1	The Plant Flow Index: a new method to assess the hydroecological
2	condition of temporary rivers and streams.
3	
4	Christian G. Westwood ¹ , Judy England ² , Chloe Hayes ³ , Tim Johns ² and Rachel Stubbington ³ .
5	
6	¹ Environmental Research Associates, 21 Meadowbrook Close, Exeter EX4 2NN, UK
7	² Environment Agency, Red Kite House, Howbery Park, Crowmarsh Gifford, Wallingford OX10 8BD, UK
8	³ School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
9	
10	Corresponding author: Judy England, judy.england@environment-agency.gov.uk
11	
12	Highlights
13	
14 15	• We assigned weighted scores to 34 common plant taxa based on their response to river drying.
16	• We combined the scores to create the Plant Flow Index.
18 19 20 21	 PFI was more responsive to recent river drying than existing plant community indices.
22	• PFI is unique as an index to characterize plant community responses to river drying

-	-
-	-
	-
~	-

24	Abstract
----	----------

26	Temporary streams are widespread in global river networks, and hydroecological tools are
27	needed to assess biotic responses to changes in environmental conditions between wet and
28	dry states. Plant communities can be abundant and diverse in temporary streams, and vary
29	in their tolerance of changing water availability and associated habitat conditions, but
30	globally, no indices have been developed to document community-level responses to
31	intermittence. We present the first index developed to assess plant assemblage responses
32	to changing habitat conditions in temporary stream channels: the Plant Flow Index
33	(PFI). Using a regional 22-year dataset from lowland groundwater-fed headwater streams in
34	the UK, we establish relationships between the occurrence and abundance of 34 common
35	aquatic, semi-aquatic and terrestrial taxa and the proportion of time the channel was dry
36	within the antecedent 12 months. Species/taxon-specific responses to channel drying were
37	weighted and used to calculate a single score representing each community. We compare
38	the PFI to three other plant assessment methods, which demonstrates its greater ability to

39	reflect the effects of intermittent flow and specifically drying events. The PFI represents a
40	flexible index that can be modified to include additional and/or different taxa and their
41	responses to intermittence, allowing its application across regions and river types with
42	contrasting environmental characteristics and intermittence regimes. As temporary streams
43	increase in both space and time, this index represents a valuable tool to track ecological
44	responses to intermittence at both broad and fine spatial and temporal scales.
45	
46	Keywords: intermittency, ephemeral streams, plants, bioassessment, biomonitoring,
47	vegetation
48	
49	1. Introduction
50	Temporary streams are defined as those which periodically cease to flow, and may dry
51	completely (Leigh et al., 2016). These ecosystems are widespread and diverse in both
52	dryland and temperate regions (Sheldon, 2005; Stubbington et al., 2017), due in large part
53	to their prevalence in headwaters (Acuña et al., 2014). Flow cessation and streambed
54	drying are increasing in both space and time in many global regions, due to the effects of

55	climate change (Döll and Schmied, 2012; IPCC, 2018) and increasing water usage by an
56	expanding population (Shiklomanov and Rodda, 2003; Gerten et al., 2013).
57	
58	Intermittence makes temporary streams dynamic habitats with in-channel states ranging
59	from flowing to dry and encompassing transitional periods in which isolated or connected
60	pools persist (Leigh et al., 2016; Stubbington, et al., 2017). These alternations between
61	states can create mosaics of flowing, ponded and dry habitats which vary in space and time
62	(Larned et al., 2010). Each state supports a different biological community, with the
63	contributions of both aquatic and terrestrial taxa increasing total biodiversity in temporary
64	streams (Corti and Datry, 2016; Bunting et al., 2020).
65	
66	Despite recent advances, our understanding of community structure and thus ecosystem
67	functioning in temporary streams remains limited (e.g. Datry et al., 2016; Leigh et al., 2016),
68	partly due to a lack of effective tools to assess biological responses to intermittence and
69	environmental quality (Stubbington et al., 2018). However, there are tools to examine the
70	responses of aquatic macroinvertebrate communities to changes in habitat availability

71	during unpredictable drought events in near-perennial streams (Drought Effect of Habitat
72	Loss on Invertebrates – DEHLI; Chadd et al., 2017), and to changes in in-channel state
73	(Monitoring Intermittent Streams index – MIS-index; England et al., 2019) and antecedent
74	drying events (Biodrought index; Straka et al., 2019) in temporary streams. In contrast,
75	comparable tools to assess plant communities remain in the early stages of development
76	(Westwood et al., 2017, 2020). Specifically, vegetational responses to drying have been
77	assessed within temperate lowland groundwater-fed streams (Holmes, 1999),
78	demonstrating that plant communities change over timespans of months to decades, with
79	losses of obligate aquatic species being balanced by increases in terrestrial taxa as flow
80	declines and water is lost (Westwood et al., 2006a, 2017, 2020). Such responses indicate
81	that plant communities are potential indicators of antecedent in-channel conditions in
82	temporary streams.
83	
84	The duration of the dry phase is an important influence on community response to drying
85	(Katz et al., 2012; Leigh and Datry, 2017; Colls et al., 2019). In streams with predictable

86 drying for shorter durations (e.g. <3 months), plant communities adapted to these

07	conditions can include a high diversity of aquatic and wetland macrophytes (Westwood et
88	al., 2006a; Franklin et al., 2008). By contrast, in systems experiencing longer dry periods,
89	semi-aquatic and terrestrial taxa often encroach into the channel from the margins and
90	riparian zone as the dominance of aquatic macrophytes declines (Holmes, 1999; Franklin et
91	al., 2008; Stromberg and Merritt, 2016). Under prolonged dry conditions, in-channel
92	communities can be entirely composed of terrestrial species growing in soil (Holmes, 1999;
93	Westwood et al., 2020).
94	
95	Plants influence their riverine environment, acting as ecosystem engineers by facilitating
96	sediment accumulation, altering flow patterns and influencing nutrient concentrations
97	(Clarke, 2002; Gurnell et al., 2010; Gurnell, 2014). This close interaction between river plants
97 98	(Clarke, 2002; Gurnell et al., 2010; Gurnell, 2014). This close interaction between river plants and their environment makes them useful indicators of differing habitat conditions,
97 98 99	(Clarke, 2002; Gurnell et al., 2010; Gurnell, 2014). This close interaction between river plants and their environment makes them useful indicators of differing habitat conditions, including those resulting from intermittence (Westwood et al., 2020). However, studies
97 98 99 100	(Clarke, 2002; Gurnell et al., 2010; Gurnell, 2014). This close interaction between river plants and their environment makes them useful indicators of differing habitat conditions, including those resulting from intermittence (Westwood et al., 2020). However, studies remain largely qualitative (e.g. Franklin et al., 2008; Katz et al., 2011; Stromberg and Merritt,

plant community responses to changing habitat conditions in temporary streams.

104	We developed a new <i>Plant Flow Index</i> (PFI), to characterize plant community responses to
105	habitat characteristics as a result of hydrological variability and intermittence. Using
106	observations of the responses of individual taxa to intermittence in headwater streams in
107	the Thames Basin, UK, we assigned each taxon a code to reflect its response to
108	intermittence, plus a weighting factor based on the percentage area covered. We used
109	these values to calculate the PFI score for a community. Using two datasets from lowland
110	UK groundwater-fed headwater streams, we compared the ability of the PFI and three other
111	plant assemblage assessment methods to describe responses to intermittence during the
112	antecedent 12 months. Of these other assessment methods, two respond to intermittence:
113	the abundance-weighted Ellenberg moisture preference values for plants (AWE; based on
114	Hill et al., 1999) and the Winterbourne Classification (WC), which describes 10 plant
115	community types characteristic of flow regimes ranging from highly intermittent to
116	perennial (see Westwood et al., 2020). The third method is the Mean Trophic Rank index
117	(MTR; Holmes et al., 1999), which responds to nutrient enrichment and has shown promise

118 in responding to environmental quality in dry channels (Stubbington et al., 2019).

120	Our aims were: (1) to develop the PFI, evaluate correlations between the PFI and existing
121	assessment methods (AWE and MTR), and establish whether particular PFI scores are
122	associated with the different WC community types; (2) to evaluate the responses of the P
123	AWE and MTR indices to antecedent intermittence and specifically drying; (3) to explore
124	associations between PFI scores and site-specific environmental characteristics
125	(mesohabitat types, water width, channel slope and substrate); and (4) to illustrate the
126	dynamical application of the PFI for the analysis of inter-annual and long term changes in
127	vegetation at four contrasting sites.
128	
129	2. Materials and Methods
130	2.1 Study area
131	We used data collected during plant community field surveys in the headwaters of

PFI,

- 132 groundwater-fed rivers within the Thames catchment: a 22-year (1992-2013) dataset
- 133 spanning 57 sites across 11 rivers, which we divided to create a development (I) dataset
- 134 (846 surveys), a test (II) dataset (718 surveys) and a 5-year (2015-2019) (III) dataset from 39

135	sites across five rivers (220 surveys) (Fig. 1). The area has a temperate climate with an
136	oceanic influence (i.e. Köppen-Geiger classification Cfb) with mean annual air temperatures
137	that typically range from 9.5°C to 11.5°C and average annual precipitation of 550 mm to 950
138	mm (Met Office, 2019a). Land use is predominantly agricultural with a mix of arable,
139	permanent and rough pasture, and some woodland (NRFA, 2020). The area is
140	predominantly underlain by Cretaceous chalk, resulting in seasonal, predictable channel
141	drying in response to changes in groundwater levels; although the spatial extent and timing
142	of drying varies among years in relation to antecedent rainfall. Stream discharge typically
143	peaks in January-March, then declines as groundwater levels drop, leading to minimum
144	discharge in August-October and potentially to complete loss of surface water in parts of the
145	river where flow is temporary. The peak flows generally correspond with the start of the
146	plant growth season, which has a mean of 273 days (Department of Energy and Climate
147	Change, 2013). The area experienced droughts (i.e. deficits in water in comparison to the
148	long-term average; Tallaksen and van Lanen 2004,) in 1992, 1996-1998, 2006 and 2012, with
149	a period of high aquifer recharge occurring in 2001-2003 (Marsh et al., 2007, 2013; Met

150 Office 2019b). During periods of drought some sites remain dry for more than a year and

151 during periods of high groundwater some sites remain wet for more than a year.

152

- 153 Fig. 1 The location of sites at which plant communities were surveyed from 1992-2013
- 154 (dataset I, circles; dataset II, stars) and from 2015-2019 (dataset III, triangles).

- 156 2.2 Contrasting case study locations
- 157 Four sites were selected to illustrate the application of PFI, one on each of the Rivers
- 158 Bulbourne and Misboune and two on the River Ver (Fig. 1; Supplementary Material), which

159	differ in their morphology and channel characteristics. All sites were surveyed annually from
160	1993-2013 and experienced flowing, ponded and dry conditions during the study period in
161	response to changing groundwater levels partly in response to abstraction. Groundwater
162	abstraction affects all three catchments. Water company data showed that during the study
163	period, the abstraction regime remained consistent in the Bulbourne catchment but had a
164	declining temporal pattern in the Ver and Misbourne catchments, increasing the Ver's
165	baseflow from 1993 onwards (Clayton et al., 2008), and the Misbourne's from 1998
166	onwards (Perrow et al., 2007).
167	
168	2.3 Field methods
169	Plant surveys for the period 1992-2013 were undertaken within a defined area of the
170	channel bed, including in-channel and marginal areas to the base of the bank. Site lengths
171	ranged between 10 m and 50 m depending on channel width, with wider channels needing
172	shorter lengths to characterize their plant communities (Holmes, 1999). As a result, survey
173	areas were in the range 50-70 m ² .

175	Surveys conducted over 2015-2019 followed the LEAFPACS2 method (UK-TAG 2014), with a
176	standard 100 m site length. Visual assessments were made of substrate composition (%
177	cobbles, gravel/pebbles, sand, silt and soil) and mesohabitat type (% riffle, run, pool, slack
178	[areas of slow-flowing water] and dry bed). We assigned scores to the five substrate
179	categories (5-1 respectively, with cobbles 5 and soil 1); resulting values were summed and
180	divided by 100 to produce a single score for each survey, ranging from 1-5, with higher
181	values indicating coarser substrates. A comparable approach was applied to the
182	mesohabitat data (5 for riffle, 4 for run etc.) with resultant higher values indicating
183	dominance of faster flowing habitats. For each survey, we measured the width of the water
184	at four equidistant points along the site length, then averaged the results. Using a Light
185	Detection and Ranging (LIDAR) map layer within Arc GIS, we calculated the channel slope as
186	the change in elevation between points 500 m upstream and downstream of each site's
187	midpoint, with the results expressed as m km ⁻¹ .
188	

- 189 Aquatic and semi-aquatic taxa were identified to species level, except for *Callitriche* spp.,
- 190 Vaucheria spp. and Verrucaria spp., which were recorded at genus level; terrestrial grasses

191 and herbs were recorded as such (Table 1). Surveys were undertaken across flowing,

- 192 ponded and dry in-channel states. Percentage cover within the survey area was visually
- 193 assessed for each plant taxon allowing comparability between the surveys despite the
- 194 different sized areas.
- 195
- 196 2.4 Hydrological data
- 197 2.4 Hydrological data
- 198 For 52 of the sites, we used close (<1 km) spot-gauging measurements and regressed these
- against fixed-gauge records to construct time series of site-specific discharge (Gordon, et al.,
- 200 2004; Malcolm, et al., 2012; Supplementary Material). For the other 5 sites, we obtained
- 201 hydrological time-series data (daily mean discharge) from fixed gauging stations <5 km away
- 202 (NFRA, 2020). Since these sites are perennial and not affected by intermittent flow, main
- 203 gauge values were considered reliable indicators of local conditions. We calculated the
- 204 proportion of zero-flow days (%ZF) for each site-specific time series for the 12 months prior
- 205 to each survey, this being the time period during which plants are most responsive to
- 206 hydrological variability (Holmes, 1999; Westwood, et al., 2020). To distinguish between

207	zero-flow readings representing a dry channel and ponded water, we calibrated the
208	discharge records with visual assessments of in-channel conditions made at monthly
209	intervals between 1997 and 2013 (Sefton et al., 2019), using a lower cut-off value of <0.01
210	m ³ s ⁻¹ to define a dry channel (Supplementary Material).
211	
212	2.5 Development of the Plant Flow Index (PFI)
213	We developed the PFI using dataset I (Fig. 1). To explore taxon-specific responses to site-
214	specific intermittence regimes, we matched records of individual plant taxa with the locally
215	modelled %ZF during the antecedent 12 months. We categorized the resulting site-specific
216	discharge time series and associated taxa records into twelve 10% intermittence bands from
217	0-100% ZF, where 0% ZF denotes continuous flow and 100% ZF indicates a channel that was
218	dry throughout the antecedent 12 months. We allocated PFI codes to each taxon based on
219	its modal value reflecting its association with %ZF of 0 or 0.1-10% (10), >10-20% (9), >20-
220	30% (8), >30-40% (7), >40-50% (6), >50-60% (5), >60-70% (4), >70-80% (3), >80-90% (2), >90-
221	99.9% (1) and 100% (0). The size of the standard error of the mean within each category
222	was used to evaluate the reliability of the allocated score. PFI codes were allocated to all 34

223	taxa within dataset I (see <i>Results</i> 3.1). To calculate the weighting factor, reflecting each
224	species/taxon's percentage cover, we followed the cover weighting codes (CWC) of Holmes
225	et al. (1999): <0.1% (1), 0.1-1% (2), >1-2.5% (3), >2.5-5% (4), >5-10% (5), >10-25% (6), >25-
226	50% (7), >50-75% (8) and >75% (9). For each survey, we then multiplied the PFI taxon scores
227	by CWC, to give weighted PFI taxon scores. Finally, we multiplied the result by 10 to give
228	scores on a scale comparable with %ZF assessments and the MTR metric. To calculate the PFI
229	for each community, we used the equation:
230	
231	$PFI = \frac{\sum (PFI \ taxon \ code \times CWC)}{\sum CWC} \times 10$
232	
233	
234	2.6 Comparison between plant assessment methods
235	We used dataset II (Fig. 1) to identify any correlation of PFI scores with AWE and MTR scores
236	using Pearson product-moment correlation analysis. We then regressed the index scores
237	against %ZF to determine responses to channel drying and the strength and significance of

238 site-specific linear regression coefficients. AWE scores were derived by identifying the

239	Ellenberg F number (a measure of moisture preference) for each taxon using Hill et al.	
240	(1999) and establishing abundance-weighted scores using percentage cover (Table S2,	
241	Supplementary Material). The Ellenberg F scores for six species of Callitriche were averaged	
242	to F11. The numbers assigned to obligate aquatic species that have higher F numbers (10-	
243	12) increase with percentage cover, those assigned to wetland and terrestrial species (8-5)	
244	decrease as cover increases, and species with F number 9 remain constant, as the original	
245	mid-point between F numbers 12 and 6. Terrestrial taxa were added to the protocol and	
246	weighted as F 5, which indicates a preference for moist soil/sediment. Individual weighted	
247	taxon scores were then averaged to give an AWE score for the community. MTR scores were	
248	calculated using Holmes et al., (1999, see Supplementary Material for details).	
249		
250	Associations between WC and the PFI, AWE and MTR indices were explored using Pearson	
251	product-moment correlation analysis. WC community types were assigned following	
252	Westwood et al., (2020) and allocated the numbers 1 to 10, with higher scores reflecting	
253	communities associated with drying (Table S2, Supplementary Material). Using dataset III	
254	(2015-2019; Fig. 1), we compared the range of PFI scores with each WC community type.	

256	2.7 Comparison of the PFI and environmental characteristics
257	We used dataset III (Fig. 1) to examine relationships between PFI scores and site-specific
258	environmental characteristics. We regressed the PFI scores against four environmental
259	variables recorded during the 2015-2019 plant surveys: mesohabitat types, water width,
260	channel slope and substrate. We calculated the PFI scores and taxon richness for our four
261	case study sites (section 2.2) to explore the dynamical application of the PFI by assessing
262	change over time using long term (22 years) hydrological records of %ZF and the
263	environmental characteristics of the channel.
263 264	environmental characteristics of the channel.
263 264 265	environmental characteristics of the channel.
263 264 265 266	environmental characteristics of the channel. 3. RESULTS
263 264 265 266 267	environmental characteristics of the channel. 3. RESULTS <i>3.1 Development of the Plant Flow Index (PFI): assignment of PFI taxon codes</i>
263 264 265 266 267 268	environmental characteristics of the channel. 3. RESULTS 3.1 Development of the Plant Flow Index (PFI): assignment of PFI taxon codes Of the 34 taxa, 15 were allocated a code of 10, associated with the lowest %ZF, with 1-3 taxa

270 S4, Supplementary Material). For many taxa, allocation of PFI taxon codes was

- 271 straightforward, such as assignment of code 10 to *Ranunculus penicillatus* subsp.
- 272 pseudofluitans (Fig. 2), for which the modal value was 0%ZF and the second highest
- 273 occurrence was for 0.1-10%ZF. Equally, for terrestrial grasses (code 0), the modal value was
- 274 100%ZF and the second highest occurrence was for 90.1-99.9%ZF. The grass Alopecurus
- 275 geniculatus was also allocated code 0. Species that responded to moderate intermittence
- 276 levels included the grass *Glyceria notata* and the herb *Apium nodiflorum*, which had highest
- values associated with 60.1-70%ZF and 50.1-60%ZF, generating the codes 4 and 5
- 278 respectively.
- 279
- 280 Table 1. Plant Flow Index (PFI) codes and related percentage zero-flow category allocated to
- 281 each taxon using dataset I.
- 282

PFI codes	Percentage	Taxon
	zero flow	
		Amblystegium fluviatile
		Berula erecta
		Callitriche spp.
		Carex acutiformis
		Carex riparia
		Catabrosa aquatica
10	0-10	Lemna minor
		Oenanthe crocata
		Ranunculus pseudofluitans
		Rorripa nasturtium aquaticum
		Sparganium erectum
		Typha latifolia
		Vaucheria spp.

		Veronica anagalis/catenata
		Verrucaria spp.
٩	>10-20	Ranunculus peltatus
	>10-20	Stachys palustris
0	>20.20	Epilobium hirsutum
0	~20-30	Mentha aquatica
7	>20.40	Fontinalis antipyretica
/	>30-40	Iris pseudocorus
6	6 >40-50	Glyceria maxima
0		Ranunculus trichophyllus
E	>50-60	Filamentous algae
5		Apium nodiflorum
	>60-70	Glyceria notata
4		Myosotis scorpioides
		Veronica beccabunga
2	>70-80	Phalaris arundinacea
5		Solanum dulcamara
2	>80-90	Myosoton aquaticum
	100	Alopecurus geniculatus
0		Terrestrial grasses
		Terrestrial herbs

used to assign Plant Flow Index codes using dataset I to: (a) Ranunculus pseudofluitans, (b)

288 terrestrial grasses, (c) *Glyceria notata* and (d) *Apium nodiflorum*.

289

290 3.2 Comparison between plant assessment methods

291 The PFI had the strongest correlation with AWE (Pearson correlation coefficient r = 0.90; Fig.

- 3a) but was only weakly associated with MTR (r = 0.44; Fig. 3b). When comparing the scores
- with WC, PFI showed the strongest correlation with WC (r = -0.82; Fig. 4a) then AWE (r = -

306 Fig. 3. Correlations between the Plant Flow Index (PFI) and (a) abundance-weighted

307 Ellenberg F score (AWE; based on Hill et al., 1999) and (b) Mean Trophic Rank (MTR; Holmes

308 et al., 1999) scores.

309

Fig. 4. Correlations between the Winterbourne Classification (WC; Westwood et al., 2020)

and: (a) the Plant Flow Index (PFI), (b) abundance-weighted Ellenberg F score (AWE; based

on Hill et al., 1999) and (c) Mean Trophic Rank (MTR) scores (Holmes et al., 1999).

315

316 3.3 Comparison of PFI and environmental characteristics.

317 PFI exhibited moderate, positive relationships with mesohabitat, water width and substrate

and a weak negative relationship with channel slope (linear regression; P<0.001; Fig. 5). In

all cases, PFI produced higher and more significant coefficients than either AWE or MTR (see

320 Table S5, Supplementary Material).

322	Fig. 5. Linear regressions between the Plant Flow Index (PFI) and the four environmental
323	variables (a) mesohabitat type, (b) water width, (c) channel slope and (d) substrate.
324	
325	3.4 Case study: a comparison of PFI temporal patterns at four contrasting sites
326	The Bulbourne site supported a mean taxa richness of 10.5 \pm 0.95 taxa per annual survey
327	between 1992 and 2013. The %ZF varied considerably during the study period, peaking at
328	84% in 1997 during the 1996-1998 drought (Fig. 6a). Similar peaks (72% in 2006; 69% in
329	2012) occurred during subsequent droughts whereas the %ZF fell to zero in the intervening
330	years (1995, 2000-2002 and 2009). PFI scores ranged from 17-80 with a high proportion of
331	terrestrial taxa (PFI taxon code 0) and other lower scoring groups (2-5) recorded during drier
332	periods (Fig. 6b). In wetter periods, more aquatic taxa (PFI taxon code 10) became
333	abundant, most notably Callitriche spp. and R. nasturtium aquaticum. Lower PFI scores were
334	associated with higher %ZF (Fig. 6a). The PFI score changed from 73 to 24 within only 2
335	years (1995-1997) with a corresponding increase in %ZF from 0% to 84%. The PFI
336	subsequently increased from 22 to 60 (1998-1999) as %ZF decreased from 63% to 1%.
337	Similar decreases in PFI scores were associated with subsequent increases in %ZF and

338	reflected increased cover of terrestrial taxa (0) and the wetland grass A. geniculatus (0) (Fig.
339	6b).
340	
341	The mean richness of the Misbourne site was 5.9 \pm 0.6 taxa per annual survey (1992 and
342	2013). The most abundant taxa were terrestrial grasses (PFI taxon code 0) and terrestrial
343	herbs (PFI taxon code 0). Lower PFI scores were associated with changes in %ZF with a
344	marked time-lag between channel recharge and vegetation response. The lowest value of
345	PFI (0) was recorded in 1999 following a peak of %ZF in 1997 and 1998 (100 and 91%
346	respectively; Fig. 5c). A second record of PFI 0 was recorded in 2007 following a peak of
347	94%ZF in 2006. A prolonged period of flowing conditions (2000-2004) corresponded with an
348	increase in PFI reaching a peak of 55 in 2004 and 2005. The gradual increase in score
349	reflected the growth of 2-5 group taxa in 2000 and 6+ taxa in 2001 (Fig. 5d). The same score
350	(PFI 55) was also reached in 2011 following a shorter dry period (2006) when taxa from the
351	higher scoring groups were recorded as %ZF decreased.

353	At the lower Ver site, mean taxa richness was 19.6 \pm 0.57 taxa per annual survey between
354	1992 and 2013. R. pseudofluitans (mean abundance $20 \pm 3.96\%$) and R. nasturtium
355	aquaticum (mean abundance 22 \pm 3.8%) were the most abundant taxa. The %ZF varied
356	considerably among years, reaching 100% ZF during each drought (1992, 1996-1998, 2006
357	and 2012) and falling to zero in the intervening years (Fig. 6e). PFI scores ranged from 52 to
358	78, increasing from 52 in 1993 to 72 in 1994 following the 1992 drought, as %ZF changed
359	from 98% to 0%. Despite increases in %ZF in 1997 and 2012-2013, there were only minor
360	dips in PFI during these drought years. At these times, the percentage cover of <i>R</i> .
361	pseudofluitans (PFI taxon code 10) was temporarily reduced and the cover of terrestrial taxa
362	(0) increased (Fig. 6f). But increases in <i>R. nasturtium aquaticum</i> (PFI taxon code 10) and
363	Catabrosa aquatica (PFI taxon code 10) meant that relatively high PFI scores were
364	maintained. Throughout the 1993-2013 study period, there was a gradual decrease in %ZF
365	and a corresponding increase in PFI scores (Fig. 6e). The upper Ver site had a mean taxa
366	richness of 9.0 \pm 0.66 taxa per annual survey. The most abundant taxa were terrestrial
367	grasses (PFI taxon code 0) and <i>R. nasturtium aquaticum</i> (PFI taxon code 10). Decreases in
368	PFI score were associated with increased %ZF (Fig. 6g). The increase in %ZF from 1996-1998

376 Fig. 6. Plant Flow Index (PFI) scores (solid black lines) and % zero flow (%ZF; hashed grey

379 respectively. Plant taxa richness grouped according to PFI taxon codes 0, 2-5, 6-9 and 10 for

380	the Bulbourne (b)	Misbourne (d) and Ver	lower (f)	and upper (h).
-----	-------------------	-------------	------------	-----------	----------------

381

382 4. DISCUSSION

383	Temporary streams are recognized as dynamic aquatic-terrestrial ecosystems that change
384	in space and time to support high biodiversity (Larned et al., 2010; Stubbington et al., 2017).
385	However, characterization of ecological responses to flow intermittence – and in particular,
386	drying – have focused on aquatic macroinvertebrate communities, whereas plant
387	communities remain poorly known. We present the Plant Flow Index (PFI): the first index to
388	summarize vegetational changes in response to flow intermittence, particularly drying, in
389	temporary streams. PFI incorporates all taxa, from obligate aquatic to fully terrestrial, into a
390	single metric. The index therefore gives a holistic view of how assemblages respond as in-
391	channel conditions shift between wet and dry states, thus supporting international drives
392	towards more effective monitoring of ecological quality in temporary streams (Mazor et al.,
393	2014, Steward et al., 2018; Stubbington et al., 2018; Stubbington et al., 2019).

395 4.1 Development of the PFI

396	By representing the occurrence and abundance of different plant species across different
397	levels of drying, the PFI effectively reflects community change in response to antecedent
398	hydrological conditions. The allocation of taxa to different intermittence bands, and
399	representation of their abundance, provides an approach that is simple to understand and
400	easy to apply. The allocation of individual taxa to categories reflected their known ecological
401	preferences. For example, <i>Callitriche</i> spp. (PFI taxon code 10) had a modal category of 0%ZF
402	and 0.1-10%ZF indicating a strong response to wet conditions. This association with wet
403	conditions is also reflected by the high Ellenberg F scores for <i>Callitriche stagnalis</i> and <i>C</i> .
404	obtusangula, the commonest Callitriche species in chalk streams; (Hill et al., 1999).
405	However, the occurrence of <i>Callitriche</i> spp. over a range of %ZF categories reflects its ability
406	to grow both in flowing water (Haslam 2006), and in ponded sections (Grime et al., 1988,
407	Stace 1997 Haslam 2006). Sparganium erectum (PFI taxon code 10), responded to
408	continuous flow, but was also common at 80.1-90%ZF, reflecting its ability both to create
409	and colonize deep deposits of silt (Asaeda et al., 2010), enabling it to persist during the loss

410 $\,$ of surface flow as long as the channel remained wet. As more data are collected in ponded

411	conditions, greater resolution distinguishing between flowing and ponded conditions could
412	be incorporated and may make the PFI even more responsive.
413	
414	4.2 Comparison of plant assessment approaches to intermittence
415	The PFI enables assessment of entire in-channel plant assemblages, enabling its application
416	across a wide range of hydrological conditions from dry channels to continuous flow. The
417	index can track community changes more readily than classifications undertaken
418	periodically on these river systems (Westwood et al., 2006a, 2017, 2020), with further
419	testing and refinement being made possible by the addition of new data. PFI exhibited
420	more associations (14) with %ZF than other indices, and also a stronger relationship with the
421	WC than either AWE or MTR. The association of PFI scores with the WC enables inference
422	of classified community types from given ranges of PFI scores. Notably, the point at which
423	flow-dependent taxa disappear from the WC and are replaced with marginal, wetland and
424	terrestrial taxa (between community types Wi6 and Wi7) corresponds with a sharp decrease
425	in PFI scores (from 50-60%ZF to 60-70%ZF; Fig. S2; Supplementary Material). This may
426	indicate an important shift in the plant communities in relation to progressive drying, which

427	is characterized by a sharp decrease in the grass Glyceria maxima and increases in both
428	filamentous algae and the herb Apium nodiflorum (Fig. S1, Supplementary Material). This
429	suggests a stepped biotic response to the progressive (ramp) disturbance of drying, which
430	Boulton (2003) hypothesized, but for which evidence is scant.
431	
432	The AWE had some association with %ZF but was less responsive than PFI. The AWE of the
433	taxa in our datasets had a limited range of numbers, with velocity-dependent taxa such as
434	Ranunculus spp. scoring 12 and terrestrial taxa scoring 5, out of a total range of 1-12
435	(Ellenberg 1979, 1988, Ellenberg et al., 1991, Hill et al.,, 1999). Although Ellenberg F has the
436	merit of being an internationally recognized approach for allocating species to classes based
437	on their moisture requirements, only seven of its 12 classes were assigned to the taxa in our
438	datasets from the headwater streams of chalk catchments in southern England. This
439	limitation may extend across other regions and highlights the utility of the PFI, which
440	performed better, and can be updated with additional taxa as new data become available.

442	Stubbington et al., (2019) reported that MTR required further evaluation to establish its
443	potential for use in dry-phase biomonitoring. The weak response of MTR to intermittence
444	observed here suggests that the MTR may be suitable to track quality changes in temporary
445	streams, despite intermittence. Our study confirms that further work is needed to assess
446	the applicability of MTR as a means of assessing nutrient levels in temporary streams during
447	both wet and dry phases.
448	
449	4.3 Associations between PFI and environmental variables
450	The PFI exhibited moderate positive relationships with mesohabitat type, water width and
451	substrate, and a negative relationship with channel slope: higher scores were associated
452	with faster flows, coarser substrates, greater water widths and relatively low topographic
453	gradients. Well-documented interactions between different plant species and river
454	morphology (Gurnell et al., 2010; Gurnell 2014; Gurnell and Grabowski, 2015) are likely to
455	explain the influence of channel characteristics on PFI. Similarly, invertebrate-based indices
456	developed to document responses to hydrological variability also respond to morphological
457	drivers including channel shape (e.g. Dunbar et al., 2010a, 2010b).

460	4.4 Application of PFI
461	Three of our 4 case studies illustrated that the PFI can track plant community response to
462	intermittence. By contrast, the plant community at the lower Ver site appeared more
463	resistant to intermittence, as reflected by fairly stable PFI scores despite %ZF twice reaching
464	100%. This may reflect the different morphological site characteristics as river biota
465	experience flow indirectly via local-scale physical habitat changing river velocities (Dunbar et
466	al., 2010a, 2010b, Gurnell, 2014).
467	
468	Further research is needed to understand how morphological characteristics interact with
469	hydrological state to influence plant communities. The PFI may enable such research by
470	providing a single metric summarising community characteristics in relation to hydrological
471	conditions. We therefore recommend that future plant surveys of temporary streams
472	include a thorough assessment of physical habitat to identify the full range of conditions

473 that influence plant assemblages.

475	The diverging trends of increasing PFI and decreasing %ZF at both Ver sites suggest an
476	increased proportion of aquatic plants within the assemblage over time, perhaps reflecting
477	higher flows after the reduction in abstraction (Clayton et al., 2008). Such trends highlight
478	the capacity of the PFI to track both intra-annual and inter-annual responses to
479	intermittence. The ability of PFI to summarize each community as a single number that
480	reflects hydrological conditions, could help identify naturally functioning habitats that can
481	be protected, and aid the selection of sites for river restoration (Addy et al., 2016).
482	

483 5. CONCLUSION

- 484 Our results highlight PFI as a suitable tool for summarizing vegetation community changes in
- 485 response to drying. The PFI approach is flexible and can be easily updated. To date,
- 486 characterization of plant communities in temporary streams has concentrated on aquatic
- 487 and wetland species, with terrestrial taxa aggregated as grasses and herbs, or left
- 488 undocumented (Dieterich and Anderson, 1998; Holmes, 1999; Sabater et al., 2017;
- 489 Westwood et al., 2020). The identification of these terrestrial taxa could add considerable

490	further detail to the PFI's ability to represent biotic responses to changing in-channel
491	conditions in temporary streams, as it has done for invertebrate-based metrics (England et
492	al., 2019). Also, PFI is based on responses to intermittence within the 12 months before
493	sample collection, reflecting the controlling influence that antecedent flow has on riverine
494	plant communities (Bornette and Puijalon, 2011). However, further research is needed to
495	explore plant responses to longer antecedent drying periods, to better represent taxa that
496	can withstand longer dry periods and thus have longer response times.
497	
498	The PFI provides an approach that can be widely adapted and applied for different
499	temporary stream types, but it first needs type-specific testing and evaluation. Adaptation
500	of PFI for arid regions, in which hydrological gradients are much sharper than in the UK, may
501	provide community characterization associated with greater extremes of intermittence if
502	they have sufficiently developed in-channel plant communities. The PFI provides a means
503	for researchers, regulators and managers to assess ecological changes in response to stream

interacting natural and anthropogenic stressors on riverine plants.

507 Acknowledge	gements:
-----------------	----------

- 508 This paper is dedicated to the memory of Dr Nigel Holmes (Alconbury Consultants), whose
- 509 tireless efforts created the unique 1992-2013 regional dataset. Spot-gauging measurements
- 510 were provided by kind permission of Affinity Water Ltd. The views expressed within this
- 511 paper are those of the authors and do not necessarily represent the views of their
- 512 organizations. We thank the two anonymous reviewers whose comments have greatly
- 513 improved our manuscript.
- 514
- 515 Author contributions:
- 516 Chris Westwood: Conceptualization, methodology, data curation, writing original draft
- 517 preparation. Judy England: visualization, all authors: Writing reviewing and editing.

518

520	References
-----	------------

521	
522	Acuña, V., Datry, T., Marshall, J., Barceló, D., Dahm, C. N., Ginebreda, A., McGregor, G.,
523	Sabater, S., Tockner, K., Palmer, M. A., 2014. Why should we care about temporary
524	waterways? Science 343(6175), 1080 –1081. https://doi.org/10.1126/science.1246666
525	
526	Addy, S., Cooksley, S., Dodd, N., Waylen, K., Stockan, J., Byg, A., Holstead, K., 2016. River
527	restoration and biodiversity, nature-based solutions for restoring the rivers of the UK and
528	Republic of Ireland. Report of the International Union for Conservation of Nature National
529	Committee, UK http://www.crew.ac.uk/publication/river-restoration (accessed 1 April
530	2020).
531	
532	Asaeda T., Rajapakse L., Kanoh M., 2010. Fine sediment retention as affected by annual
533	shoot collapse: Sparganium erectum as an ecosystem engineer in a lowland stream. River
534	Res. Appl. 26(9), 1153-1169. <u>https://doi.org/10.1002/rra.1322</u>

536	Bornette, G	i., Puijalon, S.	2011. Resp	onse of aqu	atic plants to	abiotic factors: a review.
-----	-------------	------------------	------------	-------------	----------------	----------------------------

537 Aquat. Sci. 73(1), 1–14. <u>https://doi.org/10.1007/s00027-010-0162-7</u>.

538

- 539 Boulton, A.J., 2003. Parallels and contrasts in the effects of drought on stream
- 540 macroinvertebrate assemblages. Freshw. Biol. 48, 1173–1185. .
- 541 <u>http://dx.doi.org/10.1046/j.1365-2427.2003.01084.x</u>.

542

- 543 Bunting, G., England, J., Gething, K., Sykes, T., Webb, J., Stubbington, R., (2020). Aquatic and
- 544 terrestrial invertebrate community responses to drying in chalk streams. Water Environ. J.
- 545 https://doi.org/10.1111/wej.12621.
- 546
- 547 Chadd R., England J., Constable D., Dunbar M.J., Extence C., Leeming D., Wood P.J., 2017.
- 548 An index to track the ecological effects of drought development and recovery on riverine
- 549 invertebrate communities. Ecol. Indic. 82, 344-356.
- 550 https://doi.org/10.1016/j.ecolind.2017.06.058.
- 551
- 552 Clarke, S.J., 2002. Vegetation growth in rivers: influences upon sediment and nutrient
- 553 dynamics. Prog. Phys. Geog., 26, 159-172. <u>https://doi.org/10.1191%2F0309133302pp324ra</u>.

555	Clayton, H.J., Morris, S.E., McIntyre, N.R., Greaves M., 2008. The hydrological impact of low-
556	flow alleviation measures. P. I. Civil. Eng. Wat. M. 161(4), 171-180.
557	
558	Colls, M., Timoner, X., Font, C., Sabater, S., Acuña, V., 2019. Effects of Duration, Frequency,
559	and Severity of the Non-flow Period on Stream Biofilm Metabolism. Ecosystems. 22, 1393–
560	1405. <u>https://doi.org/10.1007/s10021-019-00345-1</u> .
561	
562	Corti, R., Datry, T., 2016. Terrestrial and aquatic invertebrates in the riverbed of an
563	intermittent river: parallels and contrasts in community organisation. Freshw. Biol. 61, 1308-
564	1320. <u>https://doi.org/10.1111/fwb.12692</u> .
565	
566	Datry, T., Fritz, K., Leigh, C., 2016. Challenges, developments and perspectives in
567	intermittent river ecology. Freshw. Biol., 61, 1171-1180.
568	https://doi.org/10.1111/fwb.12789.

570	Department of Energy and Climate Change., 2013 Thermal growing season in Central	
571	England. 5pp. [Accessed 28/08/2020]	
572	https://www.gov.uk/government/publications/thermal-growing-season-central-england	
573		
574	Döll, P., Schmied, H.M., 2012. How is the impact of climate change on river flow regimes	
575	related to the impact on mean annual runoff? A global-scale analysis. Environ. Res. Lett. 7,	
576	014037. <u>https://doi.org/10.1088/1748-9326/7/1/014037</u> .	Field Code Changed
577		
578	Dunbar, M. J., Pedersen, M. L., Cadman, D., Extence, C., Waddingham, J., Chadd, R., Larsen,	
579	S. E., 2010a. River discharge and local-scale physical habitat influence macroinvertebrate	
580	LIFE scores. Freshw. Biol., 55(1), 226 – 242. <u>https://doi.org/10.1111/j.1365-</u>	
581	<u>2427.2009.02306.x</u> .	
582		
583	Dunbar, M. J., Warren, M., Extence, C., Baker, L., Cadman, D., Mould, D. J., Hall, J., Chadd, R.,	
584	2010b. Interaction between macroinvertebrates, discharge and physical habitat in upland	
585	rivers. Aquat. Conserv. 20(S1), S31–S44. <u>https://doi.org/10.1002/aqc.1089</u> .	

587	Ellenberg, H., 1979. Zeigerwerte von Gefässpflanzen Mitteleuropas. Scripta Geobotanica 9:
588	1-122.
589	
590	Ellenberg, H., 1988. Vegetation ecology of Central Europe – 4th Edition. Cambridge
591	University Press: Cambridge.
592	
593	Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W., Paulissen, D., 1991. Zeigerwerte
594	von Pflanzen in Mitteleuropa. Scr. Geob. 18, 1-248.
595	
596	England, J., Chadd, R., Dunbar, M.J., Sarremejane, R., Stubbington, R., Westwood C.G.,
597	Leeming, D., 2019. An invertebrate-based index to characterize ecological responses to flow
598	intermittence in rivers. 193, 93-117. Fund. A. Limnol.
599	https://doi.org/10.1127/fal/2019/1206.

601	Franklin, P., Dunbar, M.J., Whitehead, P., 2008. Flow controls on lowland river macrophytes:
602	a review. Science Tot. Env. 400, 369-378. <u>https://doi.org/10.1016/j.scitotenv.2008.06.018</u> .
603	
604	Gerten, D., Hoff, H., Rockström, J., Jägermeyr, J., Kummu, M., Pastor, A.V., 2013. Towards a
605	revised planetary boundary for consumptive freshwater use: role of environmental flow
606	requirements. Curr. Opin. Env. Sust. 5(6), 551-558.
607	https://doi.org/10.1016/j.cosust.2013.11.001
608	
609	Gordon, N.D., McMahon, T.A., Finlayson, B.L., Gippel, C.J., Nathan, R.J. 2004. Stream
610	hydrology: An introduction for ecologists, (2nd ed.) Chichester, Wiley, UK.
611	
612	Grime, J.P., Hodgson, J.G., Hunt, R. 1988. Comparative Plant Ecology. Chapman and Hall,
613	London, UK.
614	
615	Gurnell, A., 2014. Plants as river system engineers. Earth Surf. Proc. Land. 39, 4–25.
616	https://doi.org/10.1002/esp.3397.

618	Gurnell, A.M., Grabowski, R.C., 2015. Vegetation – hydrogeomorphology interactions in a
619	low-energy, human- impacted river. River Res. Appl. 32, 202–215.
620	https://doi.org/10.1002/rra.2922.
621	
622	Gurnell, A.M., O'Hare, J.M., O'Hare, M.T., Dunbar, M.J. and Scarlett, P.M. (2010) An
623	exploration of associations between assemblages of aquatic plant morphotypes and channel
624	geomorphological properties within British rivers. Geomorphology, 116, 135–144. Available
625	at: <u>https://doi.org/10.1016/j.geomo rph.2009.10.014</u> .
626	
627	Haslam SM. 2006. River Plants. Forrest Text UK.
628	
629	Hill, M.O., Mountford, J.O., Roy, D.B., Bunce, R.G.H., 1999. Ellenberg's indicator values for
630	British plants. ECOFACT Volume 2 Technical Annex. Huntingdon, Institute of Terrestrial
631	Ecology, 46pp. (Accessed 13/03/2020). http://nora.nerc.ac.uk/id/eprint/6411/
632	

633 Holmes, N.T., 1999. Recovery of headwater stream flora following the 1989–1992

- 634 groundwater drought. Hydrol. Process. 13, 341–354. <u>https://doi.org/10.1002/(SICI)1099-</u>
- 635 <u>1085(19990228)13:3%3C341::AID-HYP742%3E3.0.CO;2-L</u>.
- 636
- 637 Holmes, N.T.H., Newman, J.R., Chadd, S., Rouen, K.J., Saint, L., Dawson, F.H., 1999. Mean
- 638 trophic rank: a user's manual. Environment Agency R&D Technical Report E38. Environment
- 639 Agency, Bristol, UK, pp. 143.

- 641 IPCC. 2018. Summary for Policymakers. In: Global warming of 1.5°C. An IPCC Special Report
- 642 on the impacts of global warming of 1.5°C above pre-industrial levels and related global
- 643 greenhouse gas emission pathways, in the context of strengthening the global response to
- 644 the threat of climate change, sustainable development, and efforts to eradicate poverty
- 645 [Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A.,
- 646 Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X.,
- 647 Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T., (eds.)]. World
- 648 Meteorological Organization, Geneva, Switzerland, 32 pp.

650	Katz, G.L., Denslow, M.W., Stromberg, J.C., 2012. The Goldilocks effect: intermittent streams
651	sustain more plant species than those with perennial or ephemeral flow. Freshw. Biol. 57,
652	467-480. <u>https://doi.org/10.1111/j.1365-2427.2011.02714.x</u> .
653	
654	Larned, S.T., Datry, T., Arscott, D.B. and Tockner, K. 2010. Emerging concepts in temporary-
655	river ecology. Freshw. Biol. 55, 717-738. <u>https://doi:10.1111/j.1365-2427.2009.02322.x</u>
656	
657	Leigh, C., Boulton, A.J., Courtwright, J.L., Fritz, K., May, C.L., Walker, R.H. and Datry, T., 2016.
658	Ecological research and management of intermittent rivers: An historical review and future
659	directions. Freshw. Bio. 61: 1181–1199. <u>https://doi.org/10.1111/fwb.12646</u> .
660	
661	Malcolm, C.E.L. Young, A.R., Willmott, E.R., Holmes, M.G.R. and Gosling, R.D., 2012. Can we
662	give up gauging? A comparison of statistical certainty of gauged and modelled flows. BHS
663	Eleventh National Symposium, Hydrology for a changing world, pp.1–7.

664 <u>https://doi.org/10.7558/bhs.2012.ns31</u>.

665	
-----	--

666	Marsh, T., Cole, G., Wilby, R., 2007. Major droughts in England and Wales, 1800-2006.				
667	Weather, 62, 87–93. <u>https://doi.org/10.1002/wea.67</u> .				
668					
669	Marsh, T., Parry, S., Kendon, M. C., Hannaford, J., 2013. The 2010–12 drought and				
670	subsequent extensive flooding (pp. 1–64). Wallingford, UK: Centre for Ecology & Hydrology.				
671	Available at https://nora.nerc.ac.uk/id/eprint/503643/1/N503643CR.pdf . (accessed 4 Nov				
672	2019).				
673					
674	Met Office, 2019a. UK climate averages.				
675	https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-climate-averages.				
676	(accessed 30 Oct 2019).				
677					
678	Met Office, 2019b. Southern England climate.				

679 <u>https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-</u>

680	about/uk-past-events/regional-climates/southern-england -climatemet-office.pdf.			
681	(accessed 30 Oct 2019).			
682				
683	NRFA (National River Flow Archive) 2020. <u>https://nrfa.ceh.ac.uk/data/search</u> (accessed 10			
684	May 2020).			
685				
686	Perrow, M., Leeming, D. J., England, J. A., Tomlinson, M., 2007. Life after low flow —			
687	ecological recovery of the River Misbourne. British Wildlife, 18, 335–347.			
688				
689	Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W., Dankers, R., Fekete,			
690	B.M., Franssen, W., Gerten, D., Gosling, S.N., Hagemann, S., Hannah, D.M., Hyungjun Kim,			
691	H., Masaki, Y., Satoh, Y., Stacke, T., Yoshihide Wada, Y., Wisser, D., 2014. Hydrological			
692	droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble			
693	experiment. Proc. Natl Acad. Sci. U. S. A. 111(9), 3262 – 3267.			

695	Sabater, S., Timoner, X., Bornette, G., De Wilde, M., Stromberg, J., Stella, J.C., 2017. The	
696	biota of intermittent rivers and ephemeral streams: algae and vascular plants. In:	
697	Intermittent Rivers and Ephemeral Streams: Ecology and Management. London: Elsevier	
698	Inc., pp. 189–216. <u>https://doi.org/10.1016/B978-0-12-80383 5-2.00016 -4</u> .	
699		
700	Sefton, C., Parry S., England J., Angell G., 2019. Visualising and quantifying the variability of	
701	hydrological state in intermittent rivers. Fundam. Appl. Limnol. 193, 21-38.	
702	https://doi.org/10.1127/fal/2019/1149.	
703		
704	Sheldon, F., 2005. Incorporating natural variability into the assessment of ecological health	
705	in Australian dryland rivers. Hydrobiologia, 552, 45-56. <u>https://doi.org/10.1007/s10750-005-</u>	Field Code Changed
706	<u>1504-7</u> .	
707		
708	Shiklomanov, I. A., Rodda, J.C., 2003. World Water Resources at the beginning of the	
709	Twenty-First Century (Cambridge: Cambridge University Press) p 435.	

711	Stace, C., 1997. New flora of the British Isle	s. Cambridge Universit	v Press. Cambridge UK.
			,

- 713 Steward, A.L., Negus, P., Marshall, J.C., Clifford, S.E., Dent, C., 2018. Assessing the ecological
- health of rivers when they are dry. Ecol. indic., 85, 537-547.
- 715 <u>https://doi.org/10.1016/j.ecolind.2017.10.053</u>.
- 716
- 717 Straka, M., Polášek, M., Syrovátka, V., Stubbington, R., Zahrádková, S., Šikulová, L.,
- 718 Řezníčková, P., Němejcová, D., Opatřilová, L., Datry, T., Pařil, P., 2019. Recognition of stream
- 719 drying based on benthic macroinvertebrates: A new tool in Central Europe. Ecol. indic., 106,
- 720 537-547. https://doi.org/10.1016/j.ecolind.2019.105486.

- 722 Stromberg, J.C., Merritt, D.M., 2016. Riparian plant guilds of ephemeral, intermittent and
- 723 perennial rivers. Freshw. Biol. 61, 1259-1275. https://doi.org/10.1111/fwb.12686
- 724
- 725 Stubbington, R., Chadd, R., Cid, N., Csabai, Z., Miliša, M., Morais, M., Munné, A., Pařil, P.,
- 726 Pešić, V., Tziortzis, I., Verdonschot, R.C.M., Datry, T., 2018. Biomonitoring of intermittent

727	rivers and ephemera	streams in Europ	e: Current p	ractice and	priorities to enhance

recological status assessments. Sci. Total Env. 618, 1096 –1113.

- 729 https://doi.org/10.1016/j.scitotenv.2017.09.137.
- 730
- 731 Stubbington, R., England, J., Wood, P.J., Sefton, C.E., 2017. Temporary streams in temperate
- 732 zones: recognizing, monitoring and restoring transitional aquatic-terrestrial
- 733 ecosystems. WIRES Water. 4, p.e1223. <u>https://doi.org/10.1002/wat2.1223</u>.
- 734
- 735 Stubbington, R., Paillex, A., England, J., Barthès, A., Bouchez, A., Rimet, F., Sánchez-
- 736 Montoya, M.M., Westwood, C.G., Datry, T., 2019. A comparison of biotic groups as dry-
- 737 phase indicators of ecological quality in intermittent rivers and ephemeral streams
- 738 Ecol. Indic., 97, 165-174 https://doi.org/10.1016/j.scitotenv.2020.137462
- 739

740 Tallaksen, L. M., van Lanen, H. A., 2004. Hydrological drought: processes and estimation

741 methods for streamflow and groundwater (pp. 1– 579). Amsterdam: Elsevier.

743	UK-TAG (Task Advisory Group), 2014. UK-TAG River Assessment Method Macrophytes and
744	Phytobenthos: Macrophytes (River LEAFPACS2). Water Framework Directive – United
745	Kingdom Advisory Group. Available at:
746	https://www.wfduk.org/sites/default/files/Media/Characterisation%20of%20the%20water
747	%20environment/Biological%20Method%20Statements/River%20Macrophytes%20UKTAG%
748	20Method%20Statement.pdf (accessed 1 Dec 2018).
749	
750	Westwood, C.G., Teeuw R.M., Wade P.M., Holmes N.T.H., 2006a. Prediction of macrophyte
751	communities in drought-affected groundwater-fed headwater streams. Hydrol. Process. 20,
752	127-145. <u>https://doi.org/10.1002/hyp.5907</u> .
753	
754	Westwood, C.G., Teeuw, R.M., Wade, P.M., Holmes, N.T.H., Guyard, P., 2006b. Influences of
755	environmental conditions on macrophyte communities in drought-affected headwater
756	streams. River Res. Appl., 22, 703–726. <u>https://doi.org/10.1002/rra.934</u> .
757	

- 758 Westwood, C.G., England, J., Dunbar, M.J., Holmes, N.T.H., Leeming, D., Hammond, D.,
- 759 2017. An approach to setting ecological flow thresholds for southern English chalk streams.
- 760 Water Environ. J. 31, 528-536. <u>https://doi.org/1111/wej.12275</u>.
- 761
- 762 Westwood, C.G., England, J., Johns T., Stubbington, R., 2020. A revised classification of
- 763 temperate lowland groundwater-fed headwater streams, based on their flora. Water
- 764 Environ. J. <u>https://doi.org/10.1111/wej.12561</u>.
- 765