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A B S T R A C T

Knowledge of a new technology is necessary for a consumer to make an informed decision on its adoption, but
this is difficult with nascent technologies such as solar home systems (SHS) where information is asymmetrical,
with producers being in better positions to test the technology than consumers, contributing to their initial slow
diffusions in new markets. In such cases, neighbourhood influence from early and independent adopters play
important roles in increased future adoptions. In this work, impacts of neighbourhood influence and social
pressure on temporal diffusion of SHS in a rural developing community are investigated. A survey is developed
and carried out in Kendu Bay area of Kenya to gather information on how neighbourhood influence and social
pressure impact on SHS installation decisions. Data from the survey is then used to inform an agent-based model
(ABM) developed in NetLogo, to simulate impacts of neighbourhood influence radius and threshold, on temporal
diffusion of SHS in a rural developing community. Results show that visibility of newly installed SHS leads to
more installations that word-of-mouth alone. Results also show that increasing influence radius leads to ex-
ponential growth in SHS installations. For optimal SHS installations, a neighbourhood threshold of between
12.5% and 15% is required.

1. Introduction and Background

Social acceptance is necessary for successful diffusion of a new
technology within a given community, and this is especially so with
solar microgeneration systems which impact on individuals’ spaces
both passively and actively [1–3]; an individual's willingness to parti-
cipate in the microgeneration process through financial investment,
provision of an installation site, or through behavioural change is im-
portant for successful uptake of such technologies [4]. Attitudes to-
wards microgeneration technologies govern their social acceptances: In
developed nations, consumers could be motivated by autonomy of one's
own power source, interest in the new technology, environmental
concerns, and/or economic reasons [5]. In those regions therefore,
microgeneration technologies could be marketed as means to being
energy independent, as a means to saving energy costs, and/or as a
means to reducing household carbon emissions through zero emissions
or through more efficient technologies. In developing nations with very
low electrification rates on the other hand, consumers are mostly mo-
tivated by affordability, accessibility, and availability of electricity;
people are in need of electricity irrespective of its source. Micro-
generation technologies just happen to be the most readily available
and affordable means of achieving that, with the environment being an

unintended beneficiary. To these people therefore, solar microgenera-
tion systems are marketed as the affordable and reliable alternatives to
biomass, kerosene, or where available, the national utility grid.

Knowledge of a new technology is necessary for a consumer to make
an informed decision on its adoption, but this is difficult with nascent
technologies such as PV where information is asymmetrical, with pro-
ducers being in better positions to test the technology than consumers,
contributing to their initial slow diffusions in new markets [6–9]. Ro-
gers’ theory of diffusion of diffusion categorizes adopters based on
temporal partitioning [10,11]. According to this theory, temporal dif-
fusion of a new technology into a given market depends on its relative
advantage, compatibility, ease of use, and social acceptance amongst
other factors [10,11]. Innovators, the first 2.5% of adopters, influence
future adopters through neighbourhood influence and social pressure
(advertisements); different attitudes towards the new technology affect
initial adoption rates, with more acceptances experienced with time
after observations of the benefits of the new technology have been
made [10,11]. On the other hand, Bass model allows different cate-
gories of adopters, namely ‘innovators’ and ‘imitators’, to exist si-
multaneously [11–13]. According to this model, If we assign a coeffi-
cient of innovation p to early adopter and a coefficient of imitation q to
neighbourhood influence, the probability that a household deciding on
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PV installation actually adopts at time t is given by [11,12]

+p qF t( ( )) (1)

where F(t) is the proportion of adopters at time t. Without neighbour-
hood influence, p > 0, q=0, while without early adopters p=0,
q > 0.

The probability density function for a house that is deciding on PV
installation at a time t is given by

= +f t p qF t F t( ) ( ( ))(1 ( )) (2)

And the corresponding cumulative density function is given by

= +
+ +

F t p q t
p q t

( ) 1 exp( ( ) )
1 exp( ( ) )q

p (3)

Given a market potential factor m, cumulative adoption of PV at a
time t is given by F(t)×m. Coefficients p and q, and market factor m are
considered environmental variables to account for the changing and
unstable environment within which diffusion of a new technology oc-
curs. Initial and independent adoption decisions are mainly influenced
by perceived or measured costs, social pressures such as advertising
campaigns, a level of awareness of the new technology, attitudes to-
wards the new technology such as environmental concerns in case of
PV, and social demographics such as education and income levels.
These factors are captured in the coefficient of innovation p. Perceived
and spoken (word-of-mouth) benefits of the new technology are cap-
tured in the coefficient of imitation q. Geographical factors such as
location and demographics will determine the market saturation levels
which are then captured in the market potential factor m.

Both Roger's theory and Bass model underscore neighbourhood in-
fluence as a major factor in social acceptance, and thus in diffusion of a
new technology in a given area [14]. Bollinger and Gillingham argue
that neighbourhood influence begins to play a more important role
once early adopters have installed a new technology [15]; they infer
that visibility of a new technology (PV installed on rooftops) coupled
with word-of-mouth about benefits of the new technology leads to in-
creased adoption within a given neighbourhood or sensing radius [15].
Weber and Rode researched on the impacts of observational learning, or
visibility of a new technology, on adoption of PV installations, while
ignoring the effects of social interactions or word-of-mouth [16]. They
found that, even though visibility played an important role in PV dif-
fusion, its effect was more localized to immediate neighbours thus to a
small sensing radius [16].

Many rural households in developing nations require electricity
basically for lighting and to power small electrical appliances such as
mobile phone chargers. These households therefore rarely consume
more than 30 kWh per month [17,18]. In the absence of grid electricity,
they use kerosene lanterns or biofuels for lighting. These fuels are
health hazards, producing dangerous emissions which affect lungs and
eyes, and are also major causes of rural household fires [19]. Some
households use batteries to power small electronic appliances, but these
require frequent charging at often distant locations where grid elec-
tricity is available, making them very costly to operate and maintain.
There is therefore a major electricity market vacuum awaiting ex-
ploitation. Research shows that for these communities, there is a will-
ingness to pay for electricity microgeneration systems based on locally
available renewable energy resources due to the overall socio-economic
benefits that such systems offer [19,20]; additional benefits of micro-
generation systems include increased self-sufficiency, perception of
enhanced status in the community, and higher quality lighting which
leads to increased nocturnal social-economic activities [20]. Moreover,
microgeneration market infrastructures provide new sources of skilled
employment for many rural technicians [21].

It is difficult to model the impacts of different non-quantitative so-
cial aspects on the adoption of a new technology. However, a mea-
surable parameter such as sensing-radius, the radius within which a

household can ‘sense’ its neighbours, and neighbourhood-threshold, the
minimum percentage of neighbours within a given sensing radius that
must have adopted a new technology for a household to consider doing
the same, can be modelled and varied to explore the impacts of such
parameters on the adoption of a new technology. Robinson and Rai
explore the importance of socio-economic data in modelling household
PV adoption, using a GIS-integrated ABM model [22,23]. Their model
uses empirical data to weigh the importance of different factors in PV
adoption decisions, and to validate the models [22,23].

Whereas Robinson and Rai focused on a developed community in
Texas, USA, this work uses survey gathered data to model how neigh-
bourhood influence impacts on temporal diffusion of solar home sys-
tems (SHS) in a rural western Kenya, and by enlarge, similar rural de-
veloping communities, especially in sub-Saharan Africa. The model
looks at how visibility of SHS, combined with word-of-mouth of their
benefits, impact on their temporal diffusion within a given community.
The model simulates the neighbourhood influence radius and neigh-
bourhood threshold to determine optimal values for SHS diffusion.

2. Methodology

2.1. Survey construction

A short survey was carried on SHS installed in Kendu Bay area of
Kenya to gather information on reasons for such installations as de-
tailed in [24]. Specifically, the survey sought to gather information on
how neighbourhood influence and social pressure impacted on SHS
installation decisions. The survey only targeted households with SHS.
Before embarking on the survey, an ethics review process was carried
out to ensure proper handling of gathered sensitive data. A compre-
hensive questionnaire was then prepared, taking into account the sen-
sitivity of some of the questions, and local cultural inhibitions. Core
questions asked were (Table 1):

Kendu Bay area of Kenya was chosen for the study because of an
ongoing research in the area. The first survey was carried out in the
area in 2015 as reported in [24]. Kendu Bay is a small rural community
in Western Kenya, situated along the Lake Victoria, and near the
equator. It has a population of about 31,000 people residing within
three main locations of Pala, Gendia, and Kanam. The main economic
activities are fishing and subsistence farming which occurs mainly near
the shores of Lake Victoria and along a local permanent river called
Awach, due to poor rainfall. The main source of employment is civil
service with many people working for the local and national govern-
ments as administrators, clerks, teachers, police officers, or health of-
ficers. Other sources of employment are small scale businesses and
consumer services, small scale manufacturing enterprises, and mining.
Even though the government of Kenya considers Kendu Bay to be an
electrified area (it defines an area as electrified if it is situated within
10 km of existing distribution lines), the truth is that only about 4% of
the population are connected to the national grid due to high connec-
tions costs, very low power needs, and unreliability of the national grid
[24]. The rest are dependent on small solar home systems, kerosene
lanterns, or biofuels for lighting and cooking.

2.2. Survey data collection

The survey was carried out over 30 days, with 208 households
surveyed. Data collection was done through face-to-face and door-to-
door interviews, with the responses filled into paper questionnaires
before compilation into a laptop computer. This was deemed viable and
the best option after a risk and cost analysis. The head of the household,
the person responsible for making energy decisions, answered on behalf
of the whole household. During data compilation, the households were
divided into three groups as follows: those will grid electricity, those
without grid electricity but with installed solar home systems, and those
without grid electricity or solar home systems, i.e., no source of
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electricity. This division also inadvertently grouped the households
according to income and education levels. Those without any source of
electricity were further divided into three groups depending on income
and education levels [24].

The survey was carried out by one person, the corresponding au-
thor, who is originally from the area, can speak the local language, and
understands local cultural norms. A single surveyor also ensures uni-
formity in data collection, and enhances security and integrity of col-
lected data. The survey was divided into three main sections: demo-
graphic information, technical information, and opinions and other
comments. The demographic information section sought to identify the
household size, education level of head of household, and income level.
Technical information section sought to identify the size of the SHS
installed, reasons behind the installation, how the installation was
funded, problems with the installations, and any repairs/replacements
to-date. The opinions and other comments section sought to obtain
information on how neighbourhood influence and social pressure im-
pacted on SHS installation decision. Specifically, this section looked at

how observations, word-of-mouth, and advertisements impacted on
SHS installation decisions.

The survey area was divided into three regions based on adminis-
trative boundaries, namely Gendia, Kanam, and Pala to ensure equal
distribution of samples and to make it easier to manage the travel lo-
gistics. The three regions have the following approximate populations:
12,000, 10,000, and 9000 and approximate corresponding households
of 3000, 2500, and 2000, respectively [25]. The surveyed households
were those with visibly installed SHS and those that were nearest to the
main roads. A total of 192 households with SHS were positively sur-
veyed, representing about 23.2% of households with SHS in Kendu Bay
area. Table 2 shows the population of each region and the corre-
sponding survey household sample sizes, and inclusion probabilities.
Inclusion probability in a region is given by dividing the region's
households sample by its total households.

2.3. Agent-based model (ABM)

Development of electricity delivery infrastructures are path-depen-
dent, meaning, each development decision and step affects subsequent
steps, and the final outcome. Human actors are therefore the most
important variables in any energy development plan as their decisions
affect the way a system evolves. Different modelling tools and techni-
ques have been applied in planning rural electrification paths in many
developing countries. However, these often view this problem as a
question of expansion of grid coverage through extensions of existing
transmission and distribution networks from central power generation

Table 1
Core survey questions.

Table 2
Total populations, households, samples, and inclusion probabilities.

Region Population Households Sample Inclusion Probability

Gendia 12,000 3000 88 0.029
Kanam 10,000 2500 67 0.027
Pala 9000 2000 53 0.027
Kendu Bay (Total) 31,000 7500 208 0.028
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stations and seldom address the unique and regionally-specific chal-
lenges presented by each developing nation. To the best of our
knowledge, no work has captured, in one study, the unique social,
economic, and cultural environments, and market and technical infra-
structural challenges presented by different rural communities in de-
veloping nations.

In this work, an agent-based model (ABM) is developed in NetLogo
as a tool for modelling impacts of neighbourhood influence on social
acceptance and temporal diffusion of solar home systems in a rural
developing community, with a focus on Kendu Bay area of Kenya. ABMs
seek to capture the overall macro-effects of different micro-decisions in
a virtual world by modelling individual entities within a complex
system and the rules that govern the interactions between the entities
within the system, to capture the overall effect of such interactions. The
model developed in this work takes into account population distribu-
tion in the given area, solar microgeneration potential in the area [26],
limitations of solar electricity microgeneration technologies, and deci-
sions by human actors based on costs, neighbourhood influence, and
electrification options in the area and simulates the interactions be-
tween these factors in order to capture the overall macro-effects of
different micro-decisions. Survey data from Kendu Bay area of Kenya is
used to inform the model [24]. Specifically, data on population dis-
tribution of the area, total SHS installations in the area, sizes of SHS
installed in the area, reasons for SHS installations, neighbourhood in-
fluence on SHS installation decisions, impacts of costs on SHS in-
stallation decisions, and opinions on SHS systems are used to simulate
temporal diffusion of SHS in the area.

The following agents are created in the model:

a) a representation of the environment and the solar potential in it,
b) the populations in it that require SHS,
c) SHS seeds that would use the environment to produce electricity,
d) a central observer or stakeholder who determines the strategies and
preferences for PV diffusions.

Table 3 shows parameters used in the model:
A household without SHS would consider installing one if

<LUCE CPV A/kWh (4)

where CA/kWh is avoided cost per kWh, i.e., the prevailing national
grid electricity cost per kWh while LUCEPV is the levelized unit cost of
delivered electricity and is given by

=
× × ×

LUCE ALCC
W EHFS CUF365PV

PV

p (5)

whereWp is the rated peak Watt capacity of the SHS panel and is based
on a household's activity profile and power demand [27], EHFS is the
equivalent hours of full sunshine per day, CUF is the capacity utilization
factor which incorporates non-utilization and outages of systems due to
various reasons, and ALCCpv is the annualized life cycle cost which is
calculated by summing up the cost of all of its individual components,
i.e. the panel, battery, charge controller, and appliances multiplied by
their respective capital recovery factors plus operations and main-
tenance costs. It is expressed as

= × + × + ×
+ × +

ALCC C CRF C CRF C CRF
C CRF C

( ) ( ) ( )
( )

PV PV PV batt batt cc cc

appl appl O M

0 0 0

0 & (6)

where C0PV is the capital cost of the SHS panel, C0batt is the capital cost
of the battery, C0cc is the capital cost of the charge controller, C0appl is
the capital cost of appliances, CRFPV, CEFbatt, CRGcc, and CRFappl are the
capital recovery factors of the SHS panel, the battery, the charge con-
troller, and appliances, respectively, and CO&M is the operations and
maintenance cost.

Capital recovery factor (CRF) is calculated using the formula

= +
+

CRF i i
i

(1 )
(1 ) 1

n

n (7)

where i is the discount rate while n is the life of the particular com-
ponent being considered.

SHS is actually installed by a household if

× >H
H

T100PV IR

Total IR
IR

/

/ (8)

where HPV/IR is the number of households with PV within a given in-
fluence-radius (IR), HTotal/IR is the total number of households within
the same influence-radius, and TIR is the neighbourhood threshold.

3. Results and discussion

3.1. Survey results

A total of 208 households with visibly installed solar home systems
(SHS) were approached. Out of these, 192 were characterized as posi-
tive respondents. The overall primary quality indicator is 92%. Table 4
shows response rates by region, and the corresponding quality in-
dicators.

According to respondents, the main reasons for SHS installations
was the need for better quality lighting than from kerosene lanterns of
biomass. This was then followed by need to independently charge one's
own mobile phones. Some correspondents gave mobile phone charging
as the main reason for installation, followed by need for quality
lighting. Since 97% of the systems installed were below 20Wp capacity,
they could hardly provide power beyond the above two functions.
However, some people still managed to get additional use for their
systems including: offering home-based mobile charging services and
powering small radios. Table 5 summarizes the above information.

Out of the 192 positive correspondents, 18 were characterized as
early adopters, having installed SHS without neighbourhood influence
or social pressure, but purely for better quality lighting and to charge

Table 3
Parameters used in the NetLogo Model.

Parameter Description

LUCEpv Levelized unit cost of electricity delivered
CA/kQh Avoided cost
EHFS Equivalent hours of full sunshine per day
CUF Capacity utilization factor
ALCCPV Annualized life cycle cost
COPV Capital cost of the PV module
CObatt Capital cost of the battery
COcc Capital cost of the charge controller
COappl Capital cost of appliances
CRF Capital recovery factor
CO&M Operations and maintenance cost
i Discount rate
TIR Neighbourhood threshold
p Coefficient of innovation
q Coefficient of imitation
F(t) Proportion of adopters at time t
m Market potential factor
HPV/IR Households with PV within a given influence-radius
HTotal/IR Total households within the same influence-radius

Table 4
Response rates by region.

Region Sample Positive
Respondents

Non-
Respondents

Quality
Indicator

Gendia 88 81 7 92%
Kanam 67 63 4 94%
Pala 53 48 5 91%
Kendu Bay

(Total)
208 192 16 92%
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own mobile phones. The remaining 174 were classified as imitators,
having installed SHS due to influence from other factors such as seeing
neighbours/relatives with one, hearing about neighbours/with one,
visual advertisements (billboards, posters and flyers), radio advertise-
ments, and TV advertisements. Results show that neighbourhood in-
fluence played a larger role in SHS installation decisions than did ad-
vertisements. This is because of the high esteem status that SHS brings
with it, in addition to obvious electrification advantages. Having a
visibly installed SHS in the village brings with it a high status of

financial stability and ability. It also brings with it a bragging right at
the community gossip table in the village market. Advertisements also
played major roles in SHS installation decisions, especially visual ad-
vertisements (billboards/posters and TV); people who saw the SHS and
their benefits were more like to install them than those who just heard
about them on radio. Table 6 summarizes the above information.

Under neighbourhood influence, 71 households decided to install
SHS after seeing their neighbours with the same. Another 24 installed
SHS after hearing about them and their potential benefits from their
neighbours. Under advertisements, 34 households installed SHS after
seeing them on billboards, posters, or flyers while 26 households in-
stalled SHS after seeing them in TV ads. Another 19 installed SHS after
hearing about them in radio ads. Visibility of SHS, either through
neighbours or advertisements therefore contributed more to their in-
stallation decisions, than hearing about them. In total, 131 households,
or 68%, installed SHS after seeing them while 43 households, or 23%
installed SHS after hearing about them and their benefits. Households
are therefore 3 times more like to install SHS after seeing them from
neighbours or advertisements, than after hearing about them. Table 7
summarizes the above information.

All of the 18 early adopters paid for their systems in cash up-front at
costs of between US$ 175 for a 10Wp system with battery, USB phone
battery charger, and 3 LED lamps and US$300 for a 20Wp system with
battery, USB phone battery charger, and 3 LED lamps. The late adopters
funded their systems through cash payments, pay-as-you-go (PAYG)
mobile platforms, and hire purchase. Specifically, 4 households paid for
their systems in cash up-front, 61 paid for their systems through hire-
purchase, while 109 paid for their systems through PAYG mobile
platforms. The hire purchase is offered to civil servants and prominent
local residents (easily identifiable) by large retail shops, locally known
as wholesalers. The African Retail Traders (ART) exclusively offers hire
purchase services to civil servants at interest free terms. The buyers pay
for the system in 6 equal monthly instalments. Other retailers offering
hire purchase services have modelled their terms around the ART
system. However, many rural households are still too poor to be credit
worthy. For these household, PAYG mobile money platforms offer the
reprieve. They pay for their system in between 1 and 3 years. Payments
are usually made weekly, fortnightly, or monthly, with top-ups made to
a card that is then inserted into a metre. If one misses a top-up, the
PAYG company has a legal right to collect the SHS. However, even
though the PAYG systems offer electrification paths to the poorest in the
community, their path to electrification of also the most expensive. A
system that costs US$175 in cash purchase will cost about

US$500 when fully paid through PAYG. A random market sampling
of the two most famous PAYG companies in the area showed that they
sell electricity at a cost of about US$:2.82–US$:3.45/kWh, depending
on the size of the system, and the length of the payment. This is way
above the national grid price of US$0.20/kWh. So, even though a
weekly or monthly payment may look less that what one spends on
kerosene or biofuels during similar periods, better and more affordable
microcredit facilities are still lacking, to enable more households to
access electricity in rural sub-Saharan Africa. Table 8 and Fig. 4 sum-
marize the above information.

3.2. Simulation results

Data from the survey is used to inform the agent-based model from
which neighbourhood influence-radius and neighbourhood threshold
are used to simulate impacts of neighbourhood influence and social
pressure on temporal diffusion of SHS within a similar developing
community. Fig. 1 shows a view of the world after 25 years. The
landscape is coloured green with the lighter areas being hill tops. Black
houses are those that are unelectrified. Houses deciding on installing
SHS are coloured white while those that have installed SHS are co-
loured yellow.

Fig. 2 shows a plot of households with SHS after 25 years. At year

Table 5
Main reasons for SHS installations.

Main reasons for SHS Installations Households Percentage (%)

Lighting 169 88
Phone charging 21 11
Other uses 2 <1

Table 6
Factors influencing SHS installations.

Influencing factors Households Percentage (%)

Neighbourhood influence 95 50
Advertisements 79 41
Early adopters 18 9

Table 7
Comparison of different influencing factors on SHS installations.

Influencing factors Households Percentage (%)

Early Adopters 18 9
Seen from neighbours Seen SHS 71 Total= 131 37 Total= 68
Billboards/Posters/Flyers 34 18
TV Ads 26 14
Heard from neighbours Heard of SHS 24 Total= 43 12 Total= 23
Radio Ads 19 10

Table 8
Comparison of impacts of different SHS payments methods on SHS installations.

SHS payment method Households Percentage (%)

Pay-as-You-Go (PAYG) 109 57
Hire Purchase 61 32
Cash Upfront 22 11

Fig. 1. A view of the world after simulations after 25 years.
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zero (2015), there were about 347 households with SHS installed in
Kendu Bay area [24]. Now (2018), a new survey shows that there are
about 828 households with SHS. Simulation results show that after 25
years there will be about 4325 households with SHS, representing
44.1% of all households. This massive growth is attributable to many
factors with the main ones being a surge in availability of microcredit
facilities tailored for such purchases, increasing neighbourhood influ-
ence and social pressure due to increasing SHS installations, and in-
creasing awareness of the socio-economic benefits of SHS systems.
Other possible attributes include falling PV costs, increasing household
incomes, and increasing PV efficiencies.

3.2.1. Influence-radius (IR)
Influence-radius is the radius within which a household influences,

or is influenced by, its neighbours. The default radius is set at 1 km

based on population distribution and terrain of Kendu Bay area. The
sparseness of the rural population makes such a radius meaningful, as
most households live within 5 km of a common village market and a
permanent river or water source (lake Victoria in this case). The model
simulates how a household's increasing influence-radius (IR) impacts on
its SHS installation decision. As shown in Fig. 3, with a default IR of
1 km, 828 households have installed SHS now. This number increases
exponentially with increasing IR, with simulated data showing that
2189 households would have installed SHS by now if the IR was set at
5 km.

Fig. 4 compares impacts of different IR on temporal diffusion of SHS
within Kendu Bay area. With a default IR of 1 km, 4325 households
would have installed SHS after 25 years. This figure increases with
increasing IR, with an IR of 5 km showing 8999 SHS installations after
25 years, more than twice the value with 1 km. Increasing

Fig. 2. SHS installations over 25 years.

Fig. 3. Impact of influence radius on SHS installations.

Fig. 4. Comparison of SHS installations over 25 years with different influence radii.
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neighbourhood influence radius therefore leads to exponential in-
creases in SHS installations.

3.2.2. Neighbourhood threshold
Neighbourhood threshold is the minimum percentage of neighbours

within a given IR that must have installed SHS for a household to
consider doing the same. It is a measure of social pressure, and how this
pushes households to install SHS, as increasing number of neighbours
do so. It also shows the tipping point, above which SHS installations
begin to fall. Fig. 5 shows SHS installations versus increasing neigh-
bourhood threshold. With a default threshold of 5%, 828 households
have installed SHS now. This logarithmically increases to an optimum
of about 1089 installations with a threshold of between 12.5% and
15%. Installations then fall rapidly with increasing neighbourhood
threshold, with thresholds above 20% leading to lower and lower in-
stallations.

Fig. 6 compares impacts of different neighbourhood thresholds on
temporal diffusion of SHS within Kendu Bay area. With a default
threshold of 5%, 4325 households would have installed SHS after 25
years. The optimum threshold is between 12.% and 15% where 5666
households would have installed SHS after 25 years. On the other hand,
thresholds above 20% lead to lower installations, with a threshold of
25% leading to 2076 installations after 25 years. If neighbourhood
threshold was factored into SHS installation decisions, thresholds of
between 12.5 and 15% would be recommended.

4. Conclusion

In this work an agent-based model (ABM) is developed in NetLogo
and used to simulate how neighbourhood influence and social pressure,
modelled as sensing radius and neighbourhood threshold, impact on
temporal diffusion of solar home systems (SHS) in a rural developing

community. A survey is developed and carried out in Kendu Bay area of
Kenya to gather data to inform the ABM. Results show that increasing
neighbourhood influence leads to increasing SHS installations within a
given rural developing community. Neighbourhood influence comes in
forms visibility of installed SHS, word-of-mouth from neighbours, fa-
mily, friends, etc., and social pressure through advertisements etc.
Visibility of SHS, especially through neighbours that have installed the
same, stimulate SHS installations within the same neighbourhood ra-
dius because neighbours see the benefits of the systems first hand and
long for the benefits. Such benefits include improved lighting quality at
night, improved sense of security, and ability to charge mobile phones.
Those with visibly installed SHS are seen to have achieved a certain
social status within the society, and this drives other households to
install SHS so as to achieve the same status. In addition to visibility of
installed SHS, neighbourhood influence is also achieved through word-
of-mouth. Results show that households are likely to install SHS of their
relatives, neighbours, friends, or colleagues have done the same.

Specifically, results show that increasing of a household's neighbour-
hood influence radius, the radius within which a household can be influence
by its neighbours, leads to exponential increases in SHS installations. This is
because as more households install SHS within a given sensing radius
(neighbourhood), a threshold is reached where a household begins to take
notice. With increasing observations, greater communication via visibility,
word-of-mouth, and elevated social status of those with SHS, a household is
increasingly pressured to consider doing the same. This leads to more SHS
installations within a given area as a result of greater neighbourhood in-
fluence. Potential methods to increase neighbourhood influence within a
given community include increased advertisements through posters, bill-
boards, or even the local radio and TV channels, community outreach
through chiefs and other local leaders, roof-top mounting of PV systems to
increased external visibility, and compensated referrals, as is currently being
done by ART in Kendu Bay.

Fig. 5. Impact of neighbourhood threshold on SHS installations.

Fig. 6. Comparison of SHS installations over 25 years with different neighbourhood thresholds.
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