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Abstract

Alpha-cut representation of fuzzy sets has been used as a basis for fuzzy numbers ranking in some applications but rarely used 
for defuzzification of rule-based systems or fuzzy controllers. Moreover, such alpha-cut defuzzification (called ACD here) is not 
yet formally linked to the membership function (MF) or to the common MF-based defuzzification methods, namely the centroid. 
The ACD can be considered as a generalisation of the similar algorithms in fuzzy numbers to any fuzzy set. A close-form formula 
for ACD is developed that involves both MF and its derivative, which shows that ACD reflects both static and dynamic aspects of 
a fuzzy set. Moreover, formal links between ACD and some MF-based defuzzification methods are shown. Through two groups 
of experiments, the utility of the new method is compared with centroid defuzzification. Particularly, we examined how the ACD 
significantly outperforms the centroid for noisy time-series prediction. Finally, the computation complexity of ACD is shown to be 
about the same as the centroid method, for convex fuzzy sets. Our tests suggest that ACD can be considered as a viable alternative 
defuzzification method for fuzzy system designers.
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

In a fuzzy system, it is the defuzzifier, which is a mapping from a fuzzy set (FS) into a real number, that produces 
its crisp output [1]. Many such mappings have been reviewed and/or proposed in the literature (e.g., in [2–5]), the 
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most popular of which arguably involve some sort of weighted averaging over their membership function (MF). The 
centre of gravity (COG), arguably the most widely-used defuzzification method for fuzzy rule-based systems [6,2], is 
an example of defuzzification methods based on representing a FS by its MF. However, a FS can also be represented 
by its α-cuts, the importance of which is that it is directly linked to confidence levels, i.e., each α-cut indicates a 
confidence interval at its corresponding certitude level α.

The two algorithmic approaches to defuzzification, i.e., based on MF representation and α-cut representation, are 
already known in the context of fuzzy numbers as support-based and level-based methods respectively [7], where 
they are mainly used for ranking the fuzzy numbers. However, to the best of our knowledge, the similar level-based 
algorithms have not been applied out of the fuzzy numbers context, e.g. for rule-based fuzzy controllers, in which 
non-convex, multi-modes and non-normal fuzzy sets at the system’s output are to be defuzzified.4 This motivates 
working on several topics: 1) formulating a generalised α-cut defuzzification (called ACD here) applicable for any 
type of fuzzy sets based on their MFs; 2) Linking the ACD formulation to some known MF-based defuzzification 
methods; 3) Developing a minimal computational models for ACD comparable to those of the common methods; and 
4) Investigating the performance of fuzzy rule-based systems if ACD is used. All of these topics are to be addressed 
in this paper.

The provided close-form formula for ACD involves both MF and its derivative. This shows that ACD represents 
both static and dynamic aspects of a fuzzy set. Even though their underlying representations are different, it will be 
shown that there are formal links between ACD and the MF-based methods. It is also shown that the new method and 
COG are special cases of a general framework already known as Weighted-Function COG, introduced in [2]. Since MF 
is the basis for the support-based methods (such as COG), this means that a formal gap between the two defuzzification 
approaches is bridged. Moreover, a simple computational model is developed for ACD that is comparable to that of 
the COG.

COG has been chosen as a benchmark support-based method in this paper, so that the properties, formulations and 
the performance of the level-based ACD are compared to it. The rationale for this selection is not only for being the 
most widely used method, but also because ACD can be formally compared to a wider group of methods based on MF 
averaging. As will be shown in Section 5, COG, along with some other methods such as FOM, LOM, MOM, MOS, 
FOS, LOS and BADD5 can be generalised as averaging methods over the MF, but with different weighting factors [2].

Introducing another defuzzification method may seem unnecessary to the reader, but the outcomes of the experi-
ments described in sections 4 and 5, as well as an axiomatic study provided in section 3, support the development of 
ACD. In particular, we will show by means of some examples, that significantly better time-series forecasting results 
are obtained when ACD is used versus when COG is used. During a formal analysis in Section 3, we show that the 
derivative of MF appears in the ACD formulation as a weighting function. This means that ACD reflects both the 
static and the dynamic properties of the MF, whereas other MF-based methods (e.g., COG) solely focuses on the 
static characteristics. This may explain why the ACD outperforms in our experiments, and suggests that ACD should 
be considered as a viable alternative defuzzification method for fuzzy system designers.

2. A generalised alpha-cut defuzzification of fuzzy sets

2.1. Definitions

We start from defining COG and α-cut before explaining ACD. ACD will be introduced for general fuzzy sets, i.e. 
by dropping the fuzzy number-specific requirements such as normality, convexity and uni-modality.

2.1.1. Centroid, or Centre of Gravity Defuzzification (COG)
The centroid of a FS with a MF represented as μ(x) along its x-axis is defined in continuous and discrete modes, 

respectively as:

4 This will be detailed in Section 2.
5 Other defuzzification approaches found in the literature [3] are not considered here in order to limit the scope of this paper.
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Fig. 1. The process of calculating the ACD: The spike generated for each α, of height α, is located at the average value of its corresponding α-cut.

COG =

∫
xμ(x)dx∫
μ(x)dx

; (1)

COG =
∑

i xiμ(xi)∑
i μ(xi)

(2)

2.1.2. α-Cut
An α-cut is a subset of the universe whose membership grades are greater than or equal to α ∈ [0, 1] [8]. A FS can 

be represented as the fuzzy union of its α-cuts multiplied by the respective levels.

2.1.3. α-Cut defuzzification (ACD)
It is intuitive to consider the individual contributions of each α-cut, in which the x-values that appear in more 

α-cuts should have a greater contribution in defuzzification than the others. Based on this idea, the ACD of a FS with 
a MF μ(x) is defined here as a two-step process (see Fig. 1): (1) for each α-level, the average of all x-values that 
belong to the corresponding α-cut is calculated (xα); then, a spike of height α is placed at xα . (2) A weighted average 
of all these spikes is calculated, in which the x-value of each spike is weighted by its corresponding α-levels. In other 
words, the xα values with higher α have a greater contribution to the final defuzzification result than those with lower 
α. Formally, if μ is the MF and each α-cut is a set of points along x-axis called [μ]α , then the ACD in discrete mode 
is defined as:

ACD =
∑

i αi[μ]αi∑
i αi

i = 1...N (3)

where [μ]αi
represents the average of the ith α-cut over all its values along the x-axis, and N is the number of 

discretisation levels along the vertical axis. It is notable that (3) is directly taken from a FS representation.
We also notice that the peaks of the produced spikes in step (1) may not collectively show a single-valued con-

tinuous function of x, since different spikes may overlap on a single x-value while other x-values may not have any 
correspondent spike. Thus, step (2) should not be taken as an equivalent to calculating a form of COG over a function 
produced in step (1).

For any non-flat area of a convex6 set’s MF, xα is the average of two crossing points of the MF with each α level, 
i.e., the centre of the corresponding α-cut (see Fig. 1). Additionally, if the FS is non-convex, it is possible that some 
of the generated α-cuts are not continuous along the x-axis; however, (3) still holds, i.e. xα is still the average of 
all x values that belong to the corresponding α-cut. In this case, it is even possible that xα does not belong to the 
corresponding α-cut. For the special case of a flat area (plateau) of a MF, xα is still the centre of the plateau.

Finally, for non-normal FSs, the α levels have a maximum less than 1, however this does not change (3), because 
the ACD process stops when the maximum α is reached (i.e., the empty α-cuts produce zero-height spikes). If αm is 
the maximum α level, the generalisation of (3) to a continuous universe becomes:

6 We use the FS convexity definition as provided in [9,10]. Convexity always occurs when the FS’s MF is first monotonically non-decreasing and 
then monotonically non-increasing [11].
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ACD =

αm∫
0

α[μ]αdα

αm∫
0

αdα

= 2

α2
m

αm∫
0

α[μ]αdα (4)

2.2. ACD and fuzzy numbers

Fuzzy numbers, as defined in [12] is a generalisation of ordinary numbers to uncertain values by representing 
the number as a fuzzy set, in which the fuzzy set is restricted to be normal, convex and uni-modal.7 Defuzzification 
in this context is the process of choosing a representative ordinary value, and is mostly used for ranking the fuzzy 
numbers. Many support-based and level-based defuzzification algorithms are developed for fuzzy numbers, some of 
which reviewed here are closely related to the ACD.

As shown in ACD definition, averaging weights are given to the α-cuts, so that more contributions are given to 
the higher αs. A flat averaging of all midpoints of the alpha-cuts, i.e., without weighting, is also introduced as a 
defuzzification method by Yager in [14], called ALC (Averaging Level Cuts) in [15] too. The ALC algorithm is also 
equivalent to calculating the Expected Value (EV) of a fuzzy number as introduced by Oussalah in [15] and Heilpern 
in [16]. The value of a fuzzy number is defined by Delgado et al. in [13], based on using α-levels as weighting factors 
in averaging the α-cut midpoints. One can show that this approach is mathematically equivalent to ACD. However, 
the justification provided in [13] for choosing such weights is limited to comparing the graphical shape of the MFs 
when ranking different fuzzy numbers.

Giving flexible (e.g., non-linear) weighs to α-levels is another known method for fuzzy number defuzzification. 
This flexibility enables the designers to emphasise or de-emphasise certain α levels according to application-dependent 
purposes or subjective interpretation of those levels. In [17], subjective and application-dependent weights for α levels 
are introduced. A more generalised formulation is introduced in [18], later called WABL (Weighted Averaging Based 
on Levels) in [7]. WABL considers a more flexible averaging weights for different α levels by introducing a probability 
density function (PDF) along α levels called p(α) for α ∈ [0, 1]. By this generalised algorithm, EV (or equivalently, 
ACD) is a special case of the WABL when p(α) = 2α (i.e., a linear PDF). ALC [15] can also be considered as another 
special case of the WABL where p(α) = 1 (i.e., a constant PDF). We notice that in [7], a formal link between WABL 
and COG is provided but only for the cases of triangular and trapezoidal MFs. In Section 5, formal links between 
ACD, MF and COG will be developed for general fuzzy sets.

Within WABL framework, it is arguable why a linear PDF, among all other possible PDFs, is used in this paper 
for ACD algorithm. We notice that in many fuzzy rule-based systems such as fuzzy controllers, the output fuzzy set is 
a result of a highly non-linear inference algorithm such as Mamdani’s [19], so that the output fuzzy sets may have a 
very irregular MF shape, not comparable to that of a fuzzy number. These MFs are usually non-convex, multi-modes 
and non-normal. Particularly, they are not usually meaningful or interpretable by a human. Even if they satisfy the 
conditions of being fuzzy numbers, it is unlikely that a designer can treat them as fuzzy numbers, e.g., rank them or 
assign weights to them subjectively. That is why an intuitive way of linear weighting is used for ACD rather than fine 
tuning the parameters of a generalised WABL. While linking the tuned parameters to subjective human-interpretable 
concepts in many irregular fuzzy controller outputs seems impractical, it is intuitive to assign the higher weights to 
the higher α levels linearly.

Similarly, the ideas of interval-valued defuzzification and the mean of fuzzy numbers initially suggested by Dubois 
and Prade [20] are another areas of research for defuzzifying a fuzzy number having a level-based approach. Having a 
gradual number approach to fuzzy interval (instead of a fuzzy set approach), as proposed by Fortin, Dubois and Fargie 
in [21] also leads to a similar two-step level-based defuzzification to what Yager suggested for fuzzy numbers [14], 
and to what we propose for general fuzzy sets.

To the best of our knowledge, linear level-based defuzzifications have not been utilised out of the fuzzy numbers 
or fuzzy interval contexts, nor have been formally linked to other defuzzification algorithms that were discussed. The 

7 The uni-modality condition is lifted in some papers, such as in [13].
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Fig. 2. Calculating ACD for a triangle MF. The generated spikes collectively define μm(x), so that the ACD is the centroid of the shaded triangle.

Fig. 3. An example of a triangle MF with calculated ACD and COG.

ACD can be considered as a generalisation of the mathematically-equivalent algorithms from fuzzy numbers to any 
FS, in which the fuzzy number-specific requirements on the MF, such as normality, convexity and uni-modality, are 
eliminated.

2.3. Example: ACD and COG of triangle and trapezoidal MFs

As an example, we consider the triangle MF shown in Fig. 2, in which the spikes produced by averaging the α-cuts 
are shown. Given the fact that the spikes are evenly distributed, it is observed that the spikes collectively form a right 
triangle, in which the ACD is its centroid along the x-axis. Consequently,8

ACD = b + [(a + c)/2 − b]/3 = (4b + a + c)/6 (5)

Using (1), the COG of the same triangle MF is:

COG = (a + b + c)/3 (6)

The difference between the two defuzzified values is (a − 2b + c)/6 or ACD − b. For example, if a=0, b=1 and 
c=3, then COG=1.33 and ACD=1.17 (see Fig. 3). The difference between the two values is 0.17 (a 12.5% change).

A trapezoidal MF is represented by four parameters a, b, c and d along x-axis. It can be shown using (1) and (3), 
that:

COG = c2 + d2 − a2 − b2 − ab + cd

3(c + d − a − b)
(7)

ACD = (a + 2b + 2c + d)/6 (8)

E.g., for (a, b, c, d) = (0, 1, 2, 4), COG = 1.66 and ACD = 1.80.

2.4. Another example: a double-singleton fuzzy set

The differences between COG and ACD can be further demonstrated by examining the simple case of a double-
singleton fuzzy set, i.e., the union of two fuzzy singletons. Let us consider a set that contains two unequal singletons 
on points a and b having membership grades s1 and s2 respectively (s1 ≤ s2), as shown in Fig. 4.

According to (1), the COG of the MF shown in Fig. 4 is:

COG = as1 + bs2

s1 + s2
(9)

8 The centroid of a right triangle is one-third of its leg away from the right angle (proof is left to the reader).



JID:FSS AID:7869 /FLA [m3SC+; v1.329; Prn:29/05/2020; 13:08] P.6 (1-23)

6 A. Pourabdollah et al. / Fuzzy Sets and Systems ••• (••••) •••–•••
Fig. 4. A double-singleton fuzzy set, i.e., a union of two fuzzy singletons.

Fig. 5. The input-output mapping of the designed simplistic FLS, comparing the results when COG and ACD are employed alternatively.

For calculating the ACD of this MF, we notice that for 0 ≤ α ≤ s1, the midpoint of all α-cuts is (a + b)/2. For 
s1 < α ≤ s2, the midpoint is b since the singleton located on point a is discontinued. Finally for s2 < α ≤ 1, the ACD 
calculation process stops. According to (4), the ACD of this MF becomes:

ACD =
∫ s1

0
a+b

2 αdα + ∫ s2
s1

bαdα∫ s2
0 αdα

=
a+b

2 s2
1 + b(s2

2 − s2
1)

s2
2

= a − b

2

( s1

s2

)2 + b (10)

As mentioned earlier, ACD has a potential to be used as the defuzzifier of a fuzzy controller. In order to practically 
realise the difference between the above two formulas, consider a very simplistic fuzzy controller that produces an 
output fuzzy set in the form of Fig. 4, then we will compare how the FLS’s outputs using the two defuzzification 
methods vary in respect to the FLS’s input. Moreover, although FLSs generally produce a highly non-linear input-
output mapping, such simplistic FLS can be exceptionally designed in a way that produces a linear map if COG is 
employed.

The designed FLS is a single-input single-output system with input x ∈ [0, 1], and output y ∈ [−1, 1]. The an-
tecedent sets are two triangular MFs evenly located around 0 and 1 (labelled “low” and “high”), and the single 
consequent set consists of two normal singletons located at −1 and 1 (labelled “low” and “high” too). The rules are: 
if x is low then y is low; and if x is high then y is high. Using min-max Mamdani inference, simple calculations show 
that the output fuzzy set before defuzzification is a union of two singletons located at −1 and 1. This becomes similar 
to Fig. 4, with a = −1, b = 1, s1 = x and s2 = 1 − x.

Replacing the parameter values in (9) yields to COG = 1 − 2x. This is a linear mapping function due to the over-
simplicity of the system and the fact that (a + b)/2 factor in (10) eventually becomes 0 in this example. For ACD, 
replacing a, b, s1 and s2 in (10)9 yields to a non-linear mapping, as:

ACD =
⎧⎨
⎩

1−2x
(1−x)2 for 0 ≤ x ≤ 0.5

1−2x
x2 for 0.5 ≤ x ≤ 1

(11)

Fig. 5 shows the input-output mapping functions of the designed FLS when COG and ACD are applied alterna-
tively. The two algorithms produce similar results when the input is at the middle or at the endpoints of its range. 
Compared to COG, ACD shows a more tendency towards producing values near 1 and −1 and a faster transition over 

9 Consider that (10) was developed assuming s1 ≤ s2.
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producing values near 0.5. Notably, in the case that COG produces a linear function due to the system’s simplicity, 
the system is complex enough to make a non-linear mapping by ACD. This can be explained by knowing the fact that 
by definition, ACD is a two-pass algorithm whereas COG is a one-pass. The ACD algorithm first applies an averag-
ing along each α cut, then it uses the results of the first pass for applying another weighted averaging over different 
α-levels. COG on the other hand, involves a single round of weighted averaging.

Although the above observation is limited to a specific FLS, one may conclude that ACD is computationally more 
complex. We will analyse this in the next sub-section and in sub-section 3.7.

2.5. A computational model

As (3) suggests, an algorithm for ACD computation needs nested loops, where the outer and inner loops increment 
the α level and the x value, respectively. According to (3), the average of each α-cut is used to locate a spike of 
height α. These spikes are then weighted-averaged over the x-axis. This algorithm does not require the FS to be 
convex.

Listing 1 shows a sample program implemented for ACD computation. Two arrays x[] and mf [] collectively rep-
resent the FS’s MF, and the parameter dis_levels indicates the number of discretisation levels. In Listing 1, averaging 
each α-cut and calculating the spikes’ weighted average are both implemented within a single loop, so that the nu-
merator and the denumerator in (3) are computed at the same time. Using this technique, the algorithm has become 
relatively simple.

double AlphaCutDefuzzification
(double x[], double mf[], int disc_levels){

double numerator = 0.0, denumerator = 0.0;
double x_Sum = 0.0, x_Count =0.0;
for (double alpha = 0 ; alpha <= 1 ;

alpha += 1.0/disc_levels){
for (int i=1; i<=disc_levels; i++){

if (mf[i] >= alpha){
xSum ++ x[i];
xCount++;

}
numerator += alpha * xSum / xCount;
denumerator += alpha;

}
return(numerator / denumerator);

}

Listing 1: General ACD Algorithm.

For implementing COG, the most straight-forward algorithm is discretisation where the MF is discretised equally 
along x and y-axes. There are however, some other algorithms which are optimised for computation as proposed in 
[22]. In this paper, we focus on the discretisation method for its simplicity. For comparison, the algorithm needed for 
the COG computation is provided in Listing 2.

double CentroidDefuzzification
(double x[], double mf[], int disc_levels){

double numerator = 0.0, denumerator = 0.0;
double x_Sum = 0.0, x_Count =0.0;
for (int i=1; i<=disc_levels; i++){

numerator += mf[i] * x[i];
denumerator += mf[i];

}
return(numerator / denumerator);

}

Listing 2: COG Algorithm.
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Fig. 6. A normal convex set’s MF (solid curve) crossed with different α levels (dashed line). The membership function μ is divided into two 
monotonic functions μ1 and μ2. At each α level, xα is the average of the x value of the two crossing points xα1 and xα2.

Comparing Listings 1 and 2, observe that the existence of the nested loops in the ACD algorithm makes it more 
complex than the COG algorithm. However, in the experiments described in the next section, the run-time difference 
is shown to be not more that 5% of the total time needed for generating the FLS outputs. In the next section, a simpler 
computational model for convex FSs is presented too.

3. A formal approach

In this section we develop a closed-form formula for ACD, and then check if there is any formal relation between 
ACD and COG. Additionally, some related challenges are discussed.

3.1. Developing a formula for ACD

Although (3) can be used to develop an algorithm for calculating ACD, it does not provide a closed-form for ACD, 
because the averaging of each α-cut is not yet formulated based on μ(x). In this section we obtain such a formula. 
The analysis provided here is limited to convex FSs.

Assume a normal convex FS defined in a continuous universe (Fig. 6), expressed as:

μ(x) =
{

μ1(x), for a ≤ x ≤ b

μ2(x), for b ≤ x ≤ c
(12)

where in (12), μ1(x) is monotonically increasing and μ2(x) is monotonically decreasing.
As α takes different values between 0 and 1 along the vertical axis, μ−1

1 (α) and μ−1
2 (α) map a single α into two 

values along the x-axis, namely xα1 and xα2. The average of the two values is calculated as:

xα = xα1 + xα2

2
= μ−1

1 (α) + μ−1
2 (α)

2
(13)

From the ACD definition in (4) it is known that:

ACD =
1∫

α=0

αxαdα

/ 1∫
α=0

αdα (14)

We know that 
∫ 1

0 αdα = [α2/2]1
0 = 1

2 . From (13) and (14):

ACD =
1∫

α=0

αμ−1
1 (α)dα +

1∫
α=0

αμ−1
2 (α)dα (15)

Next, we prefer to change the integral variable from α to x, so that the formulation becomes free of α and any reverse 
functions, as well as being comparable to COG in (1). We know that:

x =
{

μ−1
1 (α) f or a ≤ x ≤ b

μ−1(α) f or b ≤ x ≤ c
(16)
2
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Notice that:

α = μ(x); dα =
{

d[μ1(x)] = μ′
1(x)dx for a ≤ x ≤ b

d[μ2(x)] = μ′
2(x)dx for b ≤ x ≤ c

(17)

where the prime sign denotes the derivative.10 Note also, that in the two terms of (15), changing α from 0 to 1 in the 
first term corresponds to changing x from a to b, but in the second term, this corresponds to changing x reversely 
from c to b (see Fig. 6).

(16) and (17) can then be used to change the integral variable in (15) from α to x, i.e.:

ACD =
b∫

x=a

xμ1(x)μ′
1(x)dx +

b∫
x=c

xμ2(x)μ′
2(x)dx (18)

Because μ1(x) in the range [a, b] is equivalent to μ(x) in this range, and the same for μ2(x) in the range [b, c], then:

ACD =
b∫

x=a

xμ(x)μ′(x)dx +
b∫

x=c

xμ(x)μ′(x)dx (19)

The two integral terms in (19) cannot be merged since the second integral range would need to be from b to c (see 
Fig. 6). However by noticing that μ(x) is a decreasing function over [b, c], we know that μ′(x) is always less than or 
equal to zero. Using the absolute value function, we are then able to replace μ′(x) in the first integral by |μ′(x)|, and 
in the second integral by −|μ′(x)|. Thus (19) can be expressed as:

ACD =
b∫

x=a

xμ(x)|μ′(x)|dx +
c∫

x=b

xμ(x)|μ′(x)|dx (20)

ACD =
c∫

x=a

xμ(x)|μ′(x)|dx (21)

Because μ(x) = 0 for all x < a and x > c, then:

ACD =
∫

xμ(x)|μ′(x)|dx (22)

(22) is the desired closed-form formula for ACD.
Although the above approach is not directly extendible to non-convex FSs, we are able to directly extend it to non-

normal MFs. Let the MF’s maximum be αm < 1, then all the previous integrals in the α-domain formulations become 
limited to [0, αm]. The denominator of (14) is then equal to α2

m/2 instead of 1/2. The mapping from the α-domain to 
the x-domain is similar to the normal MF case, i.e. changing α from 0 to αm corresponds to changing x from a to b
in μ1(x), and from c to b in μ2(x). Thus, the only effect is introducing a constant non-normality factor (1/α2

m) into 
(22), i.e.:

ACD = 1

α2
m

∫
xμ(x)|μ′(x)|dx (23)

3.2. Example: triangle MF

Consider the triangle MF discussed in Subsection 2.3 that is shown in Fig. 7 as a combination of two increasing 
and decreasing MFs. We recalculate ACD using (22), as follows:

10 Extending (17) to the discrete mode can be challenging since there could be variable discretisation levels along the two domains, leaving the 
mathematical relation between �α and �x generally undefined. See also Section 3.7.
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Fig. 7. The triangle MF shown as two joint MFs.

μ(x) =
{

μ1(x) = (x − a)/(b − a) for a ≤ x ≤ b

μ2(x) = (c − x)/(c − b) for b ≤ x ≤ c
(24)

μ′(x) =
{

μ′
1(x) = 1/(b − a) for a ≤ x ≤ b

μ′
2(x) = 1/(b − c) for b ≤ x ≤ c

(25)

ACD =
∫

xμ(x)|μ′(x)|dx =
b∫

a

x(x − a)

(b − a)2 dx −
c∫

b

x(x − c)

(c − b)2 dx

= 2b3 − 3ab2 + a3

6(b − a)2 + c3 − 3cb2 − 2b3

6(c − b)2 = a + 2b

6
+ c + 2b

6
= (a + 4b + c)/6

(26)

(26) matches the result already derived in (5).
The matching of the results in this example shows that for some MF types, there is actually no need to use (22)

to obtain ACD. Note that, if the tops of the produced spikes collectively produce a “middle curve” that can be math-
ematically expressed as a function of x, then ACD can be directly calculated as the centroid of that curve. For the 
discussed triangle MF example, the middle curve (called μm(x) in Fig. 2) represents a mathematical function that can 
be expressed using a, b and c, so that ACD value, located at the centroid of μm(x), can also be expressed using the 
same parameters.

3.3. α-Domain and x-domain interchange

Reviewing the formal approach presented above, it is questionable why the ACD formulation is initially started in 
α-domain and then changed to x-domain.

By definition, in α-cut representation, a FS is decomposed according to its α levels, thus it is intuitive that the 
calculation of ACD consists of integrals on α-domain, not initially on x-domain. However, the integrals on two 
domains are interchangeable, helped by a mathematical relation between dα and dx (see (17)). In discrete mode 
however, this can be challenging since there could be different discretisation levels along the two domains, leaving 
the mathematical relation between �α and �x undefined.

For some well-defined and/or monotonic MFs, there is actually no need to change the domain for the sake of AD 
calculation, as discussed for the example in a triangular MF. In general case however, it is quite possible that the 
produced middle curve cannot be represented by a well-defined single-valued function - see Fig. 8). In such cases, the 
proposed formal approach in changing between α and x domains would be necessary. On the other hand, it will not 
be possible to always start the COG formulation from α-domain since the MF is not a single-valued function from the 
α-axis view (unless MF is monotonic).

3.4. A link between ACD and COG formulations

It is of interest to find a mathematical relation between COG in (1) and ACD in (22). Although for a symmetric MF, 
the values of ACD and COG are equal,11 and for special MF geometries such as triangular MFs the difference between 
the two can be mathematically expressed (see Subsection 2.3), in general no direct mathematical link is apparent 

11 In a FS with symmetric MF, both ACD and COG formulations locate the middle of the FS’s support.
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Fig. 8. An example of a MF whose middle-curve is a multi-valued function.

between (1) and (22).12 Interestingly, as we show next, ACD and COG are special cases of a general defuzzification 
framework, namely the Weighted Function COG (WFCOG), introduced in [2].

WFCOG of a fuzzy set A with MF μ(x) > 0 is defined as:

Vf (A) =

∫
xμ(x)f (x)dx∫
μ(x)f (x)dx

; (27)

where f (x) ≥ 0 is a weighting function and all the integrals are over the MF’s support. Function f represents the 
relative weights that a decision maker may put on the value x, or a utility value for x. In other words, both μ(x) and 
f (x) identify the contribution of x in calculating the defuzzified value. A constant f (x) means that all x have the 
same utility, leading to COG as defined in (1).

Comparing Vf (A) in (27) with ACD in (22) for a normal convex FS suggests that |μ′(x)| can be considered to be a 
weighting function f (x), however the denominator of (27) needs to be worked out in order to validate this suggestion.

The denominator of (27), after replacing f (x) with |μ′(x)| yields (see Fig. 6):

∫
μ(x)f (x)dx =

c∫
a

μ(x)|μ′(x)|dx =
b∫

a

μ1(x)μ′
1(x)dx +

b∫
c

μ2(x)μ′
2(x)dx (28)

Using (16) and (17), (28) can be expressed as:

c∫
a

μ(x)f (x)dx =
1∫

α=0

αdα +
1∫

α=0

αdα = 2 × 1

2
= 1 (29)

Since the denominator of (27) is 1, we conclude that:

ACD = Vf (A); f (x) = |μ′(x)| (30)

which means that ACD is a special case of WFCOG where f (x) = |μ′(x)|.
We already know that COG is another special case of WFCOG where f (x) = 1. In [2] it is shown that some other 

known defuzzification methods are also special cases of WFCOG.
For the case of a non-normal MF with a maximum value αm < 1, it can be directly concluded, from (23) and (27), 

that:

ACD = Vf (A); f (x) = |μ′(x)|
α2

m

(31)

This shows that the only effect of non-normality is a constant factor of 1/α2
m in the weighting function f (x).

Equations (30) and (31) mean that for a convex FS, ACD is a WFCOG in which the sharpness (i.e., the absolute 
derivative) of the MF at x is used as weights, whereas in COG, the weights are equally 1. Fig. 9 illustrates the effect of 
considering the MF’s sharpness as weights. In this figure, the black curve is a sample MF μ(x). While the weighting 
function used for COG calculation is f1(x) = 1, the dashed curve f2(x) = |μ′(x)| (drawn on a different vertical 

12 Note that unlike (1), (22) contains a derivative form of the MF.
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Fig. 9. An example of COG and ACD calculations based on different weighting functions. The function f1 shows the constant weights (=1) used 
in COG, whereas the function f2 (normalised to [0,1] for a better visibility) shows the ACD’s dynamic weights changing by the sharpness of the 
corresponding membership grade.

scale for a better visibility) shows the weighting function used for calculating ACD (30). The dashed curve indicates 
where along the x-axis the membership grades have more or less contributions towards calculating ACD; the sharper 
areas of μ(x) have more weights than the flatter areas. In the standard COG method, all of the MF values have equal 
contributions towards its calculation.

In summary, we began with a definition of ACD using the α-cut representation, in order to define a method within 
a FS context. We then concluded that for a convex FS, expressing ACD using its MF leads to considering the MF’s 
sharpness as the weighting factor, whose values would have equally been 1 if COG was used. This means that, in 
the ACD method, in order to know the weighting factor at point x, one must look at the value of the MF at x and its 
values at neighbouring x’s. In other words, ACD reflects the static and dynamic properties of the MF at a certain x, 
whereas COG only reflects the static characteristics of the MF.

3.5. Linking ACD and BADD

BADD (Basic Defuzzification Distribution) [23] is an important related defuzzification approach, defined as:

BADD =

∫
xμ(x)γ dx∫
μ(x)γ dx

(32)

Similar to WFCOG, BADD is a generalised method that can adapt itself to the designer’s attitude in weighting 
different parts of the MF. However BADD applies the adaptation by changing a free parameter γ ∈ [0, ∞) that adjusts 
the shape and the non-linearity of the MF accordingly. Although BADD is developed as a compromise between 
probabilistic and possibilistic approaches in fuzzy sets operations [23], it is still considered as a support-based method 
and therefore cannot be directly represented in a level-based form, since it applies a form of weighed averaging over 
the MF. Evidently, it can be reduced to some support-based methods such as COG (γ =1), MOM (γ → ∞) and MOS 
(γ =0).

Notably, in [2] where WFCOG was introduced, a more generalised formula was also presented that integrates both 
the weighting function of WFCOG and the γ -adjustment of BADD [23]. It was called Maximum Entropy Weighting 
Function BADD (MEWFBADD), defined as:

Vf,γ (A) =

∫
xμ(x)γ f (x)dx∫
μ(x)γ f (x)dx

(33)

Since it was shown in this paper that ACD and COG are special cases of WFCOG, it can also be concluded that 
BADD, ACD and COG are all special cases of MEWFBADD. Practically, we notice that the bigger the γ , the more 
importance is given to the values with bigger MF, which is similar to the more weights given by ACD to the bigger 
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α-values. Therefore, BADD with γ > 1 is expected to demonstrate some similar behaviours to ACD. Moreover, it can 
be expected that as γ moves from 1 to ∞, BADD is likely to meet ACD at some γ values when travelling from COG 
to MOM. This can be the subject of a future work.

3.6. An axiomatic study

Ban and Coroianu [24] provide a number of axioms to characterise the ranking methods used for fuzzy numbers. 
Although this approach is focused on the context of fuzzy numbers, the same approach can also be extended to 
evaluate any defuzzification method. They have provided the conditions that satisfy their axioms. Without reviewing 
the analytical details, some of those results can be directly used for evaluating the ACD. Interestingly, in the case of 
trapezoidal MFs, the value of a fuzzy number, defined as the average of α-cut means weighted by their corresponding 
α, is shown to satisfy all the axioms. This result can be readily extended to the case of ACD, since calculating the 
value of a fuzzy number is mathematically equivalent to calculating the ACD of a FS (see Subsection 2.2).

ACD can also be evaluated within the axiomatic approach of Runkler and Glenser [25]. They have developed a 
set of 13 axioms as quality criteria for rational defuzzification algorithms. Among the 13 axioms, it has been shown 
that the COG satisfies nine of them: Zero-element, One-Element, Monotony, Symmetry, x-Translation, x-Scaling, μ-
Translation (weak version), μ-Scaling and Hedges. Similarly, it can be shown that ACD satisfies the same nine axioms. 
The proofs are straightforward, since the given proofs for COG can be extended to ACD by applying the WFCOG 
weights (9). The other axioms not satisfied by COG are still not satisfied by ACD. This can be shown by means of 
counterexamples, e.g., neither COG nor ACD necessarily represent the mean value of a fuzzy number (i.e., the x value 
corresponding to the single maximum of μ(x)). Importantly, their axioms serve as a set of desirable properties not as 
an axiomatic basis for a defuzzifier (which is very different from, e.g., the axiomatic basis for t-norm, t-conorm and 
complement). To the best of our knowledge, there is no theory that indicates that satisfying a subset of these properties 
is good or optimal, nor is there a universal agreement on why a defuzzifier has to satisfy a certain number of them.

3.7. A simpler computation model

In Subsection 2.4, we provided a general algorithm for implementing ACD based on its original definition (3). 
ACD can also be implemented more simply for convex FSs, by means of the following discrete version of (22):

ACD =
N∑

i=1

(xiμ(xi)|�μ(xi)|) (34)

where N is the number of discretisation levels along the x-axis.
Comparing the computation complexities of implementing COG (2) and ACD (34), observe that in (2), two sum-

mations are computed over the x range, in addition to a final division, whereas in (34), one summation as well as the 
absolute change of the MF in each step are computed. This shows that the computation complexity of implementing 
an algorithm for ACD should be about the same as for COG.

The following shows a sample ACD implementation based on (34). In Listing 3, two arrays x[] and mf [] collec-
tively represent the fuzzy set’s MF, and the parameter dis_levels indicates the number of discretisation levels.

double AlphaCutDefuzzification_Convex
(double x[], double mf[], int disc_levels){

double x_Sum = 0.0, delta_mf=0.0;
for (int i=2; i<=disc_levels; i++){

abs_delta_mf=mf[i]>mf[i-1] ? mf[i] : mf[i-1];
xSum += x[i] * mf[i] * abs_delta_mf ;

}
return xSum;

}

Listing 3: ACD Algorithm for convex FSs.
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Fig. 10. Convergence patterns of two ACD computation algorithms for the triangle MF of Fig. 3, when discretisation levels increase, together with 
the COG calculation results.

Comparing the general and convex-specific algorithms developed for ACD (Listings 1 and 3 respectively), it is 
initially observed that, since Listing 3 has a single loop it is much simpler and runs faster than Listing 1. Moreover, 
the complexity of Listing 3 is about the same as the complexity of the COG algorithm (Listing 2). We ran a timing test 
to compare the running times of Listings 2 and 3. For a sample triangular MF shown in Fig. 3, and 100 discretisation 
levels, a Java program took 153 ms for COG and 160 ms for ACD computation on a laptop with an Intel Core-i5 8 GB 
RAM.

Note that, there is a discretisation issue associated with the ACD computation using (34). According to (3), ACD is 
defined based on having fixed α intervals, �α, but selecting fixed �α along the vertical axis corresponds to variable 
�x along the x-axis, since the relation between �α and �x is generally not proportional. Thus, we predict that low 
discretisation levels may produce more discretisation errors using (34) in Listing 3, than those produced using (3) in 
Listing 1. The outcome of the two algorithms should theoretically converge for high discretisation levels, but with 
possibly different convergence patterns.

In order to study this effect, we compared the convergence patterns of the two ACD algorithms using an example. 
We consider the same triangle MF example of Fig. 3. Since this MF is not symmetric, the fixed α intervals along the 
vertical axis correspond to two different intervals along the x-axis, so that in low discretisation levels, we expect more 
discretisation errors. Because the FS is convex, both the general algorithm in Listing 1 and the convex-specific algo-
rithm in Listing 3 can be utilised in order to calculate the ACD value. For the case of COG computations (Listing 2), 
equal intervals over the x-axis are used, so that we expect lower discretisation errors than ACD. In this example, the 
linearity of the MF shape causes the COG computations rapidly approach its final value. Letting the discretisation lev-
els range from 20 to 200 over the x-axis between x=0 to x=3, the converging patterns of the two ACD algorithms are 
shown and compared in Fig. 10, along with the COG convergence pattern. It is observed that although both ACD al-
gorithms approach their final value of 1.17 in periodic patterns, the convergence pattern of the general ACD algorithm 
has a relatively less average error for lower discretisation levels than does the convex-specific ACD algorithm.

4. Experiment 1: performance test in FLS for time-series prediction

In this section, we compare the performances of two FLSs designed for the prediction of two time series (Mackey-
Glass and Lorenz), where all FLS parameters are the same, but the defuzzification methods are different. Two levels 
of measurement noise are used. The research question for comparing the utility of the ACD and COG defuzzification 
methods in this experiment is: In an FLS designed for noisy time-series prediction, can replacing the COG defuzzifier 
with the ACD defuzzifier generate less prediction error?



JID:FSS AID:7869 /FLA [m3SC+; v1.329; Prn:29/05/2020; 13:08] P.15 (1-23)

A. Pourabdollah et al. / Fuzzy Sets and Systems ••• (••••) •••–••• 15
Fig. 11. Illustration of the pre-computed and noisy (SNR=10 dB) MG time series. A FS is trained from t = 1 to t = 700 and tested from t = 701 to 
t = 1000.

4.1. Mackey-glass time series prediction

4.1.1. Methodology
The Mackey-Glass (MG) chaotic time-series has been widely used to evaluate the prediction performance of intel-

ligent systems (e.g., [26–29]). It is described by the following differential equation [30]:

dx

dt
= 0.2x(t − τ)

1 + x10(t − τ)
− 0.1x(t) (35)

For τ > 17, (35) is known to demonstrate a chaotic behaviour; we selected τ = 30. Using (35), x(t) is calculated 
for 2000 consecutive points, i.e., t = −999 to t = 1000 (Fig. 11). The first 1000 points are to let the initial transients 
die out. For t = 1 to t = 700 the noisy time series data are used to develop a set of fuzzy rules according to the 
one-pass method described in [31]. The number of generated rules varies from 184 for noise-free data to 570 for high 
noise levels.

The last 300 points from t = 701 to t = 1000 are used for testing the FLS. Nine of the past points in the time series 
are employed as inputs to generate a predicted value. Seven equally-distributed triangular MFs are used to model the 
input domains (from about 0.2 to 1.4). For all FLSs, Mamdani inference is used with min and max operators for the 
t-norm and t-conorm respectively. The same 100 discretisation levels are used for all FLS computations.

Two noise conditions are used to test the FLS’s performance, namely, signal-to-noise ratios (SNRs) of 10 dB and 
20 dB. White Gaussian noise is added to the input data, in which the standard deviation (STD) of the noise is derived 
from the system’s SNR value. If the STD of the signal and the STD of the noise are σs and σn, respectively, then SNR 
can be written as:

SNR = 10 log(
σ 2

s

σ 2
n

) ;or σn = SNR

10(σs/20)
(36)

Each experiment generates 300 output fuzzy sets that are defuzzified in order to generate a crisp output using 
both COG and ACD. The outputs are then compared with the pre-computed values generated by (35). The difference 
between each FLS output and the pre-computed value is then calculated, which leads to calculating MSE (Mean 
Square Error) for all 300 points. Finally, the calculated MSEACD and MSECOG are compared. In order to mitigate the 
effect of randomness, each result for each noise level is averaged over 30 repetitions of the entire experiment.

4.1.2. Results
Fig. 12 illustrates sample ACD and COG results for the 10 dB and 20 dB noise levels, as well as the pre-computed 

time series. Average and STD of the calculated MSEs over the 30 experiments are summarized in Table 1. Observe 
from Table 1, that for lower noise levels (SNR=20 dB) on average, using ACD leads to about 35% less MSE than 
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Fig. 12. Sample FLS prediction results of MG time series using ACD and COG methods, when SNR is (a) 20 dB and (b) 10 dB.

Table 1
Comparative results of applying COG and ACD, for prediction of MG time series, under two input noise levels.

Method SNR
(dB)

MSE
(Mean)

Change in MSE
(Mean)

MSE
(STD)

Change in MSE
(STD)

COG 20 0.00455 0.00064
ACD 20 0.00296 −34.95% 0.00042 −34.28%
COG 10 0.01324 0.00183
ACD 10 0.00999 −24.50% 0.00111 −39.09%

COG. In higher noise levels (SNR=10 dB), ACD leads to about 25% less MSE than COG. The STDs of the MSEs are 
significantly reduced in all cases when ACD is utilised, indicating more reliable results.

In order to compare the ACD results with one other defuzzification method than COG, we repeated the MG times 
series experiment using MOM (mean of maxima) defuzzification and compared the results between MOM and ACD. 
This comparison is summarised in Table 2, which indicates that for SNR=20 dB (10 dB) using ACD leads to 47.29%
(31.31%) less average MSE than using MOM. A similar improvement is also observed between the standard deviation 
of the measured MSEs, in which ACD method gains 42.10% (34.43%) less MSE standard deviation than MOM in 
SNR=20 dB (10 dB).

In terms of computational complexity, a timing test was performed to measure the time needed to compute the 
FLS output for each run. On a laptop PC with an Intel Core-i5 8 GB RAM using Java, on average each output was 
computed in 44.67 ms when ACD is utilised, compared to 46.59 ms for COG. As discussed in Section 2, a longer time 
is expected for the ACD algorithm, however since the time needed for defuzzification is a small part of the total time 
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Table 2
Comparative results of applying MOM and ACD, for prediction of MG time series, under two input noise levels.

Method SNR
(dB)

MSE
(Mean)

Change in MSE
(Mean)

MSE
(STD)

Change in MSE
(STD)

MOM 20 0.00436 0.00064
ACD 20 0.00296 −47.29% 0.00042 −42.10%
MOM 10 0.01312 0.00169
ACD 10 0.00999 −31.31% 0.00111 −34.43%

Fig. 13. Sample FLS prediction results of Lorenz time series using ACD and COG methods, when SNR is (a) 20 dB and (b) 10 dB.

needed for each FLS run, the measured FLS run time showed about 4% increase for the FLS that uses ACD compared 
to the FLS that uses COG.

4.2. Lorenz time series prediction

4.2.1. Methodology
Next, we compare the designed FLS’s performances using another well-known time series in hydrodynamics and 

meteorology, namely Lorenz [32], whose differential equations are:

dx

dt
= σ(y − x); dy

dt
= rx − y − xz; dz

dt
= xy − bz. (37)

This is a 3D time series but our focus is on x(t) only. To demonstrate a chaotic behaviour, the parameters σ , b
and r are respectively set to 10, 8 and 28, as suggested in [32]. The procedures of generating rules, adding noise and 
3
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Table 3
Results of applying COG and ACD, for prediction of Lorenz time series, under two input noise levels.

Method SNR
(dB)

MSE
(Mean)

Change in MSE
(Mean)

MSE
(STD)

Change in MSE
(STD)

COG 20 3.20448 0.78748
ACD 20 2.17572 −32.10% 0.41960 −46.72%
COG 10 11.0502 1.93773
ACD 10 7.68346 −30.47% 1.19482 −38.34%

Table 4
Results of applying MOM and ACD, for prediction of Lorenz time series, under two input noise levels.

Method SNR
(dB)

MSE
(Mean)

Change in MSE
(Mean)

MSE
(STD)

Change in MSE
(STD)

MOM 20 3.80812 0.67136
ACD 20 2.17572 −42.88% 0.41960 −37.50%
MOM 10 10.6833 1.77462
ACD 10 7.68346 −28.08% 1.19482 −32.74%

averaging the results for 30 random additive noise scenarios are similar to those described in the first subsection, and 
are therefore not repeated.

4.2.2. Results
It is observable from the results that when the ACD method is utilised for defuzzification, the predicted output 

more closely follows the expected output, than when the classical COG method is used (Fig. 13). This is very similar 
to what we already observed for MG time series in the previous subsection. The statistical results of the experiment 
with Lorenz time series also, demonstrates some similar patterns of MSE reduction (both average and STD) when the 
new defuzzification algorithm is applied.

Table 3 shows that for 30 repetitive runs, in lower noise levels (SNR=20 dB), there is about 32% reduction in the 
predicted MSE when the ACD method is utilised. In higher noise level (SNR=10 dB), the reduction is about 30%. 
MSE STDs over the 30 runs are reduced by about 46% and 38% in the lower and the higher noise levels, respectively. 
Regarding computation time, a test was performed on the same hardware and software settings used for MG time 
series. Each FLS run using ACD took 36.21 ms on average, compared to 34.44 ms required for each run using COG 
(about 5% increase).

We also repeated the Lorenz times series experiment using MOM and compared the results with ACD, as sum-
marised in Table 4. For SNR=20 dB (10 dB) using ACD leads to 42.88% (28.08%) less average MSE than using 
MOM. A similar improvement is also observed between the standard deviation of the measured MSEs, in which ACD 
method gains 37.50% (32.74%) less MSE standard deviation than MOM in SNR=20 dB (10 dB).

4.3. Discussion

The potential for using the ACD method for improving FLS performance, compared to the standard COG method, 
has been demonstrated. It has been observed from the designed FLS for predicting two noisy times series, that when 
the ACD method is utilised for defuzzification, the predicted output more closely follows the expected output than 
when the classical COG method is used. The statistical results for the two experiments show similar patterns of MSE 
reduction (for the both average and STD) when ACD algorithm is utilised. Although the ACD algorithm has an 
additional complexity over the COG algorithm, its observed effect on the total time required for running each FLS is 
about 5% increase.

In order to investigate the conditions in which ACD, COG and MOM compete in producing closer predictions to 
the expected values in the studied time series, we picked three sample points in each time series, in which a) ACD 
prediction is closer; b) COG prediction is closer; or c) ACD and COG make about the same prediction. We will 
compare the results of MOM with the other two methods too. For each sample point, the fuzzy output set before 
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Fig. 14. Three sample extreme points in each time series (MG and Lorenz), in which ACD prediction is closer (top), COG prediction is closer 
(middle) and in which ACD and COG make about the same predictions as the expected value (bottom).

defuzzification is observed. It is noticeable that the three defuzzification methods are applied to the same output fuzzy 
set.

Fig. 14 shows the results of the investigation for the three sample points in each time series. At each point, the 
output fuzzy set under defuzzification is shown, together with its COG, ACD, MOM, and the expected value (the 
ground truth coming from the time series formula). Observing Fig. 14 can show some heuristic facts behind the 
differences between the results of ACD, COG and MOM.

First, as expected, the three methods do similarly regarding the nearly symmetric MFs, as well as being similarly 
close to the expected value. This can be observed in the bottom row of Fig. 14. Secondly, with more non-symmetric 
MFs, the fact that ACD gives more weight to the upper alpha levels makes its result more differentiated from COG. 
On the other hand, MOM is only dependent on the maximum points of the MF, so it is independent of the other 
irregularities out of the maximum plateau. So it can be roughly concluded that ACD has a tendency towards the top 
MF values (so has to MOM) whereas COG represents the geometrical centre of the MF. This can be observed in 
the top two rows of Fig. 14. The locations of the expected value within the more irregular MFs in this figure seem 
more unpredictable, as the generation of the MF is a consequence of a highly complex process in both training and 
inference stages. COG makes a closer prediction only where the expected value is eventually towards the geometric 
centre. By all means, an average over all the points, of which only three extreme samples are investigated, shows 
a general tendency of the ACD output to the expected value compared to COG and MOM, as shown earlier in this 
section.

An interesting case which demonstrates the ACD formal link to MF and its derivative in (22), is the top-right MF 
of Fig. 14. The long narrow channel on the right side of the MF has drawn the geometrical centre, thus the COG, to 
the right making it distant from the expected value. The channel, however, has almost no effect on ACD according to 
(22) since along the flat channel the derivative of the MF is zero. In general, it can be roughly concluded that since 
ACD ignores any flat areas, the irregular MFs with large flat areas can showcase the differences between ACD and 
COG.

Making direct judgements on why each defuzzification method may make a closer prediction than the other, based 
on the picked sample points and the look of the fuzzy sets in Fig. 14, is not straight-forward. In fact, there is no 
reason to label a particular defuzzification method “better” or “worse” than the other based on making a closer pre-
diction to the expected value in a specific example. The time series being chaotic together with many other involved 
imperfections and uncertainties collectively affect the prediction quality.
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Fig. 15. Two FSs are shown together with their directional distance (DD) as well as their defuzzified values using ACD and COG methods.

Additionally, there are some contextual differences between MOM and ACD/COG which should be carefully 
considered in discussing the results of this experiment. MOM is a method that is designed for implicative fuzzy 
systems [33], where the output fuzzy sets can have very wide or unlimited supports. In this case, MOM has natural 
advantages over COG (and ACD), not only due to its computational simplicity but also because the averaging basis 
of COG or ACD makes them unsuitable for such large universes of discourse. This showcases why the results of this 
experiment should not be directly generalised for all types of fuzzy systems.

Finally, it is noticeable that the experiments in this section use the one-pass method in rule training, which is simple 
but leads to a relatively large number of rules. The rule sets could be optimised using more advanced methods such as 
Derivative-Based Design [11]) leading to a much smaller rule set and an optimized MF parameters. As a future work, 
it would be interesting to learn if ACD still outperforms COG for such a smaller but optimized set of rules.

5. Experiment 2: correlation test for directional distance

In this experiment we are interested to compare ACD and COG using a pairwise distance measure. Many such 
methods exist for measuring the distance between two FSs (e.g., [34–36]. We focus on the Directional Distance (DD) 
measure [37], which is able to measure the distance between two FSs as a signed value (in two directions), and has the 
same units as the x-axis of the MFs. An extended experiment of this type in comparing ACD with COG is reported in 
[38].

The definition of the DD between two FSs is based on the distance between their α-cuts. According to [37], if the 
α-cuts of two arbitrary FSs X and Y are defined as intervals [μX]α = [xα, xα] and [μY ]α = [yα, y

α
] respectively, 

their DD is defined as:

DD(X,Y ) =
∑(

α.h([μX]α, [μY ]α)
)

∑
α

; α ∈ [0,1] (38)

h([μX]α, [μY ]α) =
{

xα − yα, if |xα − yα| > |xα − y
α
|

xα − y
α
, otherwise,

(39)

where h is a modified version of Hausdorff distance [36] between two intervals. A positive DD indicates how much 
Y’s MF is to the right side of X’s MF, and vice-versa. For any FS pair, the numeric difference between the defuzzified 
values should closely follow the DD between the two sets, so we will compare this behaviour between ACD and COG 
(see Fig. 15) over a large number of FS pairs.

5.1. Method

The first step in this experiment is to synthetically produce a large number of FS pairs. We used an already existing 
FLS and produced 50 uniformly distributed random input values. The generated 50 output FSs led to 1225 possible 
pairings. Secondly, the DD were calculated for each of the 1225 FS pairs. Then each of the 50 sets was defuzzified 
using COG and ACD methods (using 100 levels of discretisation for x and α) based on the algorithms explained in 
Listings 1 and 2. Finally, for each of the 1225 pairs, the differences between the two defuzzified values were calculated 
(called �COG and �ACD). To compare the utility of ACD and COG, the correlation coefficient between �COG and 
DD was calculated and compared with the correlation coefficient between �ACD and DD, using bivariate correlation 
[39]:
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Fig. 16. The relation between the DDs of two FSs vs. the signed difference in their defuzzified values, tested for COG and ACD, over a large 
number of FS pairs.

Correlation (X,Y ) =
∑n

i=0[(xi − x)(yi − y)]√∑n
i=1[(xi − x)2(yi − y)2]

; (40)

where X = {x1...xn} and Y = {y1...yn} are two sample sets of n points with average values x and y. In this experiment, 
X is the set of either �COGi ’s or �ACDi ’s, whereas Y is the set of DDi ’s. A closer correlation coefficient to 1 for a 
FS pair and for a particular defuzzification method, shows that the observed change in the defuzzified value is more 
closely bound to the directional distance between the two sets, i.e., a closer behaviour to what is intuitively expected.

5.2. Results

Fig. 16 depicts the experiment results. For each examined pair of FSs, their DDs are shown along the horizontal 
axis (ranging from negative to positive values), and the calculated �COG and �ACD are shown along the vertical 
axis. Both methods generally demonstrate strong correlations between DDs and changes in the defuzzified values over 
the 1225 pairs of random FSs, however, the average correlation coefficient between DD and �COG is 0.82 whereas 
the average correlation coefficient between DD and �ACD is 0.86. This shows about 4.88% more correlation when 
ACD is applied.

6. Conclusions and future work

In this paper, we defined a new defuzzification method of generalised fuzzy sets, called α-cut defuzzification 
(ACD). Since the output fuzzy sets of rule-based systems can be in any shape, the ACD utility has been examined 
in this paper for such systems. Our approach, similar to a number of reviewed approaches in fuzzy number ranking, 
is inspired by the FS concept of the α-cut, rather than MF-based, statistical/physical concepts such as the standard 
COG. For continuous convex FSs (normal or non-normal) in continuous mode, we developed a closed-form formula 
for ACD, and demonstrated that COG and ACD are both special cases of the Weighted Function COG, introduced in 
[2]. Whereas those weights for COG are constant, for ACD they are the absolute derivative of the MF, which lets the 
dynamic properties of the MF be included in ACD. As expected, for symmetric MFs, ACD and COG values are equal. 
For discrete FSs, computation models were provided for both convex and non-convex FSs, and it was shown that the 
ACD algorithm for convex FSs has about the same complexity as COG.

Two series of experiments were performed to compare the relative utilities of the COG and ACD methods. For 
predicting noisy time series (Mackey-Glass and Lorenz) using a rule-based FLS, ACD performed much better than 



JID:FSS AID:7869 /FLA [m3SC+; v1.329; Prn:29/05/2020; 13:08] P.22 (1-23)

22 A. Pourabdollah et al. / Fuzzy Sets and Systems ••• (••••) •••–•••
COG, having closer and less variant predictions in two different noise conditions. We also statistically showed in 
another experiment, that the ACD outcomes more closely follow the MF changes over a large number of FS pairs, as 
compared to COG, in which the changes are measured by each pair’s directional distance. In summary, the potential 
for ACD to outperform COG looks very promising.

For future works, more real-world scenarios and experiments have to be used for testing the utility and performance 
of ACD, especially in FLSs where MF parameters are optimised as part of the FLS design process.
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