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12 Abstract

13

14 Prolonged drought conditions affect the ecological functioning of freshwater ecosystems, 

15 leading to the temporary simplification or loss of aquatic biological communities, as surface 

16 water is progressively reduced or dry phases are extended in intermittent streams.  We 

17 classify the plant communities within 24 groundwater-fed headwater streams in southern 

18 England and examine changes over a 21-year period following a severe three-year drought.  

19 In comparison with a previous study, our revised classification reveals a simplification in 

20 plant communities driven by a decline in the abundance of obligate aquatic species and an 

21 increase in the abundance of semi-aquatic species. We demonstrate plant community 

22 structure as a strong indicator of a site’s flow history, including intermittence. We 

23 recommend that future surveys also encompass terrestrial plants as well as semi-aquatic and 

24 aquatic plants and habitat assessments to further enhance understanding of how instream 

25 communities change between flowing, ponded and dry phases in intermittent systems.
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26

27 Key words: macrophyte, biomonitoring, supra-seasonal drought, headwaters, streambed 

28 drying, aquatic–terrestrial ecosystems, temporary streams

29

30 Introduction

31

32 As a result of climate change (IPCC 2018) and increasing human demand for water (Franklin 

33 et al. 2008), intermittent flow and streambed drying , which already characterize many global 

34 river systems, are increasing in both space and time (Acuna et al. 2014; Prudhomme et al. 

35 2014). Research examining these intermittent rivers has increased in recent years (e.g. Datry 

36 et al. 2016; Leigh et al. 2016; Datry et al. 2017),  most of which focuses on 

37 macroinvertebrates, yet vegetation can also facilitate the assessment of how instream 

38 communities respond to drying (Sabater et al. 2017; Stubbington et al. 2019).

39

40 During supra-seasonal droughts (sensu Lake 2003), drying in naturally intermittent streams is 

41 more extensive, and can occur in near-perennial sections (Wood and Petts 1999, Stubbington 

42 et al. 2016). Southern England, a cool, wet temperate (i.e. oceanic climate) region 

43 experienced a prolonged groundwater drought extending from 1989 to 1992 (Met Office 

44 2019).  The winter recharge of the aquifers which underlie this region was much reduced 

45 during the drought period.  Consequently, baseflow to the streams and rivers diminished 

46 during this time, resulting in a temporary shrinkage of the active river network (NRA 1993).  

47

48 Following the 1989-1992 drought Holmes (1999) undertook a biomonitoring survey (1992-

49 1995) to track post-drought changes in plant communities. Holmes (1999) used a 

50 classification approach to identify distinct plant communities (which he called Perennial 
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51 [permanently flowing], Winterbourne [limited annual drying], Ditch [morphologically 

52 degraded channels with regular drying] and Intermittent [extensive and prolonged drying]) 

53 and to characterize the flow regimes which support them. This approach, which takes into 

54 account both aquatic and terrestrial taxa, can be used to identify characteristic communities 

55 and set ecological flow thresholds and desired intermittence patterns (Westwood et al. 2017).  

56

57 The aim of the current study is to update and refine the classification produced by Holmes 

58 (1999) using the original sample data from 24 rivers together with data from additional 

59 surveys conducted in 12 of the original rivers up to 2013, plus a further set of surveys from 

60 38 sites on four of these rivers between 2015 and 2018 (see The study area for details).  We 

61 compare this updated classification to the original classification.  We examine the classified 

62 results in relation to hydrological data including estimates of the percentage of zero-flow 

63 days in the 12, 24 and 36 months prior to surveying. We also examine plant communities in 

64 relation to channel substrate data recorded as part of more recent surveys, to enhance 

65 understanding of how the physical environment mediates the vegetation/hydrology 

66 relationship. We explore the use of plants as indicators of long and short-term flow 

67 intermittence and whether the communities they form can indicate a site’s flow history and/or 

68 other local environmental characteristics.

69

70 Methods

71

72 The study area

73 The study area extends across southern England and comprises 118 sites on the upper reaches 

74 of 24 groundwater-fed rivers (Fig. 1). The area is predominantly underlain by Cretaceous 

75 chalk geology, except for sites on the Bristol Avon, Churn and Leach in the north west of the 
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76 study area, which are on Jurassic limestone.  The area experienced periods of drought 

77 resulting in a broad range of site-specific conditions (from low flows to complete and 

78 prolonged surface water loss) in 1992, 1996-1998, 2006 and 2012, with a period of high 

79 aquifer recharge occurring in 2001-2003 (Met Office 2019).

80

81 Survey sites are heterogeneous in physical character and range from roadside urban ditches, 

82 to channels with high hydromorphological complexity within more natural settings.  

83 Surrounding land use for most sites is agricultural with a mix of arable, permanent and rough 

84 pasture and some woodland.  Groundwater is the main public water supply resource in the 

85 region and is heavily abstracted due to high demand (Arnell et al. 2015).  

86

87 Fig 1. Location of the plant survey sites in south England. The original Holmes (1999) sites 

88 are indicated by grey circles and the 2015-2018 sites by white triangles. 

89

90 Field methods
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91 From 1992-2013 plants were surveyed within a defined area of the channel bed to the base of 

92 the bank including instream and marginal areas. Aquatic and semi-aquatic taxa were mainly 

93 identified to species, some to genus e.g. Callitriche spp., and non-aquatic grasses and herbs 

94 were recorded as such.  Percentage cover was recorded for each taxon. Surveys were 

95 undertaken irrespective of instream state (standing water, isolated pools, or a completely dry 

96 bed). Site length ranged between 10 m and 50 m depending on channel width, with wider 

97 channels needing shorter lengths to effectively characterize the plant communities (see 

98 Holmes 1999).  As a result, site areas were in the range 50-70 m2.  Surveys conducted in 

99 2015-2018 followed the standard LEAFPACS2 method, with a 100 m site length and 

100 including visual assessment of substrate composition (% boulders, cobbles, pebbles, gravel, 

101 sand, silt and soil; UK-TAG 2014).

102

103 Discharge data

104 Daily mean river discharge data were extracted (https://nrfa.ceh.ac.uk/) for the downstream 

105 gauging stations closest to survey sites in the north east of the study area (Rivers Beane, 

106 Bulbourne, Gade, Mimram, Misbourne and Ver) .  We transposed the nearest fixed gauged 

107 mean daily discharge to each site using linear regression against spot-gauge discharges 

108 (Gordon et al. 2004, Malcolm et al. 2012).  From the site specific data we estimated the 

109 percentage of time with zero flows within the 12, 24 and 36 months prior to the surveys. As a 

110 record of zero flow does not distinguish between ponded water and a dry channel, the 

111 discharge series was calibrated with routine long-term visual assessments (Sefton et al. 

112 2019).  An improved match was achieved by counting any flows < 0.01 m3/s as indicative of 

113 a dry channel.

114

115 Data analysis
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116 The full list of 120 plant taxa observed was reduced to the 37 most frequently occurring (i.e. 

117 with a mean abundance thoughout the whole dataset of >1), to avoid the ‘noise’ generated by 

118 very rare taxa or taxa recorded infrequently (Table S1).  The data were square-root 

119 transformed to normalise their distribution then classified using two-way indicator species 

120 analysis (TWINSPAN), a divisive, hierarchical clustering method devised by Hill (1979), 

121 with adjustments made by Oksanen and Minchin (1997).  TWINSPAN was used in 

122 preference to more contemporary approaches, to ensure that the original (Holmes 1999) and 

123 new classifications were directly comparable.  As with Holmes’ (1999) classification, data 

124 analysis was taken to four levels of division and generated 32 candidate clusters based on 

125 community structure and composition.  Analysis of similarities (ANOSIM) was used to 

126 identify distinct clusters at the level r2 ≥ 0.2, p = ≤0.001.  Group membership was explored 

127 using Similarity Percentages (SIMPER), which measure the contribution of individual taxa to 

128 the observed within and between-group similarity. For each group species/taxa richness and 

129 Simpson’s diversity index (SI = 1-D) (Simpson, 1949) were calculated.

130

131 The plant data (37 taxa) were square-root transformed and ordinated using non-metric multi-

132 dimensional scaling (nMDS), using a Bray Curtis dissimilarity matrix with 200 iterations of 

133 the data, within the package PRIMER v.7. The dimension 1 scores were used in linear 

134 regression against the site-specific discharge data available for six rivers (29 sites - Beane, 

135 Bulbourne, Gade, Mimram, Misbourne and Ver). The strength of regression coefficients 

136 between the dimension 1 scores and the site-specific discharges were used to determine 

137 which of the antecedent discharge periods (12, 24 or 36 months) best represented changes to 

138 the vegetation.  The relative coverages of individual taxa were compared with the percentage 

139 of zero-flow (%ZF) days in the preceding 12 months (the time period producing the strongest 
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140 coefficients) to identify how different taxa responded to differing degrees of flow 

141 intermittence.

142

143  For the 2015-2018 surveys undertaken using the LEAFPACS2 method, the channel substrate 

144 observations were averaged for each community type as a way of characterising the physical 

145 habitat of the different communities.   

146

147 Results

148

149 Identification of community types

150 Ten distinct plant community types were identified (TWINSPAN clusters; ANOSIM r2 = 

151 0.47, p = <0.001, range: r2 = 0.21-0.98). These were broadly similar in composition to those 

152 found by Holmes (1999) but fewer than the 13 groups he recorded (Fig. 2).  The average 

153 within-group similarity was 45.1% (range: 33% - 65%) and the average between-group 

154 dissimilarity was 73.7% (range: 53% - 93%).  The groups were named in line with Holmes’ 

155 (1999) original convention (Perennial, Winterbourne, Ditch and Intermittent), with the 

156 addition of an extra category for ‘Transitional’ communities, which occurred between 

157 Perennial and Winterbourne communities and experience very low flows and drying only 

158 under extreme drought conditions.   

159

160 The 10 community types were arranged along a gradient of flow intermittence (Fig. 2; no 

161 intermittence to the left, high intermittence to the right).  Communities representing the most 

162 intermittent sites (i.e. Ditch and Intermittent sites [types: D8-I10 in Fig. 2]) were separated 

163 from others at level 1, and accounted for 28% of the total dataset.  Subsequent levels of 

164 division defined the other main community groups (Perennial, Transitional, Winterbourne), 
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165 with subdivisions of these made at levels 3 and 4.  The Winterbourne community type W7 is 

166 by far the biggest group comprising 30% of all samples, but attempts to subdivide it resulted 

167 in weak coefficients (ANOSIM r2 = 0.09, p = 0.001; within-group similarity: 24.7% and 

168 24.9%; between-group dissimilarity: 32%). Six of the original Holmes (1999) community 

169 types are aggregated into three larger groups within the new classification (Fig. 2b), 

170 (minimum statistical test of ANOSIM: r2 ≥ 0.2, p = ≤0.001).  

171

172

173 Fig. 2. (a) Dendrogram showing the relative position of the plant community types along a 

174 gradient of flow intermittence, indicating (b) previous (Holmes 1999) and current 

175 classifications  (P=Perennial, T=Transitional, W=Winterbourne, D=Ditch and 

176 I=Intermittent).

177

178 Plant community characteristics
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179 The average contribution of different plant species/taxa varied by community types with 

180 obligate aquatics associated with the Perennial groups and terrestrial/wetland plants 

181 associated with the more intermittent community types (i.e. Intermittent and Ditch; Fig. 3; 

182 Table S2). Several species, including Berula erecta, Ranunculus pseudofluitans, Verrucaria 

183 spp. and Sparganium erectum are restricted to or mostly associated with the Perennial 

184 communities.  Non-aquatic taxa occur in every community type, whereas Apium nodiflorum, 

185 Glyceria spp., Rorripa nasturtium aquaticum and Phalaris arundinacea occur in all 

186 communities except I10.  

187

188

189 Fig. 3 Relative coverage of the 12 most frequently occurring species/taxa within each of the 

190 community types (P=Perennial, T=Transitional, W=Winterbourne, D=Ditch and 

191 I=Intermittent).

192

193 At group level, the Perennial group (P1-P3) is defined by the presence of the obligate 

194 rheophile Ranunculus pseudofluitans and <2% non-aquatic taxa (Table S1).  The Transitional 

195 group (T4, T5) features Ranunculus peltatus, although some R. pseudofluitans is still present 
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196 and a small component (0 - 7%) of non-aquatic taxa is common (Table S1).  The 

197 Winterbourne group (W6, W7) is the most characteristic community type for sites which dry 

198 for 0-30% of each year (Table 1).  The Ditch (D8) and Intermittent (I9, I10) groups, 

199 reflecting >30% intermittence, have increasing amounts of non-aquatic taxa and/or wetland 

200 grasses, with 100% plant coverage being common in the Intermittent group (Table 1).

201

202 Table 1 Descriptions of plant community types, with average Simpson’s Diversity, typical 

203 annual periodicity of intermittence and net change in frequency over the survey period (1992-

204 2013 for 24 rivers). The average distribution of species/taxa across the 10 community types 

205 for those with an average abundance within the total dataset of > 1 are provided in Table S2.

206  

Plant 
community 
type

Description Typical 
annual dry 
period

Mean 
Simpson’s 
diversity 
(± 
standard 
error)

Net % 
change in 
frequency 
1992-
2013

 P1  Dominated by Ranunculus pseudofluitans and 
typical of fast-flowing stretches with 
predominantly gravel/pebble substrates.  Minor 
accumulations of silt at the channel margins 
support limited abundances of emergent herbs.

0% (always 
flowing)

0.56 
(± 0.014)

-17%

P2 Dominated by R. pseudofluitans and typical of 
fast to moderate flow with predominantly 
gravel/pebble substrates and silty margins.  
Emergent herbs, sedges and tall grasses are 
more common at the margins than P1

0% (always 
flowing)

0.74
(± 0.011)

+12%

P3 Typical of moderate flow, with Berula erecta 
common and sometimes dominant.  R. 
pseudofluitans is common at lower abundances 
than in P1 and P2. Apium nodiflorum and 
Mentha aquatica are both often higher in 
abundance than P1 or P2.

0-5%  (only 
dry in very 
severe 
droughts)

0.75
(± 0.012)

+20%

T4 Often contains a high proportion of 
Ranunculus peltatus and Callitriche spp.  R. 
pseudofluitans may occur at low abundance at 
greater discharges.  Plant coverage is higher 
than for the Perennial group and often includes 
non-aquatic grasses.

0-5%   (low 
flows but 
only dry in 
severe 
droughts)

0.68
(± 0.009)

+9%

T5 Typically contains a high proportion of R. 
peltatus, with a greater presence of non-aquatic 

0-10% 
(very low 

0.67
(± 0.015)

-48%
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taxa and abundance of Glyceria spp. than T4, 
reflecting fluctuating flows and occasional 
drying.  Plant coverage is higher than for the 
Perennial group.

flows and 
may dry in 
moderate 
droughts)

W6  Characterized by high proportions of Rorippa 
nasturtium aquaticum, A. nodiflorum and 
Glyceria spp.  The community is characteristic 
of lower flows in late summer and autumn, 
when marginal herbs encroach upon the 
channel, concentrating the flow that supports 
obligate aquatic taxa. Veronica beccabunga is 
characteristic of this community.

0-20% 
(very low 
flows and 
dry in 
moderate 
droughts)

0.60
(± 0.016)

+21%

W7 The most common community type, and 
representing the point at which rheophilic taxa 
cease to occur and marginal herbs and grasses 
dominate.  Generally lower plant coverage than 
Perennial and Transitional groups. Sites are 
often impounded with deeper ponded 
conditions promoting the growth of 
filamentous algae (predominantly Cladophoera 
spp.) and restricting the growth of R. 
pseudofluitans.  Veronica beccabunga is 
characteristic of this community.

10-30% 
(regular 
intermittenc
e, limited 
drying in 
most years)

0.68
(± 0.006)

-17%

D8   Characteristic of ponding and regular drying, 
dominated by Phalaris arundinacea.  
Declining proportions of water-demanding taxa 
such as R. nasturtium aquaticum, A. 
nodiflorum and Glyceria notata are balanced 
by increases in the more drought-tolerant 
Mentha aquatica and Epilobium hirsutum; 
there is a regular component of non-aquatic 
taxa.        

30-90% 
(regular 
intermittenc
e, some 
drying)

0.58
(± 0.011)

+33%

I9 Characterized by the occurrence of the wetland 
grass Alopecurus geniculatus, reflecting either 
the loss of surface water or its recent return.  A 
high coverage of non-aquatic taxa is typical.

50-90% 
(regular 
intermittenc
e, some 
drying)

0.55
(± 0.012)

-10%

I10 With low aquatic richness this community 
denotes the final stage of channel drying, with 
only the wetland grass A. geniculatus 
indicating a river channel.  Non-aquatic taxa, 
and particularly grasses, often account for 
100% of the assemblage, growing in soil.

50-100% 
(regular 
intermittenc
e, dry 
channels)

0.42
(± 0.014)

-35%

207

208

209 Plant community and flow relationships

210 The plant community response to drying varied between sites, with 15 of the 29 sites 

211 responding most strongly to the %ZF within the antecedent 12-month periods. Eight sites 
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212 responded most strongly to the antecedent 24-month period and 4 sites (Beane 5, Gade 1, 

213 Misbourne 6 and 7) had a longer ‘lag phase’ responding most strongly to the %ZF in the 

214 previous 36 months (Table S3).

215

216 Comparison of the relative coverages of individual species/taxa against the %ZF in the 

217 preceding 12 months indicated the limited tolerance to drying of the obligate aquatics R. 

218 pseudofluitans and Berula erecta (Fig. 4.), whereas the species/taxa that are the most 

219 associated with  intermittence were A. nodiflorum, R. nasturtium aquaticum, Glyceria spp. 

220 and non-aquatic taxa.  Certain species were characteristic of a particular level of 

221 intermittence, for instance, Veronica beccabunga favoured 50-70%, R. nasturtium aquaticum 

222 20-30% and R. peltatus 0-10%, whereas R. pseudofluitans was characteristic of perennial 

223 flow.  The total plant coverage increased steadily with increasing intermittence, from an 

224 average of 52% (SE±3.1) at perennial sites to an average of 90% (SE±2.3) at sites 

225 experiencing dry phases of 12 months or more, at which point the community consisted 

226 almost entirely of non-aquatic taxa.

227

228
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229 Fig. 4. The responses of 12 most frequently occurring species/taxa to increasing flow 

230 intermittence.

231

232 The annual frequency of community types over the 22-year study period (Fig. S1) shows how 

233 the contribution of the different community types varies over time.  Throughout the period, 

234 the most frequent community is W7, except in 2006 and 2012 when D8 is most frequent and 

235 1992 when I9 was most frequent. There was a high frequency of Intermittent and Ditch types 

236 in the dry years of 1992, 1996-1998, 2006 and 2012, whereas Winterbourne, Transitional and 

237 Perennial communities dominated between 2001 and 2003, following high aquifer recharge. 

238

239 Plant community/site characteristics.

240 The Perennial community P1 occurred almost exclusively on gravel and pebble substrates, 

241 whilst the Perennial communities (P2 and P3) occurred on a range of substrates, including 

242 gravel, pebbles and sand, and with greater amounts of silt present (Fig. 5).  The Transitional 

243 communities were associated with pebble and gravel dominated substrates and Winterbourne 

244 communities with higher proportions of silt.  Lower proportions of silt and higher proportions 

245 of soil were observed for the Ditch communities and soil dominated where Intermittent 

246 communities were found (Fig. 5.).

247
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248

249

250 Fig. 5. Substrate composition at sites within each community type, calculated as the mean 

251 value of each variable per community type (P=Perennial, T=Transitional, W=Winterbourne, 

252 D=Ditch and I=Intermittent).

253

254

255 Discussion

256 The communities identified and described through our classification demonstrate that plants 

257 can be biomonitors that effectively characterize responses to flow intermittence, specifically 

258 ponded and dry instream conditions.  From a temporal perspective, these communities 

259 represent various stages of succession in relation to variation in discharge both within and 

260 between years (Baattrup-Pedersen and Riis 1999).  From a spatial perspective, communities 

261 denoted varying degrees of intermittence (Katz et al. 2011). 

262
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263 Changes in community composition in response to flow and intermittence

264 The general historic trend observed within the classified communities suggests an overall 

265 simplification of the plant assemblages from 13 community types within the original 

266 classification (Holmes 1999) to 10 within our updated classification. Variation in frequency 

267 of the different communities allows examination of changes at a regional scale and reveals a 

268 rapid biotic response to the 1989-1992 supra-seasonal drought, followed by a period of 

269 longer-term community adjustment and retrenchment.  Changes in the frequency of particular 

270 communities reflects variation in the presence of particular taxa.  For example, the reduction 

271 of P1 community observations reflects a net loss of -32% of R. pseudofluitans across the 

272 study area, a plant within priority habitats protected under the EC Habitats Directive 

273 (92/43/EEC).  Its decline may reflect ‘chalk stream malaise’, a local description of biotic 

274 responses to various combinations of decreases in discharge and velocities, channel 

275 modification, increased fine sediment loading, and increased nutrient inputs (Environment 

276 Agency 2000; Heywood and Walling 2003; Jarvie et al. 2004).  The decline in R. 

277 pseudofluitans was mirrored by an increase in R. peltatus, which can withstand low flows and 

278 drying channels and can grow across damp substrates (Grime et al. 1992; Volder et al. 1997).  

279 This increase in R. peltatus explains the increase in T4 communities.  

280

281 At the ‘drier’ end of the continuum, the decrease in the occurrence of the I9 community can 

282 be linked to the reduced occurrence of wetland grass Alopecurus geniculatus.  Observations 

283 of this grass increased in response to flow resumption following prolonged droughts, such as 

284 in the three years after the 1989-1992 event (Holmes, 1999) but were less common in our 

285 more recent surveys. A wider decline in A. geniculatus has previously been noted in the UK 

286 (Carey et al. 2008), possibly due to the drainage and cultivation of riparian damp meadows.  

287 However, the low recorded diversity of both Intermittent communities (Table 1) reflects a 
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288 lack of aquatic and semi-aquatic taxa and not the diversity of the communities as a whole, 

289 which were observed to often contain a wide variety of terrestrial plants.

290

291 The aquatic plant community recovery following the extended drought promoted a greater 

292 diversity of species able to exploit the various physical niches provided (Holmes 1999; 

293 Sabater et al. 2017).  We observed that in the absence of this drought ‘disturbance’, there was 

294 a simplification of the community with an increase in tall wetland grasses such as P. 

295 arundinacea and Glyceria maxima.   This highlights the importance of drying events in 

296 resetting the coloniztion clock (Perrow et al. 2007) and promoting temporal and spatial beta 

297 diversity (i.e. variation in community composition in time and space) within intermittent 

298 rivers (Datry et al. 2016, Tonkin et al. 2017).

299

300 Substrate composition associated with different community types

301 We found that perennial communities were associated with gravel and pebble-dominated 

302 substrates and the more intermittent communities (Intermittent and Ditch types) with silt and 

303 soil-dominated substrates. Different plant species are associated with different substrate types 

304 (e.g. Barko and Smart 1986; Clarke and Wharton 2001) and different substrates also interact 

305 with drying to influence plant growth and survival as water retention capacity declines with 

306 increasing sediment size (Walczak et al. 2002) and affects nutrient availability (Song et al. 

307 2007). Consequently, for a given drying duration, the intensity of water stress differs 

308 according to sediment composition, in turn influencing the resistance and resilience of plants 

309 (De Wilde et al., 2017). However, how substrate, channel morphology, as well as variables 

310 including shading interact to affect water content within drying channels remains unclear 

311 (Westwood et al. 2006; Stubbington et al. 2019). To address this knowledge gap, we 

312 recommend that future plant surveys should be accompanied by systematic recording of the 
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313 physical environment including characterization of the riparian zone. An improved 

314 understanding of the effects of the physical environment will indicate conditions governing 

315 the resistance and resilience of different species and communities to intermittence, improving 

316 our ability to maintain their requirements for flowing, ponded and/or dry instream conditions 

317 while managing demands for water resources (Franklin et al. 2008). 

318

319 Assessment of communities across the continuum of intermittence

320 Analysis in relation to antecedent flow intermittence showed the relative abundance of 

321 species/taxa as indicative of flow history. The observed link between flow intermittence and 

322 the response of differing plant communities to 12, 24 or 36-month antecedent percentage of 

323 zero flow (%ZF) mirrors previous analyses demonstrating varying lag phases in community 

324 response to hydrological variation (Klijn and Witte 1999; Westwood et al. 2017). The 

325 collection of plant data from intermittent streams thus far has concentrated on aquatic and 

326 wetland species, with little attention paid to the terrestrial taxa encountered, these instead 

327 being aggregated as ‘non-aquatic’ grasses and herbs or left undocumented (Dieterich and 

328 Anderson 1998, Holmes 1999, Westwood et al. 2006, 2017, Sabater et al. 2017).   To expand 

329 our understanding of how plant communities transition across the flowing, ponded and dry 

330 phases of intermittent systems, a more comprehensive community characterisation that 

331 encompasses plants from obligate aquatic to terrestrial across the full range of intermittence 

332 is needed (Steward et al. 2018; Stubbington et al. 2019). 

333

334 Towards a new set of management tools 

335 Large-scale plant surveys such as the one analysed here demonstrate their usefulness in 

336 understanding temporal and spatial patterns in response to environmental variability (Holmes 

337 2006).  Although Holmes (1999) created a uniquely valuable dataset which will guide future 
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338 developments in plant biomonitoring, the community types we identified, based on 37 taxa, 

339 should facilitate more rapid assessments to establish plant community responses to changing 

340 flow regimes in lowland groundwater-fed streams.  Our survey and classification approach 

341 could be adapted to explore plant community responses across a range of intermittent stream 

342 types, by determining the extent to which the described associations of individual taxa and 

343 communities are generally applicable. 

344

345 Our results confirm the controlling influence that the flow regime has on plant communities 

346 of intermittent rivers (Bornette and Puijalon 2011).  Understanding these controls could 

347 inform how to characterize EU Water Framework Directive ecological status, identify the 

348 reference conditions we need to achieve and the flow regime required to support them 

349 (Stubbington et al. 2017).  This understanding can inform local and regional resource 

350 management by providing a reliable gauge of the flow requirements needed to support 

351 contrasting site-specific and temporally variable communities, leading to the development of 

352 specific flow targets (e.g. Holmes 1999, Westwood et al. 2017).  In addition, plant 

353 communities can be used to characterize flow permanence regimes in the absence of 

354 hydrological data, which is often lacking for temporary streams (Costigan et al. 2017; 

355 Beaufort et al. 2018).   Management strategies which allocate flows for instream ecological 

356 needs are well established (Franklin et al. 2008; Acreman et al. 2014). However, defining 

357 environmental flows is more complicated for intermittent streams, because target regimes 

358 must simultaneously consider both the discharge and the patterns of intermittence that 

359 promote plant diversity and abundance (Sabater et al. 2017). Incorporating a more 

360 comprehensive characterisation of plant communities across the continuum of intermittence 

361 will help advance our understanding of wider biotic responses to hydrological and other 

362 environmental changes (Stubbington et al. 2018, 2019; England et al. 2019) and inform the 
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363 derivation of novel assessment methods that are specifically designed for intermittent 

364 streams.

365

366

367 Conclusions

368 1. Plant community structure provides a reliable guide to a site’s flow history, 

369 especially in terms of its flow intermittence, which is particularly useful at 

370 ungauged sites.

371 2. A prolonged drought promoted a greater diversity of plant communities as flows 

372 resumed and species exploited the various physical niches provided. In the 

373 absence of prolonged drought, communities became increasingly simplified, 

374 featuring fewer obligate aquatic taxa but greater growths of tall wetland grasses. 

375 3. Flow is the master variable controlling riverine plant community composition, but 

376 its interactions with channel morphology remains poorly explored.  Future surveys 

377 should therefore include more detailed physical site assessments. 

378 4. To advance our understanding of how biological communities change as 

379 intermittent systems transition between flowing, ponded and dry phases, future 

380 surveys should encompass identification of terrestrial plants.

381 5. As intermittent streams become increasingly common due to both climatic drivers 

382 and water resource pressures, tools are needed to effectively predict, monitor and 

383 manage the effects of flow variability on biotic communities. Developing such 

384 tools should encompass taxa associated with a full range of instream conditions, to 

385 enable scientists and managers to conduct holistic ecosystem health assessment

386
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388 This paper is dedicated to the memory of Dr Nigel Holmes (Alconbury Consultants), whose 

389 tireless efforts created this unique regional dataset, as well as so much else in river science.  It 

390 was while preparing for a full reclassification of the data in 2014 that he sadly died without 

391 warning.  We hope he would have approved of our efforts and agreed with our findings.  Data 

392 available on request from the authors.
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Fig 1. Location of the plant survey sites in south England. The original Holmes (1999) sites are indicated by 
grey circles and the 2015-2018 sites by white triangles. 
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Fig. 2. (a) Dendrogram showing the relative position of the plant community types along a gradient of flow 
intermittence, indicating (b) previous (Holmes 1999) and current classifications  (P=Perennial, 

T=Transitional, W=Winterbourne, D=Ditch and I=Intermittent). 
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Fig. 3 Relative coverage of the 12 most frequently occurring species/taxa within each of the community 
types (P=Perennial, T=Transitional, W=Winterbourne, D=Ditch and I=Intermittent). 
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Fig. 4. The responses of 12 most frequently occurring species/taxa to increasing flow intermittence. 
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Fig. 5. Substrate composition at sites within each community type, calculated as the mean value of each 
variable per community type (P=Perennial, T=Transitional, W=Winterbourne, D=Ditch and I=Intermittent). 
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