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Abstract 

In this paper, a new sandwich beam element is introduced for analyzing sandwich beam 

structures with a flexible core and partially delaminated regions. In this element, interfaces 

between the core and face sheets are modeled by two independent layers. The model uses a high-

order sandwich panel theory to consider flexibility of the core with nonlinearities associated with 

geometry and real contact characteristics of the delaminated regions. The proposed motion field 

takes advantage of both displacement and displacement gradients in the core boundaries. 

Therefore, the kinematics allow continuity conditions for displacements and rotations at the 

interfaces to be exactly satisfied in fully bounded and delamination regions. By using finite 

element (FE) formulation with Hermite shape functions, elemental vectors and matrices are 

derived in the framework of Hamilton’s principle. FE governing equations are solved by Newton-

Raphson iterative scheme. A 2D FE method is also developed to verify predictions of the sandwich 

model for various delamination cases. Comparison studies show that results from both sandwich 

and 2D FE models are in a good agreement. They can predict large-deformation results for the 

sandwich behaviors much better than the simplified model available in the literature. A set of 

parametric study is devoted to provide an insight into the influence of boundary condition, number 

and position of delaminated regions on deformations, stresses and instability of fully clamped and 

cantilever sandwich beams. The developed formulation is not only more computationally efficient 

than 2D models usually used for such analysis, but also at the same time is accurate, simple and 

robust. It is also found that modeling of the delaminated zone core and stress distribution at each 

interface independently is crucial to accurately analyze instability behaviors of sandwich 

structures. 
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1. Introduction 

In various industries, sandwich structures are broadly employed as key elements with low 

weight, high strength and stiffness. Modern sandwich structures consist of two stiff metallic or 

composite thin face sheets bonded to a soft/stiff honeycomb or foam core of low/high density. A 

simple model used for honeycomb core sandwich panels was introduced as a classical sandwich 

panel theory by Di Taranto [1]. This model considered that the top and the bottom face sheets of 

the sandwich beam deform based on the Bernoulli–Euler beam theory, whereas the core only 

experiences a shear deformation. Khalili et al. [2] used polymer foam materials as core of sandwich 

structures that required application of an advanced theory for the vertical flexibility feature. In this 

respect, Frostig [3] presented a new model for sandwich beams to analyze both fully bonded and 

delaminated sandwich structures with a flexible core based on the high-order theory. In this model, 

axial and transverse displacements for the core were considered with two and three order 

polynomials, respectively. Comparing their predictions with experiments and those obtained by 

the classical formulation showed superiority of the high-order formulation. Many research works 

have been done based on the high-order sandwich panel theory. Linke et al. [4] presented a 

sandwich element for the stability analysis of sandwich panels considering the high-order theory. 

Using second and third order polynomials for the displacement field of the core is known as 

extended high-order sandwich theory used in many researches. For example, Bekuit et al. [5] 

developed a quasi two-dimensional finite element (FE) formulation for the static and dynamic 

analyses of sandwich beams. The through-the-thickness variation of each displacement field in 

each layer was expanded in polynomials and the span-wise variation was interpolated using 

Lagrange cubic shape functions. Phan et al. [6, 7] and Frostig et al. [8] used the extended high-

order theory for the analysis of sandwich beams under wrinkling, global buckling and free 

vibration. Elmalich and Rabinovitch [9, 10] developed the high-order FE models of multi-layer 

soft-core sandwich plates with/without geometrical nonlinearity. Comparing the results with 

experiments showed the high accuracy of the high-order theory and the significant effect of the 

geometrical nonlinearity on the structure responses. Kheirikhah et al. [11] improved the high-order 

sandwich plate theory by assuming the third-order plate theory for face sheets and quadratic and 

cubic functions for transverse and in-plane displacements of the core. In this theory, the continuity 

conditions for transverse shear stresses at the interfaces as well as the conditions of zero transverse 

shear stresses on the upper and lower surfaces of the plate were satisfied. Damanpack et al. 

introduced two different types of sandwich beam elements consisting of three [12] and five [13] 

layers. The FE formulation was derived based on the high-order sandwich beam theory for low 

velocity and nonlinear active control analyses. Magnucki et al. [14] performed a buckling analysis 

of a five-layer sandwich beam by using the FE method. The main purpose of research was to 

present an analytical model for the five-layer beam and to compare the results from theoretical, 

numerical and experimental analyses. 

Frostig and Sokolinsky [15] carried out a nonlinear static analysis of delaminated sandwich 

beams using the high-order theory. In this case, the contact conditions were considered constant 
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regardless of the response of the structure. Frostig et al. [16, 17] developed a high-order theory of 

sandwich panels considering geometrical non-linearity for face sheet layers and the core. In this 

model, face sheets deform based on the Bernoulli–Euler beam theory by considering large 

displacements and moderate rotations. The field of equations for the core was proposed in two 

different approaches. The axial stress was neglected in both cases and the distribution of vertical 

normal stress through the depth of the core was assumed to be linear. In the first formulation, 

moderate rotations were considered for the core shear strain (von Karmann class of deformations) 

while the deformation was assumed to be linear in the second case. The numerical results were 

compared and verified by the results from commercial codes ADINA and ANSYS for three-point 

bending.  

The second approach was used by Frostig and Thomsen [18] to analyze delaminated 

sandwich panels under bending. The core with a delaminated zone was assumed to be free of shear 

stresses while constant compressive stresses were considered during the contact. Contact occurred 

only when the vertical normal stress was negative at the debonded interface. No contact condition 

was also applied mathematically by setting a zero value for modulus of elasticity of the core during 

positive vertical normal stresses. Schwarts-Givli et al. [19] used the high-order theory for the 

nonlinear dynamic analysis of delaminated sandwich structures. A general analytical model was 

proposed for the contact features of the delaminated interface. Frostig and Thomsen [20] and 

Frostig [21] adopted a high-order theory for the non-linear analysis of delaminated curved 

sandwich panels subjected to thermal and/or mechanical loadings. Kim and Choi [22] investigated 

the connection between layers of sandwich structures using a series of experimental programs. 

Experiments revealed that the shear resistance at interface layers was improved by the shear 

capacity of the shear plate besides the friction produced by the compressive force along the wall 

[23]. In a comprehensive study, Shokrieh and Heidari-Rarani [24] evaluated the effect of beam 

theories, foundation, material and crack properties on the first delamination mode in 

multidirectional laminated composites. Liu and Shu [25] presented an analytical solution to 

analyze the free vibration of rotating beams with multiple delaminations. In this study, both free 

and constrained modes were assumed in the delamination vibration. The effect of delamination 

and rotating speed on natural frequencies and corresponding shape modes were considered. 

Marjanovic and Vuksanovic [26] employed the layerwise plate theory of Reddy through an FE 

formulation to obtain natural frequencies, mode shapes and critical buckling loads for intact and 

damaged plates. Heaviside step functions were used for discontinuities in displacement field in 

three orthogonal directions. Another finite element modeling was proposed by McElroy et al. [27] 

for the analysis of the delamination-migration phenomena in laminate impact damage processes. 

The experimental data under a quasi-static indentation load were used to analyze transverse matrix 

crack and its grow on a new ply interface. Groh and Tessler [28] developed two different elements 

with 8 and 9 degree-of-freedom to escape shear locking phenomenon based on the zigzag theory 

of sandwich beams. These elements showed a good computational efficiency of predicting stresses 

in laminates with embedded delaminations. Pietrek and Horst [29] developed an FE model to 

simulate behaviors of sandwich cells with a delamination zone of face sheets under buckling loads. 
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The experimental tests showed significant effects of the failure loads and the delaminations size 

on the behaviors of adhesive layers. Kapuria and Ahmeda [30] extended a layerwise zigzag theory 

for the analysis of composite sandwich panels including multiple rebounding zones. The model 

neglected any flexibility through the thickness and the delaminated faces were assumed to have no 

mutual interaction during deformations. FE results showed a good agreement compared with three-

dimensional FE solutions for delaminated composite plates under bending and free vibration.   

The main aim of this study is to introduce a new sandwich element for the analysis of fully 

bonded or partially delaminated sandwich beam structures with a high accuracy. Independent 

interface layers between face sheets and core are considered to model adhesive materials and 

simulate the deboning zone. The high-order sandwich panel with flexible core is extended to take 

into account nonlinearities associated with geometry and real contact characteristics of the 

delaminated regions. The motion field is described with both displacement and strain functions in 

the core boundaries which allow continuity conditions for displacements and rotations at the 

interfaces to be exactly satisfied in fully bounded and delamination regions. FE formulation with 

Hermite shape functions is developed to extract elemental vectors and matrices using Hamilton’s 

principle. Based on the FE model, a computational code is developed by computer programming 

in MATLAB® along with iterative Newton-Raphson scheme. On the other hand, a fully 2D FE 

method is also developed to verify and validate predictions of the presented sandwich model for 

various types of delamination problems. Comparative studies reveal that results from both 

sandwich and 2D FE models are in a good agreement. They can predict large-deformation results 

for the sandwich behaviors much better than the simplified model existing in the literature. Finally, 

numerical examples are presented in terms of deformations, stresses and instability to investigate 

effects of delamination parameters on the response of the sandwich structures in the small and 

large deformation ranges. The presented formulation and results are expected to contribute to a 

better understanding of the bending and local buckling behaviors of sandwich beams and to be 

instrumental towards an efficient design of sandwich beams with local delaminations. 

 

2. Theory 

2.1. Kinematic and constitutive equations 

Fig. 1 shows a five-layer sandwich beam element with length 𝑙 and width 𝑏. The Cartesian 

coordinate system is located on the mid-plane so that 𝑋-axis is along the beam length while 𝑍-axis 

is through the bending direction and all deformations are considered in the 𝑋𝑍 plane. It should be 

mentioned that theories of thin structures with small or moderate rotations such as Euler–Bernoulli 

may not be suitable for describing the behavior of face sheets due to localized bending effects 

induced in the delaminated region and vicinity of points of geometric and material discontinuities. 

Therefore, the top and bottom face sheets deform according to the first-order beam theory while a 

state of plane stress is assumed for the core. It is assumed that a material point moves along 𝑋 and 
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𝑍 directions equal to 𝑢 and 𝑤. The displacement fields for each layer of sandwich beam element 

are defined as:  

𝑢: {

Top face sheet            𝑢𝑡(𝑥, 𝑧)                                 |𝑧 − (ℎ𝑐 + ℎ𝑡)/2| ≤ ℎ𝑡/2

Bottom face sheet     𝑢𝑏(𝑥, 𝑧)                                 |𝑧 + (ℎ𝑐 + ℎ𝑏)/2| ≤ ℎ𝑏/2

Core                               𝑢𝑐(𝑥, 𝑧, 𝑧
2, 𝑧3)                                                 |𝑧| ≤ ℎ𝑐/2

 (1a) 

𝑤: {

Top face sheet            𝑤𝑡(𝑥)                                    |𝑧 − (ℎ𝑐 + ℎ𝑡)/2| ≤ ℎ𝑡/2

Bottom face sheet     𝑤𝑏(𝑥)                                    |𝑧 + (ℎ𝑐 + ℎ𝑏)/2| ≤ ℎ𝑏/2

Core                               𝑤𝑐(𝑥, 𝑧, 𝑧
2, 𝑧3)                                                |𝑧| ≤ ℎ𝑐/2

 (1b) 

 

where ℎ is the thickness and the sub-indices denote the layer name. The derivative of this field 

results in the Green-Lagrangian strain tensor 𝝐 as: 

𝝐:

{
  
 

  
 Face sheet: {

𝜖𝑥𝑗 = 𝑢𝑗,𝑥 +
1

2
(𝑢𝑗,𝑥

2 + 𝑤𝑗,𝑥
2 )

 𝛾𝑗 = 𝑢𝑗,𝑧 + 𝑤𝑗,𝑥 + 𝑢𝑗,𝑥𝑢𝑗,𝑧
           (𝑗 = 𝑡, 𝑏)

   core: {

𝜖𝑥𝑐 = 𝑢𝑐,𝑥 +
1

2
(𝑢𝑐,𝑥

2 +𝑤𝑐,𝑥
2 )                    

𝜖𝑧𝑐 = 𝑤𝑐,𝑧 +
1

2
(𝑢𝑐,𝑧

2 + 𝑤𝑐,𝑧
2 )                   

  𝛾𝑐 = 𝑢𝑐,𝑧 +𝑤𝑐,𝑥 + 𝑢𝑐,𝑥𝑢𝑐,𝑧 + 𝑤𝑐,𝑥𝑤𝑐,𝑧

 

 

(2) 

 

In this study, the sandwich panel consists of an orthotropic core integrated with two isotropic 

face sheets, where their plane stress constitutive equations based on the linear elastic material can 

be written as: 

𝝈:

{
 
 

 
 Face sheet: {

𝜎𝑥𝑗 = 𝐸𝑥𝑗𝜀𝑥𝑗
 𝜏𝑗 = 𝐺𝑧𝑥𝑗𝛾𝑗

           (𝑗 = 𝑡, 𝑏)

          core: {

𝜎𝑥𝑐 = 𝑄𝑥𝑐𝜀𝑥𝑐 + 𝑄𝑐𝜀𝑧𝑐              
𝜎𝑧𝑐 = 𝑄𝑧𝑐𝜀𝑧𝑐 + 𝑄𝑐𝜀𝑥𝑐                
𝜏𝑐 = 𝐺𝑧𝑥𝑐𝛾𝑐                           

 

 

(3) 

where 

𝑄𝑥𝑐 =
𝐸𝑥𝑐

(1 − 𝐸𝑥𝑐
𝐸𝑧𝑐
𝜐𝑧𝑥𝑐
2 )

, 𝑄𝑧𝑐 =
𝐸𝑧𝑐

(1 − 𝐸𝑥𝑐
𝐸𝑧𝑐
𝜐𝑧𝑥𝑐
2 )

, 𝑄𝑐 =
𝐸𝑥𝑐𝜐𝑧𝑥𝑐

(1 − 𝐸𝑥𝑐
𝐸𝑧𝑐
𝜐𝑧𝑥𝑐
2 )

 (4) 

 

and 𝝈 denotes the second Piola-Kirchhoff stress, 𝐸𝑖𝑗 is the Young’s modulus along 𝑖-axis , 𝐺𝑧𝑖𝑗 is 

the shear modulus in direction of 𝑖-axis on the plane whose normal is in 𝑧 direction, 𝜐𝑧𝑥𝑗 is the 

Poisson’s ratio that corresponds to a contraction in the 𝑥 direction when an extension is applied in 

the 𝑧 direction and the 𝑗 sub-indices denote the layer name. The elemental governing equation can 

be extracted by means of the Hamilton’s principle as: 

∫ (𝛿𝑈𝑖𝑛𝑡 − 𝛿𝑊𝑒𝑥𝑡)𝑑�̅�
𝑉

= 0 (5) 
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where 𝛿𝑈𝑖𝑛𝑡 and 𝛿𝑊𝑒𝑥𝑡 denote virtual internal (strain) energy and total virtual work done by 

external loads on the element. The integration is also applied over the domain of sandwich beam 

element. According to the proposed model, the virtual strain energy can be subdivided into three 

parts as: 

𝛿𝑈𝑖𝑛𝑡 = ∫ (𝜎𝑥𝑡𝛿𝜀𝑥𝑡 + 𝜏𝑡𝛿𝛾𝑡)𝑑𝑉𝑡
𝑉𝑡

+∫ (𝜎𝑥𝑏𝛿𝜀𝑥𝑏 + 𝜏𝑏𝛿𝛾𝑏)𝑑𝑉𝑏
𝑉𝑏

+∫ (𝜎𝑥𝑐𝛿𝜀𝑥𝑐 + 𝜎𝑧𝑐𝛿𝜀𝑧𝑐 + 𝜏𝑐𝛿𝛾𝑐)𝑑𝑉𝑐
𝑉𝑐

 (6) 

 

For the sandwich beam structures, the integration over the volume �̅� can be expressed by the 

product of integration over the length and integration over the thickness as: 

𝛿𝑈𝑖𝑛𝑡 = 𝑏∫ (∫ (𝜎𝑥𝑡𝛿𝜀𝑥𝑡 + 𝜏𝑡𝛿𝛾𝑡)𝑑𝑧

ℎ𝑐
2
+ℎ𝑡

 
ℎ𝑐
2

+∫ (𝜎𝑥𝑏𝛿𝜀𝑥𝑏 + 𝜏𝑏𝛿𝛾𝑏)𝑑𝑧

−ℎ𝑐
2

 
−ℎ𝑐
2
−ℎ𝑏

 
𝑙

0

+∫ (𝜎𝑥𝑐𝛿𝜀𝑥𝑐 + 𝜎𝑧𝑐𝛿𝜀𝑧𝑐 + 𝜏𝑐𝛿𝛾𝑐)𝑑𝑧

ℎ𝑐
2

−ℎ𝑐
2

)𝑑𝑥 

(7) 

 

2.2. Finite element formulation 

2.2.1 Sandwich beam  

A schematic of a representative sandwich beam element is illustrated in Fig. 1. Twenty 

degrees of freedom are allocated to six positions through the thickness in order to uniquely describe 

the displacement and strain fields in each layer through the thickness. In this respect, the nodal 

displacement vector corresponding to the 𝑖th node is defined as: 

𝒖(𝒊) = [𝑢𝑡𝑡(𝑖)  𝑢𝑡𝑏(𝑖)  𝑤𝑡(𝑖)  𝑤𝑡,𝑥(𝑖)  

              𝑢𝑐𝑡(𝑖)  𝑢𝑐𝑡,𝑥(𝑖)  𝑢𝑐𝑡,𝑧(𝑖)  𝑢𝑐𝑏(𝑖)  𝑢𝑐𝑏,𝑥(𝑖)  𝑢𝑐𝑏,𝑧(𝑖)  𝑤𝑐𝑡(𝑖)  𝑤𝑐𝑡,𝑥(𝑖)  𝑤𝑐𝑡,𝑧(𝑖)  𝑤𝑐𝑏(𝑖)  𝑤𝑐𝑏,𝑥(𝑖)  𝑤𝑐𝑏,𝑧(𝑖)    

                                                                                                                            𝑢𝑏𝑡(𝑖)  𝑢𝑏𝑏(𝑖)  𝑤𝑏(𝑖)  𝑤𝑏,𝑥(𝑖)]
𝑇
 

(8) 

𝒖𝒆 = [
𝒖(𝒊)
𝒖(𝒊+𝟏)

]   (9) 

 

where 𝒖𝒆 is a generalized displacement vector. 

According to Eqs. (8) and (9), the displacement functions at each layer can be expressed by 

multiplying of a shape function matrix in a displacement vector as: 

𝑢𝑗 = 𝑵𝒋𝒖𝒆      𝑤𝑗 = 𝑴𝒋𝒖𝒆            (𝑗 = 𝑡, 𝑏, 𝑐) (10) 

 

where 𝑵 and 𝑴 are matrices of shape functions describing the distribution of displacement through 

each layer of the sandwich element. According to the displacement field, the finite element 

formulation should be developed properly based on both Lagrange linear and Hermite cubic 

interpolation [31]. As shown in Fig. 2, shape functions are defined in local coordinates 𝜂, 𝜉 

(−1 ≤ 𝜂, 𝜉 ≤ 1) by: 
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Linear: {
𝐿(𝑖) =

1

2
(1 − 𝜂)    

𝐿(𝑖+1) =
1

2
(1 + 𝜂)

    Hermite:

{
 
 

 
 𝐻(𝑖) =

1

4
(𝜂3 − 3𝜂 + 2)           

�̅�(𝑖) =
𝑙

8
(𝜂3 − 𝜂2 − 𝜂 + 1)    

𝐻(𝑖+1) =
1

4
(−𝜂3 + 3𝜂 + 2)    

𝐻(𝑖+1) =
𝑙

8
(𝜂3 + 𝜂2 − 𝜂 − 1)

    

 

(11a) 

 

Linear: {
𝐿𝑡 =

1

2
(1 + 𝜉)

𝐿𝑏 =
1

2
(1 − 𝜉)

          Hermite:

{
 
 

 
 𝐻𝑏 =

1

4
(𝜂3 − 3𝜂 + 2)       

𝐻𝑏 =
ℎ

8
(𝜂3 − 𝜂2 − 𝜂 + 1)

𝐻𝑡 =
1

4
(−𝜂3 + 3𝜂 + 2)    

�̅�𝑡 =
ℎ

8
(𝜂3 + 𝜂2 − 𝜂 − 1)

 (11b) 

where  

{
𝜂 =

2(𝑥 − 𝑥(𝑖))

𝑙
− 1

𝜉 =
2(𝑧 − 𝑧𝑜)

ℎ
− 1  

 (12) 

 

The linear shape functions interpolate axial displacement in the face sheets while the Hermite 

shape functions are used for the vertical displacement to overcome shear locking phenomenon. 

The axial and vertical displacements in the core are approximated by using Hermite shape 

functions along both directions of 𝑥 and 𝑧 as: 

𝑵𝒕 = [𝐿(𝑖)[𝐿𝑡    𝐿𝑏]     [0]1×18    𝐿(𝑖+1)[𝐿𝑡    𝐿𝑏]     [0]1×18]   (13a) 

𝑴𝒕 = [0   0   [𝐻(𝑖)  𝐻(𝑖)]   [0]1×18     [𝐻(𝑖+1)  𝐻(𝑖+1)]   [0]1×16] (13b) 

𝑵𝒃 = [[0]1×16    𝐿(𝑖)[𝐿𝑡    𝐿𝑏]     [0]1×18    𝐿(𝑖+1)[𝐿𝑡    𝐿𝑏]   0   0]   (13c) 

𝑴𝒃 = [[0]1×18   [𝐻(𝑖)  �̅�(𝑖)]   [0]1×18  [𝐻(𝑖+1)  𝐻(𝑖+1)]]   (13d) 

𝑵𝒄 = [[0]1×4  [𝐻(𝑖)𝐻𝑡   𝐻(𝑖)𝐻𝑡   𝐻(𝑖)𝐻𝑡]   [𝐻(𝑖)𝐻𝑏   𝐻(𝑖)𝐻𝑏   𝐻(𝑖)𝐻𝑏]  

                                [0]1×14 [𝐻(𝑖+1)𝐻𝑡   𝐻(𝑖+1)𝐻𝑡   𝐻(𝑖+1)𝐻𝑡]   [𝐻(𝑖+1)𝐻𝑏   �̅�(𝑖+1)𝐻𝑏   𝐻(𝑖+1)𝐻𝑏]  [0]1×10] 

(13e) 

𝑴𝒄 = [[0]1×10  [𝐻(𝑖)𝐻𝑡   𝐻(𝑖)𝐻𝑡   𝐻(𝑖)𝐻𝑡]   [𝐻(𝑖)𝐻𝑏   𝐻(𝑖)𝐻𝑏   𝐻(𝑖)𝐻𝑏]  

                                [0]1×14 [𝐻(𝑖+1)𝐻𝑡   𝐻(𝑖+1)𝐻𝑡   𝐻(𝑖+1)𝐻𝑡]   [𝐻(𝑖+1)𝐻𝑏   �̅�(𝑖+1)𝐻𝑏   𝐻(𝑖+1)𝐻𝑏]  [0]1×4] 

 

(13f) 
 

where 𝑵 and 𝑴 are function of 𝜉 and 𝜂 in the local coordinate system as shown in Fig 2. Using Eq. 

(11), the derivatives of these functions are defined as: 

𝑵𝒋,𝒙 =
𝒍

𝟐
𝑵𝒋,𝜂         𝑵𝒋,𝒛 =

𝒉𝒋

𝟐
𝑵𝒋,𝜉  (14a) 

𝑴𝒋,𝒙
= 𝒍

𝟐
𝑴𝒋,𝜂       𝑴𝒋,𝒛

=
𝒉𝒋

𝟐
𝑴𝒋,𝜉                     (𝑗 = 𝑡, 𝑏, 𝑐) (14b) 

 

by substituting the discretized displacement field (10) into Eq. (2), the strain field of the 

sandwich element and its variational form can be expressed in a discretized form as: 
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𝝐:

{
 
 
 

 
 
 Face sheet: {

𝜖𝑥𝑗(𝜂, 𝜉, 𝒖𝒆) = 𝑵𝒋,𝒙𝒖𝒆 +
1

2
(𝑵𝒋,𝒙𝒖𝒆)

2
+

1

2
(𝑴𝒋,𝒙𝒖𝒆)

2
    

  𝛾𝑗(𝜂, 𝜉, 𝒖𝒆) = 𝑵𝒋,𝒛𝒖𝒆 +𝑴𝒋,𝒙𝒖𝒆 + (𝑵𝒋,𝒙𝒖𝒆)(𝑵𝒋,𝒛𝒖𝒆)
           (𝑗 = 𝑡, 𝑏)                   

        core: 

{
 
 

 
 𝜖𝑥𝑐(𝜂, 𝜉, 𝒖𝒆) = 𝑵𝒄,𝒙𝒖𝒆 +

1

2
(𝑵𝒄,𝒙𝒖𝒆)

2
+

1

2
(𝑴𝒄,𝒙𝒖𝒆)

2
                                                

𝜖𝑧𝑐(𝜂, 𝜉, 𝒖𝒆) = 𝑴𝒄,𝒛
𝒖𝒆 +

1

2
(𝑵𝒄,𝒛𝒖𝒆)

2
+

1

2
(𝑴𝒄,𝒛

𝒖𝒆)
2
                                               

𝛾𝑐(𝜂, 𝜉, 𝒖𝒆) = 𝑵𝒄,𝒛𝒖𝒆 +𝑴𝒄,𝒙𝒖𝒆 + (𝑵𝒄,𝒙𝒖𝒆)(𝑵𝒄,𝒛𝒖𝒆) + (𝑴𝒄,𝒙𝒖𝒆)(𝑴𝒄,𝒛𝒖𝒆)

 (15) 

𝛿𝝐: {

𝛿𝜖𝑥𝑗 = 𝛿𝒖𝒆
𝑻 �̅�𝒋

𝑻(𝜂, 𝜉, 𝒖𝒆) 

𝛿𝜖𝑧𝑐 = 𝛿𝒖𝒆
𝑻 �̂�𝒄

𝑻(𝜂, 𝜉, 𝒖𝒆)

  𝛿𝛾𝑗 = 𝛿𝒖𝒆
𝑻 �̃�𝒋

𝑻(𝜂, 𝜉, 𝒖𝒆)

         (𝑗 = 𝑡, 𝑐, 𝑏)           (16) 

 

where 

{
  
 

  
 Face sheet: {

�̅�𝒋 = 𝑵𝒋,𝒙(1 + 𝑵𝒋,𝒙𝒖𝒆) + 𝑴𝒋,𝒙(𝑴𝒋,𝒙𝒖𝒆)            

�̃�𝒋 = 𝑵𝒋,𝒛(1 + 𝑵𝒋,𝒙𝒖𝒆) + 𝑴𝒋,𝒙 +𝑵𝒋,𝒙(𝑵𝒋,𝒛𝒖𝒆)
           (𝑗 = 𝑡, 𝑏)                            

          core: 

{
 

 �̅�𝒄 = 𝑵𝒄,𝒙(1 + 𝑵𝒄,𝒙𝒖𝒆) + 𝑴𝒄,𝒙(𝑴𝒄,𝒙𝒖𝒆)                                                                  

�̂�𝒄 = 𝑴𝒄,𝒛(1 +𝑴𝒄,𝒛𝒖𝒆) + 𝑵𝒄,𝒛(𝑵𝒄,𝒛𝒖𝒆)                                                                     

�̃�𝒄 = 𝑵𝒄,𝒛(1 + 𝑵𝒄,𝒙𝒖𝒆) + 𝑴𝒄,𝒙(1 +𝑴𝒄,𝒛𝒖𝒆) + 𝑵𝒄,𝒙(𝑵𝒄,𝒛𝒖𝒆) + 𝑴𝒄,𝒛(𝑴𝒄,𝒙𝒖𝒆)

 (17) 

 

Next, by substituting Eqs. (15) and (16) into the stress field (3) and the subsequent result 

into the virtual strain energy (7), governing equations of the sandwich beam element are derived 

as: 

𝒇𝒊𝒏𝒕(𝒖𝒆) − 𝒇𝒆𝒙𝒕 = 𝟎 (18) 

 

in which 

 𝒇𝒊𝒏𝒕 =
𝑏𝑙

4
∫ ∫ (ℎ𝑡(�̅�𝒕

𝑻𝐸𝑥𝑡𝜖𝑥𝑡 + �̃�𝒕
𝑻𝐺𝑧𝑥𝑡𝛾𝑡) + ℎ𝑏(�̅�𝒃

𝑻𝐸𝑥𝑏𝜖𝑥𝑏 + �̃�𝒃
𝑻𝐺𝑧𝑥𝑏𝛾𝑏)

𝟏

−𝟏

𝟏

−𝟏

+ ℎ𝑐(�̅�𝒄
𝑻(𝑄𝑥𝑐𝜖𝑥𝑐 + 𝑄𝑐𝜖𝑧𝑐) + �̂�𝒄

𝑻(𝑄𝑧𝑐𝜖𝑧𝑐 + 𝑄𝑐𝜖𝑥𝑐) + �̃�𝒄
𝑻𝐺𝑧𝑥𝑐𝛾𝑐)) 𝑑𝜉𝑑𝜂 

(19) 

𝒇𝒆𝒙𝒕 = [
𝒇(𝒊)
𝒇(𝒊+𝟏)

]   
(20) 

 

where 𝒇(𝒊) is the mechanical load vector applied on the 𝑖th node which can be expressed as:  

𝒇(𝒊) = [𝑃𝑡𝑡(𝑖)  𝑃𝑡𝑏(𝑖)  𝑉𝑡(𝑖)  0  𝑃𝑐𝑡(𝑖)  0  0  𝑃𝑐𝑏(𝑖)  0  0  𝑉𝑐𝑡(𝑖)  0  0  𝑉𝑐𝑏(𝑖)  0  0  𝑃𝑏𝑡(𝑖)  𝑃𝑏𝑏(𝑖)  𝑉𝑏(𝑖)  0]
𝑇
                                                                                                                 (21) 

 

in which 𝑃 and 𝑉 are generalized concentrated axial and transverse forces, respectively. The global 

FE governing equations of equilibrium for a sandwich beam can be obtained by using Eq. (21), 

assembling scheme and imposing boundary conditions. The final format of the equilibrium 

equations can be expressed as: 
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𝑹 = 𝑭𝒊𝒏𝒕(𝒖) − 𝑭𝒆𝒙𝒕 (22) 
 

where 𝑹 denotes the global residual vector. Eq. (22) is a highly non-linear algebraic equation in 

terms of nodal displacement vector. In order to solve the present problem with geometric and 

boundary-condition non-linearities, an iterative Newton–Raphson method [31] is implemented 

resulting in nodal displacements values. In this respect, a tangent matrix is defined as: 

𝑻 =
𝜕𝑹

𝜕𝒖
 (23) 

 

and it can be expressed for each element as: 

 

𝑻𝒆 =
𝑏𝑙

4
∫ ∫ (ℎ𝑡(�̅�𝒕

𝑻𝐸𝑥𝑡�̅�𝒕 + �̃�𝒕
𝑻𝐺𝑧𝑥𝑡�̃�𝒕 ) + ℎ𝑏(�̅�𝒃

𝑻𝐸𝑥𝑏�̅�𝒃 + �̃�𝒃
𝑻𝐺𝑧𝑥𝑏𝛾𝑏�̃�𝒃 )

𝟏

−𝟏

𝟏

−𝟏

+ ℎ𝑐(�̅�𝒄
𝑻(𝑄𝑥𝑐�̅�𝒄 + 𝑄𝑐�̂�𝒄 ) + �̂�𝒄

𝑻(𝑄𝑧𝑐�̂�𝒄 + 𝑄𝑐�̅�𝒄 ) + �̃�𝒄
𝑻𝐺𝑧𝑥𝑐�̃�𝒄 )) 𝑑𝜉𝑑𝜂 

+
𝑏𝑙

4
∫ ∫ (ℎ𝑡 (�̅�𝒕

́ 𝐸𝑥𝑡𝜖𝑥𝑡 + �̃�𝒕
́ 𝐺𝑧𝑥𝑡𝛾𝑡) + ℎ𝑏 (�̅�𝒃

́ 𝐸𝑥𝑏𝜖𝑥𝑏 + �̃�𝒃
́ 𝐺𝑧𝑥𝑏𝛾𝑏)

𝟏

−𝟏

𝟏

−𝟏

+ ℎ𝑐 (�̅�𝒄
́ (𝑄𝑥𝑐𝜖𝑥𝑐 + 𝑄𝑐𝜖𝑧𝑐) + �̂�𝒄

́ (𝑄𝑧𝑐𝜖𝑧𝑐 + 𝑄𝑐𝜖𝑥𝑐) + �̃�𝒄
́ 𝐺𝑧𝑥𝑐𝛾𝑐)) 𝑑𝜉𝑑𝜂 

 

(24) 

in which 

{
 
 
 

 
 
 
Face sheet: {

�̅�𝒋
́ = �̅�𝒋,𝒖𝒆 = 𝑵𝒋,𝒙

𝑻 𝑵𝒋,𝒙 +𝑴𝒋,𝒙
𝑻 𝑴𝒋,𝒙              

�̃�𝒋
́ = �̃�𝒋,𝒖𝒆

= 𝑵𝒋,𝒛
𝑻 𝑵𝒋,𝒙 + 𝑵𝒋,𝒙

𝑻 𝑵𝒋,𝒛               
           (𝑗 = 𝑡, 𝑏)                            

          core: 

{
 
 

 
 �̅�𝒄
́ = �̅�𝒄,𝒖𝒆 = 𝑵𝒄,𝒙

𝑻 𝑵𝒄,𝒙 +𝑴𝒄,𝒙
𝑻 𝑴𝒄,𝒙                                                                    

�̂�𝒄
́ = �̂�𝒄,𝒖𝒆 = 𝑴𝒄,𝒛

𝑻 𝑴𝒄,𝒛 +𝑵𝒄,𝒛
𝑻 𝑵𝒄,𝒛                                                                     

�̃�𝒄
́ = �̃�𝒄,𝒖𝒆

= 𝑵𝒄,𝒛
𝑻 𝑵𝒄,𝒙 +𝑵𝒄,𝒙

𝑻 𝑵𝒄,𝒛 +𝑴𝒄,𝒛
𝑻 𝑴𝒄,𝒙 +𝑴𝒄,𝒙

𝑻 𝑴𝒄,𝒛                           

 (25) 

 

2.2.2 Fully 2D plane stress 

For a fully 2D study, general displacement functions (𝑢, 𝑤) are considered in the global 𝑋𝑍 

coordinate system. The Green strain tensor and the corresponding second Piola-Kirchhoff stress 

function can be derived for an orthotropic linear elastic material as: 

𝝐: {

𝜖𝑥 = 𝑢,𝑥+
1

2
(𝑢,𝑥

2+ 𝑤,𝑥
2 )                   

𝜖𝑧 = 𝑤,𝑧+
1

2
(𝑢,𝑧

2+ 𝑤,𝑧
2 )                   

𝛾 = 𝑢,𝑧+𝑤,𝑥+ 𝑢,𝑥 𝑢,𝑧+ 𝑤,𝑥 𝑤,𝑧

 (26a) 

𝝈: {

𝜎𝑥 = 𝑄𝑥𝜀𝑥 + 𝑄𝜀𝑧                  
𝜎𝑧 = 𝑄𝑧𝜀𝑧𝑐 + 𝑄𝜀𝑥                
𝜏 = 𝐺𝑧𝑥𝛾                          

 (26b) 

 



10 
 

where 

𝑄𝑥 =
𝐸𝑥

(1 − 𝐸𝑥
𝐸𝑧
𝜐𝑧𝑥
2 )
, 𝑄𝑧 =

𝐸𝑧

(1 − 𝐸𝑥
𝐸𝑧
𝜐𝑧𝑥
2 )
, 𝑄 =

𝐸𝑥𝜐𝑧𝑥

(1 − 𝐸𝑥
𝐸𝑧
𝜐𝑧𝑥
2 )

 (27) 

 

As shown in Fig 2b, a fully 2D FE model is stablished based on the quadratic element. In 

this respect, the displacement functions can be expressed by multiplying of a shape function matrix 

in a displacement vector as [31]: 

𝑢 = 𝑵𝒖𝒆      𝑤 = 𝑴𝒖𝒆 (28) 

in which 

𝒖𝒆 = [𝑢(1)  𝑤(1)  𝑢(2)  𝑤(2)  𝑢(3)  𝑤(3)  𝑢(4)  𝑤(4)  𝑢(5)  𝑤(5)  𝑢(6)  𝑤(6)  𝑢(7)  𝑤(7)  𝑢(8)  𝑤(8)]
𝑇
  (29) 

𝑵(𝜂, 𝜉) = [𝑁(1)  0  𝑁(2)  0  𝑁(3)  0  𝑁(4)  0  𝑁(5)  0  𝑁(6)  0  𝑁(7)  0  𝑁(8)  0] (30) 

𝑴(𝜂, 𝜉) = [0  𝑁(1)  0  𝑁(2)  0  𝑁(3)  0  𝑁(4)  0  𝑁(5)  0  𝑁(6)  0  𝑁(7)  0  𝑁(8)] (31) 

 

where 𝑁(𝑖) (𝑖 = 1~8) are the quadratic shape functions in local coordinates which can be found 

in [31] as detailed below: 

{
 
 

 
 𝑁1 =

1

4
(𝜂2 − 𝜂)(𝜉2 − 𝜉)

𝑁3 =
1

4
(𝜂2 + 𝜂)(𝜉2 − 𝜉)

𝑁5 =
1

4
(𝜂2 + 𝜂)(𝜉2 + 𝜉)

𝑁7 =
1

4
(𝜂2 − 𝜂)(𝜉2 + 𝜉)

          

{
 
 

 
 𝑁1 =

1

2
(1 − 𝜂2)(𝜉2 − 𝜉)

𝑁3 =
1

2
(𝜂2 + 𝜂)(1 − 𝜉2)

𝑁5 =
1

2
(1 − 𝜂2)(𝜉2 + 𝜉)

𝑁7 =
1

2
(𝜂2 − 𝜂)(1 − 𝜉2)

 (32) 

 

where  

{
𝜂 =

2(𝑥 − 𝑥(𝑖))

𝑙
− 1

𝜉 =
2(𝑧 − 𝑧(1))

ℎ
− 1  

 (33) 

 

In a similar way, the strain and stress functions are also discretized and then substituted into 

the Hamiltonian principle. Therefore, the governing equations of equilibrium can be derived in a 

matrix form as: 

𝒇𝒊𝒏𝒕(𝒖𝒆) − 𝒇𝒆𝒙𝒕 = 𝟎 (34) 
 

where 

 𝒇𝒊𝒏𝒕 =
𝑏ℎ𝑙

4
∫ ∫ (�̅�𝑻(𝑄𝑥𝜖𝑥 + 𝑄𝜖𝑧) + �̂�

𝑻(𝑄𝑧𝜖𝑧 + 𝑄𝜖𝑥) + �̃�
𝑻𝐺𝑧𝑥𝛾)

𝟏

−𝟏

𝑑𝜉𝑑𝜂
𝟏

−𝟏

 (35) 

𝒇𝒆𝒙𝒕 = [𝑃(1)  𝑉(1)  𝑃(2)  𝑉(2)  𝑃(3)  𝑉(3)  𝑃(4)  𝑉(4)  𝑃(5)  𝑉(5)  𝑃(6)  𝑉(6)  𝑃(7)  𝑉(7)  𝑃(8)  𝑉(8)]
𝑇
   (36) 
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{

�̅� = 𝑵,𝒙 (1 + 𝑵,𝒙 𝒖𝒆) + 𝑴,𝒙 (𝑴,𝒙 𝒖𝒆)                                                               

�̂� = 𝑴,𝒛 (1 +𝑴,𝒛 𝒖𝒆) + 𝑵,𝒛 (𝑵,𝒛 𝒖𝒆)                                                                  

�̃� = 𝑵,𝒛 (1 + 𝑵,𝒙 𝒖𝒆) + 𝑴,𝒙 (1 +𝑴,𝒛 𝒖𝒆) + 𝑵,𝒙 (𝑵,𝒛 𝒖𝒆) + 𝑴,𝒛 (𝑴,𝒙 𝒖𝒆)

 (37) 

 

In order to implement the Newton-Raphson method, the tangent matrix should be determined 

for each element as: 

 

where 

𝑻𝒆 =
𝑏ℎ𝑙

4
∫ ∫ (�̅�𝑻(𝑄𝑥�̅� + 𝑄�̂�) + �̂�

𝑻(𝑄𝑧�̂� + 𝑄�̅�) + �̃�
𝑻𝐺𝑧𝑥�̃�)

𝟏

−𝟏

𝑑𝜉𝑑𝜂
𝟏

−𝟏

 

+
𝑏ℎ𝑙

4
∫ ∫ (�́̅�(𝑄𝑥𝜖𝑥 + 𝑄𝜖𝑧) + �́̂�(𝑄𝑧𝜖𝑧 + 𝑄𝜖𝑥) + �́̃�𝐺𝑧𝑥𝛾)

𝟏

−𝟏

𝑑𝜉𝑑𝜂
𝟏

−𝟏

 

(39) 

{
 

 �́̅� = �̅�,𝒖𝒆 = 𝑵,𝒙
𝑻𝑵,𝒙+𝑴,𝒙

𝑻𝑴,𝒙                                                               

�́̂� = �̂�,𝒖𝒆 = 𝑴,𝒛
𝑻𝑴,𝒛+ 𝑵,𝒛

𝑻𝑵,𝒛                                                               

�́̃� = �̃�,𝒖𝒆 = 𝑵,𝒙
𝑻𝑵,𝒛+ 𝑵,𝒛

𝑻𝑵,𝒙+𝑴,𝒙
𝑻𝑴,𝒛+𝑴,𝒛

𝑻𝑴,𝒙                          

 (40) 

 

2.3. Interface condition 

The interface between the face sheet and the core is an independent layer which should be 

described with extra conditions. As shown in Fig. 3, these conditions on the top interface are 

demonstrated for fully bonded and delaminated regions. For a fully bonded case, displacements of 

core at the top boundary are exactly followed by the top face sheet which results in normal and 

shear stresses at the interface surface. For a delaminated zone, the real contact conditions are 

enforced using the explicit algorithm of master-slave contact pair [31]. Nodes on the face sheets 

are considered as master nodes which can penetrate to the slave surface on top boundary of the 

core. However, the 𝑗th node on the slave surface has always the closest distance to the 𝑖th master 

node. As shown in Fig. 3, the local coordinate system (𝑛, 𝑡) is defined by normal and tangential 

vectors on the interface at the contact point. For a frictionless contact, the master node can slide 

on the slave surface (𝜏𝑖𝑡 = 0) while the movement is constrained along the normal direction by:  

�̅�𝑡𝑏(𝑖) ≥ �̅�𝑐𝑡(𝑗)  →  𝜎𝑖𝑡(𝑖) = 𝜎𝑖𝑡(𝑗) 

�̅�𝑡𝑏(𝑖) < �̅�𝑐𝑡(𝑗)  →  𝜎𝑖𝑡(𝑖) = 𝜎𝑖𝑡(𝑗) = 𝜆𝑖𝑡�̿�𝑖𝑡                     �̿�𝑖𝑡 = (�̅�𝑡𝑏(𝑖) − �̅�𝑐𝑡(𝑗)) 

      

(41) 

 

where 𝜎𝑖𝑡, 𝜏𝑖𝑡, �̿�𝑖𝑡 and 𝜆𝑖𝑡 indicate the normal stress, shear stress, penetration and the Lagrange 

multiplier at the top interface surfaces, respectively. �̅� is also the movement along the normal 

direction defined as: 

�̅�𝑡𝑏(𝑖) = −(𝑥(𝑖) + 𝑢𝑡𝑏(𝑖)) sin𝛽 + 𝑤𝑡(𝑖) cos𝛽 (42) 

𝑻𝒆 =
𝜕𝒇𝒊𝒏𝒕
𝜕𝒖𝒆

 (38) 
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�̅�𝑐𝑡(𝑗) = −(𝑥(𝑗) + 𝑢𝑐𝑡(𝑗)) sin𝛽 + 𝑤𝑐𝑡(𝑗) cos𝛽      

 

Eq. (41) includes appending of variations of Lagrange multiplier term in the global equilibrium 

equations for each contact slave and master nodes. In a similar way, the extra conditions describe 

the behaviors of interface between bottom face sheet and the core.  

The solving process is started by predicting a configuration without considering the contact 

conditions. The penetration values of master nodes can then be calculated according to the 

predicted configuration. The global governing equilibrium equations will be updated based on new 

contact conditions at the delaminated regions. The iterative algorithm will be repeated until global 

displacement vector converges to a unique answer.  

 

3. Numerical results and discussion  

In order to verify and validate the presented FE models for the nonlinear analysis of sandwich 

beams with partially delaminated areas, the predictions of models are compared with relevant 

results in the open literature. After validation, some examples are studied to examine effects of 

boundary condition, number and position of delaminated regions on the response of sandwich 

beams. 

For the first validation study, a sandwich beam as shown in Fig. 4a consisting of two face 

sheets made of Kevlar and a lightweight, low strength core of Rohacell with the following 

properties is analyzed.  

𝐿 = 300𝑚𝑚, 𝐸𝑥𝑡 = 𝐸𝑥𝑏 = 27.42𝐺𝑃𝑎, 

𝑏 = 60𝑚𝑚,            𝐸𝑧𝑐 = 52.5𝑀𝑃𝑎,              𝐺𝑧𝑥𝑐 = 21𝑀𝑃𝑎 
(43) 

 

Figs. 4b-4d display numerical results in terms of load versus mid-span top displacement, 

vertical displacements in face sheets along half-length of the beam, interfacial vertical normal 

stress at core-face interface and shear stress in core, respectively. They are obtained from the 

present 2D model and sandwich model and compared with those from analytical solution and FE 

solution obtained with ADINA, ver. 8.1 and ANSYS ver. 7.1 [16]. The analytical solution [16] 

assumed zero axial stress for the core and von-Karman strains for the face sheets. ADINA and 

ANSYS [16] assumed green strains for the core and face sheets. Fig. 4b shows that the results of 

all models are almost identical in the linear regime. In the large displacement range, the simplified 

analytical model [16] reveals that the displacement increases with the increase of the load, while 

other models predict an increasing-decreasing trend in the force. It is also observed that the FE 

results of the present 2D model and sandwich model are close to those from ADINA and ANSYS 

to some extent verifying the accuracy of the developed models. ADINA and ANSYS assumed the 

ratio of 1/500 between the modulus of elasticity of the core to that of the face sheets producing 

numerical difficulties in these software packages. The low modulus of elasticity of the core causes 
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large distortions in the core elements, which are beyond the numerical capabilities of ordinary 

elements used in ADINA, ANSYS and present 2D FE model. In this respect, the sandwich model 

is more accurate than the others and shows a high robustness. It should be mentioned that 2D FE 

model is not able to track the equilibrium path due to singularity in stiffness or tangent matrices in 

the large displacement and rotation regime. Regarding the results presented in Fig. 4c and 4d, it is 

found that the sandwich beam model developed in this work can accurately simulate the bending 

deflection and stresses of the beam compared to those reported in Ref. [16]. In this regard, it is 

seen that the analytical solution [16] overestimates the deflection and stresses compared to 2D FE 

and sandwich models specially in the central region.  

Next, the accuracy of the present model in investigating the influence of the debonded interface 

on the non-linear behaviors for a sandwich beam is examined and the results are compared with 

those reported in Ref. [18]. The sandwich beam is loaded under three-point bending where the 

upper face-core interface is delaminated, 20 and 40 mm long, and the load is applied either at the 

upper or at the lower face sheet, see Figs. 5a and 6a. The beam is simply supported at the edges of 

the lower face sheet and the edges of the upper face sheet and the core are stress free and free to 

move. The material properties of the sandwich are assumed as presented in Eq. (43). Two cases 

are investigated dealing with a long and short delamination at the upper face-core interface where 

the load is applied either at the upper delaminated face sheet or at the lower bonded face sheet, see 

Figs. 5a and 6a. Figs. 5b, 5c, 5d show the results in terms of load versus mid-span top displacement, 

vertical displacements in face sheets along half-length of the beam, interfacial vertical normal 

stress at core-face interfaces and shear stress in core for the first case as depicted in Fig. 5a. The 

counterpart of these figures for the second case as shown Fig. 6a is presented in Figs. 6b, 6c, 6d. 

Ref. [18] assumed the core to have zero axial and shear stresses and constant vertical stress in the 

delaminated regions and von-Karman strains for the face sheets.  

The results presented in Fig. 5b reveal that the non-linear responses of the sandwich beam loaded 

at the upper delaminated face sheet from both sandwich beam and 2D beam models are very close 

in both linear and nonlinear regimes. It is seen that these models predict deflections far lower than 

the model developed in [18]. It shows that considering the stress in the core plays an important 

role on the response of the sandwich beams and it cannot be ignored. By focusing on Fig. 6b, it 

can be found that there is a slight difference between responses from the sandwich beam and 2D 

beam models in linear and nonlinear ranges when the load is applied at the lower bonded face 

sheet. In this case, the sandwich beam model mostly predicts a lower deflection for any force. By 

comparing the results from the models developed in this research and Frostig and Thomsen’s 

model [18], it is observed that the predictions are very different revealing the accuracy of the 

present models and assumptions. Fig. 5c reveals how the deformation pattern of the delaminated 

face sheet changes meaningfully along the length. In the region far from the delaminated part, two 

faces nearly move together with some small indentation displacements and with very small contact 

stresses, see Figs. 5c and 5d. In the delaminated region, the upper face sheet buckles upwards, but 

remains partially in contact with the upper face of the core. The core shear stresses display the 
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same trends as can be seen in Fig. 5d. These stresses are extremely high at the edges of the 

delaminated interface. Fig. 5d also reveals that the normal stresses at the upper and lower face-

core interfaces are greatly high at the right tip of the delamination zone. Stresses change from 

compression to tension in the upper interface between the left and right tips of the delaminated 

region. Regarding the sandwich beam with a smaller delamination zone and with mechanical 

loading on the lower face sheet, Figs. 6c and 6d show that the vertical displacement of the loaded 

lower face is greater than that of the upper face reflected by zero contact stresses in the delaminated 

region. The upper face sheet experiences the buckling phenomenon in the debonded region. The 

core shear and normal stresses as shown Fig. 6d appear to be uniform through a large section of 

the sandwich beam, except in the vicinities of the delamination zone. In the edges of the 

delaminated region, a large jump occurs and a change in the stress sign is seen.  

Next, a cantilever sandwich beam with debonding interfaces at the clamped end is considered to 

investigate the effects of debonding location and moving of contact points by implementing the 

present sandwich beam model, see Fig. 7a. At the clamped edge, all displacements and rotations 

are fully constrained in face sheets while they are free in the core. Mechanical response of fully 

bonded sandwich beam (C1) under tip-point load is compared with results of sandwich beams with 

debonding regions at top interface (C2), at bottom interface (C3) and at both interfaces (C4). Figs. 

7b-7d show the results in terms of load versus tip displacement, interfacial normal stress at core-

upper face interfaces and shear stress in core, respectively. The final configuration and distribution 

of core von-Mises stress of the sandwich beam at the end of loading are also shown in Figs. 8a-8d 

for C1-C4, respectively. As seen in Fig. 7b, both the location of delamination and direction of 

loading have significant effects on the beam stiffness (difference is almost 6 times more for local 

buckling force) even in the small deformation regime. Figs. 7c and 7d also show that sandwich 

beams C1 and C2 experience extreme stresses specially in the first half of the structure in the 

delamination area. The local buckling that happens at the clamped edge is the main reason of 

reduction of structural stiffness in all cases, see Figs. 8a-8d. The buckling mode in sandwich beams 

of C2, C3 and C4 with delaminated interfaces is different from the one happening in the fully 

bonded case of C1. Even though the buckling mode is similar in delaminated interfaces, the 

response of case C2 is far different from the other cases. The main reason of this difference is the 

effect of core at the delaminated region. It reveals the fact that the stress in the delaminated part of 

the core is significant and can not be neglected in contrary to Ref. [18]. As can be seen in Figs. 8b, 

8c and 8d, unlike cases C3 and C4, the distribution of stress is highlighted at the bottom interface 

of delaminated section in case C2 while there is no contact at the delaminated top interface. In 

other words, it indicates that there are normal and shear stresses at bonded interfaces while there 

is no contact at the delaminated interface and it extremely affects the structural stiffness. Therefore, 

it is necessary to consider the stress distribution at each interface independently. On the other hand, 

both beam configurations and history of force-displacement paths for case C3 with delamination 

at bottom interface are so close to case C4 which has delamination on both interfaces. In both 

cases, the core does not have significant effects on the structural stiffness because of low level of 

stresses in the delaminated section, see Fig. 8. 
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The effects of quality of the bonding interfaces on the mechanical behavior of a sandwich beam 

under three-point bending is investigated. In this respect, a continuous bonding-delaminated 

pattern is considered for both top and bottom interfaces, see Fig. 9a. The responses of the sandwich 

beam for various delamination length, 𝑑, are presented in Fig. 9. Figs. 9b and 9c show the results 

in terms of load versus top-mid-span displacement and vertical displacement in top face sheet 

along half-length of the beam. The configuration and distribution of core von-Mises stress of the 

sandwich beam at the end of loading are also shown in Fig. 10-. As shown in Fig. 9b, the force-

displacement path as well as local buckling point are affected by the delamination length specially 

in the large deformation range. It this respect, the longer the delamination length, the greater the 

deflection. The delamination length also affects the buckling phenomena. Figs. 9b, 9c, and 10a-

10f reveal that the sandwich beam with delamination of 𝑑 = 40 𝑚𝑚 has a limit point at F=400 N 

when the first buckling occurs in the closest delamination zone to the middle of beam and then the 

structure experiences its second buckling at F=800 N in the delaminated zone next to the first 

buckled zone. The second buckling is seen as a drop in the force-deflection curve for the case of 

𝑑 = 40 𝑚𝑚. However, it can be found that other cases have an increasing monotonic force-

deflection curve that means all delaminated zones buckle together with different amplitudes. It 

should be mentioned that taking the stress in the delaminated zone core and stress distribution at 

each interface independently into the account is crucial to observe these new phenomena. It is also 

found that depending on the beam geometries and loading conditions, there is a critical length for 

delamination which can describe the quality of bonding at interfaces. For example, in this case, by 

considering local buckling mode and force history, the fully bonded conditions can be considered 

for interfaces with delamination less than 𝑑 = 10 𝑚𝑚. By increasing the length of delamination, 

the effects of core on the structural stiffness are decreased and consequently the local buckling 

happens at lower bending forces. As can be seen in Figs. 10c, 10d and 10f, the longer the 

delaminated zone, the larger the buckled face sheet. 

 

4. Conclusion 

The main objective of this paper was to introduce a new sandwich beam element for the analysis 

of sandwich structures with a flexible core and containing partially delaminated regions with high 

accuracy. The interfaces between the core and face sheets were modeled by two independent 

layers. The high-order sandwich panel theory was assumed to model the flexibility of the core with 

nonlinearities associated with geometric and real contact characteristics of the delaminated 

regions. The kinematics featured the continuity conditions for displacements and rotations at the 

interfaces for both fully bounded and delaminated regions. FE governing equations were 

developed based on the Hermite shape functions by implementing the Hamilton’s principle and 

solved by using Newton-Raphson iterative approach. A 2D FE method was also stablished and the 

capability of the sandwich model was examined by a comparative study with 2D results. A good 

correlation was found between results from both sandwich and 2D FE models. It was found that 

they can predict large-deformation results for the sandwich behaviors much better than the 
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simplified model available in the literature. It was concluded that modeling the delaminated zone 

core and stress distribution at each interface independently is crucial to accurately analyze 

instability behaviors of sandwich structures. The implications of delamination features on the 

bending and local buckling response of sandwich beams were put into evidence via a parametric 

study, and pertinent conclusions were outlined. The following main results can be concluded: 

1. Describing core displacements by interface displacement functions provides more robust 

stiffness/tangent matrices and removes singularity. 

2. Considering independent displacement fields for each layer allows to apply different interface 

conditions. 

3. Numerical results show non-zero distribution of the shear stress through the core with 

delamination where there is no contact. 

4. Numerical results reveal the significant effects of length in continuous delaminations on the 

beam stiffness and local buckling shape modes. 

Due to lack of any accurate sandwich model in the specialized literature, the developed model and 

the results supplied in the present work are expected to be instrumental toward a reliable design of 

sandwich beams with local delaminations. 
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Figure Captions 

 

Fig. 1. Coordinate system and notations for a five-layer sandwich beam element. 
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Fig. 2. Local coordinate system for: (a) sandwich beam layers; (b) 2D plane stress. 

Fig. 3. Top interface conditions: (a) fully bonded; (b) delaminated with contact; (c) delaminated without 

contact. 

Fig. 4. Comparison between predictions of models for the sandwich beam under three-point bending: (a) 

geometry; (b) load versus mid-span displacement; (c) vertical displacements in face sheets along half-length 

of the beam; (d) interfacial vertical normal stress at core-face interfaces and shear stress in core. 

Fig. 5. Comparison between predictions of models for the sandwich beam with an upper mid-span 

delamination under three-point bending: (a) geometry of the sandwich under a load applied at the upper 

delaminated face sheet; (b) load versus mid-span displacement; (c) vertical displacements in face sheets 

along half-length of the beam; (d) interfacial vertical normal stress at core-face interfaces and shear stress 

in core. 

Fig. 6. Comparison between predictions of models for the sandwich beam with an upper mid-span 

delamination under three-point bending: (a) geometry of the sandwich under a load applied at the lower 

bonded face sheet; (b) load versus mid-span displacement; (c) vertical displacements in face sheets along 

half-length of the beam; (d) interfacial vertical normal stress at core-face interfaces and shear stress in core. 

Fig. 7. Geometry and numerical results obtained for cantilever sandwich beams with upper or/and lower 

end delamination under the load applied on the upper face sheet at the tip point: (a) geometry; (b) load 

versus tip displacement; (c) interfacial axial normal stress at core-upper face interfaces and shear stress in 

core; (d) interfacial axial normal stress at core-lower face interfaces and shear stress in core. 

Fig. 8. Final configuration and von-Mises stress distribution of the sandwich beam C1-C4 as depicted in 

Fig. 7a at the end of loading. 

Fig. 9. Geometry and numerical results obtained for clamped sandwich beams with upper continuous 

delaminations under a point load applied on the upper face sheet at the mid span: (a) geometry; (b) load 

versus top-mid-span displacement; (c) vertical displacements in top face sheet along half-length of the beam 

for various values of d. 

Fig. 10. Configuration and distribution of von-Misses stress of the core related to Fig. 9a for (d) 𝑑 = 0; (e)  

𝑑 = 10 𝑚𝑚; (f) 𝑑 = 16 𝑚𝑚; (g) 𝑑 = 20 𝑚𝑚; (h) 𝑑 = 30 𝑚𝑚; and (i) 𝑑 = 40 𝑚𝑚. 
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Fig. 1. Coordinate system and notations for a five-layer sandwich beam element. 
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Fig. 2. Local coordinate system for: (a) sandwich beam layers; (b) 2D plane stress. 
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Fig. 3. Top interface conditions: (a) fully bonded; (b) delaminated with contact; (c) delaminated without contact. 
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Fig. 4. Comparison between predictions of models for the sandwich beam under three-point bending: (a) geometry; (b) 

load versus mid-span displacement; (c) vertical displacements in face sheets along half-length of the beam; (d) interfacial 

vertical normal stress at core-face interfaces and shear stress in core. 
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Fig. 5. Comparison between predictions of models for the sandwich beam with an upper mid-span delamination under 

three-point bending: (a) geometry of the sandwich under a load applied at the upper delaminated face sheet; (b) load 

versus mid-span displacement; (c) vertical displacements in face sheets along half-length of the beam; (d) interfacial 

vertical normal stress at core-face interfaces and shear stress in core. 
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Fig. 6. Comparison between predictions of models for the sandwich beam with an upper mid-span delamination under 

three-point bending: (a) geometry of the sandwich under a load applied at the lower bonded face sheet; (b) load versus 

mid-span displacement; (c) vertical displacements in face sheets along half-length of the beam; (d) interfacial vertical 

normal stress at core-face interfaces and shear stress in core. 
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Fig. 7. Geometry and numerical results obtained for cantilever sandwich beams with upper or/and lower end delamination 

under the load applied on the upper face sheet at the tip point: (a) geometry; (b) load versus tip displacement; (c) 

interfacial axial normal stress at core-upper face interfaces and shear stress in core; (d) interfacial axial normal stress at 

core-lower face interfaces and shear stress in core. 
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Fig. 8. Final configuration and von-Mises stress distribution of the sandwich beam C1-C4 as depicted in Fig. 7a at the 

end of loading.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 
(b) (c) 

  
 

Fig. 9. Geometry and numerical results obtained for clamped sandwich beams with upper continuous delaminations under 

a point load applied on the upper face sheet at the mid span: (a) geometry; (b) load versus top-mid-span displacement; 

(c) vertical displacements in top face sheet along half-length of the beam for various values of d. 

 

 

 

 

 

 



29 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a)                                                               (b)                                                          (c) 
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Fig. 10. Configuration and distribution of von-Misses stress of the core related to Fig. 9a for (d) 𝑑 = 0; (e)  𝑑 = 10 𝑚𝑚; 

(f) 𝑑 = 16 𝑚𝑚; (g) 𝑑 = 20 𝑚𝑚; (h) 𝑑 = 30 𝑚𝑚; and (i) 𝑑 = 40 𝑚𝑚. 
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