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Abstract 
 
Reliability assessment of large-eddy simulation (LES) of turbulent flows requires 
consideration of errors due to shortcomings in the modeling of sub-filter scale dynamics 
and due to discretization of the governing filtered Navier-Stokes equations. The Integral 
Length-Scale Approximation (ILSA) model is a pioneering sub-filter parameterization 
that incorporates both these contributions to the total simulation error, and provides user 
control over the desired accuracy of a simulation. It combines an imposed target for the 
‘sub-filter activity’ and a flow-specific length-scale definition to achieve LES predictions 
with pre-defined fidelity level. The performance of the ‘global’ and the ‘local’ 
formulations of ILSA, implemented as eddy-viscosity models, for turbulent channel flow 
and for separated turbulent flow over a backward-facing step are investigated here. We 
show excellent agreement with reference direct numerical simulations, with experimental 
data and with predictions based on other, well-established sub-filter models. The 
computational overhead is found to be close to that of a basic Smagorinsky sub-filter 
model. 
 

1. Introduction 
 
Large-eddy simulation (LES) of turbulent flow has a long and rich history in which already during 
the 1960s first parameterizations, such as Smagorinsky’s eddy-viscosity model (Smagorinsky, 
1963) were proposed to capture the effects of localized turbulent motions on the large energy-
carrying scales. The coarsening length-scale of choice was directly linked to the mesh-size in the 
computational grid, often chosen as the cube-root of the volume of a grid cell (Schumann, 1975). 
However, the computational grid is often defined prior to any flow simulation and a direct, 
quantitative link between the grid-based local coarsening length-scale and the actual local flow is 
not made. Moreover, while coarsening is helpful in reducing the computational effort required for 
a simulation of a particular flow, it also introduces uncertainty regarding the accuracy of the 
achieved results (Pope, 2000; Geurts, 2003). Based on these observations two aspects take a 
central role in LES research, i.e., (i) developing a flow-related length-scale distribution allowing 
efficient as well as grid-independent LES, and (ii) achieving a clear estimation/control of the level 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



of uncertainty in the coarsened predictions. These are crucial timely pacing items in LES research 
that are in the focus of this paper. We review the recent ILSA proposal (Integral Length-Scale 
Approximation) which is a first framework that can address both aspects systematically, closely 
following Piomelli et al (2015) and Rouhi et al. (2016). 
 
Computational assessment and comparison of large-eddy simulation methods allows to address 
reliability issues in LES. The so-called error-landscape approach (Meyers et al., 2003) gives a 
direct measurement of the difference between a particular LES and the corresponding DNS 
(Meyers et al, 2007) or experimental (Meyers et al., 2010) findings. This approach makes it 
possible to identify partial error cancellation arising from the interaction between modeling and 
discretization error effects (Vreman, et al., 1994). Moreover, it suggests an ‘optimal refinement 
strategy’ yielding minimal error at given computational cost. This is a first ingredient for the ILSA 
method. We show results of the error-landscape method for homogeneous isotropic decaying 
turbulence using a Smagorinsky sub-filter model. By systematically varying the simulation 
resolution and the Smagorinsky coefficient, one can determine parameter regions for which a 
desired number of flow properties is simultaneously predicted with approximately minimal error 
(Meyers et al., 2006). The dynamic effects of discretization errors are particularly important at 
marginal spatial resolution as may be found in parts of flow domains with complex flow behavior. 
Under marginal resolution conditions the asymptotic error behavior as expressed by the order of 
the spatial discretization is no longer characteristic for the total dynamic consequences of 
discretization errors (Geurts, 2006). 
 
The computational grid for LES is often defined independent of the flow. Correspondingly, also 
the grid-based local coarsening length-scale is decoupled from the actual local flow. This clearly 
is not optimal for accuracy and efficiency. In fact, LES coarsening could in principle differ from 
location to location and from time to time, in response to local turbulence levels and variations in 
length- and time scales while the flow develops. Such technique would allow for larger grid 
spacing in regions of rather quiescent flow and adopt higher resolution where required by the 
locally more detailed flow (Boersma et al., 1997). Recently, in Piomelli & Geurts (2010) and 
Piomelli et al. (2015) an alternative coarsening length-scale was put forward for LES, based on 
flow physics rather than on the grid scale. This idea was implemented in the form of an eddy-
viscosity model for which the turbulent eddy-viscosity was based on an estimate of the local 
integral length-scale.  
 
The model coefficient in the ILSA proposal is specified either through minimizing the error in a 
fluid mechanical property (e.g., skin friction coefficient or turbulent kinetic energy), or through a 
user-defined LES resolution measure, following the concept of sub-filter activity as suggested by 
Geurts & Fröhlich (2002). Model parameter optimization can be inferred computationally from 
exploratory coarser simulations, following the SIPI (Successive Inverse Polynomial 
Interpolation) error minimization (Geurts & Meyers, 2006). Combined, ILSA is a first, complete 
formulation in which the issue of LES reliability for a particular flow is put at the central place in 
the computational framework that it deserves. 
 
In this paper we review the ILSA modeling strategy and discuss the development and testing of 
the new model for turbulent channel flow at high Reynolds numbers. Moreover, new results for 
key quantities of turbulent flow over a backward-facing step are presented, showing that the new 
eddy-viscosity model compares closely with experimental data by Vogel & Eaton (1985). ILSA 
does not require the introduction of any ad hoc user-defined parameters, other than the target sub-
filter activity, i.e., the level of LES resolution that is ‘deemed acceptable’ by the user prior to an 
actual simulation. We investigate the spatially non-uniform flow coarsening achieved using ILSA 
in boundary layers and for the backward-facing step and show that it yields smooth turbulent 
eddy-viscosity distributions, despite the sharply refined grid, avoiding any numerical jumps that 

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120



appear in traditional grid-based formulations. In its original formulation, ILSA is an example of 
a ‘multi-resolution’ method in which effectively findings at coarse grids are integrated to achieve 
a solution-specific length scale for subsequent high-fidelity production runs. This method allows 
to separate the problem of controlling discretization error effects in a coarsened flow model from 
that of sub-filter modeling errors in the final coarse solution. The formulation supports the notion 
of grid-independent LES, in which a prespecified reliability measure is used to determine the local 
coarsening length-scale. This is basic to achieving a priori error control. 
 
The organization of this paper is as follows: In Section 2 we briefly review reliability issues in 
LES and identify the main limiting factors that determine the overall reliability of LES 
predictions. Basic ILSA is presented in Section 3 in which first the original ‘global’ ILSA is 
formulated. This highlights the use of ‘pre-cursor’ simulations on coarse grids to achieve a 
computational optimization of the effective model parameter, ahead of any high-fidelity 
production runs, exploiting the SIPI algorithm. In Section 3 we discuss the ‘local’ ILSA extension, 
which rests on the same concept but avoids pre-cursor simulations by quantifying the sub-filter 
activity directly in terms of an invariant of the sub-filter tensor. Turbulent channel flow at high 
Reynolds numbers was a first successful application of ILSA – reviewed in Section 4. Section 5 
presents results for turbulent backward-facing step flow, closely following Rouhi et al. (2016), 
showing high-accuracy predictions of the separated flow region, fully consistent with 
experimental findings. Summarizing remarks are collected in Section 6.   
 

2. Reliability issues in large-eddy simulation 
 
In this Section we briefly review the main components that make up the total simulation error in 
LES and discuss the error-landscape approach to visualize interacting error contributions, which 
are basic to the fact that the total simulation error is not simply the sum of the absolute values of 
its components. In fact, partial error cancellation may occur, giving rise to particular LES 
paradoxes (Geurts, 1999; Geurts 2002). 
 
A standard formulation for LES assumes a spatial convolution filter with an effective width 
D, coupling the unfiltered Navier-Stokes solution to the filtered solution. In this paper we work 
with incompressible flows, governed by conservation of mass and momentum respectively, 
 

 
where the overbar denotes the filtered variable. Here, we use Einstein’s summation convention 
and use p for the pressure and u for the velocity field. Time is denoted by t and partial 
differentiation with respect to the j-th coordinate by the subscript j. Relevant length- (L) and 
velocity (U) scales, and the constant density and kinematic viscosity (n) are used to make the 
equations dimensionless and define the Reynolds number Re =UL/n. On the left-hand side we 
observe the incompressible Navier-Stokes formulation in terms of the filtered variables. On the 
right hand side the filtered momentum equation has a non-zero contribution expressed in terms 
of the divergence of the sub-filter stress tensor 

 
The sub-filter tensor expresses the central ‘closure problem’ in LES, as it requires both the filtered 
as well as the unfiltered representation of the solution. Since only the filtered solution is available 
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in LES, the next step in modeling the coarsened turbulent flow is to propose a sub-filter model M 
in terms of the filtered solution only. In short-hand notation this may be expressed as 
 
Here, the unfiltered problem consists of finding u from the problem NS(u)=0, while after filtering 
the unclosed problem is replaced by                                    , which is 
the closed problem corresponding to the sub-filter model M from which the approximate filtered 
solution v can be obtained. Numerous sub-filter models have been proposed for LES. In this paper 
we restrict ourselves to eddy-viscosity models, in which the anisotropic part of sub-filter stress 

, where Sij denotes the rate of strain tensor of the filtered tensor is given by 
velocity field, i.e.,  the symmetric part of the velocity gradient, and νsfs is the sub-filter scale eddy 
viscosity. 
 
A central premise of numerical simulation asserts that the solution to a given PDE problem should 
be obtained accurately and efficiently, while simultaneously, a close upper-bound for the error 
should be estimated. In the context of LES this not only implies a study of the effects of numerical 
discretization errors on the dynamics of the simulated solution, but also includes the role of the 
model for the sub-filter stress tensor as well as the interaction between these two basic sources of 
error (Geurts, 1999; Nicoud et al., 2001;  Van der Bos et al., 2007). In principle, the role of the 
numerical discretization in an academic LES setting can be fully controlled. In fact, the spatial 
filtering creates a smoothing of the problem and also separates scales larger than the filter-width 
from scales smaller than this filter-width. The computational grid provides an additional (local) 
length scale and theoretically it is sufficient to require that the sub-filter resolution, i.e., the ratio 
between the filter-width and the mesh-size is sufficiently large. In that asymptotic, theoretical, 
regime good spatial discretization methods should converge rapidly with grid refinement, while 
keeping the filter-width constant. This would correspond to a grid-independent LES solution, 
characteristic of the adopted sub-filter model. However, in practice the computational costs of 
simulating a flow on N3  grid points, using an explicit time-stepping method, scales with 
N the number of grid points along a coordinate direction. This cost hinders the sub-filter resolution 
to be very large in practice, suggesting that there is likely a large role of the numerical method in 
capturing the actual LES solution (Geurts & Van der Bos, 2005). Hence, at practically feasible, 
marginal resolution, both the selected sub-filter model as well as the adopted spatial discretization 
method can have a significant influence on the simulated dynamics. Together, these influences 
give rise to the total simulation error. 
 

NS(u) = �r · ⌧(u,u) NS(v) = �r ·M(v)

⇠ N4
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Figure 1: Error landscape for LES based on the Smagorinsky model applied to decaying 
homogeneous isotropic turbulence at a Taylor Reynolds number of 100. The error in the 

resolved enstrohpy, relative to the DNS prediction, is shown as function of the spatial resolution 
N and the Smagorinsky coefficient – reproduced with permission from  Meyers et al., (2007). 

Each dot on the error-surface corresponds to a particular LES. 
 
 
Since the modeling and discretization error effects can partially counteract each other it is not 
straightforward to assess the overall simulation error in a given flow property. Instead, one can 
resort to a computational assessment of the simulation error for selected cases. This is known as 
the error-landscape approach. In Figure 1 we show such an error-landscape for LES of 
homogeneous isotropic turbulence, based on the Smagorinsky model. The error is based on the 
relative deviation of the turbulent kinetic energy between, on the one hand, a particular LES (at 
given spatial resolution N and value of the Smagorinsky coefficient CS) and, on the other hand, 
the underlying direct numerical simulation.  Each dot on the error-landscape surface denotes the 
error in a particular LES. At zero Smagorinsky coefficient, e.g., the LES corresponds to a ‘no-
model’ or under-resolved simulation.  We observe that the error decreases rapidly and smoothly 
with increasing spatial resolution, indicating convergence toward DNS predictions at high enough 
spatial resolution. Moreover, we notice that at fixed, coarse, spatial resolution N and sufficiently 
large values of the Smagorinsky coefficients, also rather large errors arise. In between the ‘no 
model’ case and a very large CS there appears a minimum in which possible partial cancellation 
of modeling and discretization error effects is achieved optimally at that value of grid resolution 
N. This would yield the lowest total simulation error at the corresponding computational cost. The 
optimal refinement strategy can be inferred by determining these minima as function of N. 
Knowledge about such error behavior can be used to classify errors due to numerical dissipation 
and sub-filter contributions (Van der Bos & Geurts, 2010). Strictly speaking, the optimal 
refinement strategy can be inferred only after a database of LESs is collected – the optimal 
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Smagorinsky coefficient at given spatial resolution is a quantity that currently cannot be predicted 
in advance theoretically (Klein et al., 2008). 
 
A computational estimate of the optimal Smagorinsky coefficient at given spatial resolution can  
be obtained at modest additional cost using the SIPI method (Successive Inverse Polynomial 
Interpolation) (Geurts & Meyers, 2006). At given N this method takes error levels at three prior 
simulations using different CS values, and, via quadratic interpolation, progresses to converge CS 
to achieve the error minimum. SIPI requires about five LESs to approximate the optimal 
Smagorinsky coefficient with good accuracy. Since the dependence of the optimal Smagorinsky 
coefficient on the spatial resolution is quite modest, one may proceed in two steps. First, at coarse 
resolution the optimal Smagorinsky coefficient is determined. Subsequently, at finer resolution, 
production simulations can be executed with this optimal coarse grid value. This approach is also 
basic to the original ILSA model to which we turn next.  
 

3. ILSA – Integral Length-Scale Approximation 
 
We review the length-scale definition for LES based on the resolved turbulent kinetic energy 
(TKE) and its dissipation. Rather than working with a grid-based length-scale, as in traditional 
LES, referring to sub-grid scales, we propose a flow-specific length-scale distribution defining 
the filter-width and hence refer to the LES approach as modelling the sub-filter scales. An 
important benefit of this distinction is the fact that by resolving the new length-scale on the 
computational grid, a grid-independent LES is feasible, allowing to discriminate between 
discretization and sub-filter modeling contributions to the overall error. 
 
The global ILSA model is an eddy-viscosity model in which the anisotropic part of the sub-filter 
stress tensor is given by with turbulent eddy-viscosity defined as 

 
 
 

is referred to as the ‘effective model coefficient’, and  the filter-width D where 
is expressed as a fraction of the local integral length-scale, , inferred from 

 
where the resolved turbulent kinetic energy (TKE) and total dissipation rate are given by 

 
in terms of resolved velocity fluctuations and the corresponding rate-of-strain tensor. Using the 
resolved TKE rather than the total one does not affect the estimated length-scale significantly 
(Piomelli et al. 2015).  The choice to use the integral length scale L implies that the local LES 
resolution adapts itself dynamically to the turbulence characteristics of the flow. The local grid 
resolution h should at least resolve the integral length scale L, i.e., L/h>>1. By selecting h 
appropriately, an approximately grid-independent LES prediction may be obtained. Moreover, 
variations in L automatically can be used to generate (adaptive) non-uniform grids on which to 
simulate the turbulent flow at hand (Boersma et al., 1997).   
 
Aside from the local integral length-scale L, a key ingredient of the ILSA model is that adaptations 
in the effective model coefficient are made consistent with a measure toward explicit LES 
resolution control. This way, the effective model coefficient should be obtained in response 
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to the flow characteristics.  For this purpose the concept of sub-filter activity (Geurts & Fröhlich, 
2002) is used. We build the dimensionless sub-filter activity in terms of the turbulent and 
molecular dissipation rates as 
  

 
 

 
In the original formulation of ILSA called ‘global ILSA’ (Piomelli et al. 2015), the averaging 
used to calculate the sub-filter activity was carried out over the entire computational domain and 
time, implying that the global contribution of sub-filter scales was assigned to  as a constant 
model coefficient. If the sub-filter activity is close to 0 then the relevance of the flow scales that 
are still unresolved compared to the local integral scale is rather modest – we are close to 
resolution conditions needed for a direct numerical simulation, implying that remaining errors 
will be mainly of discretization nature. On the contrary, if the sub-filter activity is approaching 1, 
almost all dynamic scales are unresolved compared to  the local integral scale and the sub-filter 
modeling error will be important as well. By controlling the allowed value of the sub-filter 
activity, we may dynamically adapt the effective model coefficient and hence exert some control 
over the dominant source and magnitude of the total simulation error. In fact, if we put  
for some value d then we infer that locally 
 

 
In deriving this, we allowed the turbulent viscosity to be taken out of the averaging operator. This 
approach yields the effective model coefficient in response to the integral length-scale, the size 
of the rate of strain tensor and the molecular viscosity. Taking d small enough, i.e.,  Ck

2 L2 small, 
the LES can, in principle, be made as accurate as desired by pushing resolution conditions toward 
DNS. This approach is conceptually related to the famous ‘Pope 80% rule’ (Pope, 2000) in which 
it is postulated that accurate LES requires the local filter-width to be such that the resolved 
turbulent kinetic energy is at least 80% of the total turbulent kinetic energy. Likewise, requiring 
sε=δ we inherit a dynamic model response compliant with this accuracy condition. Since the sub-

filter activity is not known a priori as function of Ck, the assignment of the correct level of sub-
filter activity d is actually an inverse problem. This can be solved, approximately,  
computationally by simulating a particular flow on a coarse mesh at a range of values for the 
effective model coefficient and determining the sub-filter activity for each value of Ck. Once such 
pre-cursor simulations have been done, one can set a suitable approximate value for the effective 
model coefficient such that the sub-filter activity level remains near the selected ‘target’ value.  
 
A modification of the ILSA model can be devised in which the local contribution of sub-filter 
scales is employed and the spatially and temporally non-uniform Ck can be found without the pre-
cursor simulations. This is known as “local ILSA”, to which we turn next. Instead of measuring 
sub-filter activity in terms of the turbulent dissipation rates, we consider invariants of the sub-
filter stresses directly. Following Rouhi et al., (2016) we introduce 
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 where the anisotropic part of the sub-filter tensor is denoted by and the anisotropic part of 
the resolved stress tensor by .  In case of an eddy-viscosity 

with .  This model the anisotropic sub-filter tensor 
model implies  
 
 

 
 

 
If we denote in addition  then we infer a fourth order polynomial equation 
governing the effective model coefficient in terms of ‘local’ averages of LES resolved quantities 
as 

from which the unknown coefficient Ck can be obtained once the desired sub-filter activity is set 
to an appropriate value. 
 
In local ILSA the averaging operations in L and st is carried out over time. Results for a number 
of flows indicated that an averaging time window comparable to the integral time scale of the 
flow or larger yields results similar to the case in which averaging over homogeneous directions 
is adopted. This underlines the model’s robustness in heterogeneous cases. Furthermore, the 
advantage of st  over se lies in its applicability to high Reynolds number flows where 
se  asymptotes to unity and becomes insensitive to the choice of Ck (Piomelli et al. 2015). 
 
The key innovation of both ILSA models is in the fact that the user may specify the level of LES 
resolution in terms of the sub-filter activity sε or s𝜏. To compare local ILSA to global ILSA, 
application of both models to turbulent flow in a plane channel will be considered in the next 
Section. 
 

 
Figure 2: Convergence of the SIPI approach yielding an effective model coefficient to achieve a 

dissipation rate based sub-filter activity sε=0.23: (solid) parabola through (1) (2) and (3);  
(dashed) parabola through (2), (3) and (4).  This illustration is for turbulent channel flow at 

Re𝜏=950	and a coarse spatial resolution of  48×65×48 points. 
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4. Local and global ILSA for  turbulent channel flow 

 
The development and application of the global and local ILSA models has been approached 
through a study of the classical turbulent flow configuration of a plane channel at moderate 
Reynolds numbers. This poses essential challenges to the new modeling approach as both 
turbulent flow in the core of the channel as well as in the boundary layers needs to be properly 
captured. We closely follow Piomelli et al., (2015) and Rouhi et al., (2016) describing recent 
progress regarding the set-up and application of the ILSA model for this flow. We first consider 
the global ILSA approach and subsequently discuss the achievements using the local ILSA 
method. 
 
We consider a turbulent channel flow and adopt as measure for the sub-filter activity the ratio of 
the sub-filter scale - and total dissipation rates sε. A first step toward a successful application of 
the global ILSA model is the determination of the effective model coefficient. Following the SIPI 
approach one may vary this coefficient in coarse grid simulations such that a desired sub-filter 
activity level is achieved. In Figure 2 we show the distance to the desired sub-filter activity as 
function of Ck 

 

 
where we adopted a target value se=0.23, corresponding to a well-resolved LES. We observe a 
rapid convergence of the effective model parameter to a value around 0.007, using local parabolic 
reconstructions of the error landscape. At this effective model parameter the convergence of 
turbulence statistics at a range of increasing spatial resolutions can subsequently be inferred. This 
is illustrated in Figure 3. There is a clear convergence to grid-independent LES predictions at 
spatial resolutions that are a fraction of the resolutions required for a genuine DNS. The mean 
velocity profile as well as velocity fluctuations all converge smoothly to the corresponding DNS 
results. We also applied this global ILSA method to turbulent channel flow at much higher 
Reynolds number, Re𝜏=2000. In this case, the SIPI optimization on a coarse grid yields an 
optimal effective model coefficient around 0.005. This shows a slight dependence of the optimal 
effective model coefficient on flow conditions, in line with the optimal refinement illustrated in 
Figure 1. 
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Figure 3: Local ILSA model. Turbulence statistics for Re𝜏=950	 and effective model coefficient 

0.007 showing (a) mean velocity; (b) turbulent kinetic energy; (c) Reynolds shear stress, 
comparing to DNS data (+) of Hoyas and Jiménez (2006) at different resolutions: 

 
 
In Piomelli et al., (2015) the role of the specific measure used for quantifying the sub-filter activity 
was scrutinized. Rather than adopting the dissipation rate based sub-filter activity, at sufficiently 
low Reynolds numbers, one may also adhere to other measures, e.g., based on the turbulent 
stresses or the shear stress. It was established that findings obtained with a particular measure 
could be translated into basically equivalent findings using one of the other measures, provided 
the correct corresponding target value for the sub-filter activity sε is chosen. As an example, a 
target value of se=0.23 for the dissipation-rate-based measure was found to be basically 
equivalent to a target value of around st=0.022 for the sub-filter stress based measure. Moreover, 
it was shown that the particular value for the effective model coefficient was not too sensitive for 
turbulent channel flow, showing that ‘nearby’ values can be used as well without unduly 
deteriorating the simulation results.  
 
At appropriate values of the target sub-filter activity, the global ILSA model was shown to yield 
smoothly converging, grid-independent turbulent flow predictions that accurately correspond to 
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available DNS data at a target sub-filter activity value of sε = 0.23. To achieve such a result a 
number of steps need to be taken, among which the execution of several coarse grid ILSA 
simulations to obtain a good approximation of the optimal effective model coefficient. Obviously, 
this collection of coarse-grid precursor simulations is an undesired overhead that makes 
application of the global ILSA model more difficult. Therefore, we proceed by describing the 
‘local ILSA’ model which adds to the robustness of the model, particularly at high Reynolds 
numbers, and removes the need for the prior coarse-grid calculations. 
 

 
Figure 4: Profiles of (a) the normalized sub-filter stress eddy-viscosity and (b) the effective 

model coefficient for the local ILSA model at Re𝜏=950 with st = 0.022 and spatial resolutions 
  

 
 
We  use the stress based sub-filter activity measure and adopt a target value of 0.022 for Reynolds 
number Re𝜏=950.  The local ILSA model was found to yield similar or improved accuracy 
compared to the global ILSA model, at  lower computational costs. Local ILSA findings also 
showed smooth convergence with increasing spatial resolution and good robustness with respect 
to small changes in the target value for the sub-filter activity.  
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In Figure 4 we show in some more detail how the local ILSA model achieves its predictions. In 
Figure 4(a), close to the wall, the sub-filter eddy-viscosity shows quadratic scaling with the wall-
normal distance. Even though this scaling deviates from the theoretical boundary layer  result 
(cubic scaling), the fact that the eddy-viscosity approaches 0 near the wall is essential to avoid 
too much dissipation. This is a pre-requisite to avoid a qualitatively wrong prediction of the 
turbulent dynamics, as would be seen with the original Smagorinsky model in a boundary layer. 
Further away, in the bulk, the ratio of the turbulent to the molecular viscosity is quite constant 
and approaches unity, in case the spatial resolution is high enough to yield near grid independence. 
In Figure 4(b) the effective model coefficient shows a corresponding scaling inversely 
proportional to the square of the wall-normal distance. Further out in the bulk this model 
coefficient becomes quite constant as well.  

Figure 5: Mean velocity profiles at Re𝜏=950 comparing DNS data (+) with the dynamic model 

(dash), local ILSA (solid), global ILSA (dash-dot) , both with with st = 0.022, and no model 
(dash-dot-dot) at three different spatial resolutions. Bottom curves: 48×65×48 points; middle 
curves:  64×97×64 points; top curves: 128×129×128 points (reproduced with permission from 

Rouhi et al, 2016). 
 

In Figure 5 we collect results comparing the two ILSA models with the dynamic model (Germano 

et al., 1991). Note that, in local ILSA st = 0.022 is assigned locally while in global ILSA st = 
0.022 is assigned globally. We observe at coarse resolutions that all SFS models give 
improvements over a coarse DNS (no model used). The ILSA predictions show a close agreement 
with DNS data at a fraction of the computational cost of the dynamic model.  With increasing 
spatial resolution, the variation among the predictions decrease, as expected, in view of the 
reduced influence of discretization errors. Global and local ILSA were found to require about the 
same computational resources, within 1% variation, as the ‘no-model’ option, while the 
implementation of the dynamic model required about 20% more computing time. 
 
In summary, we have shown that both the global and local ILSA models yield accurate predictions 
of turbulent channel flow at high Reynolds numbers. The predictions are robust with respect to 
the precise value of the effective model coefficient, as long as it is taken within about 20% of the 
optimal value obtained using coarse grid simulations in the SIPI approach. The local ILSA model 
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avoids pre-cursor simulations and is a significant improvement over the global ILSA model. We 
adopt the local ILSA model in a study of turbulent flow over a backward-facing step in the next 
Section. 
 

5. Local ILSA for flow over a backward-facing step 
 
In this Section we illustrate the performance of the local ILSA model for turbulent flow over a 
backward-facing step at Rec = Uc hs/n= 28,000 based on the centerline velocity Uc at the inlet 

(x=0) and step height hs.  
 
We compare results with the Lagrangian dynamic model (Meneveau et al., 1996), and show close 
agreement of local ILSA with experimental reference data by (Vogel & Eaton, 1985). We analyze 
the induced eddy-viscosity model on the computational grid and argue better numerical behavior 
in the ILSA model, contributing to the overall model performance. We also compare the re-
attachment length predictions for these simulations, a quantity of considerable relevance for 
assessing the performance of separated flow models. Finally, we present flow structures 
characterizing the turbulent mixing in the flow (Geurts, 2001) and show that the grid-independent 
LES predictions can be represented well provided minimal requirements are met by the grid. 
 

Figure 6: Structured grid for the backward-facing step flow on a coarse grid of 256×100×64 grid 
points, clustered at characteristic locations in the domain, i.e., near the boundaries and intense 

shear layers inside the domain. All scales are normalized by the step height hs. 
 

 
In Figure 6 we show the computational grid used for the backward-facing step simulations. The 
height of the inflow channel is 4 step heights and the spanwise width is 3 step heights. The inflow 
length of the channel is 32 step heights and the velocity field at x=-5hs is recycled to the inflow 

located at x = -32hs to generate a well-developed turbulent inflow. This was validated separately 

by comparison with a turbulent channel flow. At the outflow at 20hs a convective boundary 

condition was adopted. Comparison with a longer domain with an outflow at 30hs confirmed that 
the domain is adequately long. 
 
In Figure 7 the mean flow statistics are shown at three spatial resolutions, comparing local ILSA 
with the Lagrangian dynamic model, with ‘no model’ and with experimental data.  The LES 
results agree closely with each other and with the experimental data –  only on the coarsest grid 
there is a slight difference between the local ILSA and Lagrangian dynamic model. This 
difference is most notable in the recovery region after the reattachment. The ‘no model’ option 
shows that the inclusion of a proper eddy-viscosity model is beneficial for the accuracy of 
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predictions, even though the spatial grid is highly refined.  Similar results are obtained for the 
Reynolds stresses (not shown). 
 

Figure 7: Mean velocity nrmalized by the centerline velocity at the inlet, determined at a 
number of locations downstream of the step on different grids: (a) 256×100×64 points,  

(b) 384×150×96 points, (c)  512×200×128 points.  Experimental data (Vogel & Eaton, 1985) 
shown with full circles, Lagrangian dynamic model in dash-dot, no-model in dashed line and 

local ILSA in solid line (reproduced with permission from Rouhi et al., 2016). 
 
The central model parameters of the local ILSA model are illustrated in Figure 8. We compare 
the standard definition of the filter width, Δ = (Δx Δy Δz)1/3 (Figure 8a)  with the estimated 
integral scale L  (Figure 8b). The local integral length-scale decreases considerably where the flow 
has small scale features, i.e., in the boundary layers and near the shear layers. Away from these 
locations, L increases as the typical scales that need resolving become larger. Although the grid 
tries to reproduce some of these features, its structured character implies that a refined mesh is 
also used in regions where the turbulent eddies are not small, for instance downstream of the step, 
x/hs≃ 5-10 and y/hs≃1.  As a consequence, the eddy viscosity predicted by the Lagrangian eddy 
viscosity model (which depends on Δ2) has an unphysical sharpness along the region where the 
grid is refined (Figure 8d), which is not observed when the local ILSA model is used (Figure 8c). 
Such large variations in the local filter-width and eddy viscosity are linked to commutator errors 
(Van der Bos & Geurts, 2005; Vanella et al., 2008) that thus far have not been accounted for. By 
allowing a smooth variation of the eddy-viscosity/filter-width, the contribution of commutator 
errors can largely be removed (Van der Bos & Geurts, 2005, Geurts & Holm, 2006). 
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Figure 8: SFS quantities for the backward-facing step flow.  (a) Filter size; (b) integral scale; (c) 
eddy viscosity, Local ILSA model; (d) eddy viscosity, dynamic Lagrangian model. Intermediate 

grid, 384×150×96 points. 
 
 
As a further assessment of the quality of the LES predictions we consider the distribution of the 
skin friction defined as  

 
in terms of the wall-shear stress, the fluid density and the centerline velocity, and the re-
attachment length Xr, given by the length behind the step at which the time-averaged wall-shear 
stress changes sign. The simulations reported above are modeled after experiments by Vogel and 
Eaton (1985). Skin friction and re-attachment length can be directly compared to the experimental 
values. In Figure 9(a) we observe that the general trend of the skin friction is well captured by the 
Lagrangian dynamic model and the local ILSA model when using the previously determined 
optimal value of 0.022 for the sub-filter activity. The error in the skin friction is quite significant 
in case the ‘no model’ option is considered, i.e., at zero sub-filter activity. The error also increases 
when too large values of the sub-filter activity are adopted, establishing that 0.022 is a sensible 
value for this flow. In Figure 9 (b) both the Lagrangian dynamic model and the local ILSA model 
are seen to agree closely with each other and with the measured skin friction distribution.  
 
In Figure 11, the re-attachment length predictions obtained with the local ILSA model are 
compared with the Lagrangian dynamic model predictions and the experimental value. The 
experimental value is accurate to an estimated relative error of about 10% (Vogel & Eaton, 1985). 
The Lagrangian dynamic value is seen to lie within the experimental range. This is also observed 
for the local ILSA model with sub-filter activity levels between 0.015 and 0.04. For the optimal 
sub-filter activity level of 0.022, agreement is indeed very close to the reported experimental 
value. The ‘no-model’ option is seen to deviate beyond the experimental uncertainty from the 
experimental value. Increasing the spatial resolution was not found to yield significant changes. 
 
 
 
 

Cf =
2⌧w
⇢U2
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(a)                                                                            (b) 
Figure 9: Skin friction distribution obtained with the local ILSA model at a range of specified 
sub-filter activity levels (a) and a comparison between local ILSA and Lagrangian dynamic 

model predictions (b). 
 

Figure 10: Re-attachment length as function of the imposed sub-filter activity level for the local 
ILSA model. Predictions are compared with the Lagrangian dynamic model (green horizontal 

line) and the experimental value (red horizontal line with 10% experimental uncertainty). 
 
The effects of spatial resolution on the structures in the numerical solution can be inferred 
qualitatively from three-dimensional snapshots of characteristic flow properties. Figure 11 shows 
contours of the streamwise velocity fluctuations obtained on three different grids. One may 
observe that the coarse mesh is not sufficiently refined to resolve eddies of the size of the effective 
filter-width, while the two finer grids yield a qualitatively similar impression of the flow 
structures. Indeed, there is very little difference between the results obtained at the two finer 
meshes – the predicted flow does not change much with resolution, as the integral scale is well-
approximated throughout the domain on both finer grids. 
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Figure 11: Contours of u -velocity fluctuations, normalized by the centerline velocity Uc  at fixed vertical 

height, using three different meshes of increasing refinement. 
 
 
 

In figure 12 we visualize the eddies using isosurfaces of the second invariant of the velocity gradient 
tensor, Q (Hunt et al., 1988; Dubief & Delcayre, 2000): 
 
 
 
 
We observe a marked qualitative difference between the impression of Q on the coarse mesh, 
compared to that seen on the two finer grids. With increased resolution, from the middle grid onward, 
the visual impression of the flow starts to appear quite similar. This intuitively indicates a level of 
convergence to a grid-independent LES. 
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Figure 12: Isosurfaces of the second invariant of the velocity gradient tensor Q using three different 
meshes. Top: fine mesh; middle: medium mesh; bottom: coarse mesh. 

 
In summary, application of the local ILSA model to flow over a backward-facing step shows 
better control over the smoothness of the spatial distribution of the eddy-viscosity, compared to 
the Lagrangian dynamic model. This is beneficial for the numerical accuracy – overall a close 
agreement with experimental data is achieved by inclusion of flow-based length-scale variations, 
at a much reduced computational cost. 
 

6. Concluding remarks 
 
We reviewed recent progress in the assessment of the reliability of LES predictions. The basic 
limitation in LES quality stems from an interplay between effects of discretization errors and 
modeling error. This can be clarified comprehensively in terms of a computed error-landscape in 
which the total simulation error is computed as function of spatial resolution and model 
coefficient. Such an approach yields an insight in the total error after a large number of 
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simulations has been conducted and compared to a ‘ground truth’, e.g., DNS data or experimental 
findings.  
 
A key concept used for dynamic error control for LES in this paper is the ‘sub-filter activity’. 
This measures the dynamic relevance of scales that were removed from the dynamics through 
spatial filtering. Depending on whether ‘a lot’ of small scales were removed during coarsening or 
not, the main source of total simulation error may vary from that of being dominated by sub-filter 
modeling error to that of being dominated by spatial discretization error. Adhering to a description 
that keeps the measure for the sub-filter activity near a pre-specified target value, allows some 
level of control over these dominant LES errors. 
 
In this paper we combined both ‘error-landscape’ and ‘sub-filter activity’ concepts into the global 
and local ILSA models. The coarsening length-scale was based on the integral length scale of the 
flow, rather than on the local grid scale. We used the SIPI method to optimize the effective model 
coefficient such that a target sub-filter activity is achieved. This requires a number of coarse grid 
simulations, yielding a good approximation of the desired effective model coefficient. The 
multiple resolution approach, i.e., first performing coarse simulations to estimate the required 
effective model coefficient, followed by higher resolution simulations to predict the flow 
accurately, is basic to the original ‘global ILSA’ model (Piomelli et al., 2015). By using a sub-
filter measure based on the unresolved stresses, a ‘local ILSA’ model can be formulated as well, 
in which the pre-cursor simulations can be avoided altogether. 
 
We tested the local and global ILSA models extensively in plane channel flow at high Reynolds 
numbers and in a backward-facing step flow. The ILSA models were found to require little extra 
computational overhead and to yield close agreement with DNS and experimental reference 
material. The models are quite robust and the prediction quality is not particularly sensitive to the 
precise value of the effective model coefficient. The main model innovation, i.e., that of using the 
local integral length scale to represent changes in the local flow physics, rather than using the 
local grid spacing, represents the ‘dynamic’ aspect in the  ILSA models. Much of the non-uniform 
variations in the turbulence properties is already reflected in changes in the integral length scale 
– the rest of the eddy-viscosity definition is then less sensitive to flow details and was found to 
yield accurate simulations and a natural adaptation of the sub-filter model to main features of the 
flow. This was observed in boundary layers, and in regions of high shear such as in the backward-
facing step configuration. 
 
The local ILSA model holds promise to be effective in LES also for wider classes of turbulent 
flow. Further studies to underpin this should include stronger variations in flow properties, 
including re-laminarization. Moreover, investigating the role of the target value for the sub-filter 
activity level on the reliability of the LES predictions and the convergence with spatial resolution 
are items of ongoing research toward a genuine error-bar for CFD. 
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