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this study was part of focused on creating a solution for 
monitoring the stress levels of pilots, this type of system 
could have wider applications for health monitoring. For 
example, such a system could be employed in residential 
care homes to monitor the HR of residents and help 
provide a prediction of a sudden cardiac arrest[6] or allow 
staff to intervene in a timely manner if a patient suffers 
a cardiac arrest, as intervention time is critical to the rate 
of survival.[7]

Cardiac monitoring is generally conducted using 
electrocardiography (ECG), which records the electrical 

INTRODUCTION

This study focused on the characterization of an array of 
textile electrodes suitable for noninvasive heart rate (HR) 
measurements from a textile seat cover. HR and heart 
rate variability (HRV) can provide useful insights into 
the physiological state of a person, with HR providing 
an indication of physical exertion[1] or in some cases 
pathology.[2] HRV has been shown to provide indications 
of both stress[3,4] and drowsiness.[5] While the project that 
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ABSTRACT

Background and Objectives: Nonintrusive heart rate (HR) monitoring can be a useful tool for health monitoring. By creating 
capacitively coupled textile electrodes, a comfortable monitoring system can be integrated into seating or bedding that can 
monitor HR through clothing. This work empirically studied two factors for a system of this type: the electrode size and the 
material worn by the subject. Materials and Methods: HR measurements were taken using six different sizes of the rectangular 
textile electrode with four subjects and the signal‑to‑noise ratio (SNR) of the signals were analyzed. A further set of experiments 
were conducted with a single subject and a fixed electrode size where different materials were worn. Results: Electrode size 
was seen to have a statistically insignificant effect on the collected signal quality. The SNR was also largely unaffected by the 
worn material type. Conclusion: This study provided empirical data relating to two important factors for nonintrusive, textile, 
and HR monitoring systems. This data will be helpful for designing a seat‑based HR monitoring system or to understand the 
operational limitations of a system of this type.
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activity of the heart as a function of time. Electrical 
signals are measured using electrodes, which are normally 
mounted directly onto the skin.[8] While ECG is widely 
employed in medicine[9] and for health monitoring[10,11] 
the metal electrodes employed can be uncomfortable 
or inconvenient to wear or use. Textiles provide a 
comfortable and conformable substrate from which 
electrodes suitable for HR monitoring can be created.[12-17] 
The conventional measurement of the heart’s electrical 
signals using any type of electrodes, including textile 
electrodes, requires direct skin contact,[12,14] necessitating 
the subject being monitored to wear a specially designed 
garment with the electrodes embedded as an integral 
component of the fabric of the garment (for example, the 
NuMetrex Heart Rate Monitor Sports Bra by Textronics 
Inc., Wilmington, DE, USA).[18]

An alternative solution is to use high input impedance 
electrodes that allow for the electrical activity of the heart 
to be monitored through clothing. Here, the body and 
skin act as one electrode, the clothing acts as an insulating 
dielectric layer, and a conductive element acts as a second 
electrode creating a capacitor.[19] The electrical signals in 
the body associated with heart activity will change the 
local magnetic fields within the body, which couples to 
the displacement current of the capacitor allowing for the 
signal to be collected.

Capacitively coupled ECG measurement using textile 
electrodes has previously been demonstrated in the 
literature: examples include their use for monitoring ECG 
during sleep,[13] and as part of a seat.[15] For this work, 
high input impedance knitted electrodes were created 
as part of a seat back cover, with a further electrode 
at the base of the seat acting as a ground electrode 
(driven right leg [DRL]). This meant that the HR and 
HRV of the aircrew could be monitored by having the 
aircrew simply sit in the seat.

This study focused on two design considerations for the 
employment of a textile electrode array for noninvasive 
HR measurements: electrode size, and worn clothing 
type, both of which would affect the capacitance of 
the capacitively coupled electrode. While others have 
investigated electrode size for dry textile electrodes for 
HR monitoring, these have been used for direct skin 
contact measurements,[20] electrode size may have a 
different effect for the capacitively coupled electrodes. 
This study focused on empirically investigating the effect 
of these parameters on the signal-to-noise ratio (SNR) 
of the signals collected by the textile electrodes. The 

new knowledge created in this work will inform future 
designs of textile-based systems for the monitoring of the 
electrical activity of the heart.

MATERIALS AND METHODS

Technical information
Measuring the electrical activity of the heart
The system used to measure the electrical activity of 
the heart comprised two main components; the knitted 
textile electrodes, and the recording and processing 
hardware. The recording hardware was a modified 
commercially available system provided by Plessey 
Semiconductors Ltd. (modifications were performed 
by Plessey Semiconductors Ltd.; Plymouth, UK) and 
was based on the capacitively coupled ECG method 
to measure heart activity: this technique enabled 
measurements to be taken without direct contact 
between the electrodes and the skin. Each knitted 
electrode was attached to an Electric Potential Integrated 
Circuit (EPIC™ sensor; Plessey Semiconductors Ltd.), 
which included a preamplifier, using a snap fastener. This 
placed the preamplifier very close to the surface of the 
textile electrode (~20 mm away). The array of electrodes, 
each attached to an individual EPIC™ sensor, and the 
DRL electrode were subsequently wired to a hardware 
unit that primarily comprised of bandpass and notch 
filters, an amplifier, and an analog‑to‑digital converter. 
The signals were subsequently read into a computer 
using a LabVIEW-based piece of proprietary software 
(LabVIEW; National Instruments, Austin, USA). The 
recording and processing hardware/software could be 
used to select the pair of electrodes that provided the 
best SNR (using an SNR optimization algorithm) from 
up to eight electrodes; however, only two electrodes (and 
the DRL) were used at any one time. Data were exported 
as a  comma‑separated values (CSV) file and processed 
using a bespoke MATLAB (MathWorks, Natick, USA) 
script.

Experimental testing procedure for electrode evaluation
Experimental validation of the system was conducted 
on four male volunteers, at rest, wearing a cotton T-shirt 
unless otherwise stated. All participants were members of 
the research team.

The experimental procedure saw each subject seated in 
a UK military aircraft pilot’s seat (from a BAE Systems 
Nimrod MRA4; Martin-Baker Aircraft Co. Ltd., 
Uxbridge, UK), which had panels incorporating an array 
of textile electrodes attached to the back of the seat 
using pins. The pilot seat had a five‑point harness that 
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was worn by the volunteer while measurements were 
taken. The seat also had a lumbar support cushion, which 
was used throughout the study. It was noticed that the 
action of the volunteer sitting in the seat introduced noise 
into the recorded signal, this was due to the electrodes 
mechanically relaxing after being deformed and possibly 
due to static build-up between the volunteers clothing and 
the textile electrodes: this noise would typically dissipate 
after about 1 min and did not reoccur. Therefore, during 
this study, data were stored after the noise in the signal 
introduced by the volunteer sitting had subsided. After 
this, a single 2-min-long sample of data was collected. 
When possible readings from different volunteers were 
taken concurrently.

A 1 kHz sampling rate was used throughout this work. 
Figure 1 shows an example set of data.

The peak of the  Q-R-S complex (the R-wave) was used 
to determine HR by measuring the time interval between 
R-waves and averaging this interval over 60 s. Despite the 
noise in the signal, the QRS complex (corresponding to 
the depolarization of the left and right ventricles of the 
heart) was discernible within the recorded data, allowing 
for HR to be extracted.

For evaluation purposes, actual HR values were not 
evaluated, as the focus of  the work was to determine 
the functionality of  the electrodes, and the results 
are presented as the ratio between the R-wave signal 
amplitude and baseline noise; this is referred to as SNR 
within the text. The system output HR and SNR values 
once per second. SNR values were only averaged when 
the system output a nonzero or nonnegative HR value 
to prevent spikes in the ambient noise from significantly 

Figure 1: Example heart rate data collected using the knitted textile 
electrodes. Data have been plotted as a voltage against sample 
number, which corresponds to time. The QRS complex has been 
highlighted via an automated peak picking algorithm with  showing 
the Q‑wave, ▼ showing the R‑wave, and ■ showing the S‑wave

influencing the results. Generally, an SNR of  seven or 
higher provided consistent HR results.

Knitted rectangular electrodes used in the study
Rectangular knitted electrodes where explored in this 
work as a rectangle allowed for many different sizes of 
electrode to be explored without altering the physical 
placement of the electrodes. For the electrode size 
optimization experiments, six textile panels with an array 
of electrodes were knitted to cover the back of the seat: 
the panels were 0.54 m × 0.48 m, which was informed 
by the size of the seatback. When placed on the seat, this 
meant that all of the electrodes used in this study were 
located over the lower back, with the exception of the 
largest electrodes [where the used electrodes covered the 
whole back, Figure 2f]. As all of the participants were a 
similar height, this meant that the electrodes covered the 
lower half of their backs (the lumbar region and thoracic 
region up to around T9).

The conductive elements of the knitted electrodes were 
fabricated using silver‑plated polyamide multifilament 
yarn (part number 20012223534HCB; Shieldex®, Statex 
GmbH, Bremen, Germany), with the nonconductive base 
fabric made from polyester yarns (164 dtex, 48 filaments). 
To create a stable fabric with minimum extensibility 
of the electrodes (which would change possibly their 
electrical properties), a knitted spacer structure with the 
basic knitted structure interlock was selected for the base 
fabric: a knitted spacer structure was chosen due to its 

Figure 2: Photographs seatback designs used in this work. Electrode 
would stretch slightly when pressure was applied. (a) 6.9 cm2 
rectangular electrodes. (b) 11.1 cm2 rectangular electrodes. (c) 18.0 cm2 
rectangular electrodes. (d) 24.0 cm2 rectangular electrodes. (e) 44.2 cm2 
rectangular electrodes, with annotation showing the naming scheme 
for the electrodes. (f) 161.7 cm2 rectangular electrodes
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compressibility to ensure the comfort of the user. All of 
the samples were produced with a computerized flat‑bed 
knitting machine (Stoll ADF 3 E14; Stoll, Reutlingen, 
Germany) using an intarsia knitting technique to craft 
the electrodes using the silver-plated yarn. Each seat back 
cover included multiple electrodes. The DRL electrode 
was also a knitted as a spacer structure covering the total 
area of the seat cushion with one face of the structure 
being knitted from the silver-plated conductive yarn.

The six electrode designs used in this work are 
detailed in Table 1. The resistances over the electrodes 
were measured using a multimeter (model 34410A, 
Keysight Technologies, Santa Rosa, USA), with the 
standard deviation provided from the average of four 
measurements.

Photographs of six of the seatback designs are shown in 
Figure 2.

Testing the mechanical and electrical properties 
of the electrodes
Uniaxial tests were conducted on electrode samples using 
the zwickiLine tensile testing machine (model = Z2.5; 
Zwich/Roell, Ulm, Germany) following BS EN 
14704-1:2005 (determination of the elasticity of 
fabrics – part 1: strip tests). During these experiments, 
resistance was recorded over the electrodes (electrode 
area = 24 cm2) using a custom Wheatstone bridge fed into 
a voltage input on the zwickiLine tensile testing machine.

RESULTS

Mechanical and electrical properties of the 
electrodes
It was important to understand how the electrodes 
would behave under different mechanical loads, 
which would exert stress and strain on the electrodes. 
Not only would users with different weights and body 
shapes apply different mechanical loads to the electrode 
but also transient effects, such as breathing would slightly 
alter the load applied at any given time. This meant that 
it was important to understand the deformation of the 

electrode fabric under mechanical loads and observe the 
change in the electrical properties. The force required 
to apply different strain percentages to the electrode, 
and the corresponding electrical resistance are shown in 
Figure 3.

Unilateral loading and unloading of the knitted electrode 
showed the force required to apply different levels of 
strain on the electrodes, with a force of approximately 
17 N required to apply a 25% strain to the sample. This 
showed the inextensibility of the electrodes, which was due 
to their interlock knit structure. Strain introduced some 
variation in the electrical resistance over the electrode. 
This was due to greater or poorer contact between 
the loops of the silver conductive yarn under different 
strains. The greatest difference was observed during 
unloading; this could be attributed to material hysteresis 
where the previously stretched yarns would need to relax 
back to their original length to make good contact with 
neighboring yarns. Under all of the strains explored, the 
resistance, at most, changed by about a factor of four. For 
the high input impedance system used in this work, this 
would not affect the electrode performance; however, this 
would potentially effect systems where direct skin contact 
was necessary. Therefore, the application of strain on the 
electrodes would not affect the functionality of the textile 
HR monitoring system.

Electrode size investigation
The SNR for four subjects where each of the different 
sizes of electrodes were used is shown in Figure 4.

The average of the normalized SNR for the subjects is 
shown in Figure 5.

Average SNR values ranged between 4.0 ± 1.6 and 
15.2 ± 1.6. For most of the subjects, the SNR was 
marginally higher when smaller electrodes were used; 
this was statistically significant for Subjects 1 and 2. For 
Subject 4, a significantly lower SNR was observed when 
smaller electrodes were used.

Table 1: Textile electrode designs explored to determine the optimal size of the electrodes
Name Electrode 

area (cm2)
Electrode 

length (cm)
Electrode 

width (cm)
Number of 
electrodes

Resistance across 
electrodes (Ω)

6.9 cm2 rectangular electrode [Figure 3a] 6.9 3.0 2.3 16 (8 used) 0.80±0.05
11.1 cm2 rectangular electrode [Figure 3b] 11.1 3.7 3.0 16 (8 used) 0.73±0.04
18.0 cm2 rectangular electrode [Figure 3c] 18.0 5.0 3.6 16 (8 used) 0.88±0.06
24.0 cm2 rectangular electrode [Figure 3d] 24.0 6.0 4.0 16 (8 used) 1.02±0.18
44.2 cm2 rectangular electrode [Figure 3e] 44.2 7.9 5.6 16 (8 used) 0.93±0.02
161.7 cm2 rectangular electrode [Figure 3f] 161.7 14.7 11.0 4 (4 used) 1.06±0.03
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Study of the effects of clothing
Given that the electrodes were not in direct contact with 
the skin, it was believed that the clothing interface between 
the human body and the electrodes would affect the quality 
of the collected signal, as different materials would have 
different dielectric properties, which would influence the 
capacitive coupling. To better understand this behavior 
experiments were conducted with a volunteer wearing 
clothes made from different materials [Figure 6]. For 
these experiments, the 4 cm × 6 cm (24 cm2) electrodes 
were used.

Figure 6 shows that there was some variation in the 
SNR for different material types, however, the variation 
in the recorded SNR made it difficult to draw any clear 

conclusion. Of the materials tested, the use of Nomax 
(the material that many flight suits are made of) and a 
52% polyester, 48% cotton mix, were the only materials 
to provide notably lower results, with average SNRs of 
3.1 ± 1.7 and 3.4 ± 1.9, respectively.

The low SNR when using the 52% polyester, 48% cotton 
mix (SNR = 3.4 ± 1.9) was particularly curious given that 
the similar 60% polyester, 40% cotton mix fabric gave a 
much higher SNR (SNR = 7.7 ± 1.8).

To try and better understand the observed behavior, 
the ability for the system to obtain HR values was 
examined. The system would output data once per 
second (therefore 120 values in each 2 min of recorded 

Figure 3: Unilateral tensile tests on a single knitted electrode. Results 
are the average of five loading and unloading cycles. The force (lines 
with values increasing left‑to‑right) and resistance (lines with values 
decreasing left‑to‑right) are both shown. Data for when the sample 
was loaded are shown in red and for when the sample was unloaded 
is shown in blue

Figure 4: Average signal‑to‑noise ratio measurements for four 
subjects as a function of electrode size. Measurements using a 
rounded rectangular electrode (area = 35.5 cm2) have also been 
included. The averages presented are of the SNR for each detected 
QRS complex, with the associated standard deviation shown by the 
error bars. Each datapoint was obtained from 2 min of recorded data. 
Subject 1: , Subject 2: , Subject 3: , Subject 4: 

Figure 5: Signal‑to‑noise ratio for the four subjects compared to the 
electrode size. The datapoints represent a normalized average of 
the data shown in Figure 4 (normalized to the highest signal‑to‑noise 
ratio obtained for each subject); the error bars were produced using 
error propagation of the (normalized) standard deviations shown in 
Figure 4

Figure 6: Averaged signal‑to‑noise ratio compared to worn material 
type. The averages presented are of the SNR for each detected QRS 
complex, with the associated standard deviation shown by the error 
bars. Each datapoint was obtained from 2 min of recorded data
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data), however, SNR values were only averaged when 
a nonzero or nonnegative SNR value was output, as 
SNR values of zero or less would represent when the 
system was unable to identify the QRS complex. The 
working value [Figure 7] represents the percentage of the 
data points obtained where the QRS complex could be 
successfully identified.

While Figure 7 shows poor performance for the 52% 
polyester, 48% cotton mix (working value = 29%) and 
Nomax (working value = 42%), this level of successful 
data collection would be adequate for the systems intended 
application of monitoring air crew, where data would be 
collected over many hours. For example, a working value 
of 29% still represents the successful identification of 
35 QRS complexes over 2 min.

The highest working value was obtained for the 13% 
polyester and 87% cotton mix (96%). This was notably 
higher than when direct skin contact was made with the 
electrodes (74%).

As different materials have different dielectric 
properties, it was possible that certain material 
combinations would improve the capacitive coupling 
between the electrodes and the body, improving the 
signal. As such, the electrical permittivity of each of 
the materials was determined by applying a strip of 
conductive copper tape onto either side of the material 
and using an impedance analyzer (Agilent 4192A LF 
Impedance Analyzer; Agilent Technologies, Santa 
Clara, USA) to measure the capacitance: electrical 
permittivity was subsequently calculated. The 
relationship between the SNR, working value, and 
relative electrical permittivity is shown in Figure 8. 

There was no relationship between the material’s 
relative electrical permittivity and the SNR [Figure 8a] 
or working value [Figure 8b].

DISCUSSION

Electrode size investigation
The electrode size experiments provided a useful 
empirical result, as in principal larger electrodes would 
result in a greater collected signal intensity, as the area 
of  the electrode is directly proportional to the coupling 
capacitance. However, the results showed that, practically, 
using a larger electrode area did not lead to an increase in 
the SNR in most cases. This may have been attributed to 
two factors: an increase in the noise, or body morphology. 
Capacitively coupled electrodes are prone to picking 
up signals from other external electrical sources, such 
as power lines, due to their large impedance (external 
sources, such as power lines, can capacitively couple to 
the electrodes and the body creating interference).[21] It is 
possible that external electrical interference may not have 
remained consistent throughout the experiments. The 
noise collected by capacitively coupled electrodes is also 
known to be very sensitive motion, such vibrations:[22] 
despite efforts to minimize the movement of  the 
volunteers while sitting, such as the use of  the harness, 
it is possible that the volunteers were not completely still 
during each experiment.

Different body morphologies would also effect the 
collected signal, as different body shapes would make 
better or worse mechanical contact with the electrodes. 
Poor contact could result in only part of the electrode 
making mechanical contact with the subject, reducing the 
effective area of the electrode.

Figure 7: Working value compared to the worn material type. The 
working value is the percentage of the datapoints obtained from 2 min 
of recorded data where the QRS complex could be identified correctly

Figure 8: Relative electrical permittivity of different materials 
compared to: (a) Average signal‑to‑noise ratio, with the associated 
standard deviation shown by the error bars. (b) Working value. Please 
note that the 70% viscose, 30% cotton and the 70% Bamboo‑Viscose 
mix, 30% cotton datapoints have not been included

ba
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For this study, the processing and recording 
hardware/software was used to select the optimal pair of 
electrodes for each participant (based on SNR). Of the 
16 possible combinations of electrodes [for the electrode 
arrays in Figure 2a-e] only four combinations were selected 
from twenty experiments. L1‑R1 (selected five times), 
L1-L3 (selected 11 times), L2-R3 (selected three times), 
and L2-R4 (selected once). Generally speaking, the 
electrode selection did not change for a given participant 
for different electrode sizes. This suggested that the 
functionality of electrodes of different sizes was not 
effected by their position on the back.

No clear relationship between the electrode area and 
SNR could be identified. While the results in Figure 4 
did not suggest a favorable electrode design, the poor 
performance seen with small electrodes for Subject 
4 [Figure 4] suggested that in some cases, small 
electrodes were undesirable. Therefore, an intermediate 
electrode size was most desirable (18.0 cm2, 24.0 cm2, 
or 44.2 cm2).

Discussion on the effects of clothing
There was no observable relationship between the 
material’s relative electrical permittivity and the SNR 
(or working value) and direct skin contact resulted in a 
lower working value than with various worn interface 
materials: this suggested that the dominant factors in the 
quality of the obtained signal were the mechanical contact 
between the subject and the seat, and motion artifacts.

CONCLUSION

The purpose of  this study was to understand the design 
rules for a textile, seat-based, HR monitoring system, 
where skin contact with the subject was not necessary, 
by using capacitively coupled electrodes. This empirical 
study focused on optimizing the textile electrode size and 
understanding the effect of  clothing between the subject 
and electrodes, both of  which are factors that affect the 
capacitive coupling.

The results of the experiments demonstrated that 
electrode size had little effect on the quality of the signal 
obtained for electrodes with areas ranging between 7 and 
162 cm2. The interface clothing between the body of the 
subject and electrodes was, in most cases, seen to have 
little effect in the quality of the obtained signal (SNR). It 
was proposed that the dominant factors in the quality of 
the obtained signal were mechanical contact between the 
subject and the seat, and motion artifacts.

Overall, this study has presented important empirical data, 
testing two key parameters in the design optimization of a 
textile HR monitoring system. Ultimately, this knowledge 
was implemented in designing, and better understanding 
the boundary conditions for operating, a seat for 
monitoring the HR and HRV of the aircrew [Figure 9].
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