptosis in ESCC cells via RAGE 
signalling. Intracell: may function as a cancer suppressor 
affecting the p53 pathway and modulating expression of 
MMP1, MMP2 and MMP9.  

Extracell: RAGE. 
Intracell: p53 

Ectopic overexpression 
promotes motility and 
invasiveness of ESCC cells. 

Induced by EGF 
through p-ERK 
signalling 
pathway in breast 
cancer cells 

Chen et al. 2009, 
Sapkota et al. 
2011, Jin et al. 
2011 

S100A15 S100A7A Keratinocytes in inflamed 
skin 

Putative functional role in innate immunity, epidermal 
cell maturation, and epithelial tumorigenesis. Acts as 
chemotactic factor for monocytes and granulocytes. 
Acts synergistically with S100A7 in leukocyte 
recruitment in vitro and in vivo. 

GPCR Potential therapeutic target for 
various human disorders 
including arthritis, cancer, and 
AD. 

Induced by LPS, 
IL-1β and Th-1 
cytokines 

Wolf et al. 2011, 
Wolf et al. 2007, 
Gläser et al. 2009 

S100A16 S100F Astrocytes, preadipocytes Acts as a novel adipogenesis-promoting factor, affecting 
negatively insulin sensitivity. 

p53 Upregulated in several 
tumours 

Increased 
expression in AT 
of diet-induced 
obese mice 

Sturchler et al. 
2006, Liu et al. 
2011 

S100B - Astrocytes, Schwann 
cells, melanocytes, 
chondrocytes, 
adipocytes, skeletal 
myofibers, certain 
dendritic cell and 
lymphocyte populations 

Extracell: Released from astrocytes, signals through 
RAGE. At low concentrations stimulates proliferation 
through ERK1/2 and NF-κB-mediated upregulation of 
Bcl-2. At high concentrations promotes inflammatory 
activities and kills neurons through ROS production. 
Intracell: interacts with nuclear NDR kinase and blocks 
recruitment of its substrates. May maintain cell 
proliferation with beneficial effects during development 
and tissue regeneration, and detrimental effects during 
tumorigenesis.  

Extracell: RAGE, FGFR. 
Intracell: Tubulin, 
actin-binding proteins, 
annexin 6, Rac1, SRC 
kinase, NDR kinase, 
p53, intermediates 
upstream of IKKβ/NF-
κB. 

Involved in brain, cartilage and 
muscle repair, activation of 
astrocytes in brain damage and 
neurodegenerative processes, 
cardiomyocyte remodelling 
after infarction and in 
melanomagenesis and 
gliomagenesis.  

NF-κB, EGF and 
IFN-γ regulate 
S100B expression 
in several cell 
types. 

Donato et al. 2009, 
Sorci et al. 2011, 
Liu et al. 2011, 
Mori et al. 2010 

S100G Calbindin-
D9K 
(CABP9K) 

Epithelial cells Acts as cytosolic Ca2+ buffer in many tissues, resulting in 
modulation of Ca2+ adsorption. 

- - - Luu et al. 2004 
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S100P S100E Lymphocytes, epithelial 
cells 

Extracell: mediates tumour growth and cancer cell drug 
resistance through RAGE signalling. Intracell: promotes 
transendothelial migration of tumour cells through a 
decrease in focal adhesion sites. 

Extracell: RAGE. 
Intracell: 
ezrin/radixin/moesin, 
IQGAP1  

Overexpressed in clinically 
isolated tumours, associated 
with metastasis, drug 
resistance, and poor clinical 
outcome. 

- Austermann et al. 
2008, 
Heil et al. 2011, 
Arumugam et al. 
2011 

S100Z - Lymphocytes - - Downregulated in several 
tumours 

- Gribenko et al. 
2001 
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