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Abstract

Discovering underlying patterns for predicting future actions from spatio-temporal human

activity information is a fundamental component of research related to the development of

expert systems in human activity recognition and assistive robotics. Current research

focuses on classification or learning representations of activities for various applications.

However, not much attention is given to the pattern discovery of activities which have a

major role in the prediction of unseen actions. This paper proposes a novel Adaptive

Segmentation and Sequence Learning (ASSL) framework which aims at segmenting

unlabelled observations of human activities from extracted 3D joint information. Learning

from these obtained segments provides information about the underlying patterns of

activity sequences needed in predicting subsequent actions. In the proposed method, the

temporal accumulated motion energy of body parts in an activity is utilised in the

segmentation process to obtain key actions from unlabelled activity sequences since body

parts show changes in acceleration and deceleration during an activity. Based on the

segments obtained, the temporal sequence of transitions across activity segments are

learned by employing a Long Short-Term Memory Recurrent Neural Network. This ASSL

technique has been evaluated using both an experimental human activity dataset and a

public activity dataset, and achieved a better performance when compared with other

techniques including an Auto-regressive Integrated Moving Average, Support Vector

Regression and Gaussian Mixture Regression Models in learning to predict patterns of

activity sequences.
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1. Introduction1

The advances in technology have seen more research on the development of expert2

systems related to human activities and their applications in everyday life. Learning the3

sequences of human activities is one aspect that is daunting in many of such applications.4

Due to the variability in the human nature of conducting activities, it is often not possible5

to attain a generalised model for identifying sequences used for activity predictions. This6

is due to understanding the underlying patterns of activities which in many cases are not7

explicit.8

A popular area of the application of expert systems for human activity sequence learning9

is human-robot interaction. For example, assistive robots require abilities to learn human10

activities in order to function autonomously. Such activities usually require the coordination11

of different joints in the body to accomplish activities such as “pick and place” of an object12

activities. Robots equipped with preset instructions (or models) to carry out predefined13

functions limits them to only certain tasks as they do not possess the intelligence required to14

evolve their knowledge into executing functions which may differ from the preset knowledge.15

Also, such models become obsolete as new tasks are encountered since they are not able16

to adapt to dynamic situations which are inherent in most practical applications. This is17

primarily due to variations in activity sequences, thus the need to investigate the varying18

patterns of human activities. To offer a solution to such cases, it is imperative to break19

down these activities into constituent elements and extract relevant information used in20

simplifying the process of recognising various human activity patterns. Fig. 1 illustrates21

the underlying concept of how human activity patterns can be inferred and learned from22

processing extracted visual 3D information.23

There are two main categories of learning algorithms suitable for human activity learning:24

Batch learning and Sequence learning. Classical batch learning algorithms predict output for25

new data when a complete training set of data is used. In this case, the new data samples are26

presented simultaneously and when desired. However, a complete training dataset is often27

not available in advance for most practical applications. In applications such as human28

activity prediction (Adama et al., 2018), healthcare monitoring (Anderez et al., 2020) and29
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Fig. 1. An illustration of learning underlying patterns of simple primitive human activity sequences from

3D temporal information.

industrial functions (Suresh et al., 2010) in which temporal changes within a task are being30

observed, the classical batch learning algorithms are rather infeasible for learning. Sequence31

learning is executed in a series of occurrences of samples within a given training dataset.32

Samples are used in the algorithm one after another and discarded after learning. This33

implies that the computational time and memory required for learning is reduced, and the34

learning process can accommodate temporal changes associated with tasks (Suresh et al.,35

2010). In most cases of humans executing tasks, the path of actions may vary, however,36

each path contains approximately a similar order of true segments. To effectively learn37

such sequences of tasks, there are two key challenges which are often encountered. The38

segmentation of tasks wherein given the observed task path, the start and end positions39

of constituent actions through the path are identified and sequential learning of essential40

underlying actions (Lioutikov et al., 2017). The task segmentation is critical in sequence41

learning for modelling and interpreting tasks information as it facilitates the adaptation of42

learning sequences in unseen situations (Krishnan et al., 2017).43

The main contributions of the work presented in this paper are summarised as follows:44

- The paper proposes a novel adaptive segmentation and sequence learning (ASSL)45

approach for human activity pattern discovery from unlabelled sequences of observed46
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activities.47

- Exploiting the temporal accumulated motion energy of human actions through activity48

sequences for extracting key actions points during activities.49

- Applying the ASSL approach to different human activity datasets. Besides, the ASSL50

approach is compared with other well-known sequence learning approaches and the51

results are presented.52

The remainder of this paper is organised as follows: Section 2 discusses works related53

to this paper. Section 3 describes the research methodology explaining an overview of the54

proposed framework. In Section 4, the method proposed in this work for unsupervised55

human activity segmentation is presented and Section 5 follows with a description of the56

sequence learning method used in learning the activity segments constructed. Section 657

describes the application of the proposed model to human activity datasets and the results58

obtained. In Section 7, the performance of the proposed ASSL is compared with other59

sequence learning approaches and conclusions of the work are drawn in Section 8.60

2. Related Work61

There is a growing interest in research related to learning human activity sequences.62

This section presents a review of relevant works in two categories: the segmentation of63

human activities for detecting constituent actions, and activity modelling through sequential64

learning/prediction.65

2.1. Action Detection and Segmentation66

Recently, human activity recognition has received much attention with a lot of research67

undertaken for its applications in different areas (Adama et al., 2018; Lara and Labrador,68

2013; Presti and Cascia, 2016). Most of the proposed activity recognition models (Presti and69

Cascia, 2016) can attain impressive performances in their respective areas of application.70

The majority focus on supervised approaches to activity recognition in which there is a71

sufficient amount of labelled data available to build training models. However, in real-72

world situations where obtaining labels for activities is a rather daunting task, supervised73

methods for activity recognition may not be feasible (Adama et al., 2019). On the other74
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hand, unsupervised learning methods, like clustering (Comaniciu and Meer, 2002) are best75

suited for such applications.76

An aspect of activity recognition which tends to be a challenge for many systems is77

detecting underlying/constituents actions in activities. This information is important in78

determining the structure of activities which is important when considering trends or79

sequences in such activities (Li and Fu, 2014). Therefore, segmentation is performed on80

data to obtain partitions which represent certain characteristics in activities. This is a81

vital step in investigating activity sequences. Existing approaches to segmentation of82

human activity differ in terms of the following categories (Aminikhanghahi and Cook,83

2017; Aminikhanghahi and Cook, 2019); the activity types that are modelled, the sensing84

technology used to acquire information and the computational intelligence methods used85

in the segmentation process.86

With a focus on human activity recognition from 3D human skeleton joints information,87

i.e. the joint positions or angles, different methods have been proposed for detecting actions88

in an activity. The authors in (Li and Fu, 2014) proposed a method for detecting atomic89

actions which they call actionlets using motion velocity. The method combined the Harris90

corner detector and Lucas Kanade (LK) optical flow to get velocity magnitudes. In our91

previous work (Adama et al., 2019), a key frame extraction method using the combined92

motion energy of all body joints in an activity has been proposed. Other works using the93

kinetic energy poses to determine key poses in activities are found in (Nunes et al., 2017;94

Shan and Akella, 2014). These methods then apply different machine learning algorithms95

for classification of actions obtained for activity recognition.96

2.2. Sequential Modelling of Activities97

The study of sequence learning algorithms are reported (Suresh et al., 2010; Cui et al.,98

2016; Wen and Wang, 2017; Zhu et al., 2018). Sequence learning algorithms are used for99

the analysis of patterns generated through a series of observed information for recognition100

or classification of activities (Zhu et al., 2018). Machine learning researchers have studied101

sequence learning over so many decades. This led to the development of statistical models102

such as Hidden Markov Models (HMM) (Fine et al., 1998; Rabiner and Juang, 1986) and103

Autoregressive Integrated Moving Average (ARIMA) (Durbin and Koopman, 2012) which104

were introduced for time series and temporal pattern recognition problems (Cui et al., 2016).105

Recurrent Neural Networks (RNNs) have since evolved to solve sequence prediction problems106
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due to their recurrent lateral structure. Long-Short Term Memory (LSTM), a type of RNN,107

have a unique ability to selectively pass information across time and are able to model108

significantly long-term dependencies due to the gating mechanism they possess (Hochreiter109

and Schmidhuber, 1997). LSTMs also can deal with the vanishing gradient problem. This110

has seen impressive performances in a variety of real-world applications.111

Concerning human activities, attempts to model human activity sequences have been112

studied by various researchers (Wen and Wang, 2017; Medina-Quero et al., 2018) using113

different temporal models for human activities recognition. HMM is used over predefined114

motion features of 3D joint positions to learn the dynamics of human actions (Lv and115

Nevatia, 2006). Conditional Random Field (CRF) is another generative model employed116

in modelling human actions. The CRF is used in (Han et al., 2010) to estimate motion117

patterns that correspond to manifold subspace of 3D joint position features for human118

action recognition. Similar approaches employing generative models to model activities are119

also proposed in (Shan and Akella, 2014; Ofli et al., 2014). The 3D joint positions obtained120

through skeleton tracking tend to be noisy. Therefore, when the change between actions is121

small, without the accurate selection of features, recognising precise action states becomes122

difficult. This tends to undermine the performance of generative models. Such models123

require an adequate amount of data for training as they are prone to over-fitting. Dynamic124

Time Warping (DTW) (Choi and Kim, 2018) is another solution used in modelling actions125

by defining the distance between two temporal sequences of activity actions. The learning126

can then be achieved through nearest-neighbour classification. However, the performance127

of DTW is dependent on a good measure of the samples similarity. It could also suffer from128

temporal misalignment when handling periodic actions which could lead to degrading its129

performance (Li and Prakash, 2011). Reyes-Ortiz et al. (2016) have proposed a Transition-130

Aware Human Activity Recognition (TAHAR) system for the real-time classification of131

physical human activities. The system combined the probabilistic output of consecutive132

activity predictions of a Support Vector Machine (SVM) with a heuristic filtering approach133

to address issues regarding the occurrence of transitions between activities and unknown134

activities to the proposed learning algorithm. From their results, the system was able to135

situations with and without activities transition information. Similar works for sequential136

learning of human activities employing LSTM RNN are seen in the works by Liu et al.137

(2016) and Li et al. (2017).138

6



Fig. 2. Overview of the proposed approach to the Adaptive Segmentation and Sequence Learning (ASSL)

of human activity.

These works demonstrate the effectiveness of segmentation and sequence modelling in139

exploring the underlying patterns in sequential data. This paper extends the approach140

of detecting key actions proposed in (Adama et al., 2019) for the segmentation of human141

activities by proposing an ASSL approach. Following from the identification of key actions,142

the non-parametric segmentation of 3D skeletal data of human activities obtained. This is143

then used in an LSTM model for the prediction of activity actions. In the following section,144

the problem statement is described and key definitions used in this work are presented.145

3. Methodology146

To address the challenges of segmentation and sequence learning of human activities,147

a novel framework for Adaptive Segmentation and Sequence Learning (ASSL) is proposed148

using visual information of activities. An overview of the ASSL framework is depicted in149

Fig. 2. There are three distinct steps in the proposed ASSL framework as described below:150

1. Initially, key actions from observed human activity information are obtained. Human151

activities contain a large number of actions for which only the key aspects are relevant.152

By exploiting the temporal accumulated motion energy of each action through the153

sequence, the key actions can be extracted from the points of change in acceleration154

and deceleration of activity motion.155

2. While segments of activities can be inferred from manual annotations, this creates a156

burden in supervised situations where high-dimensional data would require large157
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amounts of annotations to obtain feasible segments which can be learned. A158

non-parametric technique for feature space analysis is applied for unsupervised159

segmentation of relevant activity actions.160

3. From the segments obtained, a Recurrent Neural Network (RNN) method for sequence161

learning called Long Short-Term Memory (LSTM) is used to learn activity sequences.162

This work will benefit expert systems applications which require learning the underlying163

sequences in human actions through activities.164

3.1. Definitions165

Given a set of observed human activities A = {a1, a2, . . . , an, . . . , aN} performed by166

actors. The observations are obtained using an RGB-depth sensor. Each demonstration of167

an activity an within the observed activities set is a discrete time sequence of activity poses.168

An activity pose J as represented by;169

J = [j1, j2, . . . , jm, . . . , jM ], for J ∈ R3×M , (1)

is a feature space which represents 3D human skeleton joints with coordinates. M170

represents the total number of joints in J with each joint, jm, with coordinates xm, ym, zm171

corresponding to horizontal, vertical and depth positions respectively.172

Definition 1. Key action, J is defined as the important atomic level action performed173

during an activity. Key actions extracted from an activity represent a subset of poses174

J ⊂ an, for n = 1, 2, ..., N , which occurs in varying time instants of an executed activity.175

Definition 2. Activity segmentation is defined by a function C in which each key action,176

Jb, b = 1, 2, ..., B, of an activity an is assigned a value, Qz, z = 1, 2, ..., Z, corresponding to177

a unique activity segment represented as:178

C : an 7−→ (Jb)1,2,...,B , for Jb ∈ Qz (2)

where b is the index of the key action through the activity sequence and B is the number179

of key actions contained in an. Each segment derived comprises similar activity key actions180

through a temporal sequence.181
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Definition 3. Activity action sequence, S, is defined as the temporal ordering of all B key182

actions obtained from activity an. A repetition of similar key actions may be observed in183

the sequence at points where an contains actions which are repeated at different temporal184

instances. A representation of this definition is presented as:185

S = (Jb)
B
b=1 (3)

3.2. Assumptions186

For the research presented in this paper, certain assumptions are made. They are:187

- The observed sequence of a human activity comprises of unlabelled atomic actions188

which this work aims to identify through a process of adaptive segmentation.189

- The number of key poses JB that make up an activity is not given. This is drawn190

from the fact that each activity can be segmented into key poses which make up for191

the relevant aspects that define the activity. However, this number is not pre-defined192

from activity observations in the proposed model.193

3.3. Problem Statement 1194

Given an observed sequence of human activity obtained using an RGB-depth sensor, the195

first phase is the segmentation of an unlabelled sequence into meaningful representations196

of similar actionlets. The segments obtained represent a collection of similar actions which197

may (or may not) fulfil temporal order relationship constraints.198

The task of segmentation from an unlabelled activity sequence is addressed in this work199

using an adaptive approach to segmentation. The following steps are proposed for use in200

obtaining the function C for the segmentation of an activity.201

Detection of key actions (or poses): Key actions of an activity are relevant in the202

process of learning an activity sequence. This is mainly because an activity can be executed203

in different forms whilst certain key aspects through the observation of an activity can204

uniquely identify it. As mentioned in the Introduction section, the motion energy feature205

of actions through an activity can be used in obtaining these key actions. The key actions206

are therefore identified by applying a filtering method of moving average crossovers of the207

motion energy. The description of how this is implemented is presented in the next Section.208
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Non-parametric feature space clustering: The key actions obtained from the filtering209

process of the motion energy feature are clustered using a Mean-Shift feature space analysis210

method. This method performs the clustering in terms of similarity of the motion energy211

of key actions.212

3.4. Problem Statement 2213

To learn the sequence S of transition of actions from one activity segment to another,214

it is important to note that an activity is not executed in only one possible sequence. An215

activity can be executed with different temporal orders of constituent actions. This results216

in a challenge of learning a generalised sequence for an activity.217

The sequence of actions from one segment to another occur in intervals. The LSTM-218

RNN algorithm, which is predominantly used in predicting time series, is applied in learning219

the sequence of distinct actions within the activity segments. This method is used as the220

algorithm is able to capture infinitely long sequences and predict succeeding occurrences221

based on the memory gates.222

223

224

The architecture of the ASSL approach for human activities from 3D skeleton information225

as proposed in this paper is depicted in Fig. 3. This comprises three stages of activity data226

input from an RGB-Depth sensor, segmentation of human activity and sequential learning227

and prediction. Details of these stages are provided in the proceeding sections.228

4. Activity Segmentation229

Segmentation of human activity is relevant in the analysis of trends in transitions from230

one activity state to another. This section describes the process of activity segmentation231

using the extracted human activity information.232

4.1. Key Action Point Detection with Motion Energy233

Human activity consists of movement sequences generated by different body parts. It is234

worth noting that not all aspects of an activity movement sequence are necessary to define235

an activity. Certain aspects of the sequence can be executed in different forms and still result236

in a similar activity. To simplify an activity to the relevant action points that constitute the237
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Fig. 3. Architecture of the proposed ASSL approach for human activities from 3D skeleton information

which comprises activity input, segmentation and sequence learning stages respectively.

sequence, key poses are selected. This is achieved by leveraging the motion energy obtained238

from activity sequences.239

4.1.1. Extraction of Motion Energy240

The motion energy of activity poses as first proposed by (Shan and Akella, 2014) is based241

on the fact that joints show changes in acceleration and deceleration through an activity.242

This information is significant when considering the identification of the key action points243

of activities. Following from the representation of an activity pose given in Equation 1, the244

motion energy El for each pose is computed as the sum of motion energies for each joint in245

the pose;246

El(J) =

M∑
m=1

El(jm) (4)

where jm is a joint in the pose. It is assumed that the mass of all joints to be equally247
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one unit due to the fact that it is impossible to obtain the actual mass of a joint from the248

information obtained using RGB-Depth sensors. Computing the joint velocities using the249

temporal change ∆T in the position d of joints during an activity, the motion energy can250

be expressed as:251

El(J) =
1

2

M∑
m=1

(vjm)2 (5)

where, vjm represents the velocity of joint jm and is expressed as vjm =
dcm−dpm

∆T , dcm is the252

current joint position and dpm is the previous joint position. By substituting vjm in Equation253

5, the motion energy of each joint is computed using the following equation:254

El(J) =
1

2

M∑
m=1

(
dcm − dpm

∆T

)2

(6)

4.1.2. Moving Average Crossover of Motion Energy255

The Moving Average (MA) is a filtering technique often applied to get overall trends in256

data. This technique is used to highlight long-term cycles in time series data by smoothing257

out short-term variations (Droke, 2001). It works by creating series of averages of different258

time windows from a dataset over a given distribution.259

Most of the works employing motion energy for identifying key action points of activities260

set threshold values of energy from a random exploration of selected points in order to261

extract the relevant points of interest in an activity (Nunes et al., 2017; Shan and Akella,262

2014; Zhu et al., 2015). The energy thresholds are selected by repeated experiments of263

different threshold values and the observations below the threshold value are selected as key264

poses. The MA of the extracted motion energy of poses are used in filtering the motion265

energy signal extracted from an activity sequence.266

A different approach is proposed to use crossovers of two Simple Moving Averages267

(SMAs) of the extracted motion energy in identifying the relevant key poses of an activity.268

The SMA is an un-weighted mean of a set of data points. This is taken from equal sets of269

data to ensure variations in the mean and data points are aligned and not shifted in time.270

Given the motion energy obtained in Equation 4, the SMA for the motion energy signal of271

an activity can be computed using the following expression:272

SMA =

∑α−1
r=0 El(J)t−r

α
(7)
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where α is the value of the period selected for MA and t− r is the position of the selected273

observation within α. This is expressed in a simplified form as follows;274

SMAEl =
El(J)t + El(J)t−1 + ...+ El(J)t−(α−1)

α
(8)

Two moving averages are selected in this work - a short-term average (fast moving275

average) αf and a long-term moving average (slow moving average) αs. The MA crossovers276

are obtained from points where the SMAs for both αf and αs intersect. These points indicate277

significant changes in motion energy of activity poses and are used as reference points278

for their corresponding key actions in an activity sequence as presented in the following279

equation.280

Jb = SMAαs ∩ SMAαf (9)

Following the acquisition of the key action points, activity segments are obtained by281

application of a non-parametric feature space analysis technique - In this case, mean-shift282

clustering for associating key actions to clusters of similar actions.283

4.2. Non-Parametric Clustering for Segmentation284

Prior to learning the sequence of actions in an activity for prediction, it is necessary to285

know the segments that make up an activity. This information is not easily determined by286

mere observation of the key actions obtained from exploration of the motion energy feature.287

Also, the number of segments is defined for an activity as these can vary depending on288

the sequence observed. Therefore, the use of a non-parametric method of clustering key289

actions is proposed to determine the number of segments in an activity sequence and assign290

the obtained key actions to their respective segments before learning can be achieved. A291

mean-shift clustering approach is adopted here (Comaniciu and Meer, 2002). The mean-shift292

approach builds upon the concept of Kernel Density Estimation (KDE) (Parzen, 1962) which293

estimates the hidden distribution for a dataset by placing a kernel on each point contained294

in the dataset. The description of the mode of application for the proposed segmentation295

of human activity is provided below.296

Given B key action points, Jb b = 1, ..., B, on a 2-dimensional space computed for an297

activity. As described in Section 4.1, these points correspond to the motion energies of key298
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Algorithm 1 Segmentation of human activity from joints coordinate skeleton information.

Input:

Instances of 3D skeleton joints coordinate of human activities A = {a1, a2, ..., aN}, in

which each observation of activity a is a pose J = [j1, j2, ..., jM ];

Activity time window t;

Moving average periods αs, αf ;

Output:

Activity segments obtained as a function C for assigning each key action to a segment;

Procedure:

1: for a = 1 to N do

2: Find the velocity of each observation J within t;

3: Compute the motion energy for J : El(J) =
∑M
m=1El(jm);

4: Compute the simple moving average of the motion energy with the periods αs, αf :

SMA =
∑α−1
r=0 El(J)t−r

α ;

5: Key action points, Jb = SMAαs ∩ SMAαf ;

6: end for

7: Assign Jb to a cluster Qz which is determined by a non-parametric mean-shift clustering

technique;

8: return QZ = C(Jb).

action positions. The kernel density estimate for the key action points with kernel K with299

a bandwidth parameter h is:300

f(J) =
1

Bh2

B∑
b=1

K

(
J − Jb
h

)
(10)

with K satisfying the following two conditions:301

1.
∫
K(J)dJ = 1, and302

2. K(J) = K(|J |) for all values of J .303

The first condition is required to ensure normalisation of the density estimate while the304

second condition relates to the symmetry of the data space containing all key action points305

of an activity. By applying a Gaussian symmetric kernel function for K(J), the gradient of306

the density estimator in Equation 10 takes the form:307
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Fig. 4. LSTM structure for sequential learning and prediction of key action segments of human activity.

∇f(J) =
2

Bh4

(
B∑
b=1

g

( ∣∣∣∣J − Jbh

∣∣∣∣ )
)
~X(J) (11)

where ~X(J) is the mean-shift vector pointing in the direction of increasing density and is308

represented as:309

~X(J) =

(∑B
b=1 Jbg

( ∣∣∣J−Jbh

∣∣∣ )∑B
b=1 g

( ∣∣∣J−Jbh

∣∣∣ ) − J
)

(12)

and g(|J |) is the derivative of the Gaussian kernel.310

With the KDE computed, the mean-shift procedure is carried out by successive;311

– Computation of the mean-shift vector ~X(Jb) at the location of each key action point312

Jb,313

– Translation of each action point Jb → Jb + ~X(Jb),314

– Repeat until convergence, that is, where the gradient density function is zero.315

Afterwards, the key action points identified at the same points are segmented as belonging to316

the same cluster Qz. For further details of convergence, readers are referred to (Comaniciu317

and Meer, 2002). Algorithm 1 list the procedure for activity segmentation proposed in this318

paper.319
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5. Sequence Learning and Prediction Model320

The sequence learning stage involves the learning of activity sequences from the321

segmented key actions. An LSTM network (Hochreiter and Schmidhuber, 1997) is used to322

learn the long-term contextual dependencies between key actions of an activity. The323

segmented key actions are used as input to the network for learning the dependencies324

between the action segments. This is further extended to predicting sequential actions of325

activities. Fig. 4 illustrates the structure of an LSTM network as applied in this work.326

The LSTM comprises of the following components: input gate it, forget gate ft, a cell with327

a self-recurrent connection and output gate ot. The key action segments obtained for an328

activity are normalised for standardisation of the values, thus resulting in329

Qnorm = {J1Q1 , ..., JBQZ}norm. By taking Qnorm as input to the network, the network is330

updated every t timestep by iterating through all instances of the normalised key actions331

using the following equations;332

it = σ(W i(JbQz (t)) + U iHt−1 + V i) (13)

ft = σ(W f (JbQz (t)) + UfHt−1 + V f ) (14)

ot = σ(W o(JbQz (t)) + UoHt−1 + V o) (15)

gt = tanH(W g(JbQz (t)) + UgHt−1 + V g) (16)

ct = ft � ct−1 + it � gt (17)

Ht = ot � tanH(ct) (18)

where, σ(·) and tanH(·) are the sigmoid and hyperbolic functions respectively. W,U, V are333

parameters of the LSTM model. The operation � denotes the element-wise multiplication334

of two vectors. The use of LSTM is due to its ability to map input activity sequences by335

recursively transforming current inputs Qnorm with the output hidden vector of previous336

steps Ht−1. Also, the vanish gradient problem inherent with RNN’s is overcomed by the337

memory cell ct which is computed, allowing the error derivatives to flow in a different path.338
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6. Application of Adaptive Segmentation and Sequence Learning Framework to339

3D Skeleton Data of Daily Human Activity340

This section reports the experimental procedure and results of applications of the341

proposed ASSL framework on 3D skeleton human activity datasets. To illustrate the342

application of the proposed work of ASSL of human activity sequences, the model343

proposed was applied to selected human activities. The proposed model is adaptive to344

different activities and thus gives it the ability to deal with complexities in activities.345

To understand the methodology and its ability to solve the problems identified in the346

earlier Sections 3.3 and 3.4, the following hypotheses are proposed and evaluated.347

Hypothesis 1. Where an unlabelled sequence of activity data is available, the segmentation348

technique proposed can be used to identify unique segments of an activity used for label349

assignments of actions in the sequence.350

Hypothesis 2. Activity segments identified can be used to learn sequences for prediction351

with a reliable performance.352

To address these hypotheses, two activities are selected from two real world human activity353

datasets; Dataset 1 - An experimental human activity dataset collected for this work and354

Dataset 2 - A benchmark public dataset, Cornell Activity Dataset (CAD-60) (Sung et al.,355

2011).356

6.1. Experimental Design and Datasets357

The motivation for the proposed ASSL framework is to address the issue of unlabelled358

sequences of human activities, in such cases where there is no knowledge a priori of359

constituent actions and their order, whilst there is the need to develop a system for360

identifying the patterns of activities. The experimental design and datasets used in361

evaluating the proposed framework are presented in this section.362

6.1.1. Dataset 1 - Experimental Human Activity Dataset363

The dataset generated to evaluate the proposed system in this work consists an activity364

which involves a person picking up an object placed on a surface. A Microsoft Kinect365

version 2 RGB-Depth sensor is used to acquire the 3D joint coordinate information of366

person. This information is obtained at 30 fps. This activity is chosen due to the proposed367
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Fig. 5. Sample frames of pick up object activity obtained from the experimental activity dataset using an

RGB-Depth sensor.

work being focused on enhancing the ability of assistive robots learning activity sequences368

for independent prediction of actions. Fig. 5 shows sample frames of the selected activity369

carried out by a person.370

To obtain adequate amount of data to evaluate the ASSL framework, the activity is371

performed by three people. Each person is required to pick up an object from a flat surface372

repeatedly eight to ten times while the joint positions are recorded throughout the sequence.373

Table 1 shows the number of frames acquired from each person while carrying out the374

activity.375

6.1.2. Dataset 2 - Cornell Activity Dataset (CAD-60)376

The CAD-60 dataset (Sung et al., 2011) is based on human activity data obtained377

using an RGB-Depth sensor. The dataset comprises three modes of human activities data,378

Table 1: Experimental dataset acquired from three actors for an activity - pick up object from a flat surface.

Activity
Number of frames

Total
Person

1

Person

2

Person

3

Pick up object 1804 1663 1355 4822
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Fig. 6. Sample frames of drinking water activity obtained using an RGB-Depth sensor contained in the

CAD-60 dataset (Sung et al., 2011). The sample shows RGB images and the corresponding depth image

with the tracked skeleton overlaid.

RGB images, Depth images and 3D skeleton joint coordinates observed from a person379

performing an activity. The skeleton joint data consists of joint coordinates information of380

15 joints. The dataset is recorded at a frame rate of 15fps using a Microsoft Kinect sensor381

and includes recordings for 12 human activities namely; Rinsing mouth, brushing teeth,382

wearing contact lens, talking on the phone, drinking water, opening pill container, cooking383

(chopping), cooking (stirring), talking on couch, relaxing on couch, writing on whiteboard,384

working on computer and a sequence of random plus stationary activities. The data is385

collected from four participants with each performing each activity.386

Most applications of this dataset are based on activity classification and therefore involve387

the use of all activities within the dataset. However, to demonstrate the work proposed in388

this paper, a single activity from the dataset is selected and used in our evaluations. The389

activity chosen is the drinking water activity as there are more motions involved in the390

activity when compared to the remainder activities available in the dataset. This creates391

a scenario with varying motion patterns to test the robustness of the framework. Sample392

frames of varying actions occurring throughout the activity sequence are shown in Fig. 6.393

The samples show a person drinking water with the tracked skeleton joints overlaid on the394

depth images. The activity is performed repeatedly 2− 3 times.395
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6.2. Experimental Human Activity Dataset Results and Evaluation396

To evaluate the performance of the proposed framework on the experimental dataset,397

it is implemented in stages, starting with the segmentation process - the computation of398

motion energy, detection of key action points and the non-parametric clustering for key399

action segmentation. This is then followed by the sequence learning and prediction of the400

obtained key actions.401

6.2.1. Key Action Identification using Motion Energy402

Applying the approach to identifying key action points of an activity, the motion energy403

is computed for 3D joint positions data obtained from each person. A window size, ws, of404

one second is used which corresponds to 30 frames of activity to compute the motion energy.405

Fig. 7a shows the motion energy obtained from person 1 of the experimental dataset. The406

figure shows the changes in the cumulative motion energy which is a result of continuous407

acceleration and deceleration of body joints through the activity sequence.408

In the proposed framework, the key actions are identified at points of minimum and409

maximum motion energies. Applying the simple moving average technique, after multiple410

experiments with different values of SMAαs and SMAαf , 30 and 15 frames are selected for411

both moving averages respectively. Fig. 7b depicts the key action points identified from the412

motion energy computed in Fig. 7a. The green plot shows the SMAαs while the red plot413

shows the SMAαf . The crossover points of both moving averages are identified by the blue414

dots in Fig. 7b. These points represent the key actions JB in the activity sequence from415

the data. Similarly, the key actions are obtained for all participants in the experimental416

dataset.417

6.2.2. Non-parametric Clustering of Experimental Dataset418

Due to the varying nature of the activities performed from one individual to another,419

there are variations in motion energy values from person to person. To tackle this difficulty,420

the motion energy of the key actions identified for each participant’s activity are normalised421

for standardisation across all participants. Fig. 8 shows the representation of normalised422

motion energies of identified key actions for all persons in the dataset. A total of 202 key423

action frames are identified from all three participants which shows a significant reduction424

when compared to the total number of frames 4822 as shown in Table 1. This emphasises the425
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(a)

(b)

Fig. 7. Key action identification for pick up object activity from person 1 in the experimental dataset. (a)

Motion energy plot for person 1 from the experimental dataset. The energy is computed using a 1 second

window = 30 frames. (b) Motion energy plot with identified crossover points of two moving averages which

represent the identified key action points of the activity. SMAαf = 15 and SMAαs = 30.

need for the segmentation process to reduce the computational complexities when learning426

the activity sequence.427

The normalised values are then clustered using the non-parametric method described428
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Fig. 8. Normalised motion energy with action segment identification of key actions for all participants in

the experimental human activity dataset corresponding to the pick up object activity.

earlier. The results obtained from clustering is also represented in Fig. 8. It can be observed429

that for the selected activity three segments corresponding to Q1, Q2 and Q3, are identified430

and the boundaries of the segments as obtained from the results are represented by the431

horizontal line plots (green and orange) shown on the figure. Fig. 9 shows the distribution432

of the number of key action points identified in each activity segment for all participants.433

6.2.3. Sequence Learning of Experimental Human Activity Dataset434

The sequence learning model is grounded on the results obtained from the activity435

segmentation process. To investigate the performance, the outputs from the segmentation436

process are fed as input to the learning model and a comparison is made between the437

results obtained and the actual activity sequence observed. This comparison is done in438

terms of the Mean Absolute Error (MAE), Mean Absolute Scaled Error (MASE) and439

Root-Mean-Square Error (RMSE) for the predictions made. The performance of the440

sequence learning model in this work depends on a proper segmentation of the unlabelled441

activity sequences observed.442

The performance of the sequence learning framework is evaluated on the experimental443

dataset. Considering the dataset consists of 3 participants, a leave-one-out cross validation444
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Fig. 9. Activity segmentation distribution for participants in the experimental human activity dataset.

approach is used in experiments to learn sequences of key action occurrences for an activity.445

Two participants are used in training the model and the remainder is left out for testing.446

This is done through consecutive iterations with each participant used in testing the model.447

Fig. 10 shows the result of the sequence learning model on the prediction of the448

activity sequence contained in the experimental dataset. Table 2 shows the result when449

the experimental dataset is applied to the proposed ASSL model. The results produced450

RMSE values of 0.055, 0.049 and 0.050 respectively for all three participants in the dataset451

when each was tested using the leave-one-out cross validation. The lower the RMSE value452

the better the result in predicting the sequence. The variation in the structure of the453

sequence between the remainder two person’s data used when training the model and the454

structure of the person 1 used in testing the model produced a higher RMSE value (0.055)455

in comparison with the RMSE value obtained for the other two. This can be attributed to456

the nature of the activity sequence for person 1, i.e. the speed of the activity.457

6.3. CAD-60 Dataset Results and Evaluation458

The segmentation process applied to the CAD-60 dataset using the same values of simple459

moving averages as in the case of the experimental activity dataset to identify key actions460

which are segmented resulted in a similar number of activity segments. The distribution461

of key actions identified in each segment is given Fig. 11. This shows a similar ratio in462

the distribution of key actions identified for all actors except for the case of actor 1. This463
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(a)

(b)

(c)

Fig. 10. Performance of sequence learning model on the prediction of experimental dataset activity

sequence. (a) Person 1. (b) Person 2. (c) Person 3.

infers that for the activity - drinking water - performed by all actors, there are three atomic464

actions that define the activity. The order in which the actions occur define the activity465

sequence. It is important to note that the segments identified in the experiments with the466

CAD-60 experiment are not the same as those of the experimental activity dataset.467
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Fig. 11. Distribution of key action points in identified activity segments for all actors in the CAD-60

dataset.

(a) (b)

(c) (d)

Fig. 12. Prediction performance of sequence learning model on the CAD-60 dataset. (a) Actor 1. (b)

Actor 2. (c) Actor 3. (d) Actor 4.

Evaluating the performance of the sequence learning framework with the CAD-60 dataset468

is implemented in a similar method to the experimental dataset. A leave-one-out cross469

validation approach is also applied with each participant data used in testing while the470

remainder three are used in training the model. This is performed in consecutive iterations.471
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In Fig. 12, the prediction results for all actors are shown. The plots in the figure represent472

when each actors’ activity data is left out from the training process and used to test the473

trained sequence learning model. Table 3 shows the prediction results obtained for the474

dataset with the ASSL. The RMSE values produced from predicting activity sequences475

for the data tested correspond to 0.092, 0.053, 0.025 and 0.078 for Actor’s 1, 2, 3 and 4476

respectively. The low RMSE values show the model is able to learn with a high degree of477

reliability the activity sequence.478

It should be noted that in the experiments a consideration was given to test the sequence479

learning model without the process of segmentation to extract key actions, that is, using480

the motion energy of all actions within the activity. This was done in the evaluation of481

the proposed model. Using all the actions, the clustering stage identified the actions as482

belonging to one cluster as opposed to the output of the clustering using the segmented key483

actions. From the visual observation of the activity, it is clear that this activity consists of484

more than one distinguishable action. Also, for both datasets used, the sequence learning485

model performed poorly in predicting the action sequences. This could be due to all actions486

identified as being the same.487

7. Comparison with other Sequence Learning Models488

This section presents a comparison of the proposed ASSL framework’s performance489

with other statistical models widely used in learning sequences from time series data. The490

adaptive segmentation and sequence learning of 3D skeleton data of human activities491

framework primarily demonstrates that unlabelled actions and sequences of activities can492

be modelled for accurate prediction of unseen actions. This is beneficial for applications493

that require exploiting the underlying patterns to understand human tasks from visual494

observations while they are executed. This was demonstrated in the previous sections. To495

further emphasise the ability of the proposed framework to learn activity sequences, a496

comparison is made with other methods of sequence learning used in forecasting497

applications, an Autoregressive Integrated Moving Average (ARIMA), Support Vector498

Regression (SVR) (Gascon-Moreno et al., 2012; Awad and Khanna, 2015) and Gaussian499

Mixture Regression (GMR). The basis for selecting the ARIMA model is because it comes500

from a well established area of computational intelligence. ARIMA models are also widely501

used in analysis of temporal pattern recognition and time series prediction. The SVR and502
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GMR models are techniques mostly applied in batch learning problems for forecasting503

purposes. These models are applied to both the experimental dataset and CAD-60 dataset504

described in Sections 6.1.1 and 6.1.2 respectively, with the same validation technique505

already described.506

Autoregressive Moving Average (ARMA) models are amongst the most widely used507

statistical algorithms for modelling and predicting time series information (Smith et al.,508

2018). A generalisation of this model is the Autoregressive Integrated Moving Average509

(ARIMA) which is applied in situations where there is evidence of non-stationarity in data.510

In such cases, a differencing step, d, corresponding to the Integrated part of the model is511

applied to remove non-stationarity points (Ümit Çavus Büyüksahina and Ertekin, 2019).512

Afterwards, the ARMA model is applied on the stationary data. The implementation of513

ARIMA in this work follows the method described in (Ümit Çavus Büyüksahina and Ertekin,514

2019). The Auto-Regressive, AR, component uses weighted linear combinations of previous515

values of the data sequence and performs a regression of the sequence against itself. Similarly,516

the Moving Average, MA, component attempts predicting a target using regression based517

Table 2: Comparison of the proposed ASSL model’s performance with ARIMA, SVR and GMR models on

the experimental human activity dataset (the best results across all models in bold text).

Metric Method
Person 1 Person 2 Person 3

(error ± var.) (error ± var.) (error ± var.)

MAE

ASSL 0.044 ± 0.005 0.025 ± 0.006 0.032 ± 0.004

ARIMA 0.228 ± 0.032 0.135 ± 0.036 0.132 ± 0.069

SVR 0.057 ± 0.005 0.076 ± 0.006 0.072 ± 0.006

GMR 0.345 ± 0.090 0.407 ± 0.090 0.309 ± 0.077

MASE

ASSL 0.152 ± 0.005 0.122 ± 0.006 0.047 ± 0.004

ARIMA 0.586 ± 0.032 0.272 ± 0.036 0.291 ± 0.069

SVR 0.141 ± 0.005 0.153 ± 0.006 0.244 ± 0.006

GMR 0.849 ± 0.090 0.823 ± 0.090 1.046 ± 0.077

RMSE

ASSL 0.055 ± 0.005 0.049 ± 0.006 0.050 ± 0.004

ARIMA 0.298 ± 0.032 0.198 ± 0.036 0.175 ± 0.069

SVR 0.075 ± 0.005 0.088 ± 0.006 0.081 ± 0.006

GMR 0.457 ± 0.090 0.506 ± 0.090 0.414 ± 0.077
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Table 3: Comparison of the proposed ASSL model’s performance with ARIMA, SVR and GMR models on

the CAD-60 dataset (the best results are in bold text).

Metric Method
Actor 1 Actor 2 Actor 3 Actor 4

(error ± var.) (error ± var.) (error ± var.) (error ± var.)

MAE

ASSL 0.072 ± 0.023 0.044 ± 0.015 0.023 ± 0.012 0.062 ± 0.018

ARIMA 0.307 ± 0.190 0.202 ± 0.077 0.220 ± 0.109 0.255 ± 0.122

SVR 0.123 ± 0.023 0.100 ± 0.014 0.089 ± 0.010 0.100 ± 0.017

GMR 0.302 ± 0.117 0.273 ± 0.062 0.239 ± 0.050 0.357 ± 0.093

MASE

ASSL 0.281 ± 0.023 0.336 ± 0.015 0.442 ± 0.012 0.253 ± 0.018

ARIMA 0.865 ± 0.190 0.690 ± 0.077 0.983 ± 0.109 0.802 ± 0.122

SVR 0.312 ± 0.023 0.385 ± 0.014 0.452 ± 0.010 0.341 ± 0.017

GMR 0.765 ± 0.117 1.045 ± 0.062 1.208 ± 0.050 1.215 ± 0.093

RMSE

ASSL 0.092 ± 0.023 0.053 ± 0.015 0.025 ± 0.012 0.078 ± 0.018

ARIMA 0.339 ± 0.190 0.267 ± 0.077 0.264 ± 0.109 0.326 ± 0.122

SVR 0.153 ± 0.023 0.119 ± 0.014 0.105 ± 0.010 0.130 ± 0.017

GMR 0.456 ± 0.117 0.370 ± 0.062 0.326 ± 0.050 0.469 ± 0.093

on past forecast errors. The parameters of the ARIMA model corresponding to coefficients518

of the orders of the model are d, p and q. p represents the number of time lags to consider.519

When p = 0, the mode is reduced to a MA model of q order. Similarly, if q = 0, the520

model becomes AR of p order. Details of the selection of the optimal parameters for the521

ARIMA model used are beyond the scope of this work. Readers are referred to (Ümit Çavus522

Büyüksahina and Ertekin, 2019) for more insight into ARIMA.523

The SVR model as a supervised learning approach, has been applied as an effective tool524

in real-value function estimation and is characterised by the use of kernels. The model is525

trained by using a symmetrical loss function which penalises high and low misestimates526

equally. This model is used in the evaluation process to validate the proposed ASSL models527

performance. Implementations of the SVR and GMR models follow the methods in (Sung,528

2004; Awad and Khanna, 2015).529
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7.1. Evaluation of the Results of ARIMA, SVR and GMR Prediction Models on the530

Experimental Dataset531

The normalised key action points of the motion energy extracted from the experimental532

human activity are used as input to the ARIMA, SVR and GMR models as mentioned533

earlier. The results shown in Table 2 present the performance of all the models on the534

experimental dataset. As observed from the table, the proposed ASSL model had a better535

performance in terms of the MAE and RMSE than all the other models when observed across536

all the participants in the dataset. There is a significant difference in the MAE and RMSE537

performance obtained with the ASSL method outperforming all the other models. Next538

to the MAE and RMSE performance of the ASSL, the SVR model obtained comparable539

performance. However, the SVR model did slightly better than the ASSL model in terms540

of the MASE performance for person 1. As with most unsupervised learning structures,541

the ARIMA is able to predict data sequences with only the targeted data. It can also be542

noted from the results of Table 2 that the GMR model had the least performance across all543

the participants when compared with the other models. The GMR algorithm is known to544

be a fast learning model as it maximises only the likelihood. However, when it encounters545

many points, estimating the covariance matrices tends to be difficult. Therefore, the model546

diverges.547

7.2. Evaluation of the Results of ARIMA, SVR and GMR models on CAD-60 Dataset548

Table 3 shows a comparison of the results obtained for the performance of the ASSL549

framework with the ARIMA, SVR and GMR models on the CAD-60 dataset. Similar550

to the performance obtained with the experimental dataset, the proposed ASSL model551

outperformed all the other models with lower error values across all four actors. Similarly,552

the GMR was the worst-performing model on the CAD-60 dataset, except for the MASE553

for actor 1 where the ARIMA model had the highest error value.554

The ARIMA model works as a regression model and therefore does not require labelled555

samples. However, the proposed approach is able to obtain labels through a non-parametric556

approach which is used in the later stage of sequence learning. This gives the ASSL method557

an edge over the ARIMA.558
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8. Conclusion and Future Work559

In this paper, a novel adaptive technique for the segmentation and sequential learning560

of human activities is presented. The goal is to enable the discovery unknown activity561

patterns for prediction of future actions in an activity sequence, especially, for use in assistive562

robotics. Due to the dynamic nature of human behaviour, there are uncertainties associated563

with modelling actions performed in an activity. This work focused on proposing a model564

capable of adapting to variations that exist in actions through activity sequences. The use565

of 3D skeleton joint data obtained with RGB-Depth sensors makes it possible to acquire566

representations of actions for learning such activities.567

The motion energy of skeleton joints is used as a feature in the segmentation process.568

This is due to changes in acceleration and deceleration observed in skeleton joints through569

a continuous sequence of activities. This feature is used in identifying key actions in an570

activity sequence from the moving average crossovers of the computed motion energy. This571

steps acts as filter stage as not all actions of an activity are relevant in predicting the572

activity sequence. We leverage the ability of LSTM model in learning activity sequences573

for predicting future actions of activities based on previous instances. The results show574

the performance of the LSTM sequence learning model is better than the unsupervised575

sequence learning approaches. Furthermore, learning sequences of activity from unlabelled576

activity structures are addressed. The segmentation approach used to identify labels from577

the structures made it possible to solve the unsupervised learning problem with a supervised578

technique of learning sequences.579

Due to the challenges in this research area, the work presented in this paper has some580

limitations which will be addressed in future work. The work presented in this paper can581

be extended to include more subjects used in the experiments. This is needed due to the582

variation that exist from person to person performing an activity. This will add robustness583

to the sequence learning models. Furthermore, more research will be done on improving584

the performance of the sequence learning and prediction models in order to reduce the585

predictions errors in the results. Specifically, other variants of the LSTM RNN such as586

Bidirectional-LSTM will be tested.587
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J.-L. Reyes-Ortiz, L. Oneto, A. SamÃ , X. Parra, D. Anguita, Neurocomputing 171 (2016)632

754 – 767.633

J. Liu, A. Shahroudy, D. Xu, G. Wang, in: Computer Vision – ECCV 2016, pp. 816–833.634

K. Li, X. Zhao, J. Bian, M. Tan, in: 2017 IEEE International Conference on Mechatronics635

and Automation (ICMA), pp. 1556–1561.636

C. Droke, Moving Averages Simplified, Marketplace Books, 2001.637

32



G. Zhu, L. Zhang, P. Shen, J. Song, L. Zhi, K. Yi, in: 2015 IEEE International Conference638

on Robotics and Biomimetics (ROBIO), pp. 1209–1214.639

E. Parzen, The Annuals of Mathematical Statistics 33 (1962) 1065–1076.640

J. Sung, C. Ponce, B. Selman, A. Saxena, in: Proceedings of the 16th AAAI Conference on641

Plan, Activity, and Intent Recognition, AAAIWS’11-16, AAAI Press, 2011, pp. 47–55.642

J. Gascon-Moreno, S. Salcedo-Sanz, E. Ortiz-Garcia, J. Acevedo-Rodriguez, J. A. Portilla-643

Figueras, Expert Systems with Applications 39 (2012) 8220 – 8227.644

M. Awad, R. Khanna, Support Vector Regression, Apress, Berkeley, CA, 2015, pp. 67–80.645

E. M. Smith, J. Smith, P. Legg, S. Francis, in: Advances in Computational Intelligence646

Systems, pp. 191–202.647
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