This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.3031163, IEEE Sensors
Journal
K‘ IEEE . |[EEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017 1
) Sensors Council

iIFidgetCube: Tangible Fidgeting Interfaces
(TFIs) to Monitor and Improve Mental Wellbeing

Kieran Woodward and Eiman Kanjo

Abstract— The ability to unobtrusively measure mental wellbeing states using non-invasive sensors has the potential to
greatly improve mental wellbeing by alleviating the effects of high stress levels. Multiple sensors, such as electrodermal
activity, heart rate and accelerometers, embedded within tangible devices pave the way to continuously and non-invasively
monitor wellbeing in real-world environments. On the other hand, fidgeting tools enable repetitive interaction methods that
may help to tap into individual’s psychological need to feel occupied and engaged; hence potentially reducing stress. In
this paper, we present the design, implementation, and deployment of Tangible Fidgeting Interfaces (TFIs) in the form of
computerised iFidgetCubes. iFidgetCubes embed non-invasive sensors along with fidgeting mechanisms to aid relaxation
and ease restlessness. We take advantage of our labeling techniques at the point of collection to implement multiple
subject-independent deep learning classifiers to infer wellbeing. The obtained performance demonstrates that these new
forms of tangible interfaces combined with deep learning classifiers have the potential to accurately infer wellbeing in
addition to providing fidgeting tools.

Index Terms— Mental Wellbeing, Fidgeting, Emotion recognition, Physiological Sensors, Deep Learning, Subject-
Independent, Tangible User Interfaces

[. INTRODUCTION Physiological and motion sensors present a more objective
method to measure wellbeing. Recent developments in non-
invasive sensors paired with deep learning classifiers introduce
the possibility to quantify mental wellbeing in real-time. Deep
learning enables models to be trained using raw sensor data
unlike machine learning classifiers and with advances in deep
learning architectures the accuracy in which mental wellbeing
can be classified may be improved.

When stressed people commonly fidget with objects such
as pens, as fidgeting is a natural response that demonstrates
the potential to regulate stress [9], [10] and improve infor-
mation retention [11]. Recently, fidgeting cubes have begun
to increase in popularity; they are small plastic cubes whose
sides provide sensory tools to facilitate fidgeting and help
normalise stimming (self-stimulatory behavior such as tapping
or clicking). Fidgeting cubes offer a variety of sensory actions
catering for a wide range of needs in a small, unobtrusive
design. An example of a fidget cube is shown in Figure 1.

ERSONAL health monitoring has the potential to measure

and reduce stress resulting in significant improvements
in mental wellbeing. Advances in non-invasive physiological
sensors have created the potential to monitor real-world mental
wellbeing and potentially improve quality of life by providing
interventional feedback [1].

Measuring wellbeing is more important than ever with
modern lifestyles contributing to increased daily stress as 59%
of UK adults experience work-related stress [2], costing the
economy £2.4 billion [2] each year. Furthermore, students
studying higher degrees experience high stress levels [3] with
32% of college students suffering from mental health issues
[4]. Majority of high-risk undergraduate students rate their
mental health as poor or very poor [5] and less than 20% of
college students with mental health issues received treatment
[6].

Traditional mental wellbeing assessment methods require
people to be aware of their mental health and seek help which
can be challenging due to social stigma and lack of available
resources [7]. The decreasing cost and increasing capability
of sensors and edge computing is enabling new forms of
interfaces which are more powerful and dynamic than tradi-
tional assessment technologies. A technological alternative that
could actively monitor an individual’s mental health state and
provide wellbeing interventions would be extremely beneficial
in improving accessibility to mental health tools for all [8].

Fig. 1. Example of traditional fidget cube.

Most previous affective computing approaches have focused
This paragraph of the first footnote will contain the date on which you 1! wearable devices however, wearables present many chal-
submitted your paper for review. lenges such as poor battery life and limited space to embed

K. Woodward, is with Nottingham Trent University, Nottingham, UK. aqditional sensors.In this paper, we introduce Tangible Fid-
(e-mail: kieran.woodward@ntu.ac.uk).

E. Kanjo, is with Nottingham Trent University, Nottingham, UK. (e-mail: ~ £€ting Interfaces. (.TFIS) W_hiCh. are physical ﬁdgeting devifzes
eiman.kanjo@ntu.ac.uk). that enable repetitive physical interaction while also enabling

1530-437X (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: Nottingham Trent University. Downloaded on November 16,2020 at 13:50:34 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.3031163, IEEE Sensors

Journal

2

IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

objective sensor measurement. To our knowledge this paper
presents the first device combining traditional fidgeting cubes
with a microcontroller and non-invasive physiological sensors.
Furthermore, we show how these fidgeting interfaces can be
coupled with deep learning algorithms, paving the way for a
new type of real-time interaction. TFIs can vary in form but
by developing handheld interfaces that embed the necessary
sensors, it is possible to develop devices that encourage
engagement and improve wellbeing through fidgeting, acting
as a preventative tool.

In the remainder of this paper we explore the development
of wellbeing TFIs, followed by a pilot study of users collect-
ing real-world labelled data. Experimental results explores 8
deep learning classifiers trained using the real-world datasets
collected to infer wellbeing, followed by evaluating their
capabilities and comparing performance. In the future, these
deep learning algorithms can be used to control actuated
feedback and allow people to act on their current state of
wellbeing.

Il. BACKGROUND
A. Tangible Fidgeting Interfaces (TFls)

We propose TFIs as Tangible User Interfaces (TUIs) that
enable physical interaction with digital information while also
providing fidgeting mechanisms powered by intelligent algo-
rithms. TFIs can take any form enabling them to ubiquitously
become part of everyday interactions. They can be of any
shape (e.g. cube, ball or polytope) and can be made of hard or
soft material (squeezable ball or clicking tool). By including
fidgeting mechanisms within TUIs they can act as a distraction
to any wellbeing challenges encountered, which is often used
as a coping strategy to reduce stress [12], [13].

Previous fidgeting tools have only been used to self-report
emotions through squeezing [14] and display emotions as dif-
ferent colours, enabling users to privately share their wellbeing
[15]. Grasp [16] measured how much force was exhorted when
participants squeezed the device to report stress. This enabled
users to easily record their stress levels, providing an intuitive
method of interaction. However, there has been less focus on
additionally collecting objective sensor data that can be used
to train machine learning algorithms to infer wellbeing [17].

A hybrid data collection approach is most suitable when
collecting wellbeing data due to the subjectivity of the data.
Self-reporting of wellbeing can be combined with the passive
collection of sensor data to collect a labelled dataset [18],
which is vital due to the individualisation of emotions. TFIs
are ideal to embed the necessary sensors to infer wellbeing
along with a labelling mechanism while also taking advan-
tage of embedded actuation. These digitally enabled fidgeting
mechanisms will provide a distraction and unmet need for
people with persistent anxiety or stress.

B. Mental wellbeing Inference

In order to provide direct and intuitive feedback to users,
TFIs need to take advantage of real-time algorithms to au-
tomatically infer mental wellbeing from sensor data. Elec-
trodermal Activity (EDA) and Heart Rate (HR) sensors are

especially beneficial as they directly correlate with the sym-
pathetic nervous system [19], [20], [21]. EDA and Heart
Rate Variability (HRV) have previously been used to measure
stress over 5 minute time frames achieving 97.4% accuracy
[22]. The results showed HRV and EDA are highly beneficial
when inferring stress, making them ideal for mental wellbeing
interfaces.

Neural networks have the potential to increase model perfor-
mance by using the raw sensor data, removing the necessity for
feature extraction. ElectroEncephaloGraphy (EEG) data was
used to train a Long Short-Term Memory (LSTM) model to
infer valence and arousal, achieving 81.1% accuracy [23]. Sim-
ilarly, EDA, skin temperature, motion phone usage data has
been used to train an LSTM network to infer stress achieving
81.4% accuracy, outperforming comparative machine learning
models [24].

Convolutional Neural Networks (CNNs) have also been
used to infer wellbeing. EDA and blood volume pulse data
was used to train a one dimensional CNN (1D CNN) to clas-
sify relaxation, anxiety excitement [25] achieving accuracies
between 70-75%. Additionally, EEG data was used to train
a CNN to infer valence and arousal using channel selection
strategy, where the strongest correlated channels generate
the training set, achieving 87.27% accuracy, an increase of
nearly 20% [26]. Furthermore, 1D CNNs have been used
with a transfer learning approach to increase affective model
personalisation, achieving 93.9% accuracy when tested with 3
users [27].

A combined CNN and LSTM model has been trained using
raw physiological and environmental data to infer 5 emotions
[28]. The combined model outperformed other deep learning
models by around 20%. Neural networks have improved the
accuracy in which mental wellbeing can be classified, although
they require large training datasets which can be challenging
to collect.

C. Sensors

Non-invasive sensors present the most significant opportu-
nity to assess mental wellbeing as they can easily be em-
bedded within TFIs and used in the real-world. Non-invasive
physiological measures for mental wellbeing include EDA and
HR due to their high correlation with the sympathetic nervous
system [19].

1) Heart Rate (HR): HR sensors are commonly used within
wearable computing as they can be embedded within a wide
range of devices due to their small footprint. Similarly, HRV
is commonly used within affective computing as it is the
variation in time between heartbeats, often indicating stress
[29]. HRV can be accurately measured using PhotoPlethys-
moGgraphy (PPG) which is easier and cheaper to use than
ElectroCardioGraphy (ECG) as it only requires 1 contact
point. There have been three main forms of PPG developed:
transmitted, reflected and remote. Transmitted signals are
most commonly used in medical monitoring, remote signals
often utilise cameras to measure changes in skin colour and
reflected signals measure the reflected light from an LED
using photodiodes. Reflection PPG is the the smallest and most
convenient method to measure HR and HRV within TFIs [30].
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2) Elecotrodermal Activity (EDA): EDA is often used to
train affective models to infer mental wellbeing as it directly
correlates to the sympathetic nervous system [20]. Alterna-
tively, near-infrared spectroscopy can be used to measure
oxyhemoglobin and deoxyhemoglobin enabling the inference
of stress with similar levels of accuracy as EDA [31]. However,
near-infrared spectroscopy cannot be used to collect data in the
real-world due to its large size and placement on the forehead.

3) Motion: Motion data collected through accelerometers,
gyroscopes and magnetometers could be used in addition to
physiological sensor data to infer wellbeing. Previous work
has used motion data to infer emotions with 81.2% accuracy
across 3 classes [32]. However, other work has reported lower
levels of accuracy when inferring emotions from motion data
alone ranging from 50% to 72% [33] [34] [35].

[1l. PROPOSED ARCHITECTURE
A. iFidgetCube

In this paper we introduce iFidgetCube, a TFI in the shape
of a cube. This small plastic cube’s various sides provide
sensory tools such as buttons, as shown in figure 2. Unlike
traditional fidgeting cubes, iFidgetCube embeds a microcon-
troller and non-invasive sensors. The size of the cube is 6cm
x 6cm x 6cm making it handheld and ideal to embed all
of the necessary sensors. Two buttons (1 green and 1 red)
were also embedded within the interfaces to enable the real-
time labelling of positive and negative states of wellbeing
respectively [36].

Buttons for
Green and red fidgeting
buttons to label
positive and
negative states of

wellbeing

Microcontroller
connected to
sensors, buttons
and battery

EDA sensor

o~ s

Fig. 2. iFidgetcube showing labelling buttons (left) and fidgeting buttons
and HR sensor (right)

Multiple physiological sensors are included within the in-
terfaces to measure wellbeing. The HR data is obtained via a
PPG sensor embedded within an indent for thumb placement
measuring Beats Per Minute (BPM), raw signal amplitude and
HRV. Similarly, the EDA sensors are located on the opposite
face of the PPG sensor where two fingers can be placed to
comfortably hold the device while simultaneously recording
the sensor data.

The iFidgetCube contains 3 buttons that can be used for
fidgeting similar to fidgeting toys along with a 9 degree-of-
freedom inertial motion unit (9-DOF IMU) to capture the
fidgeting motion of interactions. The IMU is a MPU-9265 and
consists of an accelerometer, a gyroscope, and a magnetometer
operated at 3.3v, footprint of 22mm X 17mm.

The sensors are connected to a small Arduino-compatible
ATmega32u4 based processor to process all of the data, with
a footprint of 28.8mm x 33.1mm, powered by a small size
3.7v lithium polymer battery as shown in figure 3.
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Fig. 3. Tangible fidgeting interface schematic showing how the battery,
sensors, SD card and buttons connect to the microcontroller.

IV. METHODOLOGY AND EXPERIMENT
A. Experimental setup

A total of 14 participants (8 Males and 6 females) were
provided with an iFidgetCube containing HR, HRV and EDA
physiological sensors in addition to the 9-DOF IMU. Further-
more, green and red buttons were present on each interface
to enable the real-time self-labelling of positive (happiness,
joy, relaxed) and negative (sadness, anger, stress) states of
wellbeing. The addition a green and red button provides a
simple way for users to label the data in real-time as it is
not possible to label sensor data after the point of collection
unlike other data types such as images [37]. Participants
were instructed how to correctly label their emotions and to
fidget with the cubes as frequently as possible throughout
their normal daily life to collect the real-world labelled data
required to train the classification models.

Nine of the participants have complex learning and physical
disabilities resulting in mental wellbeing challenges often
being diagnostically overshadowed. Therefore, a device that
could simultaneously monitor wellbeing in addition to pro-
viding fidgeting tools could be extremely beneficial. However,
the data collected from 5 of these participants was inadequate
to train the models due to an overwhelming majority of the
recorded labels being positive emotions resulting in limited
biased datasets. The data from five participants with no dis-
abilities (users 1, 2, 3, 6 and 7) and four participants with
learning and physical disabilities (users 4, 5, 8 and 9) has
been used to examine deep learning affective models.

All participants used the cubes during their daily life to
collect real-world labelled wellbeing data over a period of 2
weeks. This differs from many previous studies that collected
controlled experimental data or include specified activities dur-
ing the data collection period to artificially impact wellbeing.

B. Classifiers

The real-world data consisting of HR (BPM), HRV, HR
(amplitude), EDA and motion collected from the cubes was
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cleaned and normalised before being used to train 8 deep learn-
ing classifiers. Four of the tested networks (ResNet, TWIESN,
Encoder and MCDCNN) have been previously explored using
time series data [38] however, their effectiveness for affective
modeling has not been explored. These four models have been
compared with an additional 4 models (1D CNN, LSTM,
CapsNet and Inception) to evaluate their affective modelling
performance.

1) Long-Short Term Memory (LSTM): Recurrent Neural Net-
works (RNNGs) utilise the temporal correlations between neu-
rons. LSTM [39] cells are often combined with RNNs where
they serve as the memory units through gradient descent.
LSTM cells use input (/), forget (f) and output (o) gates to
regulate the flow of information, as shown in figure 4, helping
remove the vanishing gradient problem faced by traditional
RNNE.
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Fig. 4. LSTM cell showing input vector (X), cell output (h), cell memory
(c) and input (/), forget (f) and output (o) gates.

The LSTM network comprises of 2 hidden layers with batch
normalization being performed to prevent the internal covariate
shifting across one mini-batch training set [40]. A SoftMax
layer follows using a cross entropy loss function to produce a
predicted label from the available classes.

2) 1 Dimension CNN (1D CNN): A convolution involves
sliding a filter over the time series data although unlike images
where CNNs are traditionally used, the filters exhibit only
one dimension instead of two dimensions. A general form of
applying the convolution for a time stamp f is given in the
following equation:

Ci = f(wXuyaiqiy2 +0)|t[1,T]

Where C denotes the result of a convolution applied on
a time series X of length T with filter w, bias » and a non-
linear function f such as Rectified Linear Unit (ReLU). Weight
sharing enables the same convolution to be used to find the
result for all time stamps, allowing filters that are invariant
across the time dimension to be learned.

Pooling is then performed, this can include local pooling
such as max pooling where a sliding window aggregates
the input data reducing it by length 7. Alternatively, global
pooling can be performed where the data is aggregated over
the entire dimension resulting in a single value. In addition to
pooling layers, normalization layers have been used to help
the network converge quicker and batch normalization has
also been performed. The final layer takes the result of the

convolutions and outputs a probability distribution using the
SoftMax activation function and a cross entropy loss function.

3) Capsule Network (CapsNet): CapsNets [41] are com-
prised of capsules, where each capsule encompasses a group of
neurons in a layer which perform internal computations to pre-
dict the presence and instantiation parameters. CapsNets aim
to preserve hierarchical spatial relationships helping to learn
faster and use fewer samples per class with a 1 dimensional
CapsNet ideal for timeseries data, being recently introduced
[42].

The first 3 layers within the CapsNet are to encode, and
the second 3 are to decode. The first layer is a traditional
convolutional layer followed by a PrimaryCaps layer. The
PrimaryCaps layer contains primary capsules who take basic
features detected by the convolutional layer and produce
combinations of the features. Next, the DigitCaps layer accepts
inputs from all of the capsules in the previous layer. Non-
linear activations at both the Primary and DigitCaps layer are
provided by the squash function. Connections between these
two layers are dynamic and are governed by dynamic routing.

Ly = Tkmaaz((),m+f||vk||)2+(1ka)maw(0, Hvk||fm*)2

Dynamic routing allows weights to decide which higher level
capsule the current capsule will send it’s output to [43]. This
is done by lower level capsules sending their input to higher
level capsules that “agree” with the input. Two CapsNet loss
functions are then used, as shown above, to equivariance
between capsules and calculate the correct DigiCap. Finally,
three fully connected layers decode the vector from the correct
DigitCap and provide the output of the network as a vector.

4) Residual network (ResNet): A proposed architecture
from [44] is ResNet. The network is composed of three
residual blocks followed by a global average pooling layer
and a final SoftMax classifier using a cross entropy loss
function, whose number of neurons is equal to the number
of classes. Batch normalisation and ReL.U activation function
follow. Each residual block is comprised of three convolutions
whose output is added to the residual block’s input and then
fed to the next layer. The fundamental feature of a ResNet
is a linear shortcut to link the output of a residual block to
its input enabling the direct flow of the gradient through the
connections, removing the vanishing gradient problem [45].

5) Time Warping Invariant Echo State Network (TWIESN):
TWIESN [46] is the second RNN explored. For each element
in an input time series, the reservoir space is used to project
this element into a higher dimensional space. Then for each
element, a ridge classifier [47] is trained to predict the class
of each time series element. During testing, the ridge classifier
outputs a probability distribution over the classes in a dataset.
Then the posteriori probability for each class is averaged as-
signing a label for each test set where the averaged probability
is highest.

6) Encoder: An Encoder network [48] is a hybrid CNN [44]
but where the global average pooling layer is replaced with an
attention layer, enabling invariance across all layers. The first
three layers are convolutional. Each convolution is followed
by batch normalisation and then Parametric Rectified Linear
Unit (PReLU) [49] activation function. The output of PReLU
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is followed by a dropout layer and a final max pooling layer.
The third convolutional layer is fed to an attention layer [50]
that enables the network to learn the most important aspects
for classification. Finally, a SoftMax layer with a cross entropy
loss function is used to produce a predicted label from the
available classes.

7) InceptionTime: InceptionTime [51] is an ensemble of
CNN models, inspired by the Inception-v4 architecture. The
Inception network uses a cross entropy loss function and
contains two different residual blocks comprising of three
Inception modules. Each residual block’s input is transferred
via a shortcut linear connection added to the next block’s
input, enabling a direct flow of the gradient and removing
the vanishing gradient problem.

The first component within the Inception module is the
“bottleneck” layer. This layer performs an operation of sliding
filters of length 1 with a stride equal to 1, allowing for
longer filters than ResNet. The next layer involves sliding
multiple filters of different lengths simultaneously on the same
input data. The output of the sliding MaxPooling window is
then calculated and the output of each independent parallel
MaxPooling layer is concatenated. By training the weights of
multiple inception models using filters of varying lengths, the
network is able to extract latent hierarchical features.

8) Multi Channel Deep Convolutional Neural Network (MCD-
CNN: MCDCNN is a CNN where the convolutions are applied
independently on each dimension [52]. Each dimension of
input data passes through two convolutional layers with ReLU
as the activation function followed by a MaxPooling operation.
The output of the second convolutional layer for all dimensions
is concatenated over the channels axis and then fed to a fully
connected layer with ReLLU as the activation function before
the SoftMax classifier using a cross entropy loss function.

V. EXPERIMENTAL RESULTS

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (MAY 2020) 5
TABLE |
COMPARISON OF DEEP LEARNING MODELS’ ACCURACY TESTED USING LOOCV ON INDIVIDUAL USERS’ PHYSIOLOGICAL DATA
IDCNN LSTM  CapsNet ResNet TWIESN Encoder Inception MCDCNN
User 1 74.1% 64.2% 53.1% 67.8% 59.8% 47.9% 68.8% 47.9%
User 2 85.1% 68.4% 58.5% 59.6% 54.4% 47.1% 59.3% 56%
User 3 72.5% 66.7% 63.2% 35.9% 25.4% 36.8% 36% 36.8%
User 4 85.5% 56.4% 67.7% 33.5% 52.5% 9.4% 36.4% 9.5%
User 5 86.2% 74.7% 53.1% 51.1% 52.7% 53% 45.8% 53%
User 6 83% 55% 81% 24.8% 22.7% 21.6% 25.6% 78.4%
User 7 81.1% 50% 17.4% 83.3% 21% 21% 81.6% 21%
User 8 85.3% 68.3% 54.8% 40.2% 43.2% 45.3% 43.2% 54.7%
User 9 83.8% 59.9% 88% 47.4% 87.6% 87.7% 43.5% 87.7%
Average 81.9% 62.6% 58.5% 49.1% 46.9 41.1% 54.8% 40.7%
TABLE Il
COMPARISON OF DEEP LEARNING MODELS’ ACCURACY TESTED USING LOOCV ON INDIVIDUAL USERS’ PHYSIOLOGICAL AND MOTION DATA
IDCNN LSTM  CapsNet ResNet TWIESN Encoder Inception MCDCNN
User 4 87 % 52.6% 9.4% 79.7% 54.5% 62.2% 28.9% 49.7%
User 5 79% 57.8% 53.1% 47.4% 53% 52.8% 50.3% 53.9%
User 6 81.1% 72.3% 81% 45.6% 21.7% 24.2% 41.7% 78.4%
User 7 72% 29.2% 82.6% 40.2% 25.2% 21% 79.2% 79%
User 8 54.8% 49.2% 45.2% 36.7% 45.2% 44.9% 39.9% 36.9%
User 9 50% 59.9% 12% 42.3% 87.6% 80% 42.8% 80.4%
Average 70.7 % 53.5% 47.2% 48.7% 47.9% 47.5% 47.1% 63%

A. Multivariate Models

Initially 6 frequently used machine learning classifiers were
trained using the physiological sensor data to enable compar-
isons with the deep learning classifiers. The machine learning
classifiers included: Naive Bayes, Logistic Regression, Fast
Large Margin, Decision Tree, Random Forest and Support
vector machine along with a CNN for direct comparison. Hold-
out validation was used with a 30% test split and the features
were selected on an individual basis for each model using
multi-objective evolutionary automatic feature engineering.
The average result for the models along with the extracted
features are shown in table III.

TABLE Il
COMPARISON OF COMMON MACHINE LEARNING MODELS’ ACCURACY
TESTED USING HOLD-OUT VALIDATION

Model Extracted features Average
accuracy

Naive Bayes EDAx EDA 72.2%

Logistic Regression EDAx EDA, HR 71.8%

Fast Large Margin EDA/HR, EDA, HR 62.5%

Decision Tree HRV, EDA/HR — EDA, 803%
EDA, EDA/HR/HR

Random Forest HRV, EDA, HR —  77.9%
EDA,\/(EDA)

Support vector machine EDA, HRV, HR,exp(HRV) 79.5%

1D CNN EDA, HR, HRV 88.1%

The best performing machine learning model was De-
cision tree achieving an average of 80.3% accuracy using
HRV,EDA, EDA/HR—EDA and EDA/HR/HR as the
features. The CNN achieved 88.1% accuracy demonstrating
its ability to improve upon the traditional machine learning
classifiers while also enabling the raw sensor data to be used
to train models. As the CNN showed, deep learning classifiers
have the capability to increase the accuracy of real-world

affective modelling.
The real-world physiological data (HR (BPM), HRV, HR
(amplitude) and EDA) was then used to train each of the
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aforementioned deep learning networks. Each model was
tested using Leave-One-Out Cross Validation (LOOCV) on
a subject-independent basis where the model was tested with
each user’s data separately after being first trained with the
remaining users’ data over 50 epochs. This method of testing
accurately measures model performance on an individual basis
and better simulates real-world performance. The results for
each model tested using LOOCYV is shown in table I where
the highest accuracy for each user is highlighted.

The results show that for the physiological model the 1D
CNN outperformed all other models for the majority of users,
achieving between 72.5% and 86.2% accuracy with an average
of 81.9%. The average accuracy when testing against users was
6.2% lower than when using hold-out validation but demon-
strated consistent results across all users, closer simulating
real-world usage. CapsNet outperformed the 1D CNN by 4.2%
for user 9, achieving the highest overall accuracy of 88%,
while ResNet outperformed the 1D CNN for user 7 by 2.2%.

Motion data was also collected from the cubes, however
the motion data from 3 of the devices was corrupted therefore
not usable to train models. Table II shows the results for each
of the deep learning models when trained using physiological
and motion data. The 1D CNN model again outperformed all
other models for the majority of users, achieving an average
accuracy of 70.7%. However, the CapsNet model achieved
the highest accuracy for user 7 and TWIESN for user 9.
Combining the physiological data with motion resulted in
overall reduced performance although increased accuracy for
user 4 by 1.5%.

B. Univariate Models

As the 1D CNN outperformed all other models for the
majority of users, this model was further explored to examine
the impact training using each individual data source has on
performance. The 1D CNN was again tested on a subject-
independent basis using LOOCYV for each of the 9 users with
either the HR (BPM), HRV, EDA or motion data used to train
the models, as shown in table IV.

TABLE IV
COMPARISON OF UNIVARIATE 1D CNNS ACCURACY TESTED USING
LOOCYV oN INDIVIDUAL'S HR (BPM), HRV, EDA OR MOTION DATA.

User HR HRV EDA Motion
User 1 60% 66% 75% N/A
User 2 65% 62% 86% N/A
User 3 63% 56% 86% N/A
User 4 50% 56% 72% 86%
User 5 78% 78% 77% 80%
User 6 74% 75% 77% 73%
User 7 69% 66% 75% 28%
User 8 74% 75% 80% 27%
User 9 68% 71% 70% 69%

Average Accuracy 66.8% 67.2% 77.6% 60.5%

The results show that high model accuracy of up to 86% can
be achieved using only 1 data source with EDA being the most
accurate univariate model for the majority of users, achieving
an average of 77.6% accuracy. This demonstrates the impor-
tance of using EDA sensors when inferring wellbeing. Motion
achieved the lowest average accuracy of 60.5% although the

motion model was the most accurate univariate model for users
4 and 5 demonstrating the possibility of inferring wellbeing
from motion data alone.

C. Reflection

The real-world data collected from the interfaces was used
to train a variety of deep learning models. The results show
that when inferring wellbeing using physiological data, the 1D
CNN model outperformed all other models for the majority
of users with an average accuracy of 81.9%, 19.3% higher
than the next best performing model, LSTM. It is surprising
the LSTM model performed significantly worse than the 1D
CNN as RNNs are most commonly used with time series data.
The 1D CNN achieved accuracies between 72.5% and 86.2%
with a standard deviation of 5.1. This shows that wellbeing
is highly personal as there was a 13.7% variation in accuracy
between users when tested using the same 1D CNN model.

While there is a 13.7% range of accuracy for the 1D CNN,
the two next best performing physiological models, LSTM and
CapsNet show much wider variation of 24.7% for LSTM (SD
7.86) and 70.6% for CapsNet (SD 20.1). The model accuracy
for CapsNet ranges between 17.4% to the highest accuracy
achieved of 88% and while the 17.4% accuracy is an outlier,
all other models achieved higher performance with the same
user’s data. This demonstrates that while CapsNet can be used
to infer wellbeing, its high volatility results in inadequate
subject-independent models.

When testing the same models with combined physiological
and motion data the 1D CNN again outperformed all other
models for the majority of users, although there was an 11.3%
reduction in average accuracy compared with the physiological
1D CNN model. All users other than user 4 achieved lower
performance with the combined motion and physiological data.
When comparing the best performing model for each user
between the physiological and combined physiological and
motion models, it shows there is a wide variation between
a 30.5% decrease and a 1.5% increase in performance with
an average decrease of 6.5% for the combined motion and
physiological models. This demonstrates that for the majority
of users the inclusion of motion data has a detrimental impact
on the inference of mental wellbeing.

The results show a wide variation in accuracy between the
models on the same data. For the physiological models the
standard deviation of the average model accuracy was 13.6
ranging between 10 and 30.7 for each model. Seven users
experienced higher standard deviance between models than
the overall average, with user 7 experiencing the greatest
deviation of 30.7 with a 65.9% variance in model accuracy.
Similarly the combined motion and physiological models also
demonstrated high deviations between models with the average
standard deviation between models being 19.4 ranging from
8.9 to 27.1. The high deviation between models when tested
on the same data shows the importance model selection has
on performance.

As the 1D CNN significantly outperformed all other models,
the model was further trained using data from individual sen-
sors. EDA univariate models outperformed the other univariate
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models for 6 out of 9 users, with the highest average accuracy
of 77.6%, demonstrating its importance in inferring wellbeing.
HRYV was the highest performing univariate model for user 9,
whereas motion was the highest performing model for users 4
and 5, which was unexpected as motion frequently degraded
performance in the multivariate models.

Surprisingly the EDA univariate models for users 1, 2 and
3 all outperformed the comparative multivariate physiological
1D CNNs by 0.9%, 0.9% and 13.5% respectively. However,
the average overall accuracy for the univariate models does not
outperform the average accuracy of 81.9% for the multivariate
model, demonstrating multivariate physiological models are
most applicable for the majority of users. Overall, these results
show that while multivariate physiological models provide the
highest accuracy for the majority of users, univariate affective
models can improve performance for individual users.

VI. DISCUSSION AND FUTURE WORK

When stressed people often fidget with physical objects to
provide a distraction, in turn improving their mental wellbeing.
We have presented Tangible Fidgeting Interfaces as a techno-
logical alternative to traditional fidgeting tools in the shape
of cubes (i.e. iFidgetCube). Each cube embedded sensors
measuring EDA, HR, HRV and motion along with a tangible
method to label the real-time data in additional to fidgeting
tools.

After using the cubes all users stated they enjoyed using
them and found them easy to handle. As users only recorded
their emotion before fidgeting it is not possible to use the
labelled data to explore the impact fidgeting had. However,
user’s described the devices as “calming” and “relaxing” due
to being able to fidget by moving the cubes as well as pressing
the buttons. Overall, users enjoyed using the interfaces and
while TFIs are not as ubiquitous as wearable computing,
they provide new opportunities to help relax users through
fidgeting and embed sensors that are often not included within
wearables, such as EDA.

The real-world data collected from iFidgetCubes was used
to train 8 deep learning subject-independent classifiers to infer
mental wellbeing including CNN, CapsNet, ResNet, LSTM,
TWIESN, Encoder, Inception and MCDCNN. The results
showed that the 1D CNN outperformed all other models for
the majority of users, achieving an average accuracy of 81.9%.
Univariate 1D CNN models, trained using a single data source
were also explored, demonstrating EDA alone can achieve
high performing models with an average accuracy of 77.6%.
Surprisingly the univariate models for 3 users outperformed
their comparative multivariate physiological model showing
additional physiological sensors do not necessarily increase
wellbeing inference for all users.

Overall, iFidgetCubes have demonstrated their ability to aid
labelled wellbeing sensor data collection, while simultaneously
providing a fidgeting interface as a preventative mechanism
of worsening mental wellbeing. The data collected from the
devices for most users was sufficient to test a range of deep
learning models where a 1D CNN demonstrated the highest
overall performance.

In the future, TFIs should be trialled with more users over
a longer period of time to collect additional data and further
explore the impact of fidgeting on wellbeing. In addition, there
is a need to incorporate different forms of actuation (e.g.
vibration) to enable real-time physical feedback and allow
people to act on their current state of wellbeing.
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