Water and Environment Journal

A revised classification of temperate lowland groundwaterfed headwater streams based on their flora.

Journal:	Water and Environment Journal
Manuscript ID	Draft
Manuscript Type:	Full length original research paper
Keywords:	Abstraction, Biodiversity, Catchments, Ecohydrology, Water Resources

2 3 4	1	A revised classification of temperate lowland groundwater-fed headwater streams based
5 6	2	on their flora.
7 8 9	3	
9 10 11	4	Christian G. Westwood ¹ , Judy England ^{2*} , Rachel Stubbington ³ , Tim Johns ² and Nigel T.H.
12 13	5	Holmes ⁴
14 15	6	
16 17 18	7	¹ Environmental Research Associates, Exeter, UK; ² Environment Agency, Wallingford, UK; ³
19 20	8	School of Science and Technology, Nottingham Trent University, Nottingham, UK; ⁴ Alconbury,
21 22	9	UK.
23 24 25 26	10	* Corresponding author.
27 28	11	
29 30	12	Abstract
31 32	13	
33 34 35	14	Prolonged drought conditions affect the ecological functioning of freshwater ecosystems,
36 37	15	leading to the temporary simplification or loss of aquatic biological communities, as surface
38 39	16	water is progressively reduced or dry phases are extended in intermittent streams. We
40 41 42	17	classify the plant communities within 24 groundwater-fed headwater streams in southern
43 44	18	England and examine changes over a 21-year period following a severe three-year drought.
45 46	19	In comparison with a previous study, our revised classification reveals a simplification in
47 48 49	20	plant communities driven by a decline in the abundance of obligate aquatic species and an
49 50 51	21	increase in the abundance of semi-aquatic species. We demonstrate plant community
52 53	22	structure as a strong indicator of a site's flow history, including intermittence. We
54 55	23	recommend that future surveys also encompass terrestrial plants as well as semi-aquatic and
56 57 58	24	aquatic plants and habitat assessments to further enhance understanding of how instream
59 60	25	communities change between flowing, ponded and dry phases in intermittent systems.

26	
27	Key words: macrophyte, biomonitoring, supra-seasonal drought, headwaters, streambed
28	drying, aquatic-terrestrial ecosystems, temporary streams
29	
30	Introduction
31	
32	As a result of climate change (IPCC 2018) and increasing human demand for water (Franklin
33	et al. 2008), intermittent flow and streambed drying , which already characterize many global
34	river systems, are increasing in both space and time (Acuna et al. 2014; Prudhomme et al.
35	2014). Research examining these intermittent rivers has increased in recent years (e.g. Datry
36	et al. 2016; Leigh et al. 2016; Datry et al. 2017), most of which focuses on
37	macroinvertebrates, yet vegetation can also facilitate the assessment of how instream
38	communities respond to drying (Sabater et al. 2017; Stubbington et al. 2019).
39	
40	During supra-seasonal droughts (sensu Lake 2003), drying in naturally intermittent streams is
41	more extensive, and can occur in near-perennial sections (Wood and Petts 1999, Stubbington
42	et al. 2016). Southern England, a cool, wet temperate (i.e. oceanic climate) region
43	experienced a prolonged groundwater drought extending from 1989 to 1992 (Met Office
44	2019). The winter recharge of the aquifers which underlie this region was much reduced
45	during the drought period. Consequently, baseflow to the streams and rivers diminished
46	during this time, resulting in a temporary shrinkage of the active river network (NRA 1993).
47	
48	Following the 1989-1992 drought Holmes (1999) undertook a biomonitoring survey (1992-
49	1995) to track post-drought changes in plant communities. Holmes (1999) used a
50	classification approach to identify distinct plant communities (which he called Perennial

Page 3 of 34

Water and Environment Journal

[permanently flowing], Winterbourne [limited annual drying], Ditch [morphologically degraded channels with regular drying] and Intermittent [extensive and prolonged drying]) and to characterize the flow regimes which support them. This approach, which takes into account both aquatic and terrestrial taxa, can be used to identify characteristic communities and set ecological flow thresholds and desired intermittence patterns (Westwood et al. 2017). The aim of the current study is to update and refine the classification produced by Holmes (1999) using the original sample data from 24 rivers together with data from additional surveys conducted in 12 of the original rivers up to 2013, plus a further set of surveys from 38 sites on four of these rivers between 2015 and 2018 (see *The study area* for details). We compare this updated classification to the original classification. We examine the classified results in relation to hydrological data including estimates of the percentage of zero-flow days in the 12, 24 and 36 months prior to surveying. We also examine plant communities in relation to channel substrate data recorded as part of more recent surveys, to enhance understanding of how the physical environment mediates the vegetation/hydrology relationship. We explore the use of plants as indicators of long and short-term flow intermittence and whether the communities they form can indicate a site's flow history and/or other local environmental characteristics. Methods *The study area* The study area extends across southern England and comprises 118 sites on the upper reaches of 24 groundwater-fed rivers (Fig. 1). The area is predominantly underlain by Cretaceous

chalk geology, except for sites on the Bristol Avon, Churn and Leach in the north west of the

study area, which are on Jurassic limestone. The area experienced periods of drought resulting in a broad range of site-specific conditions (from low flows to complete and prolonged surface water loss) in 1992, 1996-1998, 2006 and 2012, with a period of high aquifer recharge occurring in 2001-2003 (Met Office 2019).

Survey sites are heterogeneous in physical character and range from roadside urban ditches,
to channels with high hydromorphological complexity within more natural settings.
Surrounding land use for most sites is agricultural with a mix of arable, permanent and rough
pasture and some woodland. Groundwater is the main public water supply resource in the
region and is heavily abstracted due to high demand (Arnell *et al.* 2015).

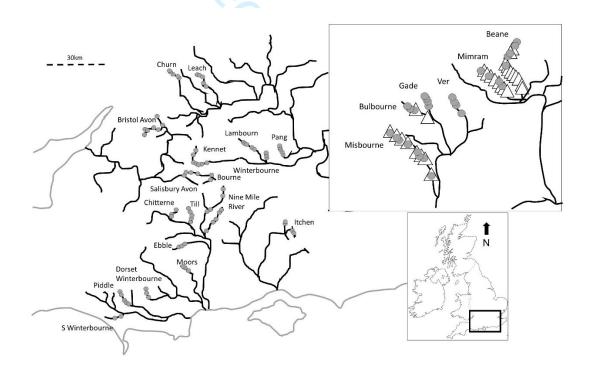


Fig 1. Location of the plant survey sites in south England. The original Holmes (1999) sites
are indicated by grey circles and the 2015-2018 sites by white triangles.

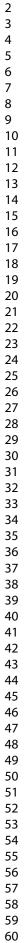
90 Field methods

91	From 1992-2013 plants were surveyed within a defined area of the channel bed to the base of
92	the bank including instream and marginal areas. Aquatic and semi-aquatic taxa were mainly
93	identified to species, some to genus e.g. Callitriche spp., and non-aquatic grasses and herbs
94	were recorded as such. Percentage cover was recorded for each taxon. Surveys were
95	undertaken irrespective of instream state (standing water, isolated pools, or a completely dry
96	bed). Site length ranged between 10 m and 50 m depending on channel width, with wider
97	channels needing shorter lengths to effectively characterize the plant communities (see
98	Holmes 1999). As a result, site areas were in the range 50-70 m ² . Surveys conducted in
99	2015-2018 followed the standard LEAFPACS2 method, with a 100 m site length and
100	including visual assessment of substrate composition (% boulders, cobbles, pebbles, gravel,
101	sand, silt and soil; UK-TAG 2014).
102	
103	Discharge data
104	Daily mean river discharge data were extracted (https://nrfa.ceh.ac.uk/) for the downstream
105	
105	gauging stations closest to survey sites in the north east of the study area (Rivers Beane,
105	gauging stations closest to survey sites in the north east of the study area (Rivers Beane, Bulbourne, Gade, Mimram, Misbourne and Ver). We transposed the nearest fixed gauged
	4
106	Bulbourne, Gade, Mimram, Misbourne and Ver). We transposed the nearest fixed gauged
106 107	Bulbourne, Gade, Mimram, Misbourne and Ver). We transposed the nearest fixed gauged mean daily discharge to each site using linear regression against spot-gauge discharges
106 107 108	Bulbourne, Gade, Mimram, Misbourne and Ver). We transposed the nearest fixed gauged mean daily discharge to each site using linear regression against spot-gauge discharges (Gordon <i>et al.</i> 2004, Malcolm <i>et al.</i> 2012). From the site specific data we estimated the
106 107 108 109	Bulbourne, Gade, Mimram, Misbourne and Ver). We transposed the nearest fixed gauged mean daily discharge to each site using linear regression against spot-gauge discharges (Gordon <i>et al.</i> 2004, Malcolm <i>et al.</i> 2012). From the site specific data we estimated the percentage of time with zero flows within the 12, 24 and 36 months prior to the surveys. As a
106 107 108 109 110	Bulbourne, Gade, Mimram, Misbourne and Ver). We transposed the nearest fixed gauged mean daily discharge to each site using linear regression against spot-gauge discharges (Gordon <i>et al.</i> 2004, Malcolm <i>et al.</i> 2012). From the site specific data we estimated the percentage of time with zero flows within the 12, 24 and 36 months prior to the surveys. As a record of zero flow does not distinguish between ponded water and a dry channel, the
106 107 108 109 110 111	Bulbourne, Gade, Mimram, Misbourne and Ver). We transposed the nearest fixed gauged mean daily discharge to each site using linear regression against spot-gauge discharges (Gordon <i>et al.</i> 2004, Malcolm <i>et al.</i> 2012). From the site specific data we estimated the percentage of time with zero flows within the 12, 24 and 36 months prior to the surveys. As a record of zero flow does not distinguish between ponded water and a dry channel, the discharge series was calibrated with routine long-term visual assessments (Sefton <i>et al.</i>
106 107 108 109 110 111 112	Bulbourne, Gade, Mimram, Misbourne and Ver). We transposed the nearest fixed gauged mean daily discharge to each site using linear regression against spot-gauge discharges (Gordon <i>et al.</i> 2004, Malcolm <i>et al.</i> 2012). From the site specific data we estimated the percentage of time with zero flows within the 12, 24 and 36 months prior to the surveys. As a record of zero flow does not distinguish between ponded water and a dry channel, the discharge series was calibrated with routine long-term visual assessments (Sefton <i>et al.</i> 2019). An improved match was achieved by counting any flows < 0.01 m ³ /s as indicative of

The full list of 120 plant taxa observed was reduced to the 37 most frequently occurring (i.e. with a mean abundance thoughout the whole dataset of >1), to avoid the 'noise' generated by very rare taxa or taxa recorded infrequently (Table S1). The data were square-root transformed to normalise their distribution then classified using two-way indicator species analysis (TWINSPAN), a divisive, hierarchical clustering method devised by Hill (1979), with adjustments made by Oksanen and Minchin (1997). TWINSPAN was used in preference to more contemporary approaches, to ensure that the original (Holmes 1999) and new classifications were directly comparable. As with Holmes' (1999) classification, data analysis was taken to four levels of division and generated 32 candidate clusters based on community structure and composition. Analysis of similarities (ANOSIM) was used to identify distinct clusters at the level $r^2 \ge 0.2$, $p = \le 0.001$. Group membership was explored using Similarity Percentages (SIMPER), which measure the contribution of individual taxa to the observed within and between-group similarity. For each group species/taxa richness and Simpson's diversity index (SI = 1-D) (Simpson, 1949) were calculated. The plant data (37 taxa) were square-root transformed and ordinated using non-metric multi-dimensional scaling (nMDS), using a Bray Curtis dissimilarity matrix with 200 iterations of the data, within the package PRIMER v.7. The dimension 1 scores were used in linear regression against the site-specific discharge data available for six rivers (29 sites - Beane, Bulbourne, Gade, Mimram, Misbourne and Ver). The strength of regression coefficients between the dimension 1 scores and the site-specific discharges were used to determine which of the antecedent discharge periods (12, 24 or 36 months) best represented changes to the vegetation. The relative coverages of individual taxa were compared with the percentage

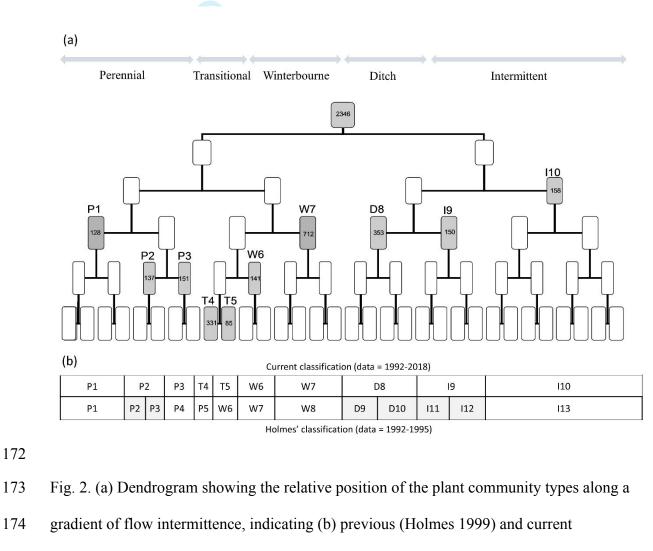
of zero-flow (%ZF) days in the preceding 12 months (the time period producing the strongest

3	
4	
5	
6	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	


140 coefficients) to identify how different taxa responded to differing degrees of flow 141 intermittence. 142 For the 2015-2018 surveys undertaken using the LEAFPACS2 method, the channel substrate 143 observations were averaged for each community type as a way of characterising the physical 144 145 habitat of the different communities. 146 147 Results 148 Identification of community types 149

150 Ten distinct plant community types were identified (TWINSPAN clusters; ANOSIM $r^2 =$ 0.47, $p = \langle 0.001, range; r^2 = 0.21 - 0.98 \rangle$. These were broadly similar in composition to those 151 found by Holmes (1999) but fewer than the 13 groups he recorded (Fig. 2). The average 152 153 within-group similarity was 45.1% (range: 33% - 65%) and the average between-group 154 dissimilarity was 73.7% (range: 53% - 93%). The groups were named in line with Holmes' 155 (1999) original convention (Perennial, Winterbourne, Ditch and Intermittent), with the 156 addition of an extra category for 'Transitional' communities, which occurred between Perennial and Winterbourne communities and experience very low flows and drying only 157 158 under extreme drought conditions.

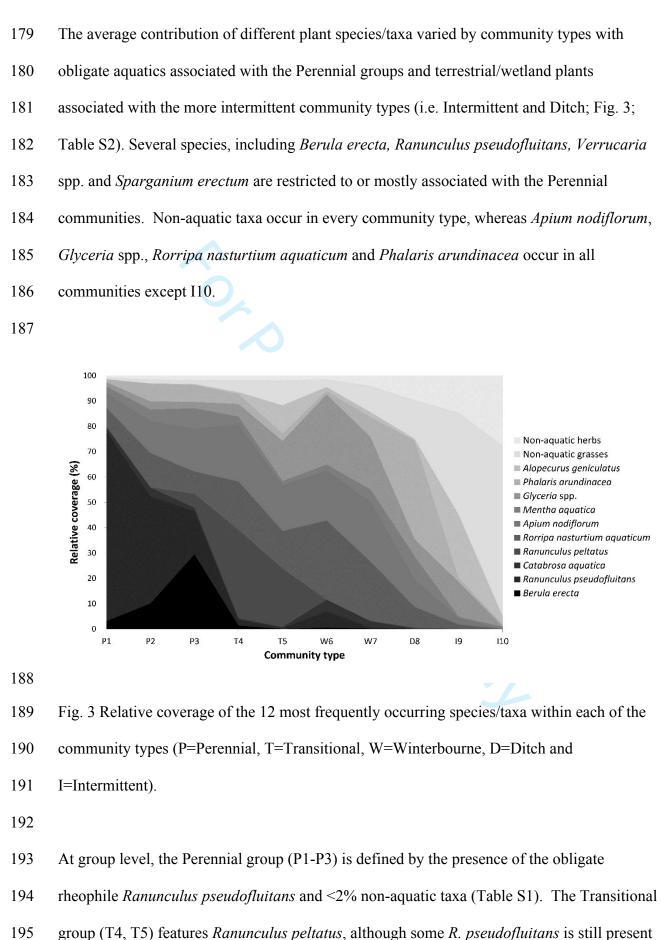
159


60

160 The 10 community types were arranged along a gradient of flow intermittence (Fig. 2; no 161 intermittence to the left, high intermittence to the right). Communities representing the most 162 intermittent sites (i.e. Ditch and Intermittent sites [types: D8-I10 in Fig. 2]) were separated 163 from others at level 1, and accounted for 28% of the total dataset. Subsequent levels of 164 division defined the other main community groups (Perennial, Transitional, Winterbourne),

1

165 with subdivisions of these made at levels 3 and 4. The Winterbourne community type W7 is 166 by far the biggest group comprising 30% of all samples, but attempts to subdivide it resulted in weak coefficients (ANOSIM $r^2 = 0.09$, p = 0.001; within-group similarity: 24.7% and 167 168 24.9%; between-group dissimilarity: 32%). Six of the original Holmes (1999) community types are aggregated into three larger groups within the new classification (Fig. 2b), 169 170 (minimum statistical test of ANOSIM: $r^2 \ge 0.2$, $p = \le 0.001$).



classifications (P=Perennial, T=Transitional, W=Winterbourne, D=Ditch and 175

176 I=Intermittent).

177

178 Plant community characteristics

and a small component (0 - 7%) of non-aquatic taxa is common (Table S1). The

197 Winterbourne group (W6, W7) is the most characteristic community type for sites which dry

198 for 0-30% of each year (Table 1). The Ditch (D8) and Intermittent (I9, I10) groups,

199 reflecting >30% intermittence, have increasing amounts of non-aquatic taxa and/or wetland

200 grasses, with 100% plant coverage being common in the Intermittent group (Table 1).

Table 1 Descriptions of plant community types, with average Simpson's Diversity, typical

annual periodicity of intermittence and net change in frequency over the survey period (1992-

204 2013 for 24 rivers). The average distribution of species/taxa across the 10 community types

for those with an average abundance within the total dataset of > 1 are provided in Table S2.

Plant community type	Description	Typical annual dry period	Mean Simpson's diversity (± standard error)	Net % change in frequency 1992- 2013
P1	Dominated by <i>Ranunculus pseudofluitans</i> and typical of fast-flowing stretches with predominantly gravel/pebble substrates. Minor accumulations of silt at the channel margins support limited abundances of emergent herbs.	0% (always flowing)	0.56 (± 0.014)	-17%
P2	Dominated by <i>R. pseudofluitans</i> and typical of fast to moderate flow with predominantly gravel/pebble substrates and silty margins. Emergent herbs, sedges and tall grasses are more common at the margins than P1	0% (always flowing)	0.74 (± 0.011)	+12%
Р3	Typical of moderate flow, with <i>Berula erecta</i> common and sometimes dominant. <i>R.</i> <i>pseudofluitans</i> is common at lower abundances than in P1 and P2. <i>Apium nodiflorum</i> and <i>Mentha aquatica</i> are both often higher in abundance than P1 or P2.	0-5% (only dry in very severe droughts)	0.75 (± 0.012)	+20%
T4	Often contains a high proportion of <i>Ranunculus peltatus</i> and <i>Callitriche</i> spp. <i>R.</i> <i>pseudofluitans</i> may occur at low abundance at greater discharges. Plant coverage is higher than for the Perennial group and often includes non-aquatic grasses.	0-5% (low flows but only dry in severe droughts)	0.68 (± 0.009)	+9%
Τ5	Typically contains a high proportion of <i>R</i> . <i>peltatus,</i> with a greater presence of non-aquatic	0-10% (very low	0.67 (± 0.015)	-48%

1
2
3
4
5
6
7
8
9
10
11
12
15
16
17
18
19
20
21
າາ
23
24
27
25
20
 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
28
29
30
31
32
33
34
35
36
37
37 38
38
39
40
41
42
43
44
45
46
47
48
49
49 50
51 52
52
53
54
55
56
57
58
59

	taxa and abundance of <i>Glyceria</i> spp. than T4, reflecting fluctuating flows and occasional drying. Plant coverage is higher than for the Perennial group.	flows and may dry in moderate droughts)		
W6	Characterized by high proportions of <i>Rorippa</i> <i>nasturtium aquaticum</i> , <i>A. nodiflorum</i> and <i>Glyceria</i> spp. The community is characteristic of lower flows in late summer and autumn, when marginal herbs encroach upon the channel, concentrating the flow that supports obligate aquatic taxa. <i>Veronica beccabunga</i> is characteristic of this community.	0-20% (very low flows and dry in moderate droughts)	0.60 (± 0.016)	+21%
W7	The most common community type, and representing the point at which rheophilic taxa cease to occur and marginal herbs and grasses dominate. Generally lower plant coverage than Perennial and Transitional groups. Sites are often impounded with deeper ponded conditions promoting the growth of filamentous algae (predominantly <i>Cladophoera</i> spp.) and restricting the growth of <i>R.</i> <i>pseudofluitans. Veronica beccabunga</i> is characteristic of this community.	10-30% (regular intermittenc e, limited drying in most years)	0.68 (± 0.006)	-17%
D8	 Characteristic of ponding and regular drying, dominated by <i>Phalaris arundinacea</i>. Declining proportions of water-demanding taxa such as <i>R. nasturtium aquaticum</i>, <i>A. nodiflorum</i> and <i>Glyceria notata</i> are balanced by increases in the more drought-tolerant <i>Mentha aquatica</i> and <i>Epilobium hirsutum</i>; there is a regular component of non-aquatic taxa. 	30-90% (regular intermittenc e, some drying)	0.58 (± 0.011)	+33%
19	Characterized by the occurrence of the wetland grass <i>Alopecurus geniculatus</i> , reflecting either the loss of surface water or its recent return. A high coverage of non-aquatic taxa is typical.	50-90% (regular intermittenc e, some drying)	0.55 (± 0.012)	-10%
110	With low aquatic richness this community denotes the final stage of channel drying, with only the wetland grass <i>A. geniculatus</i> indicating a river channel. Non-aquatic taxa, and particularly grasses, often account for 100% of the assemblage, growing in soil.	50-100% (regular intermittenc e, dry channels)	0.42 (± 0.014)	-35%

208

207

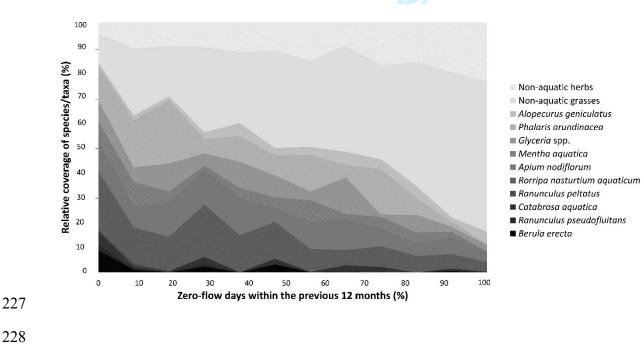
209 Plant community and flow relationships

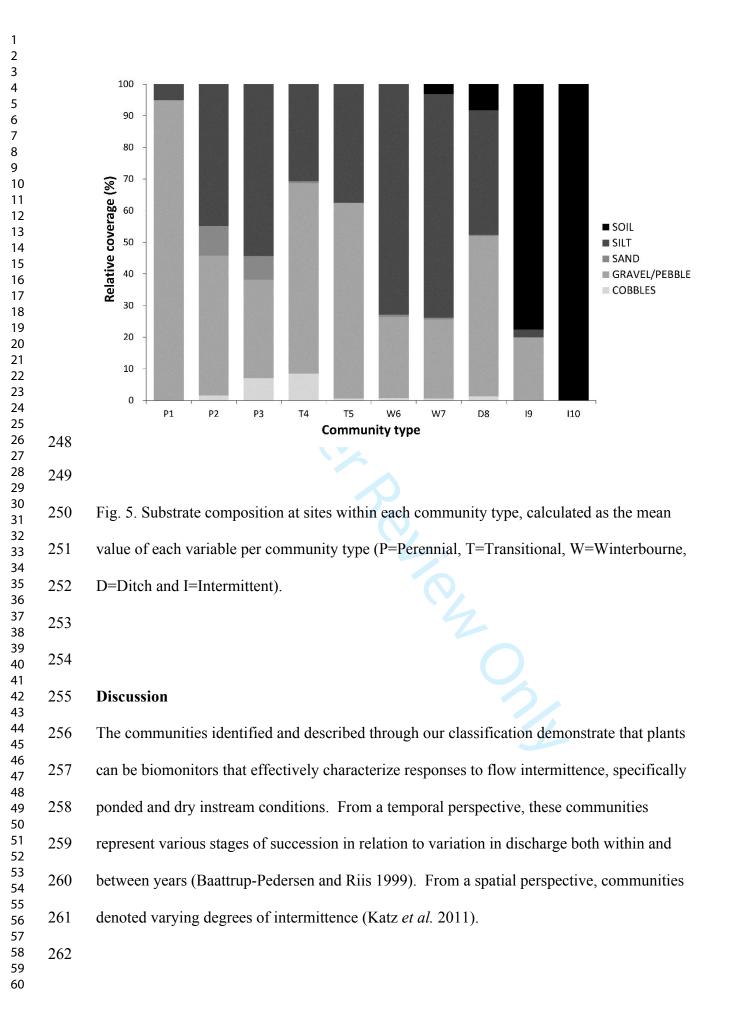
210 The plant community response to drying varied between sites, with 15 of the 29 sites

211 responding most strongly to the %ZF within the antecedent 12-month periods. Eight sites

responded most strongly to the antecedent 24-month period and 4 sites (Beane 5, Gade 1,
Misbourne 6 and 7) had a longer 'lag phase' responding most strongly to the %ZF in the
previous 36 months (Table S3).

Comparison of the relative coverages of individual species/taxa against the %ZF in the preceding 12 months indicated the limited tolerance to drying of the obligate aquatics R. pseudofluitans and Berula erecta (Fig. 4.), whereas the species/taxa that are the most associated with intermittence were A. nodiflorum, R. nasturtium aquaticum, Glyceria spp. and non-aquatic taxa. Certain species were characteristic of a particular level of intermittence, for instance, Veronica beccabunga favoured 50-70%, R. nasturtium aquaticum 20-30% and R. peltatus 0-10%, whereas R. pseudofluitans was characteristic of perennial flow. The total plant coverage increased steadily with increasing intermittence, from an average of 52% (SE \pm 3.1) at perennial sites to an average of 90% (SE \pm 2.3) at sites experiencing dry phases of 12 months or more, at which point the community consisted almost entirely of non-aquatic taxa.




Fig. 4. The responses of 12 most frequently occurring species/taxa to increasing flowintermittence.

The annual frequency of community types over the 22-year study period (Fig. S1) shows how the contribution of the different community types varies over time. Throughout the period, the most frequent community is W7, except in 2006 and 2012 when D8 is most frequent and 1992 when I9 was most frequent. There was a high frequency of Intermittent and Ditch types in the dry years of 1992, 1996-1998, 2006 and 2012, whereas Winterbourne, Transitional and Perennial communities dominated between 2001 and 2003, following high aquifer recharge.

239 Plant community/site characteristics.

The Perennial community P1 occurred almost exclusively on gravel and pebble substrates, whilst the Perennial communities (P2 and P3) occurred on a range of substrates, including gravel, pebbles and sand, and with greater amounts of silt present (Fig. 5). The Transitional communities were associated with pebble and gravel dominated substrates and Winterbourne communities with higher proportions of silt. Lower proportions of silt and higher proportions of soil were observed for the Ditch communities and soil dominated where Intermittent

communities were found (Fig. 5.).

Water and Environment Journal

2	
3	
4	
5	
6	
6 7 8	
ð O	
9 10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20 21	
21	
23	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36	
37 38	
30 39	
40	
41	
42	
43	
44 45	
45 46	
47	
48	
49	
50	
51	
52 53	
53 54	
55	
56	
57	
58	
59	
60	

263 *Changes in community composition in response to flow and intermittence* 264 The general historic trend observed within the classified communities suggests an overall 265 simplification of the plant assemblages from 13 community types within the original classification (Holmes 1999) to 10 within our updated classification. Variation in frequency 266 267 of the different communities allows examination of changes at a regional scale and reveals a 268 rapid biotic response to the 1989-1992 supra-seasonal drought, followed by a period of 269 longer-term community adjustment and retrenchment. Changes in the frequency of particular 270 communities reflects variation in the presence of particular taxa. For example, the reduction 271 of P1 community observations reflects a net loss of -32% of R. pseudofluitans across the 272 study area, a plant within priority habitats protected under the EC Habitats Directive 273 (92/43/EEC). Its decline may reflect 'chalk stream malaise', a local description of biotic 274 responses to various combinations of decreases in discharge and velocities, channel 275 modification, increased fine sediment loading, and increased nutrient inputs (Environment 276 Agency 2000; Heywood and Walling 2003; Jarvie et al. 2004). The decline in R. 277 *pseudofluitans* was mirrored by an increase in *R. peltatus*, which can withstand low flows and 278 drying channels and can grow across damp substrates (Grime et al. 1992; Volder et al. 1997). 279 This increase in *R. peltatus* explains the increase in T4 communities. 280 At the 'drier' end of the continuum, the decrease in the occurrence of the I9 community can 281

At the drief end of the continuum, the decrease in the occurrence of the 19 community can
be linked to the reduced occurrence of wetland grass *Alopecurus geniculatus*. Observations
of this grass increased in response to flow resumption following prolonged droughts, such as
in the three years after the 1989-1992 event (Holmes, 1999) but were less common in our
more recent surveys. A wider decline in *A. geniculatus* has previously been noted in the UK
(Carey *et al.* 2008), possibly due to the drainage and cultivation of riparian damp meadows.
However, the low recorded diversity of both Intermittent communities (Table 1) reflects a

lack of aquatic and semi-aquatic taxa and not the diversity of the communities as a whole,

which were observed to often contain a wide variety of terrestrial plants.

The aquatic plant community recovery following the extended drought promoted a greater diversity of species able to exploit the various physical niches provided (Holmes 1999; Sabater et al. 2017). We observed that in the absence of this drought 'disturbance', there was a simplification of the community with an increase in tall wetland grasses such as P. arundinacea and Glyceria maxima. This highlights the importance of drying events in resetting the coloniztion clock (Perrow et al. 2007) and promoting temporal and spatial beta diversity (i.e. variation in community composition in time and space) within intermittent rivers (Datry et al. 2016, Tonkin et al. 2017).

300 Substrate composition associated with different community types

We found that perennial communities were associated with gravel and pebble-dominated substrates and the more intermittent communities (Intermittent and Ditch types) with silt and soil-dominated substrates. Different plant species are associated with different substrate types (e.g. Barko and Smart 1986; Clarke and Wharton 2001) and different substrates also interact with drying to influence plant growth and survival as water retention capacity declines with increasing sediment size (Walczak et al. 2002) and affects nutrient availability (Song et al. 2007). Consequently, for a given drying duration, the intensity of water stress differs according to sediment composition, in turn influencing the resistance and resilience of plants (De Wilde et al., 2017). However, how substrate, channel morphology, as well as variables including shading interact to affect water content within drying channels remains unclear (Westwood et al. 2006; Stubbington et al. 2019). To address this knowledge gap, we recommend that future plant surveys should be accompanied by systematic recording of the

3 4	313	physical environment including characterization of the riparian zone. An improved
5 6	314	understanding of the effects of the physical environment will indicate conditions governing
7 8 9	315	the resistance and resilience of different species and communities to intermittence, improving
) 10 11	316	our ability to maintain their requirements for flowing, ponded and/or dry instream conditions
12 13	317	while managing demands for water resources (Franklin et al. 2008).
14 15	318	
16 17 18	319	Assessment of communities across the continuum of intermittence
19 20	320	Analysis in relation to antecedent flow intermittence showed the relative abundance of
21 22	321	species/taxa as indicative of flow history. The observed link between flow intermittence and
23 24 25	322	the response of differing plant communities to 12, 24 or 36-month antecedent percentage of
26 27	323	zero flow (%ZF) mirrors previous analyses demonstrating varying lag phases in community
28 29	324	response to hydrological variation (Klijn and Witte 1999; Westwood et al. 2017). The
30 31 32	325	collection of plant data from intermittent streams thus far has concentrated on aquatic and
33 34	326	wetland species, with little attention paid to the terrestrial taxa encountered, these instead
35 36	327	being aggregated as 'non-aquatic' grasses and herbs or left undocumented (Dieterich and
37 38 39	328	Anderson 1998, Holmes 1999, Westwood et al. 2006, 2017, Sabater et al. 2017). To expand
39 40 41	329	our understanding of how plant communities transition across the flowing, ponded and dry
42 43	330	phases of intermittent systems, a more comprehensive community characterisation that
44 45	331	encompasses plants from obligate aquatic to terrestrial across the full range of intermittence
46 47 48	332	is needed (Steward et al. 2018; Stubbington et al. 2019).
49 50	333	
51 52	334	Towards a new set of management tools
53 54 55	335	Large-scale plant surveys such as the one analysed here demonstrate their usefulness in
56 57	336	understanding temporal and spatial patterns in response to environmental variability (Holmes
58 59 60	337	2006). Although Holmes (1999) created a uniquely valuable dataset which will guide future

developments in plant biomonitoring, the community types we identified, based on 37 taxa,
should facilitate more rapid assessments to establish plant community responses to changing
flow regimes in lowland groundwater-fed streams. Our survey and classification approach
could be adapted to explore plant community responses across a range of intermittent stream
types, by determining the extent to which the described associations of individual taxa and
communities are generally applicable.

Our results confirm the controlling influence that the flow regime has on plant communities of intermittent rivers (Bornette and Puijalon 2011). Understanding these controls could inform how to characterize EU Water Framework Directive ecological status, identify the reference conditions we need to achieve and the flow regime required to support them (Stubbington et al. 2017). This understanding can inform local and regional resource management by providing a reliable gauge of the flow requirements needed to support contrasting site-specific and temporally variable communities, leading to the development of specific flow targets (e.g. Holmes 1999, Westwood et al. 2017). In addition, plant communities can be used to characterize flow permanence regimes in the absence of hydrological data, which is often lacking for temporary streams (Costigan et al. 2017; Beaufort et al. 2018). Management strategies which allocate flows for instream ecological needs are well established (Franklin et al. 2008; Acreman et al. 2014). However, defining environmental flows is more complicated for intermittent streams, because target regimes must simultaneously consider both the discharge and the patterns of intermittence that promote plant diversity and abundance (Sabater et al. 2017). Incorporating a more comprehensive characterisation of plant communities across the continuum of intermittence will help advance our understanding of wider biotic responses to hydrological and other environmental changes (Stubbington et al. 2018, 2019; England et al. 2019) and inform the

2 3 4	363	derivation of novel assessment methods that are specifically designed for intermittent
5 6	364	streams.
7 8 9	365	
10 11	366	
12 13	367	Conclusions
14 15 16	368	1. Plant community structure provides a reliable guide to a site's flow history,
17 18	369	especially in terms of its flow intermittence, which is particularly useful at
19 20	370	ungauged sites.
21 22 23	371	2. A prolonged drought promoted a greater diversity of plant communities as flows
23 24 25	372	resumed and species exploited the various physical niches provided. In the
26 27	373	absence of prolonged drought, communities became increasingly simplified,
28 29 20	374	featuring fewer obligate aquatic taxa but greater growths of tall wetland grasses.
30 31 32	375	3. Flow is the master variable controlling riverine plant community composition, but
33 34	376	its interactions with channel morphology remains poorly explored. Future surveys
35 36	377	should therefore include more detailed physical site assessments.
37 38 39	378	4. To advance our understanding of how biological communities change as
40 41	379	intermittent systems transition between flowing, ponded and dry phases, future
42 43	380	surveys should encompass identification of terrestrial plants.
44 45	381	5. As intermittent streams become increasingly common due to both climatic drivers
46 47 48	382	and water resource pressures, tools are needed to effectively predict, monitor and
49 50	383	manage the effects of flow variability on biotic communities. Developing such
51 52	384	tools should encompass taxa associated with a full range of instream conditions, to
53 54 55	385	enable scientists and managers to conduct holistic ecosystem health assessment
55 56 57	386	
58 59 60	387	Acknowledgements

3 4	388	This paper is dedicated to the memory of Dr Nigel Holmes (Alconbury Consultants), whose
5 6	389	tireless efforts created this unique regional dataset, as well as so much else in river science. It
7 8 9	390	was while preparing for a full reclassification of the data in 2014 that he sadly died without
10 11	391	warning. We hope he would have approved of our efforts and agreed with our findings. Data
12 13	392	available on request from the authors.
14 15 16	393	
17 18	394	References
19 20	395	Acreman, M.C., Overton, I.C., King, J., Wood, P.J., Cowx, I.G., Dunbar, M.J., Kendy, E. and
21 22 23	396	Young, W.J. (2014). The changing role of ecohydrological science in guiding environmental
24 25	397	flows. Hydrol. Sci. J. 59(3-4), 433-450. https://doi.org/10.1080/02626667.2014.886019
26 27	398	
28 29	399	Acuña, V., Datry, T., Marshall, J., Barceló, D., Dahm, C.N., Ginebreda, A., McGregor, G.,
30 31 32	400	Sabater, S., Tockner, K. and Palmer, M.A. (2014). Why should we care about temporary
33 34	401	waterways? Science, 343(6175), 1080-1081. https://doi.org/10.1126/science.1246666
35 36	402	
37 38 39	403	Arnell, N.W., Halliday, S.J., Battarbee, R.W., Skeffington, R.A. and Wade, A. (2015) The
40 41	404	implications of climate change for the water environment in England. Prog. Phys. Geog. 39
42 43	405	(1), 93–120. https://doi.org/10.1177/0309133314560369
44 45 46	406	
47 48	407	Baattrup-Pedersen, A. and Riis, T. (2002) Macrophyte diversity and composition in relation
49 50	408	to substratum characteristics in regulated and unregulated Danish streams. Freshw. Bio., 42:
51 52 53	409	375-385. https://doi.org/10.1046/j.1365-2427.1999.444487.x
55 55	410	
56 57	411	Barko, J.W. and Smart, R.M. (1986) Sediment-related mechanisms of growth limitation in
58 59 60	412	submersed macrophytes. <i>Ecology</i> 67, 1328–1340. https://doi.org/10.1007/s12665-014-3558-1

1 2		
2 3 4	413	
5 6	414	Beaufort, A., Lamouroux, N., Pella, H., Datry, T. and Sauquet, E. (2018) Extrapolating
7 8 9	415	regional probability of drying of headwater streams using discrete observations and gauging
10 11	416	networks. Hydrol. Earth Syst. Sci., 22, 3033-3051, https://doi.org/10.5194/hess-22-3033-
12 13	417	2018, 2018.
14 15 16	418	
10 17 18	419	Bornette, G. and Puijalon, S. (2011) Response of aquatic plants to abiotic factors: a review.
19 20	420	Aquat. Sci. 73(1), 1-14 https://doi.org/10.1007/s00027-010-0162-7
21 22 23	421	
23 24 25	422	Carey, P.D., Wallis, S.M., Emmett, B.E., Maskell, L.C., Murphy, J., Norton, L.R., Simpson
26 27	423	I.C. and Smart, S.S. (2008) Countryside Survey: Headline messages from 2007. Centre for
28 29	424	Ecology and Hydrology UK.
30 31 32	425	http://nora.nerc.ac.uk/id/eprint/4986/1/N004986BK.pdf - [accessed 24 April 2019].
33 34	426	
35 36	427	Clarke, S.J. and Wharton, G. (2001) Sediment nutrient characteristics and aquatic
37 38 39	428	macrophytes in lowland English rivers. Sci. Total Environ. 266, 103–12.
39 40 41	429	https://doi.org/10.1016/S0048-9697(00)00754-3
42 43	430	
44 45 46	431	Costigan, K.H., Kennard, M.J., Leigh, C., Sauquet, E., Datry, T., and Boulton, A.J. (2017)
46 47 48	432	Flow Regimes in Intermittent Rivers and Ephemeral Streams, In: Datry, T., Bonada, N.,
49 50	433	Boulton, A. J. (eds): Intermittent rivers and ephemeral streams: ecology and management
51 52	434	Elsevier, Amsterdam, pp. 51-78.
53 54 55	435	https://doi.org/10.1016/B978-0-12-803835-2.00003-6
56 57 58 59 60	436	

2		
3 4	437	Datry, T., Fritz, K. and Leigh C. (2016). Challenges, developments and perspectives in
5 6	438	intermittent river ecology. Freshw. Bio., 61, 1171-1180. https://doi.org/10.1111/fwb.12789
7 8 9	439	
10 11	440	Datry, T., Bonada, N. & Boulton, A. J. (2017). General introduction In: Datry, T., Bonada,
12 13	441	N., Boulton, A. J. (eds): Intermittent rivers and ephemeral streams: ecology and management.
14 15 16	442	- Elsevier, Amsterdam, pp. 1-16. https://doi.org/10.1016/B978-0-12-803835-2.00003-6.
17 18	443	
19 20	444	De Wilde, M., Puijalon, S. and Bornette, G. (2017) Sediment type rules the response of
21 22	445	aquatic plant communities to dewatering in wetlands. J. Veg. Sci. 28, 172–183.
23 24 25	446	https://doi.org/10.1111/jvs.12473
26 27	447	
28 29	448	Dieterich, M. and Anderson, N.H. (1998). Dynamics of abiotic parameters, solute removal
30 31 32	449	and sediment retention in summer-dry headwater streams of western Oregon. Hydrobiologia,
33 34	450	379, 1–15. https://doi: 10.1023/A:1003423016125
35 36	451	
37 38 30	452	England, J., Chadd, R., Dunbar, M.J., Sarremejane, R., Stubbington, R., Westwood C.G. and
39 40 41	453	Leeming, D. (2019) An invertebrate-based index to characterize ecological responses to flow
42 43	454	intermittence in rivers. Fund. A. Limnol. https://doi.org/10.1127/fal/2019/1206
44 45 46	455	
40 47 48	456	Environment Agency (2000) Chalk stream malaise: anglers' views on contributory factors.
48 49 50 51 52 53 54 55	457	Environment Agency, Bristol. Available at:
	458	http://www.environmentdata.org/archive/ealit:590/OBJ/19001628.pdf [accessed 11 Feb
	459	2019].
56 57 58	460	
59 60		

1		
2 3 4	461	Franklin, P., Dunbar, M.J. and Whitehead, P. (2008) Flow controls on lowland river
5 6	462	macrophytes: a review. Science Tot. Env., 400, 369-378.
7 8 9	463	https://doi.org/10.1016/j.scitotenv.2008.06.018
10 11	464	
12 13	465	Gordon, N.D., McMahon, T.A., Finlayson, B.L., Gippel, C.J. and Nathan, R.J. (2004) Stream
14 15 16	466	hydrology: An introduction for ecologists, (2nd ed.) Chichester, UK: Wiley. pp. 1-448.
10 17 18	467	
19 20	468	Grime, J.P., Hodgson, J.G. and Hunt, R. (1990) Comparative Plant Ecology. Chapman and
21 22 22	469	Hall, London, UK.
23 24 25	470	
26 27	471	Heywood, M.J.T. and Walling, D.E. (2003) Suspended sediment fluxes in chalk streams in
28 29	472	the Hampshire Avon catchment, U.K. Hydrobiol., 494, 111-117.
30 31 32	473	https://doi.org/10.1023/A:1025445711343.
33 34	474	
35 36	475	Hill, M.O. (1979) A Fortran Programme for Arranging Multivariate Data in a Two-Way
37 38 39	476	Table by Classification of the Individuals and Attributes. Cornell University, Cornell.
39 40 41	477	
42 43	478	Holmes, N.T.H. (1999) Recovery of headwater stream flora following the 1989-1992
44 45 46	479	groundwater drought. Hydrol. Proc., 354, 341-354. https://doi.org/10.1002/(SICI)1099-
46 47 48	480	1085(19990228)13:3%3C341::AID-HYP742%3E3.0.CO;2-L
49 50	481	
51 52	482	Holmes, N.T.H. (2006) The importance of long-term data sets in science and river
53 54 55	483	management. Aquat. Conserv. Mar. Freshw. Ecosyst., 16(4), 329-333.
56 57	484	https://doi.org/10.1002/aqc.785
58 59 60	485	

1	
2	
3	
4	
5	
6	
7	
, 8	
a	
10	
11	
11	
12	
13	
14	
16	
10	
17	
10 10	
19	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201 22 23 24 25 26 27 28 29	
∠ I วว	
22	
23	
24	
25	
26	
27	
28	
29	
30 31 32	
31	
32 33	
33	
54 25	
34 35 36	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58 50	
59 60	
60	

486	IPCC (2018) Summary for Policymakers. In: Global warming of 1.5°C. An IPCC Special
487	Report on the impacts of global warming of 1.5°C above pre-industrial levels and related
488	global greenhouse gas emission pathways, in the context of strengthening the global response
489	to the threat of climate change, sustainable development, and efforts to eradicate poverty [V.
490	Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W.
491	Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M. I.
492	Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)]. World Meteorological
493	Organization, Geneva, Switzerland, 32 pp.
494	
495	Katz, G.L., Denslow, M.W. and Stromberg, J.C. (2012) The Goldilocks effect: intermittent
496	streams sustain more plant species than those with perennial or ephemeral flow. Freshw.
497	Bio., 57, 467-480. https://doi.org/10.1111/j.1365-2427.2011.02714.x
498	
499	Klijn, F. and Witte, J.P.M. (1999) Eco-hydrology: groundwater flow and site factors in plant
500	ecology. Hydrogeology, 7, 65 - 77. https://doi.org/10.1007/s100400050180
501	
502	Lake, P.S. (2003) Ecological effects of perturbation by drought in flowing waters.
503	Freshwater Biology, 48(7), 1161-1172. https://doi.org/10.1046/j.1365-2427.2003.01086.x
504	
505	Leigh, C., Boulton, A.J., Courtwright, J.L., Fritz, K., May, C.L., Walker, R.H. & Datry, T.
506	(2016) Ecological research and management of intermittent rivers: An historical review and
507	future directions. Freshw. Bio,. 61: 1181-1199. https://doi.org/10.1111/fwb.12646
508	
509	Jarvie, H.P., Neal, C. and Williams, R.J. (2004) Assessing Changes in Phosphorus
510	Concentrations in Relation to In-Stream Plant Ecology in Lowland Permeable Catchments:

2		
3 4	511	Bringing Ecosystem Functioning Into Water Quality Monitoring. Water, Air and Soil
5 6	512	Pollution Focus, 4, 641-655. https://doi.org/10.1023/B:WAFO.000
7 8 9	513	
10 11	514	Malcolm, C.E.L. Young, A.R., Willmott, E.R., Holmes, M.G.R. and Gosling, R.D. (2012)
12 13	515	Can we give up gauging? A comparison of statistical certainty of gauged and modelled flows.
14 15 16	516	BHS Eleventh National Symposium, Hydrology for a changing world, pp.1–7.
17 18	517	https://doi.org/10.7558/bhs.2012.ns31.
19 20 21	518	
21 22 23	519	Met Office. (2019) Past weather events. https://www.metoffice.gov.uk/weather/learn-
24 25	520	about/past-uk-weather-events#y2009 [accessed 1 Feb 2019].
26 27 20	521	
28 29 30	522	NRA. (1993) Low flows and Water Resources: Facts on the top 40 low flow rivers in
31 32	523	England and Wales. National Rivers Authority. Bristol. ISBN 1 87 3160 42 9. Available at:
33 34	524	http://www.environmentdata.org/archive/ealit:3190/OBJ/20000192.pdf [accessed 1 Feb
35 36 37	525	2019].
38 39	526	
40 41	527	Oksanen, J. and Minchin, P.R. (1997) Instability of Ordination Results Under Changes in
42 43 44	528	Input Data Order: Explanations and Remedies. J. Veg. Sci., 8, 447–454.
44 45 46	529	https://doi.org/10.2307/3237336
47 48	530	
49 50	531	Perrow, M., Leeming, D.J., England, J.A. and Tomlinson, M. (2007) Life after low flow —
51 52 53	532	ecological recovery of the River Misbourne. British Wildlife, 18, 335-347.
54 55	533	
56 57	534	Prudhomme, C., Giuntoli, I., Robinson, E.L., Clark, D.B., Arnell, N.W., Dankers, R., Fekete,
58 59 60	535	B.M., Franssen, W., Gerten, D., Gosling, S.N. et al. (2014) Hydrological droughts in the 21st

3 4	536	century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc.
5 6	537	Natl. Acad. Sci. 111: 3262-3267. https://doi.org/10.1073/pnas.1222473110
7 8 9	538	
10 11	539	Riis, T. and Hawes, I. (2002). Relationships between water level fluctuations and vegetation
12 13 14	540	diversity in shallow water of New Zealand lakes. Aquat. Bot. 74, 133-148.
15 16	541	https://doi.org/10.1016/S0304-3770(02)00074-8
17 18	542	
19 20 21	543	Sabater, S., Timoner, X., Bornette, G., De Wilde, M., Stromberg, J. and Stella, J.C. (2017)
22 23	544	The Biota of Intermittent Rivers and Ephemeral Streams: Algae and Vascular Plants. In
24 25 26	545	Intermittent Rivers and Ephemeral Streams: Ecology and Management (pp. 189-216).
27 28	546	Elsevier Inc. https://doi.org/10.1016/B978-0-12-803835-2.00016-4
29 30 31	547 548	Sefton, C., Parry S., England J. and Angell G. (2019) Visualising and quantifying the
32 33	549	variability of hydrological state in intermittent rivers. <i>Fundam. Appl. Limnol.</i>
34 35	550	https://doi.org/10.1127/fal/2019/1149
36 37 38	551	
39 40	552	Simpson, E.H. (1949) Measurement of diversity. <i>Nature</i> . 163. https://doi.org/10.1038/
41 42	553	
43 44 45	554	163688a0, 688e688
46 47	555	Steward, A.L., Negus, P., Marshall, J.C., Clifford, S.E. and Dent, C. (2018) Assessing the
48 49 50	556	ecological health of rivers when they are dry. Ecol. Ind. 85, 537-547.
51 52	557	https://doi.org/10.1016/j.ecolind.2017.10.053
53 54 55	558	
55 56		
57 58		
59		
60		

1 2		
3 4 5 6 7 8 9	559	Song, KY., Zoh, KD. and Kan, H. (2007) Release of phosphate in a wetland by changes in
	560	hydrological regime. Sci. Total Environ. 380, 13-18.
	561	https://doi.org/10.1016/j.scitotenv.2006.11.035
10 11	562	
12 13	563	Stubbington, R., Chadd, R., Cid, N., Csabai, Z., Miliša, M., Morais, M., Munné, A., Pařil, P.,
14 15	564	Pešić, V. and Tziortzis, I. (2018) Biomonitoring of intermittent rivers and ephemeral streams
16 17 18	565	in Europe: Current practice and priorities to enhance ecological status assessments. Sci. Total
19 20	566	Environ. 618. 1096–1113. https://doi.org/10.1016/j.scitotenv.2017.09.137
21 22	567	
23 24 25	568	Stubbington, R., Gunn, J., Little, S., Worrall, T.P. and Wood, P.J. (2016) Macroinvertebrate
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	569	seedbank composition in relation to antecedent duration of drying and multiple wet-dry
	570	cycles in a temporary stream. Freshw. Bio. 61(8), 1293-1307.
	571	https://doi.org/10.1111/fwb.12770
	572	
	573	Stubbington, R., Paillex, A., England, J., Barthes, A., Bouchez, A., Rimet, F., Mar Sanchez,
	574	Montoya, M., Westwood, C.G. and Datry T. (2019) A comparison of biotic groups as dry-
	575	phase indicators of ecological quality in intermittent rivers and ephemeral streams. Ecol.
	576	Indi., 97, 165-174. https://doi.org/10.1016/j.ecolind.2018.09.061
44 45	577	
46 47 48	578	Tonkin, J.D., Bogan, M.T., Bonada, N., Rios-Touma, B. and Lytle, D.A. (2017) Seasonality
48 49 50	579	and predictability shape temporal species diversity. <i>Ecology</i> , 98(5):1201-1216. https://doi:
51 52	580	10.1002/ecy.1761
53 54 55	581	
56 57		
58 59		
60		

2		
3 4 5 6 7 8	582	Volder, A., Bonis, A. and Grillas, P. (1997) Effects of drought and flooding on the
	583	reproduction of an amphibious plant, Ranunculus peltatus. Aquatic Bot., 58, 113-120.
	584	https://doi.org/10.1016/S0304-3770(97)00018-1
9 10 11	585	
12 13	586	UK-TAG. (2014) UK-TAG River Assessment Method Macrophytes and Phytobenthos:
14 15 16	587	Macrophytes (River LEAFPACS2). Water Framework Directive – United Kingdom Advisory
17 18 19 20	588	Group. Available at:
	589	https://www.wfduk.org/sites/default/files/Media/Characterisation%20of%20the%20water%2
21 22	590	0environment/Biological%20Method%20Statements/River%20Macrophytes%20UKTAG%2
23 24 25	591	0Method%20Statement.pdf [accessed 1 Dec 2018].
25 26 27 28 29 30 31 32	592	
	593	Walczak, R., Rovdan, E. and Witkowska-Walczak, B. (2002) Water retention characteristics
	594	of peat and sand mixtures. Int. Agrophys. 16, 161–165.
33 34	595	
35 36	596	Westwood, C.G., Teeuw, R.M., Wade, P.M., Holmes, N.T.H. and Guyard, P. (2006)
37 38	597	Influences of environmental conditions on macrophyte communities in drought-affected
39 40 41	598	headwater streams. River Res. App., 22, 703-726. https://doi.org/10.1002/rra.934
41 42 43	599	
44 45 46 47 48	600	Westwood, C.G., England, J., Dunbar, M.J., Holmes, N.T.H., Leeming, D. and Hammond D.
	601	(2017) An approach to setting ecological flow thresholds for southern English chalk streams.
49 50	602	Water Environ. J., 31, 528-536. https://doi.org/1111/wej.12275.
51 52	603	
53 54	604	Wood, P.J. and Petts, G.E. (1999) The influence of drought on chalk stream
55 56 57 58 59 60	605	macroinvertebrates. Hydrological processes, 13(3), pp.387-399.

2 3 4	606	https://doi.org/10.1002/(SICI)1099-1085(19990228)13:3%3C387::AID-
5	607	HYP745%3E3.0.CO;2-R
6 7 8 9 10 11 22 34 25 27 28 29 30 32 33 45 36 37 8 9 0 11 22 34 25 26 27 28 29 30 32 33 45 36 37 8 9 0 41 42 34 45 46 7 8 9 0 12 23 24 25 26 27 8 9 30 31 23 34 5 36 37 8 9 0 41 42 34 45 46 7 8 9 0 11 22 32 45 26 27 8 9 30 31 32 33 45 36 37 8 9 0 41 42 43 44 56 57 8 9 0 11 22 32 45 26 27 8 9 30 31 23 34 5 36 37 8 9 0 41 42 33 45 56 57 8 9 0 11 22 34 55 56 57 8 9 0 11 22 34 55 56 57 8 9 0 11 22 34 55 56 57 8 9 0 11 22 34 55 56 57 8 9 0 11 22 34 55 56 57 8 9 0 11 22 34 55 56 57 8 9 0 11 22 34 55 56 57 8 9 0 11 22 34 55 56 57 8 9 0 12 33 45 56 57 8 9 0 12 33 45 56 57 8 9 0 12 33 45 56 57 8 9 0 12 33 45 56 57 8 9 0 12 53 56 57 8 9 0 12 53 56 57 8 9 0 12 53 56 57 8 9 0 12 53 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 57 57 57 57 57 57 57 57 57 57 57	607	HYP/45%3E3.0.CU;2-K

Wint

Nine Mile

Itcher

River

Beane

Mimram

t

Ν

Gade

Bulbourne

Â Misbourne

- 48 49 50 51 52 53 54
- 55 56 57
- 58 59
- 60

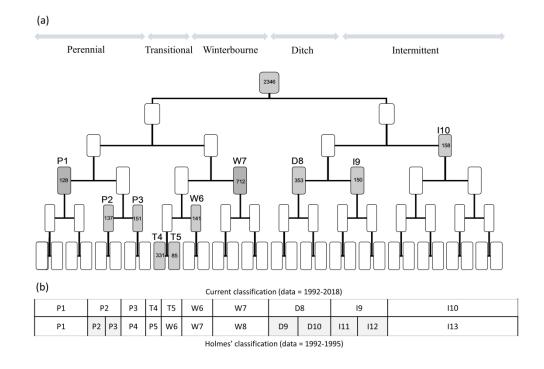
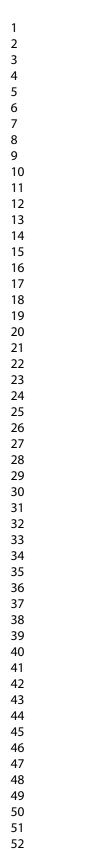



Fig. 2. (a) Dendrogram showing the relative position of the plant community types along a gradient of flow intermittence, indicating (b) previous (Holmes 1999) and current classifications (P=Perennial, T=Transitional, W=Winterbourne, D=Ditch and I=Intermittent).

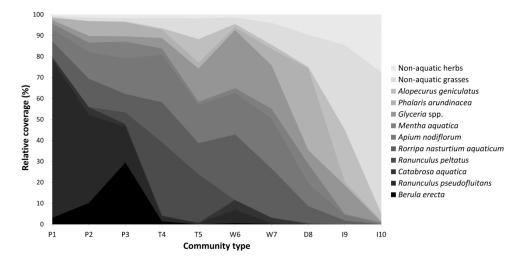
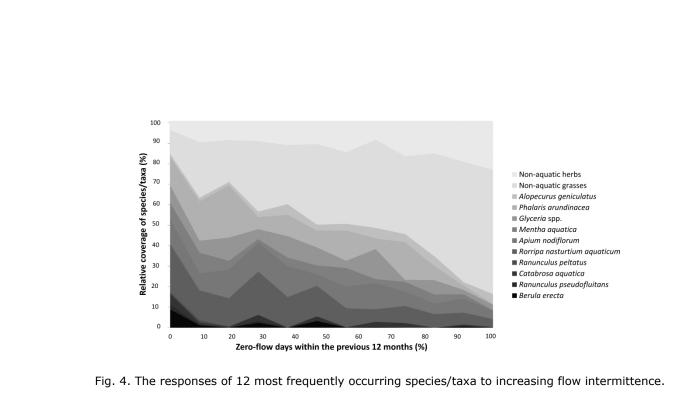



Fig. 3 Relative coverage of the 12 most frequently occurring species/taxa within each of the community types (P=Perennial, T=Transitional, W=Winterbourne, D=Ditch and I=Intermittent).

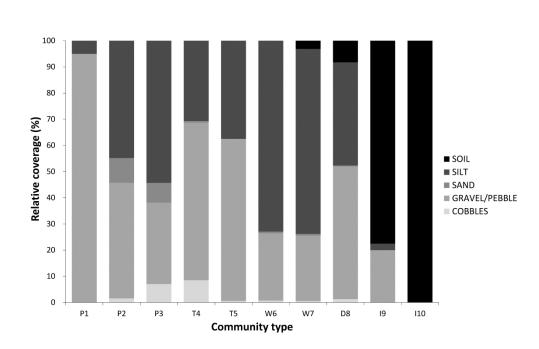


Fig. 5. Substrate composition at sites within each community type, calculated as the mean value of each variable per community type (P=Perennial, T=Transitional, W=Winterbourne, D=Ditch and I=Intermittent).