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Abstract 

In most countries, buildings are responsible for significant energy consumption where space 

heating and air conditioning is responsible for the majority of this energy use. To reduce this 

massive consumption and decrease carbon emission, thermal insulation of buildings can play 

an important role. The estimation of energy savings following the improvement of a building’s 

insulation remains a key area of research in order to calculate the cost savings and the payback 

period. In this paper, a case study has been presented where deep retrofitting has been 

introduced to an existing building to bring it closer to a Passivhaus standard with the 

introduction of insulation and solar photovoltaic panels. The thermal performance of the 

building with its improved insulation has been evaluated using infrared thermography. 

Artificial intelligence using deep learning neural networks is implemented to predict the 

thermal performance of the building and the expected energy savings. The prediction of neural 

networks is compared with the actual savings calculated using historical weather data. The 

results of the neural network show high accuracy of predicting the actual energy savings with 

success rate of about 82% when compared with the calculated values.  The results show that 

this suggested approach can be used to rapidly predict energy savings from retrofitting of 

buildings with reasonable accuracy, hence providing a practical rapid tool for the building 

industry and communities to estimate energy savings. A mathematical model has been also 

developed which has indicated a life-long monitoring will be needed to precisely estimate the 

benefits of energy savings in retrofitting due to the change in weather conditions and people’s 

behaviour.  

 

Keywords: Artificial Intelligence; Neural Networks; Building thermal performance; Wall 

insulation; Infrared thermography; Deep retrofitting. 

 

1. Introduction  

With the ongoing increase in the world’s population and the use of technology, worldwide 

energy demand is increasing [1]. However, the reserve of fossil fuel, currently the most 

common source of energy, is limited. Therefore, it is not only necessary to find alternative, 

ideally renewable, sources of energy but also it is important to develop strategies for reducing 

energy consumption, particularly in buildings. The Paris Agreement to mitigate the climate 

change impact sets the target of keeping the global temperature increase below 2oC of the pre-

industrial stage [2] with the aspiration to keep the temperature increase below 1.5oC. Moreover, 
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the UK Government’s Climate Change Act (2008) [3] sets a target of reducing greenhouse gas 

emissions to 80% of the 1990 level by the year 2050. In view of achieving these targets, the 

Committee on Climate Change [4] recommended that policies should be implemented to make 

new buildings highly energy efficient as well as to upgrade existing buildings’ thermal 

insulation. According to the UK Green Building Council [5], the infrastructure industry 

controls 16% of the UK’s total carbon emissions, and 37% of the UK’s total carbon emissions 

are related to the use of infrastructure. Buildings consume 20% of overall energy produced 

worldwide [6] and in the UK domestic energy consumption is 27.2% of overall energy demand 

[7]. Space heating and hot water is responsible for 80% of overall household energy 

consumption [8] and heating of residential buildings in the UK is responsible for about 17% of 

energy related CO2 emission [9]. The UK Government is going to adopt strategies for limiting 

greenhouse gas emissions from the built environment to half of the 1990 level by 2050 [10]. In 

general, it is more effective to reduce the energy demand than to increase the amount of energy 

production, both economically and environmentally [11]. Therefore, it is necessary to focus on 

developing strategies to reduce energy consumption in buildings and, in particular, in existing 

buildings.  

Insulation plays an important role in this case by reducing heat loss through the building 

elements, and consequently reducing the burning of natural resources, such as gas and coal, for 

electricity generation [12]. The effectiveness of insulation depends on the climate, type of 

insulation and material used for insulation. In warm regions, space cooling is the central focus 

during summer, whereas space heating in winter is the major concern in cold climatic regions. 

Kim and Moon [13] have found that if the U-value of a wall is decreased from 0.57 W/m2K to 

0.14 W/m2K by improving wall insulation, it could reduce energy consumption by 25.5% for 

space heating in cold climate areas in the USA. However, in warm climate areas in the USA, 

reduction in energy consumption for cooling due to the similar improvement of wall insulation 

is around 0.14%. Observing the thermal performance of Irish buildings, Byrne et al. [14] have 

concluded that cavity wall insulation can reduce heat flux through walls by 50% to 52%; and 

additional external insulation may reduce the heat flux further by 48% to 60%. In the same 

way, Lee et al. [15] have observed that insulation significantly reduces energy consumption for 

heating; however, the reduction in energy consumption for cooling depends on the internal heat 

gain as highly insulated buildings with limited ventilation tend to overheat in summer. Berger 

et al. [16] demonstrated that additional external insulation in Austrian buildings increases the 

cooling energy demand in summer slightly; however, the large reduction in heating energy 

demand in winter outweighs this. On the other hand, Fang et al. [17] have found that external 

walls made of hollow bricks and insulated with 30mm extruded polystyrene reduce the energy 

consumption by 23.5% for air-conditioning compared to uninsulated solid walls in a tropical 

climate during summer. Derradji et al. [18] also have given evidence of external insulation 

being more effective in reducing energy consumption for cooling during summer than heating 

during winter in Algeria. Therefore, it can be concluded that insulation plays an important role 

in reduction of energy consumption during both hot summer and cold winter periods in almost 

all climatic regions although, the effectiveness of insulation varies at different climate zones. 

 

Depending on the building’s surface where the insulation is applied, it can be classified as 

external insulation or internal insulation. Kossecka and Kosny [19] have showed that external 

insulation is more effective than internal insulation in different climate zones in the USA. 

Kolaitis et al. [20] also have found that buildings with external wall insulation of 80 mm 

Expanded Polystyrene consume 4% to 10% less energy than buildings with internal insulation 

of the same thickness and material in the same weather conditions. They have also stated that, 
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considering the space cooling only, the energy consumption with internal insulation is 

marginally less than the energy consumption with external insulation of similar thickness. 

However, for space heating the energy consumption with internal insulation is substantially 

larger than that with external insulation. On the contrary, Wang et al., [21] have presented that 

internal insulations are the most suitable type to reduce energy consumption during winter and 

summer in residential buildings of Chongqing city in China. Reilly and Kinnane [22] also have 

shown that internally insulated building envelopes of Passivhaus standard consume 10% less 

energy than that of an external insulated building envelopes of the same standard. Although 

some researchers [21, 22] got analytical results in favour of internal insulation, it has the 

drawback of reducing available space inside buildings. Furthermore, considering thermo-

physical properties of wall insulation, such as time lag and decrement factor, external insulation 

has been found to have a better performance than internal insulation and cavity wall [23]. 

Considering the heat storage property of insulation material, Long and Ye [24] have found that 

external wall insulation has significant influence on energy consumption conversely, internal 

insulation has almost no influence in this case. Turning to dynamic insulation, Menyhart and 

Krarti [25] have demonstrated that dynamic insulation in an external wall is also useful to 

reduce energy consumption for cooling and heating; however, it is more appropriate in the 

regions where there is a high temperature fluctuation between winter and summer. Other than 

wall insulation, floor and loft insulation also assists in reducing energy consumption. Although 

floor insulation may increase the cooling energy demand during the summer period, it 

significantly reduces the heating energy demand during winter, and eventually the net energy 

savings for both heating and cooling is around 5.5 kWh/m2/year [26]. 

 

As part of the available technology, infrared thermography has been successfully used for the 

last five decades to monitor building’s thermal performance [27]. Infrared thermography is a 

method of identifying heat radiation from any object. According to Stephan Boltzmann’s law 

the net heat transfer due to radiation can be expressed as:  

𝐸 = 𝜀𝑘(𝑇4 − 𝑇𝑐
4)     (1) 

Where E is the net heat transfer, ε is the emissivity, k is the Stephan Boltzmann’s constant, T 

is the surface temperature and Tc is the surrounding temperature respectively. The value of k is 

usually taken as 5.67x10-8 W/m2K4. The assumption for equation (1) is that the object will 

behave as either a black body for emissivity equal to 1 or a grey body for emissivity less than 

1; however, we assume that the object will not behave as a non-grey body. It has been  assumed 

that the emissivity value will be constant within the working temperature range and within the 

spectral range of the camera, which is 7.5-13 μm [28]. In general, the emissivity of a brick wall, 

doors and windows ranges between 0.85 to 0.95 [29]; however, the emissivity of a low 

emission glass  window is less than 0.07 [30]. An infrared image of a building can reveal heat 

losses through the building’s envelope. For a given building, if the inside temperature is higher 

than the outside temperature, there will be a net heat transfer to the outdoor environment in the 

form of radiation and convection. In the case of a higher outside temperature and lower inside 

temperature, the mechanism is reversed. The convection heat flux can be quantified by 

multiplying the temperature difference between surface and environment with the heat transfer 

coefficient of convection as expressed below [31]: 

𝐻 =  𝛼𝑐(𝑇𝑠 − 𝑇𝑎𝑖𝑟)     (2) 

Where H is the convection heat flux, αc is the heat transfer coefficient of convection, Ts is the 

surface temperature and Tair is the environmental temperature. An infrared camera captures the 

infrared radiation emitted from a surface, which is the combination of three emissions namely: 
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emission from that surface, reflection of the surroundings from the surface and emission form 

the atmosphere. Combining these three, the surface temperature 𝑇𝑠 can be calculated by using 

the following expression [32]: 

𝑇𝑠 =  √𝑊𝑡𝑜𝑡−(1−𝜀𝑠)𝜏𝑎𝑡𝑚𝑘(𝑇𝑟𝑒𝑓)
4

−(1−𝜏𝑎𝑡𝑚)𝑘(𝑇𝑎𝑡𝑚)4

𝜀𝑠𝜏𝑎𝑡𝑚𝑘

4

                              (3) 

Where 𝑊𝑡𝑜𝑡 is the total radiation received by the camera, 𝜀𝑠 is the emissivity of the surface, 

𝜏𝑎𝑡𝑚 is the transmittance of the atmosphere, k is the Stephan Boltzmann’s constant, 𝑇𝑟𝑒𝑓 is the 

reflective temperature and 𝑇𝑎𝑡𝑚 is the atmospheric temperature. As the value of 𝜏𝑎𝑡𝑚 is close 

to 1, the effect of atmospheric temperature is negligible.  

 

 

Figure 1: An infrared image of a building in Nottingham UK. 

An infrared image of a building in the UK is shown in Figure 1, with clear sky and an average 

ambient temperature of about -1oC. The areas of higher surface temperatures shown in the 

image expose the poor quality of wall and window insulation as well as air infiltration between 

the roof and the walls. Furthermore, the warmer structure of the chimney represents heat losses 

due to the flow of hot air through the chimney, which may be caused by the flue gas from a gas 

fire. Infrared thermography has a wide range of applications in buildings and they range from 

evaluating thermal bridging, air leakage, and missing insulation to detection of hot and cold 

pipes [33]. It is typically useful for measuring a building’s thermal performance even in non-

steady conditions [34]. The infrared radiation propagates through air for a short distance and 

hence, it is easier to measure a building’s wall surface temperature than with any other methods 

[35]. In-situ measurement of building heat dispersion using infrared thermographic is a very 

simple and useful tool for quick assessment of building’s thermal performance [36]. Albatici, 

Tonelli and Chiogna [37] have argued in favour of using infrared thermography for conducting 

quick thermal performance surveys of existing buildings prior to adopting an investment policy 

for energy retrofitting. Al-Habaibeh and Siena [38] have utilised infrared thermography to 

estimate the energy savings in buildings due to improved insulation. Al-Habaibeh, Medjdoub, 

and Pidduck [39] have also showed the use of thermography to compare the heat loss through 

openings of different door designs. Bienvenido-Huertas et al. [40] have used infrared 

thermography for characterising the thermal performance of a building façade. Furthermore, it 

could also be used to investigate transient temperature response behaviour over the time [41]. 

 

Different Artificial Intelligence (AI) based techniques have been used in the prediction of 

energy consumption in buildings, and among those  methods the Artificial Neural Network 
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(ANN) is the most widely used one [42]. ANN is a mathematical model that mimics the 

biological nervous system to process information. It consists of several neurons organised in 

different layers namely input layer, output layer and one or more hidden layers. The input layer 

process input data for the network and the output layer delivers the results. The hidden layer(s) 

are mainly responsible for learning the characteristics of input data and the relationship 

between inputs and outputs. The neurons are composed of weights, biases and a transfer 

function.  The network learns the desired feature from given training data sets and uses the 

knowledge later on to process unknown inputs. ANN can be used to predict energy 

consumption patterns of a pre-retrofitted building to compare the energy savings after 

retrofitting [43]. In terms of predicting energy consumption due to space heating in commercial 

buildings, ANN has been found to achieve 94% precision [44]; while for predicating cooling 

load, it drops down to 90% [45]. Furthermore, using a complex network architecture by 

combining different types of neural networks, the prediction accuracy of heating energy 

demand could be as high as 98% [46]. Although there are software available to forecast energy 

consumption in buildings with reasonable accuracy [42] [43], ANN can provide a simpler 

solution for prediction with less input data and similar accuracy. For instance, Ben-Nakhi and 

Mahmoud [47] have used a regression neural network to predict hourly cooling load and found 

very strong agreement with the prediction made using a building energy simulation software 

namely ESP-r. In another study for predicting daily energy consumption, Neto and Fiorelli [48] 

found that ANN can produce very close results to the estimation made by the energy simulation 

software EnergyPlus. Martellotta et al. [49] have also conducted analogous study to predict 

hourly energy usage of houses modelled on EnergyPlus software, and in 92% cases , they found 

ANN’s prediction accuracy is over 95%. Similar outcome has been found while comparing the 

ANN result of cooling load prediction with TRNSYS software [50]. The work of Naji et al [51] 

has also reinforced the fact that ANN produce close prediction to the estimation made by 

EnergyPlus software for residential buildings’ energy consumption. The advantage of ANN for 

predicting buildings’ energy consumption over the conventional statistical methods is its 

capability of mapping complex relationship between inputs and outputs without the 

requirement of any prior knowledge about the input-output relationship [52]. Modelling heat 

losses through a building’s wall contains a non-linear and complex relationship among the 

parameters. ANN based thermal model is found to have a very good capability of nonlinear 

fitting in such complex cases [53].  

 

Literature has shown significant success of using ANNs in energy consumption prediction; 

however, limited research has been found in relation to integrating infrared thermography with 

neural networks to predict future energy consumption. Therefore, this paper includes a novel 

research where infrared thermography of a deep retrofitted building is combined with deep 

learning neural networks to estimate the future effectiveness of wall insulation in terms of 

energy savings. The key aspects of this research work are: 

• Evaluating the thermal wall characteristic of insulated and uninsulated buildings using 

infrared thermography. 

• Estimating energy savings due to retrofitting of a building with wall insulation. 

• Predicting future heat losses through walls in insulated and uninsulated buildings using 

ANN from infrared data and historical weather data. 

• Evaluating the performance of ANN against calculated heat losses through walls in 

insulated and uninsulated buildings. 

The next sections of this paper include the methodology of the research work followed by a 

case study in section 3. Later in section 4 the results of infrared thermography and the ANN 
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analysis are presented and discussed. The limitation of the study is stated in section 5 followed 

by the concluding remarks in section 6. 

 

2. Methodology 

In this work, a deep retrofitted building in the UK is studied using infrared thermography and 

temperature sensors to examine the thermal performance of the building due to improved 

insulation. It is then compared with the thermal performance of a standard building in the same 

area to estimate the energy savings of the retrofitted building.  Figure 2 shows the flow chart 

of the methodology used for this case study. At the beginning, several infrared images of the 

retrofitted building are captured to analyse the thermal performance. Infrared images of a 

nearby non-insulated building are also captured for comparison. FLIR E25 thermal camera is 

used to capture the infrared images and those images are taken on 28th and 29th March at 11:15 

pm and 9:30 am respectively. The ambient temperature values are found to be 9oC and 7oC, 

and the indoor temperatures are measured at 19o C and 20oC respectively. The early morning 

(6 am) temperature is found approximately to be 4oC. Then, the wall temperature values are 

extracted from infrared images of both insulated and uninsulated walls. The total heat 

dissipated from the external wall surface due to convection and radiation is calculated by 

combining equations (1) and (2),which is expressed as in equation (4) below [54]. 

 

Figure 2: The flow chart of the proposed methodology. 

 

𝑃 = 5.67𝜀𝑡𝑜𝑡 ((
𝑇𝑖

100
)

4

−  (
𝑇𝑜𝑢𝑡

100
)

4
) + 3.8054𝜈(𝑇𝑖 −  𝑇𝑜𝑢𝑡)   [W/m2]    (4) 

Where P is the total thermal power, εtot is the emissivity on the entire spectrum, ν is the wind 

speed, Ti is the wall surface temperature and Tout is the external environment temperature. The 

coefficient of convection is replaced with wind speed according to Jurges’ equation [54]. 

Considering a common brick wall, the emissivity value is assumed at 0.93 [55]; and the average 

wind speed is assumed to be 2 m/s in this case based on past studies [56][38]. If 1W/m2 heat is 

radiated for one hour, this will be equivalent to 1Wh/m2. Therefore, the total heat loss in any 

given month i through an area of one per square meter of a wall, 𝑃𝑖, can be expressed as: 

Step 1: Extract wall temperature from Infrared Image.

Step 2: Calculate monthly heat losses using  historical 
temperature and wind speed data for N years.

Step 3: Split the calculated heat losses into training data set [ 1 to 
n years] and comparison data set [(n+1) to N years].

Step 4: Train ANN with training data set.

Step 5: Predict heat losses for (n+1) to N years.

Step 6: Determine mean value of 25 iterations.

Step 7: Find error between calculated and predicted heat losses 
for (n+1) to N years.

End

Repeat step 

3 to 7 for

n= 2 to N-1 

times

Repeat step 

4 and 5  for 

25 times
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𝑃𝑖 = 𝑃 × 24 × 𝐷                                                 (5) 

Where D represents the number of days in a month. In order to predict future heat losses ANN 

is used in this paper and the heat losses obtained using equation (5) to validate the prediction. 

The advantage of ANN is that rather than calculating future heat losses using forecasted 

temperature in equation (4), the future heat loss can be estimated quickly and thereby 

eliminating the uncertainty associated with the temperature forecast. The above calculation can 

be extended to determine monthly heat losses for N years using historical climate data of that 

locality.  

2.1 Optimum number of years to monitor a building 

The variation in total heat losses in different years will depend on the variation in weather 

conditions and occupant’s behaviour leading to the question of what should be the optimum 

number of years (N) a building should be monitored to estimate energy savings.   

To address this, let 𝐸𝑖  be the energy consumption of a building in a year, where energy 

consumption can mathematically be expressed as a function of weather and people’s behaviour 

assuming the building characteristic is fixed.  

Hence :  𝐸𝑖 = 𝑓(𝑤, 𝑏);   where w is the weather condition and b is people’s behaviour.  

Let, ∑ 𝐸𝑖
𝑁
1  is the energy consumption over N number of years; hence, the average of annual 

energy consumption will be 
∑ 𝐸𝑖

𝑁
1

𝑁
 . 

If we choose to take another number of years M such that 𝑀 = 𝑁 + 𝑘, where 𝑘  is an integer 

and 𝑘 ≥ 0; then average of annual energy consumption will be  
∑ 𝐸𝑖

𝑀
1

𝑀
. 

When N reaches its optimum value then the addition of further years will not change the 

average annual energy consumption; or simply  

 
∑ 𝐸𝑖

𝑁
1

𝑁
 = 

∑ 𝐸𝑖
𝑀
1

𝑀
         (6) 

Hence  
𝑀

𝑁
=

∑ 𝐸𝑖
𝑀
1

∑ 𝐸𝑖
𝑁
1

=  
(𝐸1+𝐸2+𝐸3+ …………+𝐸𝑀)

(𝐸1+𝐸2+𝐸3+ …………+𝐸𝑁)
                  (7) 

Let,  M =N+k  where k  is the number of additional years, this gives: 

 
𝑁+𝑘

𝑁
=

(𝐸1+𝐸2+𝐸3+ …………+𝐸𝑁+𝐸𝑁+1+𝐸𝑁+2+ …………+𝐸𝑁+𝑘)

(𝐸1+𝐸2+𝐸3+ …………+𝐸𝑁)
=

∑ 𝐸𝑖+∑ 𝐸𝑖
𝑘
𝑁+1

𝑁
1

∑ 𝐸𝑖
𝑁
1

   (8)   

Simplifying equation (8) leads to: 

 1 +
𝑘

𝑁
= 1 +

∑ 𝐸𝑖
𝑘
𝑁+1

∑ 𝐸𝑖
𝑁
1

                                                                    (9) 

Subtracting 1 from each side in equation (9): 

𝑘

𝑁
=

∑ 𝐸𝑖
𝑘
𝑁+1

∑ 𝐸𝑖
𝑁
1

      (10)   

Re-arranging equation (10) leads to: 
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∑ 𝐸𝑖
𝑘
𝑁+1 = (

𝑘

𝑁
) ∑ 𝐸𝑖

𝑁
1                                               (11)  

Hence from equation (10), as k and N are  finite numbers, this makes the equality in the equation 

is  highly unlikely  as it is almost impossible to get identical weather condition and occupants’ 

behaviour due to the stochastic and probabilistic nature of the variables to satisfy equation (10) .  

 

Since by definition:   
𝑀

𝑁
=

𝑁+𝑘

𝑁
      (12) 

If  𝑀 → ∞ then 𝑁 → ∞ as k is a constant and hence, 

   lim
𝑁→∞

𝑁+𝑘

𝑁
=  lim

𝑁→∞

𝑁

𝑁
+

𝑘

𝑁
𝑁

𝑁

  =       lim
𝑁→∞

1+
𝑘

𝑁

1
        =1              (13) 

 

Hence from (12) an (13) this leads to 
𝑀

𝑁
= 1 or simply: 

 𝑀 = 𝑁     (14) 

From (14) it can be concluded that as long as we have any finite number of years of monitoring 

the energy consumption of a building, it is not possible to guarantee equality of equation (8) 

given the changing nature of weather and people’s behaviour.  Therefore, from equation (8), k 

should be equal to zero. Hence only infinite number of years to monitor a building is the only 

guarantee to accurately quantify the energy savings and payback period. 

2.2 The implemented approach 

The current case study utilises eight years of mean historical temperature data of each month 

(from 2010 to 2017) extracted from the online sources [57] and [58]. The calculated heat loss 

data is split into two parts. First part is used for training and validating the ANN model, and 

the second part is used to compare the difference between ANN prediction and calculated heat 

losses. The first part of data set is randomly divided as 70% for training, 15% for validation 

and 15% for testing, which is the suggested settings of training and validation using Matlab 

software.  The ANN predicts monthly heat losses for exactly the same number of years as the 

second part of data. The training and prediction is repeated for 25 times to avoid overfitting 

and the mean value of 25 prediction is used to estimate the error. The error and percentage 

errors are calculated using equation (15) and (16) respectively. 

𝑒 = ∑(𝑌𝑖 − 𝑃𝑖)

12

𝑖=1

                                          (15) 

𝑒𝑝 =
𝑒

∑ 𝑃𝑖
12
𝑖=0

× 100%                                   (16) 

Here e is the error, ep is the percentage error, Y is the ANN predicted heat loss and P is the 

calculated heat loss from equation (5). To identify the overall performance of the ANN with 

different training data sets, the whole process of ANN training and prediction is repeated six 

times by gradually increasing the training data set from two to seven years. As a result, the 

ANN predicts heat losses for year three to eight. For example, when the ANN is trained with 

heat losses data from 2010 and 2011, it predicts heat losses for year 2012 to 2017; when the 
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ANN is trained with heat losses data from 2010, 2011 and 2012, it predicts heat losses for year 

2013 to 2017 and so on.   

 

Figure 3: The implemented ANN architecture. 

Figure 3 represents the ANN architecture used in this research work. The input and the output 

layers contain 12 neurons each as the input data set is composed of numerical representation 

of the months of the year, for several past years, and the output provides the respective heat 

losses of all those months for future years.  

 

Figure 4: The average performance of the ANN with different number of hidden layers and 

neurons within each hidden layer. 

To determine the best architecture of the ANN, the average performance is evaluated using 1 

to 5 hidden layers, containing 12, 18, 24, 30, 36, 42 and 48 neurons respectively within the 

hidden layers. Figure 4-a represents the average performance of the ANN containing 1 to 5 

hidden layers and Figure 4-b represents the average performance of the ANN with 12, 18, 24, 

30, 36, 42 and 48 neurons respectively in each hidden layer. Absolute Percentage Error (APE) 

has been considered as the performance measure of ANN which is presented in equation (17).  

𝐴𝑃𝐸 =
∑ |𝑌𝑖 − 𝑃𝑖|

12
𝑖=1       

∑ 𝑃𝑖
12
𝑖=0

× 100%                                  (17)    

 

1

2

3

24

1

2

12

1

2

12

1

2

3

24

1

2

3

24

Input Layer Output Layer
Hidden Layers

Insulated Wall Uninsulated Wall

Average ANN Performance for Different Number
of Neurons in Hidden Layers

Average ANN Performance for Different Number of 

in Hidden Layers

(a) (b)
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The first four years’ (2010-2013) data is used to train the network and the following four years’ 

data (2014-2017) is used to evaluate the performance for both insulated and uninsulated walls. 

As mentioned above, the training and evaluation is conducted 25 times to average the variation 

in different iterations. It has been found as shown in Figure 4-a, the APE drops significantly in 

the region between 1 and 3 hidden layers.  Then the drop is minor between 3 and 4, then he 

error is found to improve for the 5 hidden layers ANN. It can be argued that 5 hidden layers 

could be the best option. However, the calculation time significantly increases in case of four 

and five layers. Therefore, three hidden layer architecture will be the best compromise in this 

case. Figure 4-b shows that there is no significant change in APE with the increase of neurons 

in the hidden layers. However, as the number of neurons in the hidden layers are increased, the 

calculation time significantly increases. Previous studies have shown that doubling the number 

of input neurons for the hidden layers would achieve the best performance [59] and [60]. Based 

on the above analysis and review of past studies, the ANN with three hidden layers and 24 

neurons in each layer has been carefully chosen in this study. Hyperbolic tangent sigmoid 

transfer function is used in the neurons of hidden layer and, Levenberg-Marquardt back-

propagation algorithm is used for training the network. In this paper the ANN are used to 

predict the future thermal performance and equation (4) is used to validate the prediction using 

real data. 

 

3. The Case Study 

An early 19th century house in the UK has been deep retrofitted in accordance with Greening 

the Box® design concept to reduce the energy cost as well as the dependency on fossil fuel, 

aiming to minimise greenhouse gas emissions to zero [61]. The location of the house in aerial 

view is shown in Figure 5-a, and Figure 5-b and 5-c show the plan of the first floor and ground 

floor. The entrance to the house from the street is on the north-east side. There is a solar 

photovoltaic array with the capacity of 5.5 kWp on the roof of the house, which consists of 

nine panels, as shown in Figure 5-a and 6-a. 

 

 

 

 

 

(a)     (b)     (c) 

Figure 5: (a) Location of the house and roof top solar panel [source: Google map], (b) First 

floor layout, (Reproduced from [62] ) (c) Ground floor layout.(Reproduced from [63]) 
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As a part of the refurbishment, all bedrooms are relocated to the ground floor; and the kitchen, 

office and living room are moved to the first floor. The south elevation of the house in Figure 

6-a shows that the ground floor of the two-storied building is well below the adjacent street 

level and the first floor is slightly below street level. Figure 6-b shows the entrance of the house 

from the east side. The house initially had an oil-fired central heating system which has been 

replaced with an under floor electric heating system and a wood burning secondary fireplace. 

 

       

   (a)      (b)   

Figure 6: (a) South elevation of the house with entrance to the house from street level on the 

right hand side; (b) house entrance from the east side 

The solid walls of the house, before retrofit, had no insulation. To improve the insulation of 

the building 200 mm thick Styrofoam™A has been externally applied to the external walls as 

well as underneath the concrete slab of ground floor [61]. Styrofoam™A is an extruded 

polystyrene foam and has very good insulating capability (R-value circa 6.45 m2K/W).  

 

Figure 7: A cross-section in one of the walls showing the external insulation. 

The cross section of the original wall brickwork and thickness of new cladding and wood batten 

holding the cladding in place is shown in Figure 7. The thickness of the solid walls was 

200 mm
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approximately 330 mm before refurbishment resulting in a total thickness of over 500 mm post-

refurbishment (Figure 8). In order to achieve net positive solar gain, the cumulative window 

area on the south elevation is increased from 3.9 m2 to 9.3 m2 and on the north side is reduced 

from 11.3 m2 to 6.1 m2 [64]. Therefore, the net glazed area is increased by 0.2 m2 which is an 

increase of only 1.32% from the initial glazed area. All the new windows are fitted with double 

glazed glass. After retrofitting, the thermal performance of the house is monitored using 

infrared thermography.  

 

  

(a)                                            (b)    (c) 

Figure 8: The post-refurbishment wall thickness as seen from the inside. 

 

4. Result and Discussion 

4.1 Discussion on infrared thermography result 

The infrared images of the building have shown a significant improvement in thermal 

performance due to the insulation. The visual image (Figure 9-a), and the infrared image 

(Figure 9-b), taken from the east side of the house, shows the position of a chimney and heat 

loss through it. The bright colour of the chimney signifies the high heat loss through the 

chimney with infrared radiation reaching saturation. In contrast, the dark colour of the wall 

section shows that there is less heat loss through the wall section. 

 

Figure 9: An infrared image showing heat loss through chimney compared to the insulated 

wall; (a) visual image and (b) infrared image from the east side. 

According to the temperature scale on the right hand side of the infrared image, the temperature 

of the chimney is around 12oC and the temperature of the wall section is around 5oC. However, 

more detailed analysis shows that the temperature at the top portion of the chimney is about 
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30.6oC and the temperature of the darkest part of wall is 3.6oC. These discrepancies are due to 

image saturation.  

 

Figure 10: Thermal images of different portions of walls and windows (infrared and visual 

image from the north-east side). 

Figure 10 and 11 show the heat loss through the walls and windows from the north elevation. 

Different sections on the visual image are shown with rectangular frames and the corresponding 

infrared image of each section is indicated.  

 

Figure 11: Thermal images of different portions of wall and windows (infrared and visual 

image from north west side). 

The image in Figure 10 is taken from the north-east side of the house and Figure 11 from the 

north-west. The bright colour of the windows in the infrared images shows the higher heat loss 

through the windows, and the temperature of the window glazing is about 9oC according to the 

temperature scale shown on the image. On the other hand, the insulated wall sections are darker 
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in colour than the windows, which indicates lower heat losses through the wall section. The 

wall temperature is around 5oC according to the scale shown in Figure 11. Figure 12 includes 

visual and infrared images taken from the south-east corner of the house, and the infrared image 

reveals the heat losses through the wall and windows. Again, the bright colour of the windows 

represents high heat losses and the dark colour of the insulated wall section represents lower 

heat losses. The temperatures, according to the scale given, of the window and the wall sections 

are approximately 9oC and 5oC respectively.   

     

Figure 12: The heat loss through windows (infrared and visual image from south east side). 

Figure 13 includes the visual as well as infrared images of different sections of the house taken 

from the south side. As in the previous infrared images, the high heat losses through the door, 

windows, gaps around the door frame and chimney are represented in bright colour and the 

darker colour of the insulated wall sections represent lower heat losses. The temperature of the 

gap around the door frame is approximately 12oC and the temperatures of the door and window 

sections are approximately 9oC according the scale shown on the right hand side.  

 

 

Figure 13: Thermal imaging of different portions of walls and windows (Infrared and Visual 

image from south side). 
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The wall temperature varies from 4oC to 5oC, on an average, in different places according to 

the same scale although the lowest temperature is found to be 3.6oC by the infrared image. 

Comparing the bright and dark sections of the infrared images and interpreting the respective 

temperatures from the scale associated with those images it can be clearly recognised that the 

externally insulated wall significantly reduces heat losses.  

 

 

Figure 14: The 3D temperature profile of a standard building versus the insulated deep-

retrofitted building. 

In order to compare the thermal performance of the insulated wall with that of a wall of similar 

construction without insulation, the pixel by pixel temperature values are extracted from the 

infrared images of an uninsulated building and the insulated building. The IR image of the 

standard building is taken from a nearby building and at the same time as of the retrofitted 

building. These values are plotted in 3D, next to each other, Figure 14, using Matlab. The 

temperature profile reveals that the uninsulated wall’s surface temperature is around 10oC and 

the insulated wall’s surface temperature is around 4oC.  Here the average temperature of all 

points in the wall sections are considered. 

To further distinguish the thermal performance of the uninsulated building and insulated 

building, the temperature profiles of both walls are constructed along a line as shown in Figure 

15. Line AB is constructed on the infrared image containing a section of the standard building 

and line CD is constructed on the infrared image containing a section of the insulated building. 

The temperature values at every pixel along the lines AB and CD are extracted using Matlab. 

These temperature values are then plotted against every pixel. Figure 15 also shows the plotted 

curve of surface temperature against pixel position along line AB (red) and CD (blue), 

respectively. The temperature profile of line AB shows that the wall surface temperature mostly 

remains between 9oC and 10oC. The window-glazed section’s temperature is around 11oC. 

However, there is a sharp rise in temperature between pixels 150 and 200 possibly due to air 

leakage around a window’s opening. The temperature of that portion is 14oC; and it is assumed 

that the wall sections are homogenous and hence the average wall temperature is considered.  

Comparing with the early morning ambient temperature (4oC) it is clear that the wall and the 
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window of the standard building are radiating more heat. Conversely, wall surface temperature 

of the insulated building, which is close to ambient temperature, establishes the fact that there 

are very minor heat losses through the wall.   

 

Figure 15: Temperature profiles across the two buildings. 

 

As the surface temperatures of the doors and windows of the insulated building are higher than 

the ambient temperature, it will be expected that the heat losses in the insulated building occur 

mainly through doors and windows. In contrast, the temperature profile of line CD indicates 

that the wall surface temperature of the insulated building remains between 4oC and 6oC and, 

the double-glazed window section’s temperature is between 8oC and 9oC. The typical 

temperature values of wall and window sections extracted from different infrared images are 

summarized in Table 1. 

Table 1: Typical temperature values of wall and window sections extracted from different 

infrared images 

 Elevation of image Wall  

Temperature 

( oC) 

Window  

Temperature ( oC) 

Insulated  

Building 

East 5 9 

North east 5 9 

North west 5 9 

South east 5 9 

South 4 9 

Uninsulated 

Building 

 - 10 11 

 

To further understand the effect of insulation during summer, the internal and external 

temperatures of the house are recorded from 4th June to 10th June 2011. The internal 

temperature profiles of the three bedrooms, kitchen, living room and office are shown with the 
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external temperature profile for the above mentioned seven-day period in Figures 16-a to 16-f 

respectively.  

               

                                  (a)                                                                   (b) 

             

                                 (c)                                                                     (d) 

               

                                (e)                                                                          (f) 

Figure 16: The external and internal temperature profiles of the building from 4th June to 10th June 2011: 

(a) external temperature vs bedroom 01, (b) external temperature vs bedroom 02, (c) external 

temperature vs bedroom 03, (d) external temperature vs kitchen, (e) external temperature vs living room, 

(f) external temperature vs office. (reproduced from seminar presentation of “Greening The Box™ – 
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Retrofit of Hard to Treat Housing” by John Chilton and Amin Al-Habaibeh at Nottingham Trent 

University [65]. 

The maximum temperature, minimum temperature, average temperature and the range of 

variation in temperature for each case are shown in Table 2. It is found from the table that, in 

spite of the large variation in external temperature, the internal temperature shows a lower 

diurnal variation in all rooms. Figures 16-a, b and c show that all three bedrooms have lower 

variation in temperature than the living room, office and kitchen. This is for three reasons. 

Firstly, the ground floor rooms are less exposed to solar irradiation and, as a result, the heat 

gain is lower than the upper floor.   

Table 2:  The maximum, minimum and average temperatures of external environment, 

bedroom 01, bedroom 02, bedroom 03, kitchen, living room and office, from 4th to 10th June 

2011. 

  Rooms 

Maximum 

Temperature 

(oC) 

Minimum 

Temperature 

(oC) 

Average 

Temperature 

(oC) 

Range of  

Variation 

(oC) 

External  20.34 5.88 13.54 14.46 

Bedroom 01 20.92 18.87 20.03 2.05 

Bedroom 02 20.20 18.38 19.36 1.82 

Bedroom 03 19.31 17.76 18.63 1.55 

Kitchen 22.27 17.71 19.98 4.56 

Living Room 22.11 19.07 20.73 3.04 

Office  23.58 19.16 21.56 4.42 

 

Table 2 also reveals that the maximum and minimum temperatures of all three bedrooms are 

lower than those rooms on the first floor. Secondly, the bedrooms are likely to be occupied 

during the night only (typically about 8 hours), with sleeping occupants, and therefore the 

internal heat gain is low. Figures 16-d, e and f show the temperature variation in the kitchen, 

living room and office respectively. They have higher fluctuation in internal temperature 

compared to the bedrooms.  The highest variation in temperature is found in the kitchen and 

this is most likely because of cooking activities. The living room and office tend to be mostly 

occupied during the daytime and evening hours, hence the internal heat gain is higher than 

those of the bedrooms. A third possible reason is the natural buoyancy of warm air, which 

means that the first-floor rooms will tend to be warmer than those on the ground floor. In 

addition, the larger area of windows could also influence the heat gain during daytime. 

Furthermore, the temperature variation in bedroom 1 and bedroom 2 are slightly higher than 

that of bedroom 3 as bedroom 1 and bedroom 2 are south facing (Figure 5-c) and hence more 

exposed to solar irradiation. This could be also a reason for the higher temperature in the upper 

floor as the three rooms in the upper floor have more exposure to the external environment 

within the south side (see Figure 5-b). With the large variation in external temperature, the 

overall variation in internal temperature remains small and this indicates that insulation of the 

heavy masonry significantly contributes to maintain a steady internal temperature. It is 

observed in Figures 16-b and 16-c that the internal temperature of bedroom 2 and bedroom 3 

remain lower than the external temperature in the afternoons of 4th and 5th June. Hence, it can 

be said that a well-designed insulation in some cases could prevent houses from being extra 

warm in summer months as well. Using the maximum values of wall temperature from Table 

1 in equation (4), the estimated heat losses through the uninsulated wall is about 45.62 W/m2 

and the estimated heat losses through the insulated wall is about 7.61 W/m2.  The data in Table 

1 shows that at 4oC ambient temperature, the insulated wall surface temperature is 5oC and the 
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uninsulated wall surface temperature is at 10oC. Assuming the room temperature to be at 20oC 

for both buildings throughout the year, the external wall temperature of both walls will be 

similar to the ambient temperature when the ambient temperature rises to 20oC in summer. It 

is assumed in the analysis that double-glazed windows have the same performance for both 

buildings and there will be no air-conditioning. 

 

Figure 17: The relationship between the external ambient temperature and external wall 

temperature. 

The walls’ temperature for both buildings relative to different ambient temperatures can be 

obtained by using interpolation within this range as shown in Figure 17. The outdoor 

temperature varies day to day as well as at different times during the same day. To even out 

this variation, the hourly temperature of each day for a whole month is averaged and that 

monthly average temperature is used in this study. Considering the average temperature for 

each month during that year extracted from historical temperature data of that locality, and 

estimating wall temperature for both buildings from Figure 17, the net difference in heat losses 

between the two buildings are estimated in Table 3 using equation (5).  

Table 3: The estimated heat loss through insulated and uninsulated walls in different months 

of a typical year. 

 

Month Average 

External 

Temperature 

(oC) 

External Wall 

Temperature (oC) 

Heat Loss (kWh/m2) 

for whole month 

Difference 

in Heat 

Loss 

(kWh/m2) 

for the 

month 

Insulated 

Building 

Uninsulated 

Building 

Insulated 

Building 

Uninsulated 

Building 

Jan 4.50 5.47 10.31 5.49 32.91 27.42 

Feb 7.00 7.81 11.88 4.16 24.93 20.77 

Mar 7.40 8.19 12.13 4.46 26.76 22.30 

Apr 12.70 13.16 15.44 2.50 15.00 12.50 

May 13.20 13.63 15.75 2.41 14.44 12.03 

Jun 14.90 15.22 16.81 1.75 10.48 8.73 

Jul 16.00 16.25 17.50 1.42 8.49 7.07 

Aug 16.20 16.44 17.63 1.34 8.07 6.73 

Sep 15.60 15.86 17.25 1.51 9.04 7.53 

Oct 13.00 13.48 15.63 2.48 14.87 12.39 
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Nov 10.50 11.09 14.06 3.25 19.52 16.27 

Dec 6.80 7.63 11.75 4.67 28.03 23.36 

Total 35.44 212.54 177.10 

As the total heat loss through a building’s wall depends on the size and shape of that building, 

heat loss per square meter has been considered to compare between insulated and uninsulated 

walls.  Table 3 shows the heat loss through walls of the insulated and uninsulated building for 

each month as well as the difference in heat losses between the two buildings. According to 

Table 3, the energy savings due to retrofitting for 1 m2 of wall area is 177.10 kWh. Therefore, 

the energy savings for a typical three bedroom house with 120 m2 of wall area exposed to 

external environment will be 177.10  kWh m2⁄ × 120 m2 =  21,252 kWh . This implies 

around £2741.51 per annum of savings in electricity bills at a rate of 12.90 pence/kWh 

excluding VAT or, around £612.06 per annum of savings in gas bills at a rate of 2.88 

pence/kWh excluding VAT for the household during winter[66].  

 

4.2 ANN prediction of heat losses and energy savings 

The predicted heat losses for the years 2015, 2016 and 2017 by the ANN, that has been trained 

with the calculated heat losses of years 2010 to 2014, are shown in Figure 18. Figure 18-a, c 

and e represent the calculated and predicted output of the ANN for the heat loss profiles through 

the insulated wall for the years 2015, 2016 and 2017 respectively. Figure 18-b, d and f represent 

similar profiles of heat losses through the uninsulated wall for the above-mentioned years. It 

has been found from Figure 18-a and b that the ANN predicted the heat losses at higher levels 

than the calculated heat losses in December 2015 for both types of wall. The local historical 

temperature map, as in Figure 19, shows that 2015 has experienced a warmer December than 

the previous 5 years; hence, the calculated heat losses in December 2015 are less than that of 

the past 5 years. As ANN learns the features of the training data, it predicts higher heat losses 

than the calculated values based on the past 5 years of training data. However, 2016 and 2017 

experienced cooler December than 2015, and the ANN predicted heat losses of those periods 

at a closer level.  Now, the ANN is trained with heat losses data of years 2010 to 2015 and the 

prediction is made for years 2016 and 2017 for both types of walls, as shown in Figure 20.  The 

predicted profiles have shown a significant drop in heat losses in December 2016. However, 

with the inclusion of heat losses data from year 2016 for training, the predicted heat losses for 

December become very close to the calculated heat losses, see Figure 21. It is also noticed that 

in all profiles of Figure 18 that there is a small peak in the profiles of ANN predicted heat losses 

in August. According to Figure 19, the average temperature in August in 2015 and 2016 is 

found higher than the average of the previous 5 years.  As a result, the calculated heat losses in 

year 2015 and 2016 are less than those of the previous 5 years during August. This is not 

reflected in the ANN prediction of heat losses because ANN depends on the data pattern of the 

training data set. The temperature in August of 2017 is found to be near the average temperature 

in August of the years 2010 to 2014; and hence, the ANN predicted similar heat losses in 

August when compared to the calculated values (see Figure 18-e and f). The inclusion of further 

heat losses data from years 2015 and 2016 for training has altered the situation, where the 

predicted heat losses are closer to the calculated heat losses for the year 2016 and less than 

those for the year 2017 (Figure 20 and 21). There are further aberrant predictions found in 

September 2017 as in Figure 21. This is due to adding the heat losses data from the year 2016 

in the training data set. The month of September in 2016 is found to be the warmest among all 

Septembers from year 2010 to 2016. Hence, the calculated heat losses for September 2016 is 

the least among all other Septembers in that period. The ANN replicates this feature in the 

prediction of heat losses for 2017’s September; and hence, elicit noticeable differences.  
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Figure 18: The comparison between calculated heat loss and ANN simulated heat loss 

through the insulated and uninsulated wall for years 2015, 2016 and 2017. 
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Figure19: The historical monthly average temperature map from year 2010 to 2017 of that 

locality.  

 

Figure 20: The comparison between the calculated heat loss and ANN predicted heat loss 

through the insulated and uninsulated wall for years 2016 and 2017. 
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Figure 21: The comparison between the calculated heat loss and ANN simulated heat loss 

through the insulated and uninsulated wall for the year 2017. 

 

From the analysis of above figures, it has been found that ANN predictions of heat losses for 

both insulated and uninsulated walls show good agreement with the calculated heat losses in 

most of the cases, though there are some nonconformities in some predictions. These 

nonconformities arise due to the variation in the calculated heat losses data, which is not exactly 

featured by the training data sets. Furthermore, the position of predicted curves in Figure 18, 

20 and 21 versus the training data confirms that there is no overfitting in the prediction process. 

Figure 22 represents the comparison between the calculated yearly heat losses and ANN 

predictions of yearly heat losses with different training data sets for the insulated and 

uninsulated walls. As data from 2010 and 2011 are used for training, no predictions are possible 

for those two years. The highest number of predictions are made for 2017 as this is the only 

year that is not included in the training process. It is noted in Figure 22 that the ANN predicted 

heat losses are slightly higher than the calculated ones in 14 out of 21 cases for each wall type, 

which signifies the tendency of ANN to overestimate the heat losses in this case. However, one 

consistency that is also noticed from both figures that if the ANN overestimates the heat loss 

for the insulated wall, it also overestimates the figure for the uninsulated wall; and similarly 

for the underestimation process. This is also noted in Figure 23, which shows the percentage 

error (𝑒𝑝) in the prediction made by the ANN with different training data sets.  The direction 

of the error is the same in each case for both walls. Figure 23 also reveals that the range of error 

for the insulated wall is -13% to +15%, and for the uninsulated wall is -14% to +17.5%. The 

uninsulated wall has higher error range than the insulated wall, as the heat losses for the 

uninsulated wall are much higher. Considering the highest limit of error range, it can be said 

that the ANN can predict heat losses through building’s wall with at least 82.5% accuracy 

regardless of the wall type and training data size. However, the pattern of percentage error is 

not conclusive enough to identify the type of wall. Figure 24-a represents the absolute values 

of percentage error (|𝑒𝑝|) in each year’s predictions for the insulated and uninsulated walls and 

Figure 24-b represents the average |𝑒𝑝| per year of the predictions made by the ANN with 

different training data sets. From these two figures, it is observed that there is no correlation 

between the prediction error and the size of the training data set. For instance, if we consider 

year 2017 in Figure 24-a, the percentage error of the ANN trained with three years of data is 

higher than that of the ANN when trained with two years of data. However, the percentage 

(a) (b)
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error of the ANN trained with five years of data is less than that of the ANN when trained with 

four years of data. The percentage error again rises when the ANN is trained with six years of 

data followed by a drop when it is trained with seven years of data. Figure 24-b also conveys 

similar information as the absolute percentage error per year is found higher for the ANN when 

trained with three years of data than for the ANN trained with two years of data. On the other 

hand, the absolute percentage error per year becomes less for the ANN trained with five years 

of data than for the ANN trained with four years of data. Again, the percentage error per year 

rises when the ANN is trained with six years of data. It is also noticed that the absolute 

percentage error for the uninsulated wall is higher than that of the insulated wall in majority of 

cases. 

 

 

(a) 

 

(b) 

Figure 22: The comparison between the calculated yearly heat losses and ANN predictions of 

yearly heat losses with different training data set for (a) insulated wall; and (b) uninsulated 

wall. 
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       (a)          (b)  

Figure 23: The percentage error in the ANN predicted yearly heat losses with different data 

set for (a) insulated wall; and (b) uninsulated wall. 

Due to global warming, ambient temperature prediction tends to be less accurate, and this 

phenomenon influences the prediction of the energy loss because heat losses of a building have 

a direct relationship with ambient temperature. Considering the change in ambient temperature 

by ±1oC, the percentage error in the ANN prediction is summarised in Figure 25-a and b for 

the insulated and uninsulated walls respectively. If the environmental temperature decreases or 

increases by 1oC, then the actual heat loss will be more or less than that of normal situation 

respectively. Hence, it is revealed from the above figures that the percentage error in prediction 

of the ANN ranges between -20.68% and +29.68% for the insulated wall and between -20.48% 

and +33.32% for the uninsulated wall. Again, the percentage error is higher for the uninsulated 

wall than that of the insulated wall because of the higher level of heat losses. Considering the 

effect of global warming, the minimum accuracy of the ANN prediction will drop from 82.5% 

to 66.68% in case of ±1oC change in ambient temperature. It is worth mentioning that 

monitoring a building for a year or more before and after retrofitting to estimate the benefits 

could be time consuming and expensive. Particularly with the variation in weather conditions 

and people’s behaviour, as we have seen mathematically. Therefore, in this paper the proposed 

approach has utilised a simplified and a rapid method to evaluate the benefits using key 

parameters, infrared thermography and deep learning neural networks. This should provide a 

tool to encourage the owners of non-insulated buildings to assess the benefits of insulation to  

improve thermal insulation.  
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(a) 

 

(b) 

Figure 24: The percentage error in the ANN predicted yearly heat losses through insulated 

and uninsulated wall, (a) absolute values of percentage error; and (b) averaged absolute value 

of percentage error per year. 
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(a) 

 

(b) 

Figure 25: The percentage error in the prediction of the ANN if the temperature is changed by 

±1oC , (a) insulated wall; and (b) uninsulated wall. 

 

5. Limitations and assumptions of the simulation technique  

Buildings go through complex environmental and weather conditions as well as significant 

variation in occupants’ behaviour. Given such complexity, it will be difficult to provide exact 

figures about energy savings regardless of the efforts used in the simulation and real data 

analysis. Therefore, the authors acknowledge such limitations and have assumed some average 

values of the environmental parameters to estimate energy savings. For example, wind speed 

and direction vary greatly over time; and hence an average value estimated from previous 

studies have been used. The effect of thermal bridges is ignored, as normally the area of any 

thermal bridging will be small when compared to the area of whole wall to influence the overall 
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heat loss. Hence the effect of thermal bridges is not considered during this comparison process. 

An assumption is made that heating will be switched on when the ambient temperature below 

20oC. This might have its own limitations since during summer, the temperature falls below 

20oC at night but the heat losses in most cases are offset by daytime solar gain. Therefore, in 

most cases no space heating is used in the UK during that period of the year. We have assumed 

heating will be on at any time when the ambient temperature is below 20oC for the payback 

period calculations. As discussed in this paper, mathematically the number of years should be 

infinite (i.e. life-time monitoring to achieve accurate comparison for the effect of insulation 

and the payback period).  

 

6. Conclusion 

To meet the goal of the UK Government’s Climate Change Act (2008), reduction in energy 

consumption should have priority over the reduction in carbon emission at the source of energy 

production [67]. Heating and air-conditioning is responsible for the major part of energy 

consumption in buildings. Insulation can play a significant role in improving thermal 

performance of buildings by restricting heat losses and reducing energy consumption for 

heating and air-conditioning. The key conclusions of this work are as follows: 

• As demonstrated by the estimated monthly heat losses given in Table 3, there is a 

potential for annual energy savings of about 80% for the retrofitted and externally 

insulated building when compared to an equivalent uninsulated building.  

• Infrared thermography is a very effective tool in evaluating buildings’ thermal 

performance. The results of the case study presented in this paper show a very good 

agreement with that. 

• It is demonstrated from the weeklong monitoring of indoor and outdoor temperatures 

that insulation could aid in maintaining a steady indoor temperature during summer as 

well as during the heating season.  

• The novel use of ANN combined with infrared thermography data is found to be 

capable of predicting future heat losses with over 82% accuracy regardless of wall type 

and training data size.  

• The heat loss predictions can be used to estimate future energy savings due retrofitting; 

and consequently, rationalise the investment on retrofitting in terms of savings on 

energy bills. Hence the suggested novel approach provides a tool for rapid analysis of 

energy savings for communities.  

• The use of infrared thermography combined with ANN can support architects and 

energy consultants to rapidly evaluate the effectiveness of wall insulation for a 

particular locality without using expensive energy simulation software. 

• In order to accurately estimate the energy savings from insulation, this paper has proved 

mathematically that a life-long monitoring will be needed.  

Simplicity and practicality of this novel approach to characterise buildings’ energy 

performance is the key objective of this paper.  Real buildings in real world are affected by 

variable wind speed, variable sun position and people’s behaviour. Hence, monitoring the same 

building over several years will most likely to lead to different results in any case.  Using a 

simplified model with some given assumptions will provide sufficient information and data 

estimation about the potential  performance of a building and enable modelling the main factors 

that influence its thermal behaviour. In this way, it will produce a reasonable comparison in 

relatively a short period of time by focusing on the insulation factor. 
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