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Understanding structure–function relationships in the brain remains an important challenge in neuro-
science. However, whilst structural brain networks are intrinsically directed, due to the prevalence of
chemical synapses in the cortex, most studies in network neuroscience represent the brain as an undi-
rected network. Here, we explore the role that directionality plays in shaping transition dynamics of
functional brain states. Using a system of Hopfield neural elements with heterogeneous structural con-
nectivity given by different species and parcellations (cat, C. elegans and two macaque networks), we
investigate the effect of removing directionality of connections on brain capacity, which we quantify via
its ability to store attractor states. In addition to determining large numbers of fixed-point attractor sets,
we deploy the recently developed basin stability technique in order to assess the global stability of such
brain states, which can be considered a proxy for network state robustness. Our study indicates that not
only can directed network topology have a significant effect on the information capacity of connectome-
based networks, but it can also impact significantly the domains of attraction of the aforementioned brain
states. In particular, we find network modularity to be a key mechanism underlying the formation of
neural activity patterns, and moreover, our results suggest that neglecting network directionality has the
scope to eliminate states that correlate highly with the directed modular structure of the brain. A numeri-
cal analysis of the distribution of attractor states identified a small set of prototypical direction-dependent
activity patterns that potentially constitute a ‘skeleton’ of the non-stationary dynamics typically observed
in the brain. This study thereby emphasises the substantial role network directionality can have in shap-
ing the brain’s ability to both store and process information.
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1. Introduction

Recent advances in experimental neuroscience that reconstruct detailed characterisations of both struc-
tural and functional connectivity in the human brain have led to the development of realistic large-scale
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brain network models (1; 2; 3; 4). Such models typically consist of neural masses, such as the Wilson–
Cowan (5) or Jansen–Ritt (6) models, with connectome-based interactions and are capable of generating
both healthy and pathological EEG rhythms (6; 7; 8) as well as experimentally observed functional con-
nectivity networks (9; 10; 11). These studies suggest that through indirect network-level interactions,
a relatively static structural network can support a wide range of functional connectivity patterns that
manifest as transient domains of synchronization across subsets of brain regions.

Dynamical systems analysis provides a powerful framework in which to study rapidly evolving pat-
terns of neurophysiological activity. The brain’s resting state, in particular, is of great interest from such
a perspective since it has been shown to exhibit exploratory dynamics (12), in which the space of admis-
sible patterns (a.k.a. resting state networks (13; 14)) is continuously traversed over time, resulting in a
non-stationary dynamical regime. Such dynamics have been coined Functional Connectivity Dynamics
by Jirsa et al (15) and are considered a consequence of the mutual presence of heterogeneous network
connectivity and highly nonlinear activity dynamics, which in the presence of sufficiently strong noise
causes a switching between multiple coexisting attractors (16). The number of admissible brain states is
believed to subserve the brain’s capability to attain different functional configurations, thus motivating
a number of recent studies to analyse the capacity of connectome-based networks to store patterns and
create fixed point attractor sets. (See, for example, (17) and references therein.)

Brain networks, however, are inherently directed. Unfortunately, due to current limitations in non-
invasive imaging techniques (e.g. functional MRI and diffusion tensor imaging) most network models of
the brain (including those cited above) do not incorporate directionality, and thus reduce an inherently
directed network such as the human connectome to an undirected network. The work of Kale et al.
(18) highlights the impact that network directionality has in shaping brain networks by performing a
network analysis for a range of species and parcellations, for which network directionality is known
in both directed and undirected cases. Importantly, they found that the addition of reciprocal edges
(i.e. rendering directed networks undirected) resulted in larger errors in graph-theoretical measures than
the removal of the same number of directed edges, leading, for example, to errors in the classification
and identification of network hubs, the ramifications of which are potentially far-reaching due to the
important role hub nodes play in healthy brain function (19; 20) as well as neuropsychiatric disorders
(21; 22; 23).

The aforementioned work focusses on characterising the effect of network directionality on struc-
tural brain networks; however, the extent to which perturbations to the directionality of connections
influence neural activity on large-scale connectomes has yet to be addressed. The majority of work in
this direction has centred on the dynamics of small circuits, such as network motifs (24). For exam-
ple, in a series of papers (25; 26; 27), Gollo et al. found that synchronisation can be amplified by the
presence of just a single reciprocal connection, whilst networks rich in triangle motifs (i.e. three node
motifs with at least one directed edge between any pair of nodes) can exhibit increased levels of both
metastability and multistability via a process known as frustration (25). At the network level, a number
of studies have attempted to reconstruct directed network topologies from observed network dynamics
(28; 29; 30). For example, in (29), functional connectivity matrices were constructed from the temporal
activity of a network of phase oscillators and equations relating directed network topology and function
were formulated in this idealised scenario. Importantly, the prevalence of phase locked solutions were
found to be dominated by the in-degree of the network nodes, and whilst structural properties differed at
the local network level, in- and out-degree distributions were found to be qualitatively similar for func-
tional and (inferred) structural networks further highlighting the important relation between structural
directionality and neural dynamics.

In this paper we extend work by Golos et al. (17) to analyse systematically the effect that network
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directionality has on the brain’s ability to store network patterns. More specifically, activity of neural
subunits is described by a deterministic, graded response Hopfield model (31) with connectivity defined
via physiologically relevant structural connectomes across a range of species and parcellations. The
capacity of connectome-based networks to store patterns is interrogated by determining large numbers
of fixed-point attractor sets for both directed and undirected connectomes (obtained via the addition
of reciprocal connections) under systematic variation of model parameters. Moreover, we quantify the
robustness of said patterns using the basin stability approach forwarded by Menck et al. (32), which
uses the basin of attraction to assess a steady state’s stability in a probabilistic sense (i.e. it provides
the likelihood of returning to a steady state under a random (non-small) perturbation). Importantly, our
approach enables us to determine the extent to which directed network topology influences multistability
within connectome-based networks, as well as allowing us to quantify the affect that directionality has
on the robustness of neuronal activity patterns in the brain.

2. Methods

2.1 Structural connectivity

Network directionality is a fundamental feature of brain networks, yet due to experimental limitations
it is typically omitted from network studies of the brain. Motivated by the study of Kale et al. (18),
here, we investigate the influence that network directionality has on the information storing capacity of
connectome-based networks for a variety of different organisms across a range of scales, including two
different parcellations of the Macaque monkey cortex (33), a parcellation of the cat cortex (34) and a
representation of the nervous system of C. elegans, which is a tiny round worm and the only organism
to date for which the entire nervous system is mapped out (35; 36). The Macaque and cat datsets are
accessible via the Brain Connectivity Toolbox (37). The C. elegans data is the same as that used in
(38; 39) and is available from http://www.biological-networks.org/?page_id=25.

For the mammalian connectomes, nodes represent some predefined collection of brain tissue and
edges encode the presence of long-range connections between pairs of brain regions; whilst for the C.
elegans connectome, nodes represent individual neurons and edges between nodes represent synapses.
For consistency in our experiments, edge weights were discarded (when present) resulting in a binary
representation of each of the aforementioned connectomes, yielding a binary connectivity matrix A ∈
Rn×n such that ai j = 1 if brain region (neuron) i projects onto brain region (neuron) j, and is other-
wise zero. To obtain undirected versions of the connectomes all connections were made bidirectional
resulting in a symmetric adjacency matrix given by

B = sgn
(
A+AT ) ,

where sgn(x) denotes the sign function, which equals 1 for positive inputs, -1 for negative inputs and is
otherwise 0. Below we provide further details of the connectomes studied in this work.

Macaque networks. The first Macaque connectivity network we consider is a representation consist-
ing of n = 71 brain regions and m = 876 directed edges. The network combines the parcellation of
the Macaque visual system due to Felleman and Van Essen (40) with that of Yeterian and Pandya (41),
which also includes brain regions within the sensorimotor, motor and superior temporal corticies. The
second Macaque connectome is the same as that studied in (39), which is based on three extensive
neuroanatomical compilations (40; 42; 43) that collectively cover large parts of the cerebral cortex. It
consists of n = 95 cortical areas and m = 2390 directed edges. The connectivity data for these net-
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works were originally collated from the CoCoMac database (33) but we obtained them from the Brain
Connectivity Toolbox (37).

Cat network. The matrix representing the cat connectome is that given by Scannell et al. (34), which is
a collation of numerous studies and deploys the parcellation from (44; 45). This results in a connectome
with n = 52 brain regions and m = 818 directed edges.

C. elegans. The C. elegans nervous system considered here has n = 277 nodes and m = 2105 directed
edges (38; 39). This network is derived using electron microscopy and is the only fully mapped nervous
system to date. It has two types of connections: chemical synapses, which are directed, and gap junc-
tions, which we treat as bidirectional since experimental techniques are unable to infer directionality in
this case.

Figure 1 displays the four connectomes analysed in this study with reciprocal edges added to form
the undirected representation of each connectome highlighted in red and the respective proportion of
reciprocal edges stated below each connectome. Basic network statistics for both the empirical connec-
tomes as well as their undirected representations are given in Table 1.

2.2 Nodal dynamics

Neural activity is described using a variation of the graded response network model due to Hopfield
(31), which is a resistance-capacitance model of cell potential. This results in a dynamic network model
consisting of n state variables x1,x2, . . . ,xn each describing the average neural activity within a brain
region (or neuron):

τ
dxi

dt
=−xi +

n

∑
j=1

w jig(x j,θ), (2.1)

with

g(x,θ) =
1
2
(1+ tanh(G(Px−θ))) . (2.2)

Here, τ is a relaxation time constant and the matrix W represents the normalised adjacency matrix,
which is defined as

W =
1
||A||1

A ∈ Rn×n. (2.3)

In the above, we make use of the one-norm to ensure that each xi ∈ [0,1], which for a matrix A ∈ Rn×n

is defined by

||A||1 = max
j

n

∑
i=1
|ai j|= max

j
kin

j ,

where kin
j denotes the in-degree of the jth node.

The function g(x,θ) in (2.2) is a sigmoidal function that represents the input-output relationship
of each node. The parameters G and P, which represent node excitability and the ratio of excitation
over inhibition respectively, determine, alongside the activation threshold θ , the degree of multistability
present within the system (2.1). Here, we follow (17) and define a global activation threshold given by

θ =
1

2n ∑
i, j

w ji. (2.4)
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FIG. 1. Spy plots of the adjacency matrices corresponding to the four connectomes studied in this work: two different parcellations
of the macaque cortex, the cat cortex and the neuronal network for C. elegans. Directed connections are shown in blue. Reciprocal
edges added to form the corresponding undirected networks are shown in red. The proportion of reciprocal edges, Pud , is given
below each network diagram.
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Connectome Cat M71 M95 CE
D U D U D U D U

# of edges 818 515 746 438 2390 1515 2105 1918
mean degree 15.73 19.81 10.51 12.34 25.43 32.23 7.60 13.85
# of modules 3 3 4 4 3 2 6 5

Table 1. Network statistics for the original directed connectomes (D) and their undirected representations (U). Here, M71 and
M95 denote the Macaque connectomes on 71 and 95 nodes, respectively, whilst CE denotes the C. elegans connectome.

The global activation threshold is a simplification of the original Hopfield model since each node uses
the same activation threshold. In this simplified setting, nodes with larger in-degree have a larger prob-
ability of being active.

The remaining parameters G and P control the dynamical regime. More specifically, G is the system
gain which controls the multistability of the system (see, for example, (17)). In our experiments we
fixed G = 10000 as such large values enhance multistability thus increasing the network’s ability to
support information. We then investigated the capacity of both directed and undirected connectomes
to store patterns under systematic variation of the scaling factor P, since this parameter has previously
been hypothesised to play an important role in determining attractor densities.

2.3 Basin stability

For each network the dynamics are governed by the Hopfield model in (2.1). To determine the global
stability of attractor states, we compute the basin stability (32) for each of the steady states of (2.1) as
a function of the parameter P. This amounts to estimating the size of the basin of attraction B(x∗) of
each steady state, x∗, of (2.1). Due to the computational challenges inherent in computing volumes of
high-dimensional spaces the basin stability is computed in a relative sense, that is

SB(x∗) = µ(B(x∗)), (2.5)

where µ is an appropriately defined measure over an appropriately chosen domain, Q say, containing all
basins of attraction of all attractors. Typically, µ will be proportional to a volume and so µ(B(x∗)) ∈
[0,1] is a proportion of state space. From a practical point-of-view, suppose that x∗ is an asymptotically
stable equilibrium point of (2.1) with basin of attraction B(x∗). Then we integrate (2.1) for N initial
conditions drawn uniformly at random from Q and count the number, M, of initial conditions that
converge to the fixed point x∗, which provides the estimate M/N for the basin stability, SB(x∗), of the
steady state x∗.

3. Results

3.1 Network analysis

Our focus here is on the impact that directionality has on network dynamics; however, for complete-
ness we present a brief overview of the fundamental statistical features of the connectomes introduced
in the previous section for both directed and undirected cases. Note that unlike the study by Kale et al.
(18), that considers a spectrum of perturbed networks comprised of the empirical (directed) connectome
at one end and the fully undirected representation of the connectome at the other, we consider only the
aforementioned limiting cases here.
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FIG. 2. Network measures for both directed (blue) and undirected (red) connectomes: ρ = density; 〈C〉 = mean clustering
coefficient; ε = efficiency; Q = Newman-Girvan modularity score; and S = size of the giant (strongly) connected component.

Figure 2 shows results of a network analysis for the different connectomes using a range of standard
network measures, including the network density ρ; the global Watts-Strogatz clustering coefficient 〈C〉;
and the Newman-Girvan modularity score Q (see, for example, (46) for definitions of these standard net-
work metrics). In addition, since the empirical connectomes are in general not strongly connected, we
also compute the relative size, S, of the giant strongly connected component (GSCC) for each connec-
tome, as well as the global efficiency, which is defined as

ε =
1

n(n−1) ∑
i, j,i6= j

1
d(i, j)

.

Here d(i, j) is the length of the shortest path between nodes i and j. All network measures were com-
puted using the Brain Connectivity Toolbox (37).

The loss of directionality has the general effect of inflating network measures. For the local metrics
considered (i.e. the degree and clustering coefficient) this is a direct consequence of the increased den-
sity of these networks. Note that whilst the clustering coefficient depends both on degree and interneigh-
bour network connectivity, the addition of reciprocal edges results in a monotonic increase of 〈C〉. The
inclusion of reciprocal edges has a similar inflationary effect on network efficiency since it facilitates
shorter (potentially biologically implausible) routes between nodes. Interestingly, network modularity
is higher in the empirical connectomes in all cases, which indicates the existence of asymmetric, inter-
module connections potentially controlling the flow of neural information between functional modules.
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Table 1 shows the number of modules observed for each of the empirical and undirected connectomes
corresponding to the modularity scores given in Figure 2. It is noteworthy that in the case of the Macaque
connectome on 95 nodes and the C. elegans connectome, the removal of network directionality reduces
the number of observed modules. We remark that a similar break-down of modular topology due to the
existence of false positive connections in undirected brain networks was recently observed in a study
by Sporns and Betzel (47). Finally, we note that, with the exception of the cat connectome, all empir-
ical connectomes have GSCCs consisting of less than N nodes; the fraction of nodes in the GSCCs
are 0.99,0.90 and 0.85 for the Macaque connectome on 71 and 95 nodes and C. elegans connectome,
respectively.

3.2 Numerical simulations

In all of our experiments the time constant and network gain were fixed at τ = 10 and G = 10000
respectively. (Such a large value of the gain results in network saturation, at least for the connectomes
we analysed.) We then proceeded to investigate the behaviour of the system in (2.1) for different con-
nectomes under variation of the control parameter P. Note that for such large values of G the function in
(2.2) approaches a Heaviside function with switching threshold at xs = θ/P. As the switch approaches
zero (i.e. in the large P limit) we have that all nodes are active for any non-zero initial condition (as
long as the network is strongly connected), and so the system is monostable with almost all initial states
converging to the maximal solution, also known as the ‘up’ state, x∗U =W T 1. Here 1 =

(
1, . . . , 1

)T

is the vector of all ones. When the switch is at one (i.e. P = θ ), the network is in a quiescent ‘down’
state irrespective of the initial condition. That is, the system is monostable and all initial states converge
to the trivial steady state x∗D = 0. For intermediate values of P the system displays multistable behaviour.

In what follows, we choose P ∈ [θ ,10] since we have found (experimentally) that the dynamics of
(2.1) are unchanged outside this region regardless of the connectome considered. More specifically, for
each connectome, we selected 101 equally spaced values of P ∈ [θ ,10] and integrated a fixed set of 104

initial states drawn at random from the state space Q = [0,1]n. For each distinct fixed point x∗ found, we
then approximated its basin stability, SB(x∗)(P), as the proportion of all initial states that converged to
x∗. Fixed points were identified by integrating (2.1) for T = 1000 using the built-in MATLAB routine
ode45, with absolute and relative tolerances both set to 10−6. Note that convergence to a fixed point
is generally much faster than T = 1000 and so the integration was terminated early in this case. To
better sample the extremely high-dimensional state space, initial conditions were drawn from a binomial
distribution with xi(0)∼ Bi(1,r), where r is a random number selected from a uniform distribution over
[0,1]. In this way, we consider a range of different initial activity patterns. For example, for small r the
initial activity pattern has very few ‘active’ nodes. Conversely, large values of r result in initial activity
patterns with large numbers of ‘active’ nodes.

Figure 3 shows an estimation of the number of final attractors for the four different connectomes
as a function of the parameter P. For the three large-scale connectomes (figures 3(a–c)) we find that
the number of attractors is relatively small, with a maximum of 4 to 11 different final attractors being
observed for any particular P value. Peak pattern variability occurs for P ≈ 1 for the three large-scale
connectomes regardless of whether network directionality is incorporated. In terms of numbers, the
empirical cat connectome displays nearly twice as many attractor states at peak variability than its
undirected representation, whilst directionality appears to have less of an effect in the case of the two
Macaque networks, although the empirical network on 95 nodes displays increased multistability over
a broader range of P values. Results for the micro-scale connectome of C. elegans are shown in Figure
3(d). Unlike the macro-scale connectomes, we observe large numbers of attractor states for both directed
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FIG. 3. Estimated attractor numbers as a function of the scaling factor P for each of the connectomes described in Section (2.1).

and undirected connectomes, although significantly more in the undirected case, with approximately 10
times as many attractor states being observed at peak variability. Interestingly, peak variability for the
empirical C. elegans connectome happens away from P = 1, in contrast to the other networks studied.
As can be observed from Figure 3(d), the empirical network displays increased multistability over a
broader range of P values than its undirected counterpart, peaking for values of P approximately in the
plateau range (2,4), although it is worth noting that a local maximum at P≈ 1 is also evident. (See the
magnified section of Figure 3(d).) These findings are further supported by Table 2, which displays the
cumulative number of attractor states (up to P = 10) for each of the four connectomes.

Figures 4 and 5 display the basin stability of the steady states of (2.1) as a function of the parameter
P for the different connectomes considered in this work. For each value of P, the basin stabilities of
each observed steady state are represented as a stacked bar chart with total height 1. Sub-bar heights
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Connectome Cat M71 M95 CE
D U D U D U D U

Total # of
attractors 205 198 204 203 286 223 605 1066

Table 2. Total number of attractors found for the original directed connectomes (D) and their undirected representations (U). Here,
M71 and M95 denote the Macaque connectomes on 71 and 95 nodes, respectively, whilst CE denotes the C. elegans connectome.

are proportional to the basin stability, SB(x∗), and are coloured according to the magnitude of x∗ as
measured by the one-norm. As expected, for low values of P the system is monostable with all initial
states converging to the trivial steady state x∗D = 0 regardless of the connectome. This is evident from
the figures since the basin volume consists of a single blue bar. Increasing P sees the emergence of a
multistable regime for all connectomes. For the undirected connectomes, regions of parameter space
displaying high levels of multistability (i.e. more than two attractor states) were roughly contained
within the interval (0.5,1.5), whilst for the empirical connectomes the multistable regime is signifi-
cantly more widespread. As P is further increased the multistability systematically decreases until only
two solutions remain: the trivial steady state, x∗D, and the maximal solution, x∗U, although the basin of
attraction for the trivial steady state diminishes rapidly, as expected. We remark that for networks that
are only weakly connected, initial states exist that do not converge to the state x∗U regardless of the size
of P; however, these solutions are rarely met in practice and so have negligible basins of attraction.

As expected the basin stability plots for the cat connectome differ significantly between the undi-
rected and empirical connectomes. At peak variability the empirical connectome has seven different
attractor states each with appreciable basins of attraction, whereas the undirected connectome is essen-
tially bistable with almost all initial conditions converging either to the quiescent state, x∗D, or to a highly
active state (i.e. one such that x∗ ≈ x∗U) regardless of the choice of P. A similar feature is observed
for both the Macaque networks, in that solutions with intermediate activity tend to have relatively small
basins of attraction in the undirected representations. Solutions for the empirical Macaque connectomes,
however, exhibit various levels of neural activity as well as an increase in their respective domains of
attraction.

The basin stability plots for C. elegans (Figure 5) are more complex than those of the mammalian
connectomes due largely to the sheer number of solutions determined; however, we still observe broadly
similar characteristics to the large-scale networks. Solutions for the undirected connectome are more
‘active’ on average, whilst multistability is prevalent across significantly larger regions of parameter
space for the empirical network. Also, whilst the attractor set for the undirected C. elegans connectome
consists of up to 295 activity patterns (for any particular P value), a considerable amount of redundancy
exists, with many solutions being either very similar (in norm) or possessing negligible domains of
attraction. Note that we have performed a clustering analysis (experiments not shown) and determined a
small number (3–10 in the multistable regime) of principal modes, or clusters in the attractor landscape,
whose significance can be quantified using the combined basin stabilities of the clustered states. Impor-
tantly, such dimensionality reduction techniques enable us to characterise large, complex attractor sets,
such as that obtained for the C. elegans connectome, using just a small number of prototypical activity
patterns. Deploying the same technique for the empirical connectome results in 3–5 different prototyp-
ical network patterns for values of P in the multistable regime. Importantly, this result suggests that
despite the dramatic quantitative differences observed between the undirected and empirical connec-
tomes (see Figure 3(d)), the number of sustainable patterns, whilst larger in the undirected connectome,
remains small in both cases.
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FIG. 4. Basin stability of the Hopfield neuronal model as a function of the scaling factor, P, for the three large-scale mammalian
connectomes considered in this work. (a, b), (c, d) and (e, f) display results for the directed and undirected connectomes of the
respective parcellations of the cat and Macaque (on 71 and 95 nodes, respectively) cortex. Each solution is coloured according to
its magnitude as measured by the one-norm.
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FIG. 5. Basin stability of the Hopfield neuronal model as a function of the scaling factor, P, for the C. elegans neuronal network.
(a) and (b) give results for the directed and undirected neuronal networks, respectively. Each solution is coloured according to its
magnitude as measured by the one-norm.

In Figure 6 we show an example of a typical set of final activation patterns for the empirical con-
nectome of the Macaque monkey on 95 nodes along with their respective basin stabilities. We display
only those solutions with a basin stability score of at least 5% since such network patterns are more
likely to be sustainable as they are less sensitive to perturbations arising due to neuronal noise. Figures
6(a, d) display the quiescent state and a high activity state (which are permissible in both empirical and
undirected connectomes), whilst figures 6(b, c) show two different intermediate states in which neuronal
activity strongly reflects the modular organisation of the Macaque cortical network – a structure that is
particularly evident in the spy plot in Figure 1. The two active modules observed in figures 6(b, c) are
the same as those in (48) with the one in 6(b) consisting of brain regions belonging to visual pathways
(e.g. primary visual cortices (V1, V2, V3 and V4), Frontal eye field (FEF), etc) serving perception and
action (49), whilst the second module is formed of brain regions of importance to the control of move-
ment (e.g. supplementary motor area (SMA) and premotor and visuomotor cortices (Brodmann areas 6
and 7)) as well as prefrontal areas responsible for decision making (e.g. orbitofrontal cortex (Brodmann
areas 11 and 12)). We remark that whilst similar intermediate states (as those shown in figures 6(b,
c)) exist for the undirected Macaque connectome, the frequency with which they are observed is greatly
diminshed due to the reduction in their respective basins of attraction. As a final note, we emphasise that
the modular patterns displayed in Figure 6 are representative of configurations observed across all four
connectomes studied here (results omitted for brevity), thus implicating directed network modularity as
a key ingredient in the formation of neural patterns.

4. Discussion

In this paper, we have investigated the influence of directed network topology on the activation dynam-
ics of connectome-based networks for a range of species, including the cat, Macaque monkey and C.
elegans round worm. Whilst network directionality is typically ignored in network investigations of the
brain (due largely to limitations in experimental neuroscience), our analysis indicates that it can have
a profound effect on network dynamics, both in terms of the number of attractor states observed and
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0 1

(a) SB = 0.19

0 1

(b) SB = 0.07

0 1

(c) SB = 0.08

0 1

(d) SB = 0.66

FIG. 6. Example final activation patterns (i.e. network states) for the Macaque network on 95 nodes along with their respective
basin stabilities. Here P = 1.1 and solutions shown are those with basin stability scores of at least 5%. As well as the ‘down’ state
(a) and the ‘up’ state (d), we have two non-trivial intermediate states (b, c) whose activity is driven by the modular structure of the
network. While prominent in the directed connectome, the intermediate states of (b, c) have negligibly small basins of attraction
in the corresponding undirected connectome.
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the sustainability (or network robustness) of said states. We find that network patterns are typically
organised according to the modular architecture of the underlying structural network as demonstrated
in Figure 6 for the Macaque connectome on 95 nodes. This finding has important implications since
the modularity structure of the undirected and empirical networks can differ markedly. As mentioned
previously, the inclusion of false positive connections can effect a break-down in the modular topology
of the network as modules merge to form new larger modules, which possibly explains the observed
increase in neural activity for the undirected connectomes in this study (see figures 4 and 5). This type
of hyper-activity is reminiscent of the types of excessive synchronisation found in many neurological
disorders and perhaps hints at the important role network directionality plays in network mechanisms
underlying healthy spreading dynamics. We emphasise again, that the results displayed in Figure 6 are
representative of the solutions obtained across all four connectomes considered in this work. (Results
omitted for brevity.)

We note, that the influence of network modularity in the formation of neural activity patterns
observed in this study is similar to recently reported results implicating network modularity in the for-
mation of network patterns via Turing mechanisms (50). In this study, the authors used both numerical
and analytical techniques to explore pattern formation on modular networks with their key results being
that (a) modularity is crucial for the self-organisation of the global dynamics on a network; and (b)
based on their studies (as well as recent results in (51)), significantly richer dynamics are expected in
the case of directed networks, such as the emergence of travelling Turing waves, which importantly,
are not observed in the undirected case. We note here, that the effect of directionality on the pattern
formation capabilities of modular, connectome-based networks is an open area of research.

We remark that our results are in contrast to the study by Golos et al. (17) in which observed
numbers of attractor states were orders of magnitude higher than found here, even for the case of the
micro-scale C. elegans connectome; however, it is important to note that the connectomes studied in (17)
are of the order n = 1000 and that the number of attractor states of (2.1) scale with network complexity
(as seen in the case of C. elegans). Also, whilst the number of attractor states was much larger in
the study by Golos et al., a closer analysis determined a small set of ‘significant’ (and importantly
comparably sized) activity patterns resembling observed resting state networks in the human brain.
Other recent studies (52; 53) have reported attractor landscapes populated by a small number of patterns,
as in this study, whilst results from empirical investigations typically posit the existence of up to eight
different sustainable network patterns. (See, for example, the paper by Damoiseaux et al. (54).) The
critical brain hypothesis (55) states that neuronal dynamics are governed by a dynamical system close to
criticality. The resting state networks (i.e. attractor states) of this dynamical system are then multistable
ghost attractors that shape the global dynamics of the system. Importantly, results in this study indicate
that directed network topology can have a strong influence on both the number and configuration of
admissible network patterns.

To conclude, in this study we have shown that network directionality can profoundly impact the
information capacity of connectome-based networks. Thus the inability of modern neuroimaging tech-
niques to resolve connection directionality can potentially lead to substantial errors in the classification
of network patterns making it difficult to define a meaningful dynamical repertoire (i.e. collection of
prototypical brain states) of the brain. In future studies, we shall extend the current work to consider
the affect that network directionality has on large-scale brain dynamics in the case when the local node
dynamics is governed by a more sophisticated neural population model capable of exhibiting complex
oscillatory behaviours (e.g. the neural mass models of Jasen and Ritt (6) or Coombes and Byrne (56)).
This is an important next step since recent work by Forrester et al. (57) found that whilst structure
clearly facilitates observed functional connectivity patterns in the brain, the degree with which it influ-
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ences said patterns is determined by the dynamics of its neural subunits. Another natural extension of
the work presented here is to deduce the extent to which directed network structure impacts on func-
tional connectivity matrices (i.e. inferred from correlated activity between nodes) of the brain. In a
series of recent papers Moon et al. (58; 59) demonstrated that changes in directionality patterns across
states of human consciousness are driven by alterations of brain network topology. Importantly, in the
aformentioned studies network directionality was unaccounted for (largely due to the use of diffusion
tensor imaging techniques to reconstruct connectome representations) and so it would be of great inter-
est to extend these ideas to include structural directionality (where possible) in order to determine the
extent to which these directed patterns of functional connectivity are altered.
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