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Abstract
The coronavirus disease (COVID-19) caused by a novel coronavirus, SARS-CoV-2, has been declared a global pandemic.
Due to its infection rate and severity, it has emerged as one of the major global threats of the current generation. To
support the current combat against the disease, this research aims to propose a machine learning–based pipeline to detect
COVID-19 infection using lung computed tomography scan images (CTI). This implemented pipeline consists of a number
of sub-procedures ranging from segmenting the COVID-19 infection to classifying the segmented regions. The initial
part of the pipeline implements the segmentation of the COVID-19–affected CTI using social group optimization–based
Kapur’s entropy thresholding, followed by k-means clustering and morphology-based segmentation. The next part of the
pipeline implements feature extraction, selection, and fusion to classify the infection. Principle component analysis–based
serial fusion technique is used in fusing the features and the fused feature vector is then employed to train, test, and
validate four different classifiers namely Random Forest, K-Nearest Neighbors (KNN), Support Vector Machine with Radial
Basis Function, and Decision Tree. Experimental results using benchmark datasets show a high accuracy (> 91%) for the
morphology-based segmentation task; for the classification task, the KNN offers the highest accuracy among the compared
classifiers (> 87%). However, this should be noted that this method still awaits clinical validation, and therefore should not
be used to clinically diagnose ongoing COVID-19 infection.

Keywords COVID-19 infection · CT scan image · Fused feature vector · KNN classifier · Segmentation and detection
accuracy

Introduction

Lung infection caused by coronavirus disease (COVID-19)
has emerged as one of the major diseases and has affected
over 8.2 million of the population globally1, irrespective of
their race, gender, and age. The infection and the morbidity
rates caused by this novel coronavirus are increasing rapidly
[1, 2]. Due to its severity and progression rate, the recent
report of the World Health Organization (WHO) declared

1https://www.worldometers.info/coronavirus/, as of June 17, 2020
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it as pandemic [3]. Even though an extensive number
of precautionary schemes have been implemented, the
occurrence rate of COVID-19 infection is rising rapidly due
to various circumstances.

The origin of COVID-19 is due to a virus called
severe acute respiratory syndrome-coronavirus-2 (SARS-
CoV-2) and this syndrome initially started in Wuhan,
China, in December 2019 [4]. The outbreak of COVID-19
has appeared as a worldwide problem and a considerable
amount of research works are already in progress to
determine solutions to manage the disease infection rate and
spread. Furthermore, the recently proposed research works
on (i) COVID-19 infection detection [5–8], (ii) handling
of the infection [9, 10], and (iii) COVID-19 progression
and prediction [11–13] have helped get more information
regarding the disease.

The former research and the medical findings discovered
that COVID-19 initiates disease in the human respiratory
tract and builds severe acute pneumonia. The existing
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research also confirmed that the premature indications of
COVID-19 are subclinical and it necessitates a committed
medical practice to notice and authenticate the illness. The
frequent medical-grade analysis engages in a collection
of samples from infected persons and sample supported
examination and confirmation of COVID-19 using reverse
transcription-polymerase chain reaction (RT-PCR) test
and image-guided assessment employing lung computed
tomography scan images (CTI), and the chest X-ray [14–
17]. When the patient is admitted with COVID-19 infection,
the doctor will initiate the treatment process to cure the
patient using the prearranged treatment practice which will
decrease the impact of pneumonia.

Usually, experts recommend a chain of investigative tests
to identify the cause, position, and harshness of pneumonia.
The preliminary examinations, such as blood tests and
pleural-fluid assessment, are performed clinically to detect
the severity of the infection [18–20]. The image-assisted
methods are also frequently implemented to sketch the
disease in the lung, which can be additionally examined
by an expert physician or a computerized arrangement
to recognize the severity of the pneumonia. Compared
with chest X-ray, CTI is frequently considered due to its
advantage and the 3-D view. The research work published
on COVID-19 also confirmed the benefit of CT in detecting
the disease in the respiratory tract and pneumonia [21–23].

Recently, more COVID-19 detection methods have been
proposed for the progression stage identification of COVID-
19 using the RT-PCR and imaging methods. Most of
these existing works combined RT-PCR with the imaging
procedure to confirm and treat the disease. The recent work
of Rajinikanth et al. [8] developed a computer-supported
method to assess the COVID-19 lesion using lung CTI. This
work implemented few operator-assisted steps to achieve
superior outcomes during the COVID-19 evaluation.

ML approaches are well-known for their capabilities in
recognizing patterns in data. In recent years, ML has been
applied to a variety of tasks including biological data mining
[24, 25], medical image analysis [26], financial forecasting
[27], trust management [28], anomaly detection [29, 30],
disease detection [31, 32], natural language processing [33],
and strategic game playing [34].

The presented work aims to:

– Propose a ML-driven pipeline to extract and detect the
COVID-19 infection from lung CTI with an improved
accuracy.

– Develop a procedural sequence for an automated extrac-
tion of the COVID-19 infection from a benchmark lung
CTI dataset.

– Put forward an appropriate sequence of techniques,

tri-level thresholding using social group optimiza-
tion (SGO)-based Kapur’s entropy (KE) or SGO-
KE, K-Means Clustering (KMC)-based separation,
morphology-based segmentation to accurately extract
COVID-19 infection from lung CTI.

A comparison of the extracted COVID-19 infection
information from the CTI using the proposed pipeline with
the ground truth (GT) images confirms the segmentation
accuracy of the proposed method. The proposed pipeline
achieves mean segmentation and classification accuracy of
more than 91% and 87% respectively using 78 images from
a benchmark dataset.

This research is arranged as follows; Section “Motivation”
presents the motivation, Section “Methodology” represents
the methodological details of the proposed scheme.
Section “Results and Discussion” outlines the attained
results and discussions. Section “Conclusion” depicts the
conclusion of the present research work.

Motivation

The proposed research work is motivated by the former
image examination works existing in literature [35–38].
During the mass disease screening operation, the existing
medical data amount will gradually increase and reduce the
data burden; it is essential to employ an image segregation
system to categorize the existing medical data into two or
multi-class, and to assign the priority during the treatment
implementation. The recent works in the literature confirm
that the feature-fusion–based methods will improve the
classification accuracy without employing the complex
methodologies [39–41]. Classification task implemented
using the features of the original image and the region-
of-interest (ROI) offered superior result on some image
classification problems and this procedure is recommended
when the similarity between the normal and the disease
class images is more [24, 26, 31, 42, 43]. Hence, for the
identical images, it is necessary to employ a segmentation
technique to extract the ROI from the disease class image
with better accuracy [26]. Finally, the fused features of
the actual image and the ROI are fused to attain enhanced
classification accuracy.

Methodology

This section of the work presents the methodological details
of the proposed scheme. Like the former approaches, this
work also implemented two different phases to improve the
detection accuracy.
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Proposed Pipeline

This work consists of the following two stages as depicted
in Fig. 1. These are:

– Implementation of an image segmentation method to
extract the COVID-19 infection,

– Execution of a ML scheme to classify the considered
lung CTI database into normal/COVID-19 class.

The details of these two stages are given below:

Stage 1: Figure 2 depicts the image processing system
proposed to extract the pneumonia infection in the lung due
to COVID-19. Initially, the required 2D slices of the lung
CTI are collected from an open-source database [44]. All the
collected images are resized into 256 × 256 × 1 pixels and
the normalized images are then considered for evaluation.
In this work, SGO-KE–based tri-level threshold is initially
applied to enhance the lung section (see “Social Group
Optimization and Kapur’s Function” for details). Then,
KMC is employed to segregate the thresholded image into
background, artifact, and the lung segment. The unwanted
lung sections are then removed using a morphological
segmentation procedure and the extracted binary image of
the lung is then compared with its related GT provided in
the database. Finally, the essential performance measures
are computed and based on which the performance of the
proposed COVID-19 system is validated.

Stage 2: Figure 3 presents the proposed ML scheme to
separate the considered lung CTI into normal/COVID-19
class. This system is constructed using two different images,
such as (i) the original test image (normal/COVID-19 class)
and (ii) the binary form of the COVID-19 section. The
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Fig. 1 The number of image processing stages implemented in the
proposed work

various procedures existing in the proposed ML scheme are
depicted in Fig. 3.

Segmentation of COVID-19 Infection

This procedure is implemented only for the CTI associated
with the COVID-19 pneumonia infection. The complete
details on various stages involved in this process are
depicted in Fig. 1. The series of procedures implemented in
this figure are used to extract the COVID-19 infection from
the chosen test image with better accuracy. The pseudo-code
of the implemented procedure is depicted in Algorithm 1.

Image Thresholding Initially, the enhancement of the
infected pneumonia section is achieved by implementing
a tri-level threshold based on SGO and the KE. In this
operation, the role of the SGO is to randomly adjust
the threshold value of the chosen image until KE is
maximized. The threshold which offered the maximized KE
is considered as the finest threshold. The related information
on the SGO-KE implemented in this work can be found in
[45]. The SGO parameters discussed in Dey et al. [46] are
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Fig. 2 Image segmentation framework to extract COVID-19 infection
from 2D lung CT scan image

considered in the proposed work to threshold the considered
CTI.

Social Group Optimization and Kapur’s Function SGO is a
heuristic technique proposed by Satapathy and Naik [47]
by mimicking the knowledge sharing concepts in humans.
This algorithm employs two phases, such as (i) enhancing
phase to coordinate the arrangement of people (agents) in a
group, and the (ii) knowledge gaining phase: which allows
the agents to notice the finest solution based on the task. In
this paper, an agent is considered a social population who is
generated based on the features/parameters.

The mathematical description of the SGO is defined
as: let XI denote the original knowledge of agents of a
group with dimension I = 1, 2, ..., N . If the number of
variables to be optimized is represented asD, then the initial
knowledge can be expressed as XI = (xI1, xI2,... xID). For
a chosen problem, the objective function can be defined as
FJ , with J = 1, 2, ..., N .

The updated function in SGO is;

XnewI,J
= XoldI,J

ζ + R(gbestJ − XoldI,J
) (1)

where Xnewi,j
is the original knowledge, Xoldi,j

is the
updated knowledge, ζ denotes self-introspection parameter
(assigned as 0.2), R is the random number [0,1], and gbestj

is the global best knowledge.
In this work, the SGO is employed to find the optimal

threshold by maximizing the KE value and this operation is
defined below:

Entropy in an image is the measure of its irregularity and
for a considered image, Kapur’s thresholding can be used
to identify the optimal threshold by maximizing its entropy
value.

Let T h = [t1, t2, ..., tn−1] denote the threshold vector
of the chosen image of a fixed dimension and assume this
image has L gray levels (0 to L − 1) with a total pixel value
of Z. Iff () represents the frequency of j -th intensity level,
then the pixel distribution of the image will be:

Z = f (0) + f (1) + ... + f (L − 1). (2)

If the probability of j -th intensity level is given by:

Pj = f (j)/Z. (3)

Then, during the threshold selection, the pixels of image
are separated into T h + 1 groups according to the assigned
threshold value. After disconnection of the images as per the
selected threshold, the entropy of each cluster is separately
computed and combined to get the final entropy as follows:

The KE to be maximized is given by Eq. 14:

KEmax = FKE(T h) =
n∑

i=1

GC
i . (4)

For a tri-level thresholding problem, the expression will be
given by Eq. 5:

f (t1, t2, t3) =
3∑

i=1

GC
i . (5)

where Gi is the entropy given by:

GC
1 =

t1∑

j=1

P C
j

wC
0

ln

(
P C

j

wC
0

)
, (6)
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)
, (7)

GC
3 =

t3∑

j=t2
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j

wC
2

ln

(
P C

j

wC
2

)
, (8)

where,
P C

j is the probability distribution for intensity, C is the

image class (C = 1 for the grayscale image), and wC
i−1 is

the probability occurrence.
During the tri-level thresholding, a chosen approach is

employed to find the FKE(T h) by randomly varying the
thresholds (T h = {t1, t2, t3} ). In this research, the SGO is
employed to adjust the thresholds to find the FKE(T h).

Segmentation Based on KMC and Morphological Process
The COVID-19 infection from the enhanced CTI is then
separated using the KMC technique and this approach helps
segregate the image into various regions [48]. In this work,
the enhanced image is separated into three sections, such
as the background, normal image section, and the COVID-
infection. The essential information on KMC and the
morphology-based segmentation can be found in [49]. The
extracted COVID-19 is associated with the artifacts; hence,
morphological enhancement and segmentation discussed
in [49, 50] are implemented to extract the pneumonia
infection, with better accuracy.
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Fig. 3 Proposed ML scheme to
detect COVID-19 infection
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KMC helps split u-observations into K-groups. For a
given set of observations with dimension “d,” KMC will try
to split them into K-groups; Q(Q1, Q2, ..., QK) for (K ≤
u) to shrink the within-cluster sum of squares as depicted
by Eq. 9:

argmin
Q

K∑

i=1

||Oi − μi ||2 = argmin
Q

K∑

i=1

|Qi |V ar(Qi) (9)

where O is the number of observations, Q is the number
of splits, and μj is the mean of points in Qi .

Performance Computation The outcome of the morpholog-
ical segmentation is in the form of binary and this binary
image is then compared against the binary form of the GT
and then the essential performance measures, such as accu-
racy, precision, sensitivity, specificity, and F1-score, are
computed. A similar procedure is implemented on all the
78 images existing in the benchmark COVID-19 database
and the mean values of these measures are then consid-
ered to confirm the segmentation accuracy of the proposed
technique. The essential information on these measures is
clearly presented in [51, 52].

Implementation of Machine Learning Scheme

The ML procedure implemented in this research is briefed
in this section. This scheme implements a series of
procedures on the original CTI (normal/COVID-19 class)
and the segmented binary form of the COVID-19 infection
as depicted in Fig. 2. The main objective of this ML
scheme is to segregate the considered CTI database into
normal/COVID-19 class images. The process is shown in
algorithm 2.

Initial Processing This initial processing of the considered
image dataset is individually executed for the test image and
the segmented COVID-19 infection. The initial processing
involves extracting the image features using a chosen
methodology and formation of a one-dimensional FV using
the chosen dominant features.

Feature Vector 1 (FV1): The accuracy of disease detection
using the ML technique depends mainly on the considered
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image information. In the literature, a number of image
feature extraction procedures are discussed to examine a
class of medical images [35–37, 39–42]. In this work, the
well-known image feature extraction methods, such as
Complex-Wavelet-Transform (CWT) and Discrete-
Wavelet-Transform (DWT) as well as Empirical-Wavelet-
Transform (EWT) are considered in 2-D domain to extract
the features of the normal/COVID-19 class grayscale
images. The information on the CWT, DWT, and EWT are
clearly discussed in the earlier works [52]. After extracting
the essential features using these methods, a statistical eval-
uation and Student’s t test–based validation is implemented
to select the dominant features to create the essential FVs,
such as FVCWT (34 features), FVDWT (32 features), and
FVEWT (3 features) which are considered to get the prin-
ciple FV1 set (FV1=69 features) by sorting and arranging
these features based on its p value and t value. The feature
selection process and FV1 creation are implemented as
discussed in [52].

– CWT: This function was derived from the Fourier
transform and is represented using complex-valued
scaling function and complex-valued wavelet as defined
below;

ψC(t) = ψR(t) + ψI (t) (10)

where ψC(t), ψR(t), and ψI (t) represent the complex,
real, and image parts respectively.

– DWT: This approach evaluates the non-stationary
information. When a wavelet has the function ψ(t) ∈
W 2(r), then its DWT (denoted by DWT (a, b)) can be
written as:

DWT (a, b) = 1√
2a

∫ ∞

−∞
x(t)ψ∗

(
t − b2a

2a

)
dt (11)

where ψ(t) is the principle wavelet, the symbol
∗ denotes the complex conjugate, a and b (a, b ∈
R) are scaling parameters of dilation and transition
respectively.

– EWT: The Fourier spectrum of EWT of range 0 to π

is segmented into M regions. Each limit is denoted as
ωm (where m = 1, 2, ..., M) in which the starting limit
is ω0 = 0 and final limit is ωM = π . The translation
phase Tm centered aroundωm has a width of 2�m where
�m = λωm for 0 < λ < 1. Other information on EWT
can be found in [53].

Feature Vector 2 (FV2): The essential information from the
binary form of COVID-19 infection image is extracted using
the feature extraction procedure discussed in Bhandary et al.
[35] and this work helped get the essential binary features
using the Haralick and Hu technique. This method helps
get 27 numbers of features (FHaralick = 18 features and

FHu = 9 features) and the combination of these features
helped get the 1D FV2 (FV2 = 27 features).

– Haralick features: Haralick features are computed using
a Gray Level Co-occurrence Matrix (GLCM). GLCM
is a matrix, in which the total rows and columns depend
on the gray levels (G) of the image. In this, the matrix
component P(i, j |�x, �y) is the virtual frequency
alienated by a pixel space (�x, �y). If μx and μy

represent the mean and σx and σy represent the standard
deviation of Px and Py , then:

μx =
G−1∑

i=0

iPx(i),

μy =
G−1∑

j=0

jPy(j),

σx =
G−1∑

i=0

(Px(i) − μx(i))

σy =
G−1∑

j=0

(Py(j) − μy(j)). (12)

where Px(i) and Py(j) matrix components during
the i-th and j -th entries, respectively.

These parameters can be used to extract the
essential texture and shape features from the considered
grayscale image.

– Hu moments: For a two-dimensional (2D) image, the
2D (i + j)-th order moments can be defined as;

Mij =
∫ ∞

−∞

∫ ∞

−∞
xiyjf (x, y)dxdy (13)

for i, j = 0, 1, 2,... If the image function f (x, y) is
a piecewise continuous value, then the moments of all
order exist and the moment sequence Mij is uniquely
determined. Other information on Hu moments can be
found in [35].

Fused Feature Vector (FFV:) In this work, the original test
image helped get the FV1 and the binary form of the
COVID-19 helps get the FV2. To implement a classifier, it
is essential to have a single feature vector with a pre-defined
dimension.

In this work, the FFV based on the principle component
analysis (PCA) is implemented to attain a 1D FFV (69 +
27 = 96 features) by combining the FV1 and FV2, and this
feature set is then considered to train, test, and validate the
classifier system implemented in this study. The complete
information on the feature fusion based on the serial fusion
can be found in [35, 54].
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Classification Classification is one of the essential parts
in a verity of ML and deep learning (DL) techniques
implemented to examine a class of medical datasets. The
role of the classifier is to segregate the considered medical
database into two-class and multi-class information using
the chosen classifier system. In the proposed work, the
classifiers, such as Random-Forest (RF), Support Vector
Machine-Radial Basis Function (SVM-RBF), K-Nearest
Neighbors (KNN), and Decision Tree (DT), are considered.
The essential information on the implemented classifier
units can be found in [35, 36, 45, 52]. A fivefold cross-
validation is implemented and the best result among the trial
is chosen as the final classification result.

Validation From the literature, it can be noted that the
performance of the ML and DL-based data analysis is nor-
mally confirmed by computing the essential performance
measures [35, 36]. In this work, the common performance
measures, such as accuracy (4), precision (15), sensitivity
(16), specificity (17), F1-score (18), and negative predictive
value (NPV) (19) computed.

The mathematical expression for these values is as
follows:

Accuracy = (TP + TN)

(TP + TN + FP + FN)
(14)

Precision = TP

(TP + FP )
(15)

Sensitivity = TP

(TP + FN)
(16)

Specificity = TN

(TN + FP )
(17)

F1-Score = 2TP

(2TP + FN + FP )
(18)

NPV = TN

(TN + FN)
(19)

where TP= true positive, TN= true negative, FP= false
positive, and FN=false negative.

COVID-19 Dataset

The clinical-level diagnosis of the COVID-19 pneumonia
infection is normally assessed using the imaging procedure.
In this research, the lung CTI are considered for the

examination and these images are resized into 256×256×1
pixels to reduce the computation complexity. This work
considered 400 grayscale lung CTI (200 normal and 200
COVID-19 class images) for the assessment. This research
initially considered the benchmark COVID-19 database of
[44] for the assessment. This dataset consists of 100 2D
lung CTI along with its GT; and in this research, only 78
images are considered for the assessment and the remaining
22 images are discarded due to its poor resolution and the
associated artifacts. The remaining COVID-19 CTI (122
images) are collected from the Radiopaedia database [55]
from cases 3 [56], 8 [57], 23 [58], 10 [59], 27 [60] 52 [61],
55 [62], and 56 [63].

The normal class images of the 2D lung CTI have
been collected from The Lung Image Database Consortium-
Image Database Resource Initiative (LIDC-IDRI) [64–66]
and The Reference Image Database to Evaluate therapy
Response-The Cancer Imaging Archive (RIDER-TCIA)
[66, 67] database and the sample images of the collected
dataset are depicted in Figs. 4 and 5. Figure 4 presents
the test image and the related GT of the benchmark
CTI. Figure 5 depicts the images of the COVID-19
[55] and normal lung [64, 67] CTI considered for the
assessment.

Results and Discussion

The experimental results obtained in the proposed work
are presented and discussed in this section. This developed
system is executed using a workstation with the configu-
ration: Intel i5 2.GHz processor with 8GB RAM and 2GB
VRAM equipped with the MATLAB (www.mathworks.
com). Experimental results of this study confirm that this
scheme requires a mean time of 173 ± 11 s to process
the considered CTI dataset and the processing time can be
improved by using a workstation with higher computational
capability. The advantage of this scheme is it is a fully auto-
mated practice and will not require the operator assistance
during the execution. The proposed research initially exe-
cutes the COVID-19 infection segmentation task using the
benchmark dataset of [44]. The results attained using a cho-
sen trial image are depicted in Fig. 6. Figure 6a depicts the
sample image of dimension 256 × 256 × 1 and Fig. 6b and
c depict the actual and the binary forms of the GT image.
The result attained with the SGO-KE-based tri-level thresh-
old is depicted in Fig. 6d. Later, the KMC is employed
to segregate Fig. 6d into three different sections and the
separated images are shown in Fig. 6e–g. Finally, a morpho-
logical segmentation technique is implemented to segment

www.mathworks.com
www.mathworks.com
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Fig. 7 Mean performance measure attained with the proposed
COVID-19 segmentation procedure

the COVID-19 infection from Fig. 6g and the attained result
is presented in Fig. 6h. After extracting the COVID-19
infection from the test image, the performance of the pro-
posed segmentation method is confirmed by implementing
a comparative examination between the binary GT exist-
ing in Fig. 6c with Fig. 6h and the essential performance
values are then computed based on the pixel information
of the background (0) and the COVID-19 section (1). For
this image, the values attained are TP = 5865 pixels,
FP = 306, TN = 52572, and FN = 1949, and these values
offered accuracy = 96.28%, precision = 95.04%, sensitivity
= 75.06%, specificity = 99.42%, F1-score = 83.88%, and
NPV = 96.43%.

A similar procedure is implemented for other images of
this dataset and means performance measure attained for the
whole benchmark database (78 images) is depicted in Fig. 7.
From this figure, it is evident that the segmentation accuracy
attained for this dataset is higher than 91%, and in the future

RF KNN SVM-RBF DT
0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Feature set FV1 Feature set FFV

Fig. 8 Detection accuracy attained in the proposed system with
various classifiers

the performance of the proposed segmentation method can
be validated against other thresholding and segmentation
procedures existing in the medical imaging literature.

The methodology depicted in Fig. 3 is then implemented
by considering the entire database of the CTI prepared in
this research work. This dataset consists of 400 grayscale
images with dimension 256 × 256 × 1 pixels and the
normal/COVID-19 class images have a similar dimension
to confirm the performance of the proposed technique.
Initially, the proposed ML scheme is implemented by
considering only the grayscale image features (FV1) with
a dimension 1 × 69 and the performance of the considered
classifier units, such as RF, KNN, SVM-RBF, and DT,
is computed. During this procedure, 70% of the database
(140 + 140 = 280 images) are considered for training and
30% (60 + 60 = 120 images) are considered for testing.
After checking its function, each classifier is separately
validated by using the entire database and the attained

Table 1 Disease detection performance attained with the proposed ML scheme

Features Classifier TP FN TN FP Acc. (%) Prec. (%) Sens. (%) Spec. (%) F1-Sc. (%) NPV (%)

FV1 (1×69) RF 163 37 172 28 83.75 85.34 81.50 86.00 83.37 82.30

KNN 159 41 177 23 84.00 87.36 79.50 88.50 83.24 81.19

SVM-RBF 161 39 179 21 85.00 88.46 80.50 89.50 84.29 82.11

DT 160 40 168 32 82.00 83.33 80.00 84.00 81.63 80.77

FFV (1×96) RF 169 31 178 22 86.75 88.48 84.50 89.00 86.45 85.17

KNN 178 22 173 27 87.75 86.83 89.00 86.50 87.90 88.72

SVM-RBF 172 28 177 23 87.25 88.20 86.00 88.50 87.09 86.34

DT 174 26 172 28 86.50 86.14 87.00 86.00 86.57 86.89

TP, true positive; FN, false negative; TN, true negative; FP, false positive; Acc., accuracy; Prec., precision; Sens., sensitivity; Spec., specificity;
F1-Sc., F1-score; NPV, negative predictive value, italicized values indicate the best performance.
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results are recorded. Here, a fivefold cross-validation is
implemented for each classifier and the best result attained
is considered as the final result. The obtained results are
depicted in Table 1 (the first three rows). The results reveal
that the classification accuracy attained with SVM-RBF
is superior (85%) compared with the RF, KNN, and DT.
Also, the RF technique helped get the better values of the
sensitivity and NPV compared with other classifiers.

To improve the detection accuracy, the feature vector size
is increased by considering the FFV (1 × 96 features) and
a similar procedure is repeated. The obtained results (as
in Table 1, bottom three rows) with the FFV confirm that
the increment of features improves the detection accuracy
considerably and the KNN classifier offers an improved
accuracy (higher than 87%) compared with the RF, SVM-
RBF, and DT. The precision and the F1-score offered
by the RF are superior compared with the alternatives.
The experimental results attained with the proposed ML
scheme revealed that this methodology helps achieve better
classification accuracy on the considered lung CTI dataset.
The accuracy attained with the chosen classifiers for FV1
and FFV is depicted in Fig. 8. The future scope of the
proposed method includes (i) implementing the proposed
ML scheme to test the clinically obtained CTI of COVID-
19 patients; (ii) enhancing the performance of implemented
ML technique by considering the other feature extraction
and classification procedures existing in the literature;
and (iii) implementing and validating the performance
of the proposed ML with other ML techniques existing
in the literature; and (iv) implementing an appropriate
DL architecture to attain better detection accuracy on the
benchmark as well as the clinical grade COVID-19 infected
lung CTI.

Conclusion

The aim of this work has been to develop an automated
detection pipeline to recognize the COVID-19 infection
from lung CTI. This work proposes an ML-based system
to achieve this task. The proposed system executed a
sequence of procedures ranging from image pre-processing
to the classification to develop a better COVID-19 detection
tool. The initial part of the work implements an image
segmentation procedure with SGO-KE thresholding, KMC-
based separation, morphology-based COVID-19 infection
extraction, and a relative study between the extracted
COVID-19 sections with the GT. The segmentation assisted
to achieve an overall accuracy higher than 91% on a
benchmark CTI dataset. Later, an ML scheme with essential
procedures such as feature extraction, feature selection,
feature fusion, and classification is implemented on the

considered data, and the proposed scheme with the KNN
classifier achieved an accuracy higher than 87%.
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