
The N ottingham Trent University
Library & Inform ation Services

SHORT LOAN COLLECTION

Date Time Date Time

2 wmm

Please return this item to the Issuing Library.
Fines are payable for late return.

THIS ITEM MAY NOT BE RENEWED
Short Loan Cod May 1996

■

ProQuest Number: 10290157

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10290157

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

G \

X ?

o

L

The Use of
Orthographic and Lexical Information

for Handwriting Recognition

by

Cynthia Joyce Wells

This thesis has been submitted to the Council for National Academic

Awards in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

(This work was conducted at Nottingham Polytechnic Department of Computing)

June 1992
40 0 6 9 0 1 5 4 2

Orthographic and Lexical Information
for Handwriting Recognition

Cynthia Joyce Wells

Doctor of Philosophy

Abstract

This thesis details the research work undertaken by the author from July 1987 to May
1992 concerning the automatic recognition of handwriting by computer. The emphasis
has been the development of algorithms and data structures which facilitate the use of
orthographic and lexical information to resolve the ambiguity present in handwriting
recognition systems.

Good recognition performance is ultimately linked not only to the capacity of the
system to extract and compare good feature sets, but also to the integration of context
and knowledge in the different processing stages. Hence the current study forms the
first part of a contextual recognition system. It describes a number of levels of analysis
for handwriting recognition, which begin with the application of orthographic
information. Letters do not combine arbitrarily to form words, so letter string
combinations produced by a pattern recogniser can be checked for acceptability. Such a
process is known as a lexical check and requires a list of words or lexicon against
which to compare alternative candidate strings.

A list of words can be acquired from a standard dictionary. However the words must
be stored in a suitable data structure which can easily be searched to check the existence
of candidate letter strings. This structure should preferably be searchable in real time
and have only modest memory requirements so that it could be part of a recognition
system on a personal computer. These aspects are considered within this thesis. The
advantages and disadvantages of a number of methods are introduced and compared.
The lexical analysis system described can interface to higher level linguistic constraints
which aid the recognition process.

In the future it is hoped that the computer could be a “notepad” style portable. The
interface to such computers should mimic conventional pen and paper instead of using a
keyboard. Hence efficient and reliable handwriting recognition will necessarily form an
important part of this new technology.

Acknowledgments

I would like to thank the following (in no particular order) for their assistance and
encouragement over the past five years.

Lindsay Evett, Frank Keenan, Tony Rose, Warren Smith, Paul Whitby, other
colleagues at Nottingham Polytechnic, members of my family, and especially to Mike
Flynn for his unfailing support (especially with the arduous task of proof reading).

Thanks also to my students for providing some “light” relief!

Special thanks are due to my supervisors Bob Whitrow and Lindsay Evett. To Bob for
offering me the opportunity to study for a research degree and to Lindsay for reading
and commenting constructively on many versions of this thesis.

Frank Keenan developed the indexing system described in § 4.2.3, and the set of flags
used in § 4.4.3, in conjunction with myself.

Mike Flynn suggested the hash table data structure for the inverted look-up in § 5.4.3,
and provided many helpful discussions regarding the algorithms (described in § 3.2.5)
for constructing a directed acyclic word graph.

The sections of this thesis which have been published are:

• § 3.2.3.2, § 3.3.1, § 3.3.3, § 3.4.1 and § 3.4.2 (published as Wells et al,
1990a);

• § 3.2.3.2, § 3.3.1 and § 3.3.2 (published as Wells et al, 1990b);
• § 3.3.4 (presented and published as Wells et al, 1989);
• § 5.3 (which is published as Wells et al, 1991).

This research was funded by the European Commission under the ESPRIT initiative.
Firstly as part of project 295 — The Paper Interface, continued in project 5204 —
Papyrus, and utilised in project 5203 — Intrepid.

Copyright

This copy of the thesis has been supplied on condition that anyone who
consults it is understood to recognise that its copyright rests with its
author and that no quotation from the thesis and no information derived
from it may be published without the author’s prior consent.

For my mother, Edna Wells

Table of Contents
Introduction...1

Chapter One — Review...5

1.1 Introduction...5

1.2 Speech recognition.. 9

1.3 Script recognition .. 10

1.3.1 Systems for handwriting recognition.. 14

1.3.1.1 Recognition of whole words................................ 15

1.3.1.2 Segmentation methods.. 16

1.3.1.3 Discussion.. 17

1.3.2 The use of context to aid handwriting recognition................ 18

1.3.3 Summary and conclusions.. 27

1.4 Text recognition.. 28

1.4.1 Hybrid methods...30

1.5 Sources of information... 33

1.6 Conclusions ..35

Chapter Two — Pattern Recognition.. 37

2.1 Introduction... 37

2.2 The Pattern Recogniser... 38

2.3 Data format.. 40

2.4 Representation of data.. 42

2.5 Generation of candidate strings...44

2.6 Checking for allowable strings...46

2.6.1 The use of n-grams.. 47

2.6.2 Experiments using n-grams...48

2.6.3 Experiments using a lexical check..................................... 50

2.7 Conclusions... 51

Table o f Contents

C hapter Three — W ord R eco g n itio n ..53

3.1 Introduction.. 53

3.2 Alternative data structures...54

3.2.1 List structures.. 54

3.2.2 Binary tree structures..57

3.2.3 Multi-w ay tree structures.. 59

3.2.3.1 B-trees... 60

3.2.3.2 26-way tree.. 60

3.2.3.4 Trie structures.. 62

3.2.4 Tree compression.. 64

3.2.5 Directed acyclic word graphs..65

3.2.6 H ashing..68

3.3 Implementations..69

3.3.1 Reduced memory method... 72

3.3.2 Mixed-method tree structures..74

3.3.3 D aw g.. 75

3.3.4 Initial comparisons..80

3.3.5 Further comparisons... 82

3.3.6 Faster building of lexicon structure..84

3.4 Look-up performance..85

3.4.1 Failure of look-up - Wild cards..85

3.4.2 Ordering the list of allowable strings.................................87

3.4.3 Results... 87

3.5 Conclusions... 89

C hapter Four — In teg ra tio n .. 91

4.1 Introduction...91

4.2 Internal lexical structure..93

4.2.1 Problems with affix-stripping algorithms..................................94

Table o f Contents

4.2.2 Approaches to morphology.. 95

4.2.3 An alternative approach to morphology..............................96

4.3 External lexical structure.. 98

4.4 Recognition of compounds... 99

4.4.1 Introduction... 99

4.4.2 The compound tree.. 101

4.4.3 Flagging system.. 104

4.5 Integration of higher levels.. 107

4.5.1 Syntax analysis..109

4.5.1.1 Syntax implementation...110

4.5.1.2 Access to syntactic information.......................... 112

4.5.2 Semantic analysis...112

4.5.3 Interface structure..114

4.6 Special characters..116

4.7 Conclusions..118

Chapter Five — Combining Sources of Information.......................... 120

5.1 Introduction..120

5.1.1 Psychological theories of word recognition............................ 121

5.1.2 Examples of the use of higher level knowledge..................... 123

5.2 Errors... 127

5.2.1 Introduction..127

5.2.2 Traditional methods for detecting errors..................................128

5.2.3 Classification of spelling errors..130

5.2.4 Methods for error correction..131

5.2.5 Analysis of errors from a recognition system..........................134

5.2.6 Unmatched characters..136

5.2.7 Detection and types of errors in our system............................ 137

5.2.8 Application of traditional methods to the recognition
system...139

Table o f Contents

5.2.9 Alternative methods for correction of errors...........................142

5.2.10 Conclusions...143

5.3 Interaction between levels of analysis.. 144

5.3.1 Introduction... 144

5.3.2 Initial investigations...146

5.3.3 Case 1 — Reducing the list of candidate words..................... 147

5.3.3.1 Word length.. 147

5.3.3.2 Word shape... 149

5.3.3.3 W ildcards...151

5.3.3.4 First letters of words.. 153

5.3.4 Case 2 — Suggesting candidates.. 154

5.3.4.1 Interaction with syntactic processing........................154

5.3.5 Conclusions... 156

5.4 Structure for storage and search of information................................... 157

5.4.1 Introduction................. 157

5.4.2 Search methods..157

5.4.3 Inverted look-up structure... 158

5.4.4 Conclusions... 161

5.5 Experimental results... 161

5.6 Conclusions..166

Chapter Six — Summary and Discussion.. 168

6.1 Summary..168

6.1.1 Introduction and Teview .. 168

6.1.2 Pattern recognition.. 170

6.1.3 Word recognition... 170

6.1.4 Integration.. 171

6.1.5 Combining sources of information.................... 172

6.2 D iscussion... 173

Table o f Contents

6.3 Future work.. 179

6.4 Conclusions....................................... 180

Bibliography... 181

Appendix A ..200

Appendix B...201

Appendix C...205

Appendix D .. 209

Appendix E ... 212

Introduction

But Eeyore was saying to himself ‘ “This writing business. Pencils and
what-not. Over-rated, if you ask me. Silly stuff. Nothing in it.”

cWinnie-the-Pooh\ by AA Milne.

This thesis details research undertaken by the author in the Department of Computing at

Nottingham Polytechnic over almost five years. The work has been funded by the

European Commission under the ESPRIT initiative. The subject of the research is the

automatic recognition of handwriting by computer. In particular, it details a system

which takes output from a pattern recogniser in the form of alternative characters, and

applies orthographic and lexical information in order to discriminate between these

alternative characters.

Handwriting, or script recognition is a difficult task due to the inherent ambiguity

within the input. For example, do the following words say dog or clog, clown or

down ? The word can really looks more like cau.

Introduction

However, when these words occur within a meaningful context, they can easily be read

and understood by humans. For example :

CLOkAA

Handwriting contains many similarly shaped characters which must be distinguished

from each other to achieve effective recognition. Some easily confusable characters

pairs are U-V, C-L, a-d, n-h, o-a, and c-e. Upper and lower case letters are often

written the same, such as C-c, K-k, and O-o, the distinguishing factor here is the

character size relative to the line spacing. For P-p and Y-y it is the position of the

characters relative to the baseline. Letters can also be confused with digits such as 0-0,

1-1, 1-1, Z-2, S-5, g-9 and G-6. Cases such as 1-1-1 and 0-0 are often written

identically and therefore only distinguishable in context.

The problem is much worse when characters run together. For example, the samples of

handwriting given above are written cursively (or “joined-up”)- If characters are printed

separately, it is relatively simple to find where one character finishes and the next one

begins. For cursive writing, the data must first be segmented into characters before

recognition can take place. One of the most difficult tasks is to decide on appropriate

segmentation points. The most commonly applied method for recognition is by

matching input script with a database of previously collected “template” characters.

Good recognition performance is ultimately linked not only to the capacity of the

system to extract and compare good feature sets, but also to the integration of context

and knowledge in the different processing stages. Hence the current study forms the

first part of a contextual recognition system. It describes a number of levels of analysis

in a handwriting recognition system. These begin with the application of orthographic

Page2

Introduction

information. Letters do not combine arbitrarily to form words, so letter string combin­

ations produced by a pattern recogniser can be checked for acceptability. Non-occurring

sequences can be discarded. The aim is to reduce the pattern level ambiguity until only

allowable words remain. This can be achieved by comparing the candidate letter strings

with a list of n-grams1. N-grams are legal letter string combinations collected from a

dictionary or a corpus of text.

In this way strings containing non-occurring sequences of letters will be rejected.

Unfortunately the remaining strings are not always words. Candidate letter strings can

be compared with a list of words instead of n-grams, and this method guarantees lexical

output. Such a process is known as a lexical check. The required list of words, or

lexicon, can be acquired from a standard dictionary in machine readable form. This

thesis is concerned with aspects such as the storage of a lexicon for ease of searching.

A number of alternative data structures are discussed and compared.

Ambiguity remains because most word positions give rise to a number of alternative

candidate words. However words do not combine arbitrarily to form phrases and

sentences, so higher level constraints can be applied to reduce the remaining ambiguity.

For example this can be syntactic and semantic information to ensure more meaningful

results, especially for running text. Other sources of information are discussed in the

current study, along with details of their integration. The additional information gained

from higher level knowledge must be combined in some meaningful way in order to

contribute best to the recognition system.

1 A gram is essentially a sequence of letters where n is the length of the gram. Hence bi-grams (or di­

grams) are where n = 2, tri-grams are where n - 3 and so on.

Page 3

Introduction

It should be noted that although the system described often refers to the particular data

for on-line cursive script recognition, the techniques used are equally applicable to other

forms of recognition. This can be on-line or off-line recognition of hand-printed

characters, or of machine-printed characters using optical character recognition. All of

these situations produce character-level ambiguity which must be reduced to achieve

good recognition performance.

In the future it is hoped that there will be a new type of computer interface which

should mimic the conventional pen and paper interface. Such “notepad” machines are

currently being introduced into the market, and it is expected that they will become an

effective alternative to keyboards in applications where handwriting will prevail.

Effective and reliable handwriting recognition will necessarily form an important part of

this new technology.

Chapter One

Review

1.1 Introduction

Computerised document handling is now common in every activity within business

life. The continuously falling price and increasing power of desk-top computers has led

to their widespread availability and use. To take full advantage of the facilities offered

by these systems, keyboard skills must be acquired by users who wish to interact

efficiently with the machines. Objections are frequently raised by affected personnel,

and methods to input documents automatically are thus highly desirable. Moreover, the

introduction of notepad style computers will necessitate non-keyboard input. Two

natural modes of communicating with computers are via spoken and handwritten input.

For such input to be possible, the speech or handwritten data must be “recognised” by

the computer and translated into digital text representation (such as ASCII characters).

The human information processing system generally has few problems with spoken or

written language, even when the stimulus is noisy or ambiguous. We learn to filter out

background noise when listening to a particular voice, accents provide little difficulty,

and even heavy dialects can be understood with some practice. Reading takes years of

learning and practice by the human child, who already has an established linguistic and

cognitive system. However, the skilled human reader has few problems reading text in

many different fonts, including new ones, or with handwritten material, including un­

Chapter One — Review

familiar handwriting. Badly formed characters and even illegible words can be under­

stood in context because human readers use their knowledge of language and the world

to guide their processing. Similar problems in isolated characters or words are not so

easy to read, because there is little or no surrounding context (Mitchell, 1982).

For automatic recognition of both script and speech the information physically present

in the signal is not sufficient for unambiguous identification of words. Higher level

knowledge can improve recognition performance by helping to choose between alter­

native characters. For written language this involves information about how letters

combine to form words, or orthography. For spoken language phonological informa­

tion is required to understand how individual speech sounds (phonemes) combine and

affect each other within words and across word boundaries. Additional knowledge

about how words may combine to form sentences, and about how sentences are put

together to produce text will also be necessary to resolve remaining ambiguity at the

lexical level. This involves information about syntax, semantics, discourse structure,

pragmatics and knowledge of the world.

Present systems for the input of text into a computer mainly use keyboards. Trained

keyboard users can type much faster than humans write by hand, but speech is much

faster than either of these for the majority of people. Trained writers of shorthand can

however transcribe speech faster than keyboard entry (Leedham, 1990). In the future it

is envisaged that all three methods will be available as alternative input techniques for

computers, perhaps including shorthand as a fourth. Already existing documents can be

input using optical character recognition (OCR). This may be printed text or

handwritten.

There are situations in which one technique will be preferable to all others, and which

of these is most suitable depends on the particular situation. For example, people who

Page 6

Chapter One — Review

are not trained in keyboard use would find either speech or script recognition systems

much faster and easier to use. However in noisy or quiet environments, both keyboard

and speech input may be unsuitable. For example for note-taking in lectures and

seminars, amongst noisy machinery and other background conversations speech input

would be difficult, and in quiet environments (for example in libraries) both speech and

keyboard input are inappropriate. For security reasons it may be better to write (or use a

keyboard) to avoid being overheard, and for medical doctors who have automated

systems, speech is considered unsuitable in front of the patient and others in a hospital

ward, and keyboard input is socially unacceptable. Patients are used to doctors writing

while they are talking, but typing would be disconcerting. A script recognition system

would also be more easily adapted to foreign languages (if the same alphabet is used),

than would a speech recognition system which would require completely different

information about the phonology of other languages. Interestingly, there have been

rapid developments in the recognition of oriental languages (e.g. Japanese, Chinese and

Korean). The large character set used by such languages (a few thousand) makes

keyboard use unwieldy, and the uniformity of writing style makes recognition relatively

simple (Tappert et al, 1990).

Handwritten data is input to a computer via an electronic tablet which accurately

captures x,y coordinate information of pen-tip movement. Such tablets first became

available in the late 1950’s and precipitated considerable activity in on-line handwriting

recognition. The recent advances in technology have combined tablets and flat displays

to bring input and output together on the same surface, known as electronic paper. This

can simply be described as a flat panel display that is written on with a stylus (pen). As

the stylus moves in contact with the display, pixels are illuminated to leave a trail of

“electronic ink” on the writing surface. Tablets are now much more accurate than

before, and computers are more compact and powerful. Combined with better

recognition algorithms we now see the advent of the pen-based or “notepad” computer.

Chapter One — Review

This follows naturally from small “laptop” personal computers which are still key­

board-based. See Higgins and Ford (1991b) for an excellent review of pen-driven

interfaces.

For the reasons explained above, the interest in script recognition systems has been

expanding in recent years. The automatic recognition of handwritten words and digits is

an important but difficult task that now has a large literature (see Harmon, 1972;

Tappert et al, 1990). In some systems the input script is restricted to upper case un­

connected letters, or lower case unconnected characters. Systems coping with cursive

script are fewer and on the whole less accurate than their unconnected character

counterparts because recognition of cursive script is much more difficult. Individual

letters are subject to more variation in cursive writing, depending upon the letters

preceding and following it (Eldridge et al, 1984; Wing, 1979), and because it is not

clear where one letter finishes and the next begins, a stage of segmentation is usually

employed, which introduces more ambiguity.

Tappert (et al, 1990) cites eleven experimental handprinting recognition systems, and

twenty-one commercial handprinting recognition systems (sixteen use opaque tablets,

and five use integrated tablet/LCD devices). Tappert also lists four experimental cursive

script recognition systems, although literature suggests that there are others which he

does not mention, or that have appeared since his paper was published. Most existing

recognition systems concentrate on the pattern recognition process, and have not

utilised the substantial amounts of available context. Typically context is used only in

the form of spelling correction information to compensate for errors in character

recognition.

The goal of pattern recognition is to map the set of initial representations (data) into a

set of interpretations (names). For handwriting this means matching sequences of x,y

C hapter One — Review

coordinates with the characters they represent. Pattern recognisers are often quoted as

producing correct results approximately 90% of the time. Some systems are better than

this, but given the ambiguous nature of the input, recognition results are never going to

reach 100% even for trained, writer-dependent systems. Most writers have a range of

shapes for a given letter depending upon the particular letter context in which it occurs.

All writers make occasional slips when letters are mis-formed, omitted entirely and so

on (Wing 1979; Ellis, 1979). The only way for correct recognition to be achieved in

such situations is by the use of additional contextual information.

Systems that have employed more contextual infoimation are text recognition systems

(OCR) which have also made use of error correction techniques. Examples of these

applications (speech, script and text recognition systems) will be discussed in the

following sections. Sources of linguistic information required by a recognition system

will also be investigated.

1.2 Speech recognition

Research into speech recognition has traditionally taken priority over research into

script recognition. At a first glance, it may be thought that methods for script and

speech recognition would be the same, because both are attempting to process natural

language. However where written language is letter-based, spoken language is

phoneme-based (Crystal, 1987). A phoneme is the smallest unit of speech sound, and

the correspondence between phonemes and letters is not a direct one-to-one

relationship. Pattern recognition for speech recognition presents different problems

from that for script recognition, one of the main problems for speech is identifying

word boundaries from a continuous sound signal (Fallside and Woods, 1985).

Page 9

Chapter One — Review

The majority of past and current speech recognition systems have used whole word

based methods to identify what has been spoken and have been very restricted. Because

of this, successful systems tend to be speaker dependent, allowing only isolated words,

and have small vocabularies (Holmes, 1988). The aim would ultimately be for a

speaker independent system, allowing continuous speech, with a large vocabulary, and

this has only recently become a practical possibility as speech recognition methods have

shifted to phoneme-based systems, using transitional probabilities and methods such as

hidden Markov models to allow sequences of phonemes found in English (or whatever

language is being considered) and reject others. The problem is still that the location of

beginnings and ends of words are never certain. Consequently most of the speech

recognition research has concentrated on the pattern recognition level, and references to

the use of higher level information of the language are mainly theoretical.

In fact a large vocabulary system accepting natural language is simpler to obtain for

written language than for spoken, because the recognition units (i.e. letters) appear to

be easier to identify, and identifying word breaks is not such a problem. Letter

databases needed for matching are smaller, but give a much larger number of potential

candidates. Technological advances over recent years have made script input systems

more viable, and the improvements in script recognition are greater than the equivalent

for speech.

1 .3 Script recognition

Handwriting recognition is performed either on-line or off-line. The former means that

the machine recognises the writing while the user writes, and is also known as dynamic

or real-time recognition, although the recognition will lag behind the writer to a certain

extent. This may be one or two characters in most commercial systems (Tappert et al,

1990), but need only be fast enough to keep up with the writing. On-line handwriting

Page 10

C hapter One — Review

recognition requires some kind of digitising data tablet to capture the script as it is

written. These typically have resolutions of 200 points per inch, a sampling rate of 100

points per second, and an indication of pen-down.

For recognition systems which use electronic paper (tablet and display combined) there

remains a user-interface problem of exactly when the display of script should be

removed for the recognised text to appear. This process should be unobtrusive to the

user, but it is not clear how best this should be done. If each word is displayed as soon

as it is recognised, the display will be changing disconcertingly whilst the user is

writing the next word. The user may wish to see the previous few words, or the current

sentence, or perhaps more than one sentence of handwriting before the display

changes.

In contrast, off-line handwriting recognition is performed after the writing is

completed, and involves aspects of computer vision via an optical scanner to convert

the image of the writing into a bit pattern. This is similar to optical character recognition

(OCR) which has concentrated mostly on machine-printed characters, although there

has been some effort on handwriting as well. The use of higher-level techniques in

OCR are similar to those in dynamic script recognition, but ambiguity is generally less

at the letter level, although merged or overlapping characters present more of a

problem.

The advantage of on-line data capture is that temporal or dynamic information about the

handwriting can also be collected. This may be information such as the number of

strokes used, the order in which the strokes are written, the direction of the writing,

and even the speed of the writing for each stroke. The use of this kind of information

by handwriting recognisers can improve their accuracy. Little learning (on the part of

the user) is needed to use an on-line recognition system because it seems just like real

Page 11

Chapter One — Review

pen and paper. However the main disadvantage seems to be that current digitising

tablets are not quite so comfortable and natural to use.

Data collected by this method are usually in the form of x,y co-ordinates, and are

passed into a pattern recogniser, which will aim to produce characters, or a number of

candidate characters as output, usually by matching against a database. Input is coded

and a decision is made about the possible characters it represents (Frishkopf and

Harmon, 1961; Munson, 1968; Tappert, 1982; Wright, 1989). Pattern recognition

techniques that have most often been applied to script include spatial analysis methods

(where strokes are coded by a numbering system on a grid) which are easy to

implement but are only suitable for unconnected characters, and will be user dependent

in order to keep the database of character codings small and accuracy high. Topological

feature based methods detect and code straight lines and the orientation of strokes. They

also identify curves, pen-ups, dots and cross strokes, and can be applied at the single

character level and for complete word analysis. Vector chain coding techniques (e.g.

Freeman, 1961), which code six or eight directions of strokes (see chapter 2 for more

details) are also often used for pattern recognition.

Even if the pattern recognition stage is highly reliable, there will be some instances of

euor and ambiguity, especially if the script is untidy, illegible, or if the slope of writing

is extreme. In a word like pack for example, it is unlikely that a pattern recogniser, no

matter how accurate, will be able to say if the correct sequence of letters is pack, paclc,

or padc. Consider also the word minimum and the candidate letters a recogniser might

produce for it. Each curve in the script could form part of many different letters (e.g. n,

u, m, w, v and i), and the number of alternative strings these letters would combine to

form will be very large. Therefore some form of subsequent processing (often called

post-processing) is necessary to improve recognition rates.

Chapter One — R eview

The most common type of contextual information to be implemented in script

recognition is that of the surrounding letters (Ehrich and Koehler, 1975; Goshtasby and

Ehrich, 1988), or orthography. Orthographic information can be taken advantage of to

improve recognition. Letters do not combine arbitrarily to form words. For example,

the number of four letter combinations of the alphabet is 264 = 456,976. The number of

four letter words, taken from a dictionary of about 14,000 words, is 1,323. This is

about 0.3% of the total number of possible combinations. For a pattern recognition

system which outputs alternative candidates for each letter position in a word, this fact

can be exploited to rule out letter combinations which are not allowable in English.

There are various ways in which this can be done. For example, a common method in

the script recognition literature has been to use n-grams (Riseman and Hanson, 1974;

Ehrich and Koehler, 1975; Higgins and Whitrow, 1984; Whitrow and Higgins, 1987),

or letter transitional probabilities such as the Viterbi algorithm (Hull, Srihari and

Choudhari, 1983), or Markov modelling (Raviv, 1967; Neuhoff, 1975; Farag, 1979)

to rule out illegal strings of letters, or to select the most likely letter combinations.

However, this does not exploit redundancy to the full. In the case of n-grams, there are

13,166 legal quad-grams of the total possible combinations (from the above 14,000

word dictionary), a reduction to 3% compared to 0.3% for words. If only the most

likely combinations are used, from estimated probabilities, there will also be a

significant probability of error. This is because if the most likely candidate is not the

correct one, this method will give an uncorrectable error which will be propagated if

transitional probabilities are combined. Even if positional n-grams are used (Shinghal,

Rosenberg and Toussaint, 1978), they will not be as successful as the words

themselves (Wells et al, 1990a; Ford and Higgins, 1990).

Chapter One — R eview

1.3.1 Systems for handwriting recognition

Script recognition systems are traditionally most heavily concerned with the problem of

pattern recognition. For a comprehensive review of pattern recognition methods, see

Tappert, Suen and Wakahara (Tappert et al, 1990). A range of methods have been

applied to the recognition of printed characters, or unconnected handwriting, especially

for oriental alphabets as well as for English. There are a number of commercial systems

currently available on the market which recognise handprint, some of which are quite

successful for careful writing within specified boxes (quoted recognition rates of up to

95%), and very successful if the system has been trained in a writer-dependent mode.

Further details of printed character recognition systems are not included here in order to

concentrate on cursive handwriting systems.

The recognition of cursive script is much more difficult because several characters can

be written with a single stroke. Consequently there have been fewer serious efforts

towards obtaining effective solutions. Moreover such efforts have been restricted to

lower case English, and have concentrated on two main approaches. Firstly there is the

whole word approach, whereby shape and pattern recognition procedures attempt to

match directly with complete words. The second and more common approach involves

breaking or segmenting each cursive word into parts.

It should be noted that it is often difficult to compare different recognition systems as

they are reported because differences in input data and equipment can affect perform­

ance. Details of the exact nature of the writing tested, such as the size of the script, the

quality of script, the speed it was written, the pen type, tablet resolution and so on are

often sadly lacking in research papers. The hardware used for data collection can also

give rise to differences in recognition performance. Standards for describing such

C hapter One — Review

information should be defined so that systems can be more meaningfully assessed and

compared.

1.3.1.1 Recognition of whole words

Studies of whole word recognition attempt to recognise a word as a single entity by

examining certain global features of the word. Such approaches have been applied to

cursive words of English (Frishkopf and Harmon 1961; Harmon, 1962b; Earnest,

1962; Farag, 1979; Brown and Ganapathy, 1980), but to achieve any degree of

accuracy the vocabulary which can be recognised is very small. Pattern recognition

procedures used for this approach are mostly identical or similar to those applied to

separate characters. For example the system developed by Earnest (1962) extracts a few

primitive measures such as differential vertical extent, closed loops and a count of

horizontal centreline crossings. These features are matched against a stored dictionary

(approximately 10,000 words) of similar word encodings. Five different subjects were

asked to write 100 test words selected at random from the dictionary. A CRT light-pen

was used for input of script, and possible answers were lists of about 20 words. The

correct word was included about 60% of the time, although it was found in the first

position of the list of alternatives only 18% of the time.

Another study (Farag, 1979) used elastic matching with eight direction codes to

establish accurate recognition, unfortunately for only ten cursively written key words.

More recently, O’Hair and Kabrisky (1991) have presented a method for recognising

whole words as single symbols, although their system is applied to the off-line

recognition of printed text. The technique uses Fourier transforms, and reportedly

correctly recognises at least 5000 words using 24 various font styles, including cursive

ones.

Page 15

Chapter One — Review

Current thinking is that the whole word recognition approach is not viable for the more

general problem with large vocabularies (Tappert et al, 1990). However it may be very

effective in situations where the number of words likely to be written is severely

restricted.

1.3.1.2 Segmentation methods

More commonly applied recognition techniques split cursive words into a number of

smaller parts. This process is known as segmentation, and methods vary considerably

resulting in individual strokes, characters, or some unit which is usually less than a

character. Sequences of strokes or stroke segments are used to identify characters.

Recognition of these resulting segments utilise techniques similar to those used in

systems for unconnected characters.

One early study of connected handwriting (Mermelstein and Eden, 1964) segmented the

input script into upstrokes and downstrokes by segmenting at points of minimum

velocity. Practically unique letter specification was obtained from only the downstrokes

of the writing, and there is other evidence to suggest that most of the information in

cursive writing is in the downward portions of the writing. The upward portions of

writing serve mainly as ligatures to join characters together. Other studies have

analysed cursive words on a letter-by-letter basis (Frishkopf and Harmon, 1961;

Harmon 1962a) where segmentation was based on an estimate of letter width, and

letters identified by reference to stored features such as cusps, closures, retrograde

strokes and so on.

Elastic curve matching has also been applied to cursive script recognition. Letter seg­

mentation and recognition were effectively combined into a single operation by Tappert

(Tappert, 1982) who matched segments against stored letter prototypes and evaluated

Page 16

Chapter One — Review

recognition at all possible segmentations. Later Tappert went on to use a loose seg­

mentation method to cut script into sub-strokes in regions identified as possible

ligatures (Tappert, 1988). This was carried out on-line, although a similar method has

been employed in an off-line study (Bozinovic and Srihari, 1989).

Much research effort is still being expended into different segmentation methods and a

number of new techniques have recently been reported (Wright, 1989;

Kadirkamanathan and Rayner, 1990; Teulings et al, 1990; Higgins and Ford, 1991a).

Wright’s system for cursive script recognition has efficient low-level processing but

relies on a dictionary and higher level linguistic processing. The system is quoted as

coiTectly recognising 94% of characters of a data set of 112 people’s writing. Another

approach is investigating a stochastic method for segmentation inspired by simulated

annealing (Teulings and Schomaker, 1991). The use of neural networks for hand­

writing recognition is also currently being researched (Schomaker and Teulings, 1990;

Morasso and Pagliano, 1991; Skrzypek et al, 1991).

1.3.1.3 Discussion

The highest level of information used in processing to date has been some form of

lexical look-up. The most common use of context has been some measure of how

letters may legally combine to form words. There is one major difference between the

various methods for exemplifying this information. This is whether or not the informa­

tion is represented statistically. Information about how letters combine is extracted from

some source text or lexicon. This information may then be represented statistically; in

terms of the frequency of occurrence of combinations of letters, or in terms of the

probability that some letter is preceded by some combination of a number of other

letters (transitional probabilities); or non-statistically in terms of whether or not some

Page 17

Chapter One — Review

combination of letters occurs in the source. This difference leads to different methods

of operation and potential for success.

Examples of different systems will illustrate these points. It is difficult to compare the

success of different systems, for reasons including the following:

differences in performance may be due to changes in technology;

• coding methods may be constrained by methods of input and by the

amount of main memory available to a system;

the vocabulary of recognisable input differs widely;

constraints imposed on input may differ;

the number of writers for whom the system will operate effectively

varies;

• the amount of training a system has received, both absolutely and in

terms of the number of writers will influence its success;

• systems are rarely tested in a comparable way, for example in terms of

actual input, number of writers, size of vocabulary and so on;

apart from estimates of computational efficiency, success can only be

assessed by considering how they cope with language in a principled

way;

• none of the systems to be reported has been tested in a way which

would allow evaluation of their linguistic effectiveness.

1.3.2 The use o f context to aid handwriting recognition

Early systems were highly constrained by technology. Advances in this area have led to

the development of more realistic script recognition systems. An early system that pro­

duced some success was that of Sayre (1973). The input to Sayre's system was

provided by an earlier project (Frishkopf and Harmon, 1961). It was received in the

Page 18

C hapter One — R eview

form of x,y co-ordinates of discrete points. This data comprised alphabets and

handwritten phrases of unsegmented form from various writers. The input was cursive,

lower case script

The system stored the form any letter may take within the sample, and indicated all the

different letters of which a segment of any description may be a part. The input strings

were segmented in the following way. The input cursive line data was first filled in to a

consistent thickness. This was because coding of the data was in terms of its concen­

tration, so that consistency was necessary to avoid spurious calculations. Baselines

were then established against which letter elements could be categorised. These base­

lines divided the data into lower, middle and upper horizontal regions. Vector changes

relative to these regions were established and categorised according to type and

position. In this way, possible segmentation points were established and types of

segment identified. These segments were then checked against the reference database

for possible identification checking both letter and letter string patterns. Alternative

identifications were produced which were then reduced by post-processing techniques.

Sayre intentionally did not include time and movement information in his encoding

scheme. He argued that since human readers do not use such information it is not

necessary for successful recognition. He did not place any constraints on input.

Sayre used two types of context to aid recognition. One involved using whole word

shape to help determine segment positions and to allow for letter shape variations

within words. This does not require any higher level knowledge. The second form of

context does. Sayre used di-gram and tri-gram statistics to rule out implausible letter

string combinations. It was intended initially to use statistics reflecting the frequency of

occurrence of letter combinations, together with letter probabilities from the pattern

recogniser. Sayre decided against this method. This was because, he discovered, that

when there is a borderline choice between two letters based on the output from the

Chapter One — Review

recogniser, the frequency statistics will favour one of the alternatives and permanently

remove the others from consideration, even if they are correct. For example, if the

pattern recogniser produces ‘a’ and ‘o’ with equal probability, the choice between them

will be based on frequency statistics. The input word fa r would never be correctly

recognised, since the sequence ‘fo’ is approximately three times more common in

English than the di-gram ‘fa’. In other cases, statistics would not be able to decide, ‘po’

and ‘pa’ are of almost equal probability, so that statistics could never decide between

pod and pad, for example. Even when information from the pattern recogniser favours

one answer, bias from the statistics may lead to an incorrect result.

To overcome this problem, Sayre did not use probability information. Rather he ruled

out only very infrequent letter combinations, based on di-gram and tri-gram statistics.

This method does not always yield a unique result. However, it is much more likely to

produce the correct answer, even if this answer is one of several alternatives. Sayre

states that in most cases, there are less than four resulting alternative letter strings, and

usually one. He suggests that when there are alternatives, these could be reduced in

several ways: by listing permissible combinations of words in phrases; by listing

allowable input sentences; by ruling out infrequent words; and by using grammatical

criteria. These suggestions appeal to higher level knowledge or suggest a fudge which

would severely limit the scope of the system. If the system does not produce a result,

letters may be changed. If nothing works, the input is considered illegible.

Sayre's paper illustrates the main problems with the statistical approach. Some other

examples of this approach are given, and then some systems are considered which

extend non-statistical methods.

Ehrich and Koehler (1975) also produced a script recognition system which did not use

real time information in its coding scheme, although they did use some sequence

Page 20

Chapter One — Review

information. Their input was via a graphics tablet. Spatial data points were collected.

Data was compressed to reduce noise. This was done by only sampling at fixed

distances between points. Size and slant constraints were employed, and writers were

asked to use only particular forms of letters. Horizontal baselines were established.

Letter features were extracted with respect to these, and compared to reference sets of

features. The pattern recogniser generated sets of letters which could have occurred.

Some substitution sets were stored to anticipate common confusions. From this

information, alternative letter strings were generated by combining the alternative

letters.

Some of these strings could be ruled out because the linking information between the

letters contradicted them. Others could be ruled out because they were illegal strings by

reference to binary di-grams. Binary di-grams2 give non-statistical information about

letter co-occurrence. The dictionary used by this system consisted of 300 seven letter

words. Only letter strings which appeared in this dictionary were considered to be

correct. While this system may produce more than one letter string as a result, this did

not happen often. When it did, various nearest match strategies could be used to select

among them.

A popular method for comparing coded input against reference prototypes is that of

elastic matching (also known as dynamic programming). This method has had some

2 A binary di-gram d(i,j) is a 26x26 binary matrix that corresponds to letter positions i and j such that

i * j, in a dictionary of words of fixed length, 1. So d(k,r) = 1 if and only if some word in the dictionary

contains the character a(k) in position i and a(r) in position j, where a is the alphabet. All alternatives

are zero. Thus these di-grams record their occurrence in a lexical source with position information.

Chapter One — Review

success in speech recognition and its application to script recognition is described by

Tappert (1982; see also Wong and Fallside, 1985). From input data via a graphics

tablet, a sequence of parameter vectors are produced to represent a word. These para­

meter vectors contain estimated strings of letters. Operating on a word at a time using

letter prototypes and allowing any letter to follow any letter, elastic matching is used to

find the prototype sequence which best fits the input word vector. This technique is

insensitive to minor perturbations of input letter shapes. Explicit letter segmentation is

not performed. Rather, elastic matching permits evaluation of all possible

segmentations and simultaneously obtains some optimised combination of segmentation

and recognition. Basically, a graph of all possible letter-segment combinations is set up

and an optimum path through the graph is calculated. This pathfinding is augmented by

limiting segmentation shapes and by using di-gram statistics. Segmentation was

inhibited at points which were definitely not segmentation points,' with the aim of

avoiding segmentation errors and speeding computation since this limits the

possibilities.

Di-gram frequency information in the form of di-gram weights (penalties) derived from

di-gram transition probabilities were employed. On making the transition from one

prototype to another a di-gram weight corresponding to the appropriate letter pair was

used in the optimisation metric, to influence the path chosen. In this way, the highest

transition probability would have more weight in the optimisation procedure. The

transition probabilities used were based on a text containing 10,000 letters, with zero

probabilities converted to a small value to enable computation. This number of letters is

approximately 1,700 words and is a relatively small sample set. Tappert gives no other

information about the source text used.

Chapter One — Review

This use of probability information is susceptible to the problems of using statistical

information outlined earlier and described by Sayre. No lexical checking was carried

out.

Burr (1983) also used a dynamic programming technique to recognise handwritten

script. He similarly used whole word shape constraints to aid recognition. Input was

lower case handwritten print via a graphics tablet. Reference shapes were stored for

each user, who input the 26 letters of the alphabet for this purpose. A vector of 26

numbers was computed for each unknown letter. Each number represented the

difference in shape between the unknown and each reference letter. Fot an unknown

word of n characters, an n x 26 shape matrix would result. This shape matrix was then

compared to a stored dictionary of words to find the word most consistent with the

shape information. This was based on correlation between the shape matrix and the

shapes of words. The words were stored in various sub-dictionaries containing vocab­

ulary words and suffixes. The aim was to extend this approach to include prefixes 3.

Burr's method of dictionary search was a complicated one. The results presented are

not detailed enough to assess the success of the method. An attempt was made to take

advantage of the morphological structure of words to cut down on storage space and

search time. However, it is not clear from the information presented by Burr how well

he has been able to cope with the irregular morphological structure of English. The

dictionary was partitioned by word length. Words were stored sequentially as their

3 Burr states that suffixed forms of words can be derived by rule. This is not strictly true, since there

are many exception forms in English, and there are many pseudo-affixed words. These points are not

discussed.

Page 23

Chapter One — Review

equivalent ASCII code. To minimise memory costs, words were stored as their roots

with suffixes stored in various sub-dictionaries. These sub-dictionaries are stored on

disk and are read in as required. An input word is initially tested for the presence of a

suffix. If good evidence for one is found, then the remainder of the word is tested for

the root. The rationale for this approach is that there are few suffixes relative to words.

The shape matrices are then tested against those of the appropriate sub-dictionaries to

find the best match, either between the unknown word and a dictionary entry, or a

composite for suffixed forms. The system allows for whole word matches as well as

composite matches, so that if the suffix analysis does not produce a result, the whole

word match is chosen.

This method seems over-complicated for lexical checking of pattern recognition output.

This is because suffixation in English is not a regular, rule-based system. Burr does not

give sufficient detail to enable a reasonable evaluation of its effectiveness.

A cursive script recognition system which incorporates efficient lexical look-up and is

described in sufficient detail is that of Srihari and Bozinovic (1987). This system would

appear to be the most comprehensive to date, and is reasonably successful. The only

constraint on writer input was that some care was taken over legibility. Input was off­

line. After an initial normalisation procedure which standardised the data, the data was

segmented and coded to produce possible letters and letter strings. These were checked

against a lexicon as they were produced so that unacceptable letter strings could be

ruled out as early as possible. The possible letters and letter strings had associated

probabilities, based on properties of the pattern recognition system. These probabilities

were not used to rule out alternatives, rather to rank them in terms of their likelihood.

This rating system starts with the likelihoods of the beginnings of letter strings. These

beginnings, or prefixes, are checked against a lexicon, which is constructed in such a

way that prefixes which will not produce legal words can be identified and pruned from

Page 24

Chapter One — Review

the list. Following pruning, the prefix with the consequent highest likelihood is

expanded, producing a new prefix. This is then sent for lexical checking and the ratings

re-computed. This continues iteratively over the possible candidates so that letter strings

approach the length of the input string, illegal possibilities are ruled out and likelihoods

re-computed to produce ordered resultant candidate words. This process usually

produces the correct result. Occasionally the correct word would not be the highest

rated.

The method of lexical representation used was one which allowed efficient

representation and search. The lexicon was represented as a trie4. See figure 1.1, and

Srihari, Hull and Choudhari (1983) for further details of this trie.

The advantages of this representation of the lexicon are that:

(i) its structure naturally fits the search algorithm and hypothesis expanding

rules;

(ii) it has convenient knowledge representation by storing various

information in its nodes;

(iii) it has storage space savings due to numerous identical initial word

segments.

4 This is a tree-shaped data structure, each node of which is an ordered pair (l,e) where I is a letter and e

is a boolean flag for the end of a word. The root of the trie is the only exception in that its initial entry

Chapter One ~ Review

A 111 11 1 N 01101 1
■

D 00101 1
«

N 00' 01 1
■

0 00001 0
■

Y 00001 1
■ ■

CO 001 11 0 A 00111 0
■

1—ooQ

1
■

E 00011 1
■

D 001 00 0 A 00100 0 Y 001 00 1
■ ■

I 00100 0
■

D 00100 1
■ ■

00100 o A 00100 0 D 00100 1

G 00001 0 E 00001 1

N 00100 1
■

R 00100 1
■ ■

Figure 1.1 — Trie structure used by Srihari et al (1983) for the lexicon a, an, and, ann,

annoy, bad, bade, badge, day, did, fad, fan, far.

Page 26

C hapter One — Review

Lexical checking here has the advantage that knowledge about how letters may legally

combine by position is represented succinctly, and that any output from it will be of real

words. Srihari and Bozinovic (1987) tried the system with two different sized lexicons.

One contained 710 words, the other 7,800 words. Performance with the larger lexicon

showed some deterioration. It is not clear in what way performance was considered to

have deteriorated. This effect may have been reversed if a larger set of test words had

been used.

1.3.3 Summary and conclusions

A representative selection of the literature on script recognition has illustrated the main

approaches to the problem, and the main problems to be resolved. Systems have used

information about the orthography of words to select output from a pattern recogniser

in various ways. Statistical information about n-grams has been applied to the output to

select a single most likely letter string result. The problems with this approach are that

when the coirect output is not the most likely, an error is bound to occur. Also, this

approach does not guarantee a word as output, even though parts of the letter string will

contain legal combinations of letters. Another approach has used n-gram information in

a non-statistical way. In these cases, letter string combinations are only ruled out if they

do not occur in the sample source. This approach may lead to the output of more than

one letter string, and again does not guarantee that these letter strings will be words.

A third approach was considered to exhibit the least disadvantages. This involved some

form of lexical checking. Here at least the output is guaranteed to be an acceptable

word, although more than one may result. While methods of choosing amongst

alternatives when they occur (which is not often) may be based upon statistical

measures of likelihood (such as word frequency; see Kucera and Francis, 1967) the

problem remains that the correct word may be rejected.

Page 27

Chapter One — Review

It is important to note that the source of information, either for the extraction of n-grams

or for the creation of a lexicon, requires careful consideration. The source should reflect

the nature of the to-be processed material, in both its statistical make-up and content.

Otherwise candidates which are acceptable may be rejected because they do not occur in

the source, and alternatives which are not acceptable may be accepted because they

appear in the source and provide a good fit, even though they are not characteristic of

the material being processed. If a lexicon contains many words which occur rarely or

never in the input material, this will introduce costs of storage and search, although if a

lexicon is too small, words will be rejected. The selection of source material will limit

the information which can be processed, and may introduce unnecessary overheads if it

does not fit material to be processed well (Sampson, 1989).

Most authors suggest that ambiguity remaining after initial lexical processing would be

reduced by applying higher level context, such as syntax and semantics. None to date

have attempted to do this. It was argued earlier that only the use of higher level know­

ledge will enable any additional success. Language has too much inherent ambiguity to

enable solely bottom-up processing. While this is a notoriously difficult problem, it

was argued that some progress can be made.

1.4 Text recognition

The problems for text recognition are different from those of script recognition. Text

recognition refers to the recognition of machine printed characters by scanning

documents. This type of recognition is by definition off-line, and is often called optical

character recognition (OCR). It is considered briefly here because researchers have

concentrated more on the use of context, although none have ventured beyond the

lexical level. Many of the methods involve error correction techniques to resolve

Page 28

Chapter One — R eview

recognition errors. This is also a problem for script recognition, although it has rarely

been considered.

Three approaches are generally considered for the application of contextual information

in the field of text recognition. These are Markov, dictionary and hybrid methods

(combinations of the other two methods).

The Markov methods represent the bottom-up approach, and they model English text as

a Markov process which allows transition probabilities to be assigned to various letter

combinations or n-grams. A dictionary of legal words is usually used to calculate the

probabilities, but they can be calculated dynamically from the text being processed.

Generally, as the order of the n-gram and the number of constraints is increased the

accuracy of the results will be improved, but at the expense of computational resources.

All permutations of transitional probabilities arising out of the character recognition are

calculated to give an associated probability for a given string. The requirement is to

maximise this probability, and thus obtain the most likely string. A number of methods

have been proposed to achieve this aim, including the Viterbi algorithm (Viterbi, 1967;

Neuhoff, 1975; Shinghal and Toussaint, 1979a), probabilistic relaxation (Goshtasby

and Ehrich, 1988), and the Recursive Bayes algorithm (Raviv, 1967; Shinghal,

Rosenberg and Toussaint, 1978). However it has been claimed that Markov probabil­

ities do not give significant reductions in word error rate, and can even lead to an

increased error rate (Riseman and Ehrich, 1971; Riseman and Hanson, 1974; Hanson,

Riseman and Fisher, 1976).

Dictionary look-up techniques represent the top-down approach, and involve verifying

the input word by matching it with a dictionary word. In the simplest form the word

will only be verified if it exists in the dictionary. More complex techniques have been

developed for approximate string matching, allowing for possible spelling or

Page 29

 *' . . . i , v , • i t * d L 4 * t s a i . ‘ ■ • V . ►

Chapter One — Review

recognition errors in the input word (Hall and Dowling, 1980; Kashyap and Oommen,

1984).

The advantage of using hybrid methods is that high-order Markov dependencies do not

have to be introduced because accuracy is ensured by using the dictionary. The

computational complexity of the problem is therefore reduced without sacrificing

performance. Examples of the application of some hybrid methods are discussed in the

following section.

1.4.1 Hybrid methods

Shinghal and Toussaint (1979b) used a combined bottom-up and top-down approach to

using context in text recognition. This paper exemplifies the main bottom-up approach

used in this field, and also uses higher-level context. They point out that bottom-up

statistical methods are efficient from a computational point of view, but exhibit poor

error correcting capabilities. Dictionary look-up methods give impressive error

correction but require much greater storage and computation. They develop a combina­

tion of these two approaches which combine the advantages while minimising the

disadvantages.

The knowledge of the statistical structure of English is used in conjunction with a

Modified Viterbi Algorithm to obtain an optimal letter string from a number of

alternatives. The Viterbi algorithm combines information about the probability of a letter

being correct given knowledge of the performance of an input device, with transitional

probabilities to select the most likely letter string. The algorithm is modified, since only

some set of the higher probability letters are selected as candidates to be chosen

between, instead of choosing between all possible candidates. Note that this method is

open to the criticisms made of statistical methods above. Even if the higher probability

Page 30

• ____ - - _____ . v ■ .•-« ;„■!.. t-----i C - k

Chapter One — Review

strings are included in the computation, as opposed to just the highest, there remains a

built in possibility of eiror.

Shinghal and Toussaint estimated their transitional probabilities from a corpus of

English text containing 531,445 words. Uni-gram probabilities were used. Shinghal,

Rosenberg and Toussaint (1978) compared the use of uni-gram and di-gram

probabilities both position dependent and independent. They found that performance

improved as the amount of context increased, so that word position dependent n-gram

probabilities gave better performance. Beyond a certain point however, the amount of

improvement tailed off with increase in context. Longer grams have greater storage

requirements too, so there is a trade-off between performance and storage.

The dictionary look-up algorithm was based on that of Bledsoe and Browning (1966).

Input words were coded by a feature vector sequence. The words in the dictionary were

also coded in this way. Input feature vectors were compared to those of the dictionary

words, and the word with the best match was chosen as the recognised word. The

dictionary contained 11,603 words. The dictionary method gives much greater error

correction performance, with greater storage requirements and computational cost.

The combined algorithm was called the Predictor-Corrector Algorithm (PCA). This

combined the two approaches to reduce the computational costs of the dictionary

algorithm while maintaining its advantages. In this case, the dictionary was partitioned

by word length and, for any length, was sorted by the vector sequences of the words in

descending order. In this case, only a fraction of the words from any sub-list need to be

searched to find the best match. The number of words to be searched is an heuristic

decided upon by the user.

Page 31

Chapter One — Review

The PCA recognises a word using the modified Viterbi algorithm. The result is then

checked in the dictionary. This means that fewer words need to be checked in the

dictionary. If the word exists in the dictionary it is taken to be the answer. Otherwise,

the vector scores of the words in the neighbourhood of the result are calculated and the

word with the closest score is taken as the answer. This method assumes that no two

words in the dictionary have the same length and the same vector score. So far this

assumption has not been violated.

Hull, Srihari and Choudhari (1983) compared performance of two types of bottom-up

and top-down (or hybrid) algorithms. One was the PCA as just discussed. The other

was an algorithm which integrated bottom-up and top-down knowledge sources

(Srihari, Hull and Choudhari, 1983). This second method checked letter strings in a

lexicon while selection was made amongst the possible alternative letter strings (see

Srihari and Bozinovic, 1987, discussed earlier). This allowed illegal letter strings to be

ruled out at an early stage. Results showed that this algorithm required less time and

memory than the PCA. This was partly because of the structure of the lexicon used

which enabled efficient storage and search, and cut off non-productive alternatives at an

early stage.

Srihari and his colleagues decided on their methods partly from consideration of human

performance on reading tasks. Hull (1986, 1987) has taken this approach further and

used an analysis of stages involved in the human reading process to motivate his choice

of methods for lexical look-up and comparison. He reports 96% correct recognition for

12,600 words, and the approach is at least as successful, if not more so, as any

reported so far. In his approach, selection of neighbourhoods from a lexicon for search

are made on the basis of gross visual similarity. Finer comparisons are then made.

While these comparisons consider visual features, and the human literature suggests

that at this stage visual information is not involved (Evett and Humphreys, 1981),

Page 32

Chapter One — Review

Hull's considerations have led him to adopt a neighbourhood approach which is also

suggested by the cognitive science literature (Hull, 1986). He considers that the use of

syntax and semantics will be necessary for any further improvement.

Text recognition has the same remaining problem as handwriting recognition. That is,

once candidate words have been selected, frequently there is more than one allowable

candidate. While it seems that there may often be only one candidate, especially for

longer words, there will be more than one on a significant number of occasions. The

only way in which this ambiguity can be resolved is by appealing to higher levels of

information such as syntax, semantics, pragmatics and general knowledge. The

grammar of the language can be used to restrict word combinations because they do not

combine arbitrarily to form sentences. Knowledge of how word meanings combine at

the sentence level can rule out grammatically correct, but semantically implausible

sentences. Knowledge of topic of discourse could also aid selection of candidates.

1 .5 Sources o f information

In the use of n-grams or a dictionary check to rule out letter sequences that do not

appear in English, the information needed is a list of English words, or perhaps a large

corpus of text from which to extract such a fist and/or the list of n-grams for whichever

values of n are necessary. Higher levels of information (for example syntax and

semantics) must also have some source(s) for this information (Evett et al, 1989;

Keenan and Evett, 1989). Most of this required data is found in a dictionary, and over

the past few years more paper dictionaries have become available in machine-readable

form. For example Webster's 7th Collegiate Dictionary (W7) (G and C Merriam and

Co., 1963), Longman's Dictionary of Contemporary English (LDOCE) (Procter,

1978), Collins English Dictionary (CED) (Hanks, 1979), Oxford Advanced Learners

Page 33

 ■ — :— i— —l i t J - J i ' h : ■-Y,,-;.:..,.

Chapter One — Review

Dictionary of Current English (OALDCE) (Hornby, 1988), and soon the complete

Oxford English Dictionary (OED) (Oxford, 1989).

Computational lexicographers have advocated the use of machine-readable dictionaries

(MRDs) for many uses such as spelling correction, lexical analysis, thesaurus

construction, machine translation and so on (Amsler 1984). Machine-readable

dictionaries are often used for natural language understanding and processing systems

(Boguraev and Briscoe, 1987; 1988). Currently available dictionaries vary in size and

content (Amsler 1984, Lesk 1986). Table 1.1 compares the five MRDs listed above.

Table 1.1 — Sizes of available machine readable dictionaries

Dictionary Mbytes Headwords (in 1,000s) Bytes/headword
OALDCE 6.6 21 290

W7 15.6 69 226
CED 21.3 85 251
OED 350.0 304 1,200

LDOCE 14.0 55 254

Many machine-readable dictionaries are now available to academics for research

purposes, although these are usually in the form of copies of typesetting tapes, and

have no accompanying software for operating on the data. Conversion from typesetting

version to a usable format or database of the dictionary is a lengthy process (Weiner,

1985; Keenan, 1989; Peterson, 1982; Boguraev et al, 1987; Neff et al, 1988).

Walker (1986) has used the LDOCE (amongst other machine-readable texts) to build a

text subject assessment system and a concept elaboration system by using the basic

definitional information from the dictionary, involving coding of topic or domain

information.

Lesk (1986) gives a study of text in definitional parts of dictionary entries and

compares currently available machine-readable dictionaries with OED entries which are

Chapter One — Review

generally much longer and include many quotations, which he requires for his sense

dis-ambiguation system. Lesk explains that “the idea is to select the correct sense of a

word by counting overlapping words between the sense definitions and the definitions

of the other words in nearby context... it depends for its success on having fairly long

and informative definitions. Thus it is likely to work much better with the OED than

with shorter dictionaries”. He goes on to say that “lexically based computer research is

growing rapidly. More and more researchers in natural language processing are invest­

ing their efforts in dictionaries and lexicons, and efforts are being made to use machine-

readable dictionaries instead of constructing lexicons from scratch”.

1.6 Conclusions

The preceding sections have reviewed past and current approaches to the application of

lexical context to handwriting and text recognition. These various approaches have a

number of problems. For example, whole word recognition techniques are only

effective for domains with restricted vocabularies. Segmentation based techniques

produce alternative characters and therefore introduce more ambiguity. It has been

established that contextual information is necessary in addition to a pattern recogniser.

Some systems have employed letter level and word level information, in the form of n-

grams or a limited word look-up.

The aim of the present system is to improve the recognition rates of a cursive script

recogniser by implementing techniques using linguistic information for a large vocab­

ulary. Any higher level processing must begin with orthography, hence this study

forms the first part of a contextual system. Lexical, syntactic and semantic information

needed for the system can be obtained from a machine-readable dictionary.

Page 35

Chapter One — R eview

The following chapters expand on the practical application of reducing the ambiguity

produced from a pattern recogniser. This can be achieved by using both n-gram look­

up and a lexical check. Techniques for effectively implementing a lexical check by

machine are discussed and compared. Other possible requirements of a script recog­

nition system are investigated, including the combination of information from various

sources and levels of analysis. The notion of what constitutes a lexical unit is also

addressed. Further problems the recognition system may encounter (for example mis­

spelled words) are considered, and possible solutions to these problems are proposed.

Additional information may be required to provide such solutions, and data structures

for the effective storage and retrieval of this information are investigated.

Page 36

Chapter Two

Pattern Recognition

2.1 Introduction

The initial stage of a script recognition system involves a pattern recogniser. This stage

does not fall within the scope of this thesis, but the interface to the recognition process

does form an important part of this work. The output produced by the pattern

recogniser becomes the data that must be accepted by the first stage of this system. As

script is written, sequences of x,y co-ordinates are collected, coded, and matched to a

database. This produces a number of character candidates for each letter position of

each word of handwriting processed.

Taken together, these character candidates produce a number of letter string candidates

for any one word. For short words, the number of candidate strings produced can

number in the hundreds, usually number in the thousands for longer words, and can

reach millions for words over about twelve letters long. The majority of these candidate

strings will be nonsense strings, not English words, and therefore need to be rejected.

Given some output from the pattern recogniser, all possible candidate strings should be

generated. These strings can then be checked for allowability. Unacceptable strings will

be rejected, and acceptable ones are stored for further processing.

Chapter Two — Pattern Recognition

2.2 The Pattern Recogniser

The pattern recognition process will be discussed here briefly. A sample of handwriting

is collected (see figure 2.1 for example). The writing can be unconnected characters

(e.g. pack), connected characters, also known as cursive script (e.g. extra), or some

mixture of these two forms (e.g. bags). The recognition system tries to emulate a

“normal” writing situation such as pen on paper. Script is written using a digitising

tablet (the “paper”) and a pen or stylus. To see the script that has been written, such

tablets can be overlaid with ordinary paper, and the pen can have an ink-filled ballpoint

centre. Alternatively, with the advances in technology, so called “electronic paper”

devices are now available. Such devices combine a tablet with a computer screen,

usually as an LCD display, and the pens are untethered. Ink is not needed because the

LCD display shows the script as it is being written.

The tablet used in the initial experiments captures data by sensing (electromagnetically)

the movement of the stylus across its surface. Data is collected in the form of x,y co­

ordinates, along with ‘pen-up’ and ‘pen-down’ signals. The resolution of the tablet is

1000 points per inch. The sequences of co-ordinates are transformed into vector chain

codes (Freeman, 1961) whereby changes of direction in the strokes of the pen are

converted into a numbered code. Figure 2.2 shows the numbered directions.

Figure 2.1 — Typical sample of handwriting

Page 38

Chapter Two — Pattern Recognition

The chain codes are reduced to five, or fewer codes. A chain code can of course be

fewer than five codes because certain letters are formed by strokes of fewer than five

directions. For example the letter / (one direction) or the letter v (two directions).

Figure 2.3 shows a possible Freeman encoding of a handwritten letter a.

2

6

Figure 2.2 — Freeman vector numbering scheme

Freeman chain code =
4.5.6.7.0.1.2.6.7

Figure 2.3 — Freeman coding of letter a

Page 39

C hapter Tw o — P attern Recognition

The pattern recognition has two phases, acquisition and recognition. Firstly samples of

handwriting must be acquired to train the database, and secondly this database will be

used to attempt recognition of some new samples of script. The acquisition phase can

be on-going in order to add new examples of characters to the database. A selection of

samples of different people's handwriting were collected and encoded. For the

acquisition phase, these Freeman codes are stored in a database which covers each letter

of the alphabet, for each person's handwriting. For recognition, as script is written, the

Freeman code for each character is compared with the contents of the database, and

those entries which match the current code are output as candidate letters, together with

a measure of confidence (an integer between 0 and 100) as a guide to how close the

match was.

The recogniser used by the present system gives up to six candidate letters per letter

position of input script. If the script is connected (cursive), the sequence of x,y co­

ordinates from the tablet must first be segmented so that comparison with the Freeman

database can take place. This process of segmentation is complex and will not be

discussed here, nor will other processes involved in the pattern recognition programs,

as they do not fall within the scope of this thesis. See Wright (1989) for further details.

2.3 Data format

As co-ordinates are collected, encoded and recognised, matched characters must be

presented to further stages of analysis in some agreed format. Alternative characters

must be represented, along with alternative segmentations such as cl or d, Ic or fc. An

example of handwriting such as the word pack shown in figure 2.4 typically produces

data similar to that given in figure 2.5 from the pattern recogniser.

Page 40

Chapter Two — Pattern Recognition

q a c)c

Figure 2.4 — Sample of handwritten word

0 :99 [1 7]
1 l:99 [2]
2 j:62 o:19 s:17 [3 j
3 a:100 d:73 q:29 n:25 [4 8]
4 c:74 a:42 o:40 e:29 n:18 [5 9]
5 l:99 i:75 [6]
6 c:75 l:44 i:23 [10]
7 p:94 [3]
8 d:57 [6]
9 k:741:57 [10]
10 39 D

Figure 2.5 — Sample data for handwritten word pack

The lines of data are of the form Uline_number alternative_characters [destinations]”,

and the alternative characters are each of the form “reference_character : confidence”.

The line “0 :99 [...]” indicates the start of a word, and “... :99 []” indicates its finish.

The numbers in square brackets give one or more destination numbers, which refer to

the line numbers of the sets of candidate letters which can follow at the next character

position. For example “0 :99 [1 7]” means that the following position is either line 1

or line 7. Line 7 is in turn followed by fine 3 and so on. Each candidate character has an

associated measure of confidence, as described earlier.

Combining the character candidates across a complete word gives a number of

candidate strings. Taking only the highest priority candidate letters from the data in

Page 41

Chapter Two — Pattern Recognition

figure 2.5, the pattern recogniser would find six candidate strings for this word,

namely Ijaclc, Ijack, I jade, paclc, pack, and padc. Taking all candidate letters from the

data will give many more strings, in this case a total of 1,204.

Calculating the mean of probabilities for each of the candidate letters across the length

of the strings (for example Ijaclc = (99 + 6 2 -1- 100 + 74 + 99 + 75)/6 = 84.83), and

ordering the strings on the basis of these results gives table 2.1 below.

Table 2.1 — Candidate strings with probability scores

Candidate string Probability
paclc 88.4
pack 85.5
Ijaclc 84.8
ljack 81.8
padc 81.5
ljadc 78.6

These results must be improved upon in some way, so that paclc, Ijaclc and so on are

rejected, but pack is accepted. Although the pattern recogniser gives higher confidences

to some characters, these confidences should not be relied upon too heavily. The

correct character may often have a lower confidence because it was not such a good

match with the Freeman database. This could be for many reasons: for example the

database does not contain a good example of that particular form of letter, or the

character may have been badly written. Consequently all character candidates should be

considered in any further processing.

2 .4 Representation of data

The data input to our system is the output from the pattern recogniser as discussed

above. Each sample of script collected begins with an optional header. The header

contains information about the writer (e.g. sex, age, handedness etc), the date the

sample was collected, the style of writing used (e.g. lower case, upper case, cursive),

Page 42

" — — '* g j s_!— v ■"'.‘■■u*.-*.,

Chapter Two — Pattern Recognition

and one or more sentences indicating the script which was written by the subject.

Figure 2.6 shows an example file header.

{*
$ 040892 f 37 r
packmybagswithfivedozenextraliquorjugsbothwizenedmenquicklyju

dgedfour sharpvixens
! packmybagsw!lh~.flvc-dozc-nc-raliquor]ugs.bolh-wlzc-nc-dmc-nqulck

lyjudgc -d[-oursharpvlns
& numonics
% lower

*}

Figure 2.6 -— Typical header information

A graph structure was chosen as an efficient way of storing all the candidate letters,

after Whitrow and Higgins (1987). The structure of a graph is such that it will allow

checking and searching of pathways between letters from any point in it, in either

direction. The graph also gives an economical means of representing a large amount of

information in an implicit and flexible format, and provides a record of the input

information should further checking become necessary at a later stage.

Each node of the graph contains a candidate letter, two integers, and two arrays of

pointers. The first integer is the letter's associated confidence (taken directly from the

data, e.g. d has a confidence of 57), and the second integer represents its rank

compared to the alternative candidate letters at the same letter position (e.g. k has rank

1, and t has rank 2). The first array of pointers points to the candidate letters in the next

position within the word, and the second array points to the candidate letters in the

previous position. The arrays hold a variable number of pointers, and any unused ones

are set to null. Figure 2.7 shows the structure of each node in the gTaph, and figure 2.8

represents a graph for the data for the input word pack as presented above (figures 2.4

and 2.5).

Page 43

Chapter Two — Pattern Recognition

candidate letter

confidence number

rank number

array of backward
pointers array of forward

pointers

Figure 2.7 — Detail of graph node

The links in figure 2.8 represent both forward and backward pointers, but the

confidences and ranks are not displayed for simplicity.

2.5 Generation of candidate

For the purposes of traversing the graph network to generate all possible candidate

strings, the probability correct information is not used, and the worst possible cases are

considered. To generate all candidate strings, begin from the start node of the graph

(*), take the first route from it (i.e. the first of the forward pointers), and note the letter

at the node reached as the first letter of the candidate string. Again take the first route

from this node, noting the letter at this next node as the second letter in the candidate

string. This process is repeated until the end node of the graph is reached (**), at which

point a complete candidate string has been generated (e.g. from figure 2.8, this would

have found Ijadc).

Page 44

C hapter Two — Pattern Recognition

*

Figure 2.8 — Graph structure of candidate letters

Now follow the first backwards pointer (i.e. back to the node we have just come from,

e.g. from the !c’ node back to the ‘d’ node), and take the next route forwards again (to

the T node, giving another complete candidate string Ijadl). Repeat this process

(through Ijadi) until all routes from that node have been followed (now followed each

Page 45

Chapter Two — Pattern Recognition

of ‘c’, T and ‘i’ routes from the ‘d’ node). Then take one step backwards again (to the

‘a’ node) and down the next route forwards (to the ‘c’ node), and so on down the first

route from each node, until the end of the graph is again reached (i.e. the complete

candidate string Ijaclc). The stages of this method are repeated as described, until all

possible paths are found, ending with the candidate string print, giving 1,204 candidate

strings in total i.e. Ijadc, Ijadl, Ijadi, Ijaclc, Ijacll, Ijacli, Ijacic, Ijacil, Ijacii, ..., pnnk,

pnnt. This process is complicated to describe, but when expressed computationally it

becomes a neat recursive procedure. In fact due to the nature of recursion the

backwards pointers are not required. See flowchart D1 in Appendix D.

The number of candidate strings generated can be huge, for example a twelve letter

word with five candidate letters at each letter position gives 244,140,625 complete

candidate strings. See Appendix B for further examples.

2 .6 Checking for allowable

As previously discussed in chapter one it is possible to use orthographic information to

rule out those candidate strings which are not allowable in English. Two techniques

which have been used to check strings of characters are n-gram look-up, and a lexical

check (whole word look-up). The efficacy of these two techniques will now be

compared.

Using n-grams, those candidate strings which are found to exist in the list of n-grams

are then stored in a list. Those which do not exist are effectively discarded because they

are not stored in the list, however they could be regenerated from the graph should that

become necessary at some future stage. One reason for this would be if the original

script contained spelling errors, so the “correct” word could not be found as a legal

English word. Thus a reduced list of candidate strings is produced.

Page 46

Chapter Two — Pattern Recognition

2.6.1 The use o f n-grams

A gram is essentially a sequence of letters where n is the length of the gram. Hence

letter sequences of length two are 2-grams (bi-grams or di-grams), of length three are

3-grams (or tri-grams) and so on. The use of n-grams requires two stages: firstly the

acquisition of lists of n-grams, and secondly candidate strings are checked against the

lists as part of the recognition process. For the acquisition phase, the lists of n-grams

were derived from a machine readable dictionary (MRD). Each dictionary entry is

divided up into sequences of the required gram length. For example to compile a list of

3-grams, one and two letter entries would be ignored, and three letter entries stored as

they are. Dictionary entries more than three letters long are divided into their 3-gram

components. Table 2.2 shows some examples.

Table 2.2 — Example words with the 3-grams they produce

Word 3-grams
happily

in
table
zoo

hap app ppi pil ily

tab abl ble
zoo

The whole dictionary is processed in this way, a frequency count for each gram is

collected, and each gram has a flag which is set to true if it occurs as a separate word

(i.e. dictionary entry length equals required gram length). Table 2.3 illustrates some

3-gram entries.

Table 2.3 — Example 3-grams and their frequency of occurrence

Gram Frequency Word flag
ard 574 false
zoo 42 true
veb 1 false
two 33 true

Page 47

Chapter Two — Pattern Recognition

For the recognition phase, a candidate string can either be compared with a list of grams

of the same length as itself, or it can be divided into sequences of shorter grams (in the

same way as described above for the acquisition phase) and compared with a list of

grams of this shorter length. If all these separate grams occur then the candidate string

can be said to be allowable. If at least one of the separate grams does not occur, the

candidate string is not allowable, and is therefore discarded. The frequency count

collected for each gram can be used as a way of deciding which grams to include if

rarer items are to be excluded. They could also be used to calculate a measure of

likelihood correct for accepted candidate strings.

2.6.2 Experiments using n-grams

The list of n-grams collected was first built into a binary tree structure for ease of

searching before comparison takes place (see chapter three for further discussion of

memory structures). It is interesting to note that the majority of processing time is taken

up by building the tree of grams, the traversing of the graph and comparison with the

tree was negligible. Two different lists were compiled, and the same data set run

against them. The first list was a set of n-grams taken from a short dictionary (11,795

words), and the second was a list of n-grams taken from a larger dictionary (71,279

words). Both lists were formed from the Medical Research Council Psycholinguistic

Database (Wilson, 1987) by excluding repetitions, rare usages, plurals and derived

forms. Tables 2.4 to 2.6 show the results from various experiments1.

1 If there are 100 candidate strings: 10 allowable = 90% reduction, 1 allowable = 99% reduction.

Processing time includes time taken to build list of grams into binary tree.

Page 48

Chapter Two — P attern Recognition

Table 2.4 — Results from using n-grams taken from a shorter dictionary

Gram size Length of list Processing time
(mins:secs)

% reduction of
list of candidates

No. of
words tested

2 469 0:03
3 3916 0:26
4 13166 1:38 94.5 7
5 18934 2:46 99.3 3
6 18212 2:54

Table 2.5 — Results from using n-grams taken from a longer dictionary

Gram size Length of list Processing time
(mins:secs)

% reduction of
list of candidates

No. of
words tested

2 577 0:04
3 6527 0:46
4 35412 4:58 86.2 7
5 83493 13:16 98.4 3
6 107011 18:49

Table 2.6 — Additional results from using n-grams taken from a shorter dictionary

Gram size Length of
candidate string

% reduction of
list of candidates

No. of
words tested

2 4 38.7 7
3 4 80.5 7
2 5 55.1 3
3 5 92.9 3
4 5 98.7 3

From tables 2.4 and 2.5 it can be seen that as gram size increases, processing time

increases (because a larger tree takes longer to build), but the shorter lists are

comparatively quick to build, and give the best reduction. The long list of grams tended

to allow candidate strings that an average reader would not accept as real words, so

there appears to be good evidence for restricting the dictionary.

The major problem with the use of n-grams is that the candidate strings remaining after

look-up are not guaranteed to be words. This is an undesirable situation because a user

of a script recognition system would not expect to write a word, and have it recognised

Page 49

Chapter Two — Pattern Recognition

as something which is not a word. Hence experiments utilising a lexical check were

carried out.

2.6.3 Experiments using a lexical check

The above n-gram experiment was repeated using only those grams which were flagged

as being a word. The list of words were taken from a shorter dictionary (21,211

words).

Table 2.7 — Results from using a list of words

Gram size Length of list Processing time
(mins:secs)

% reduction of
list of candidates

No. of
words tested

3 441 0:02
4 1323 0:10 98.5 7
5 1775 0:14 99.7 3
6 2318 0:20

Much better reduction is given by the lexical check of candidate strings compared with

the n-gram results. More sensible results are achieved because the output strings are

guaranteed to be words. Processing times are also much reduced due to the lists of

words being shorter than the lists of grams. The use of n-grams was therefore

discontinued.

The main problem in the past for systems using lexical checks has been the amount of

memory available for the representation of the word list. With recent advances in

technology, even personal computers now have much increased memory capacity, so a

lexical look-up technique which uses a large vocabulary (say, anything over 20,000

words) is now feasible. However there is still the problem of exactly what to include in

the word list. Methods for effectively representing the word list in memory to provide

fast look-up times in a reasonably sized structure will be discussed in chapter three.

Page 50

Chapter Two — Pattern Recognition

2.7 Conclusions

The output from the pattern recogniser is poor, and requires further processing to

improve. Methods commonly used for such processing involve using transitional

probabilities (for example the Viterbi algorithm or Markov modelling), using

information about how letters combine (for example n-grams), using lexical look-up, or

combinations of these.

Statistical methods involve selecting one “correct” answer and thus have a built-in

margin of error, and the use of n-gram information does not guarantee the output to be

words. We have shown that a lexical look-up is more effective than n-grams in terms of

reduction of candidate strings. Not only does a lexical check give a greater reduction in

the number of candidates, but also a more useful reduction because it guarantees the

output will be words (see also Higgins and Ford, 1989).

The lexical look-up technique is preferable to statistical methods since it does not have a

built-in error rate and guarantees lexical output. The limitation of this method is that an

input word may not be included in the look-up vocabulary), however this is

unavoidable. This particular problem also exists for statistical methods since they

sample from the language and assume a reliable distribution.

The pattern recogniser and lexical check are currently two separate stages in the

recognition system. The number of candidate strings even for short words is

ridiculously large, and many of the letter sequences in such strings contain non­

occurring sequences. The pattern recognition output could be improved by checking

some (or all) letter sequences against either lists of n-grams (bi-grams would be fastest)

or even against words. Thus unacceptable strings could be rejected at an earlier stage,

leaving fewer for the lexical look-up to check. This process would therefore become

Chapter Two — Pattern Recognition

much faster. Taken to its natural conclusion, the stages of pattern recognition and

lexical checking could become interactive processes. The two techniques could be

combined in some suitable fashion to provide a fast pattern recogniser with lexical

output.

Page 52

Chapter Three

Word Recognition

3.1 Introduction

In chapter two we established that the most effective way of reducing the ambiguity

produced by the pattern recogniser is by a lexical look-up which discards candidate

strings that are not allowable in English. The chosen lexicon or word list must be

represented in computer memory, but there are numerous methods which could be

employed to do this, in order that it can easily be searched. However each of these

methods has advantages and disadvantages, and the suitability for a particular situation

will depend on many factors. For example:

• the ease of construction of the data structure;

• the speed of construction of the data structure;

• the ease of searching the data structure;

• the speed of searching the data structure;

the amount of memory used by the data structure;

• the ease of alteration of the data structure (i.e. adding and deleting

items);

the efficiency of representation of the data so that its particular features

are succinctly expressed, and can easily be retrieved and analysed.

Page 53

Chapter Three — Word Recognition

Not all of these factors will apply in every situation, and some will be more important

than others. In the case of a lexicon or word list, especially within the context of a

script recognition system, the speed of searching the list is paramount, especially for

unsuccessful searches, in order to obtain almost immediate recognition. This also

means that the ease of searching is very important, but in a commercial package running

in a single workstation environment, the amount of memory used should be kept to a

minimum. Efficient update of the data structure may be important if the word list is to

be changed frequently — such as adding technical terms and proper nouns. The initial

construction of the data structure is of little importance to the user since it is rarely

performed.

3.2 Alternative data structures

Looking at possible data structures for representing such a word list, there are many

standard methods (Knuth, 1973; Wirth, 1976; Korsh, 1980; Standish, 1980;

Claybrook, 1983; Amsbury, 1985; Stubbs and Webre, 1985), for example lists

(stacks, queues), trees (binary, B, multi-way), graphs and hash tables to name a few.

3.2.1 List structures

The simplest structure in which to store a lexicon would be an array. However this is a

static structure, it is necessary to know in advance how many items will be stored in

order to allocate the correct amount of memory. Not knowing the number of items will

result in wasted space due to over allocation. Each element of the array could be a fixed

length character string, but this would be quite wasteful of memory as this fixed length

would have to be enough to fit the longest word in the list. As the majority of the words

would be shorter than this, there would a large amount of wasted space. The words

could be stored contiguously in an array, so each element of the array would in effect

Page 54

Chapter Three — Word Recognition

be just a character, and each word would have to be terminated with a dummy

character, for example a null character. This would be a memory efficient structure (one

byte per letter, plus one byte for the null, for each word), however searching such a

structure would be sequential, and therefore slow, of O(n), where n is the number of

words in the lexicon. The whole array would need to be searched to establish whether

or not a given word was stored, unless the words are stored in alphabetical order. In

this case a sequential search would be of 0 (n/2), on average only half of the array

would be searched, for both successful and unsuccessful searches. This could be

speeded up to 0 (log2 n) if a binary search technique were employed.

Instead of beginning a search at the start of the structure (i.e. first element of the array),

the binary search technique begins at a mid point. The item stored at this mid-point is

compared with the item being searched for. If the searched-for item is less than the mid­

point (for words this means the searched-for item comes earlier in the alphabet than the

item at the mid-point), then the search continues in the first half of the structure, if it is

greater, the search continues in the second half of the structure. Whichever half is to be

searched, a mid-point is chosen again, and the process is repeated. At any stage, if the

comparison shows that the items are equal, then the search terminates successfully. An

unsuccessful search terminates when the end points of the section of the list being

searched are in fact next to each other, and neither matches the searched-for item.

Search times are of 0(log2 n) on average, and will be the worst case for all

unsuccessful searches (Knuth, 1973).

The lexicon storage structure can be created dynamically rather than statically. This

means that it is not necessary to know the total number of items in advance, because

each item is a separately allocated piece of memory. This type of structure is known as

a linked list, because each item is linked to the next by a pointer. Linked lists can be

used to implement stacks and queues. A stack works on the principle of “last in first

Page 55

L' 1 ‘Hi 'i * 2i*» < /■*&, -A i It* . - . It'-I-Jt*-*.*,- ».-•

C hapter Three — W ord Recognition

out” (LIFO). New items are pushed onto the top of the stack, and an item is popped off

the top of the stack to retrieve it. The first item stored becomes the bottom of the stack.

A queue follows the principle “first in first out” (FIFO). The first item stored becomes

the head of the queue and new items are added onto the end, or tail of the queue.

Neither stacks nor queues are appropriate to store a list of words because of their FIFO

and LIFO storage and access principles, however the linked list structure can be used.

List head

word

next pointer

W

i = null pointer

cat

dogged

dog

cot

cots

catch

doggy

Figure 3.1 — Linked list representation of a limited lexicon

Page 56

 : 12 :— : i j l:— i: a i ! _ ■ - '• — '• -

Chapter Three — Word Recognition

Figure 3.1 shows a representation of an ordered linked list for the small lexicon cat,

catch, cot, cots, do, dog, dogged, doggy. Each node in the structure contains one word

and one pointer to the next word in the list. This data structure is extremely simple to

implement, but the search times aTe large, O(n) for an unordered list, 0 (n/2) for an

ordered list, because the search must be sequential. The construction of such a list is

very fast if built from an already alphabetically ordered list, because new items are

simply added onto the end of the list. It is much slower, 0(n2), if the words are not

already ordered because new items must be inserted into the correct position in the list.

This means the structure must first be searched to establish the correct position for

insertion.

F

3.2.2 Binary tree structures

The binary search technique described earlier can be used with a dynamically allocated

structure. This structure is known as a binary tree, and neatly encodes the mid-point

information needed for searching. It has faster search times than the simple linked list,

but greater memory overheads because each node has two pointers. See figure 3.2.

The searching and building of the binary tree structure are both straightforward, and the

word list becomes ordered due to nature of the tree. For each node, every word in its

left sub-tree precedes the word at the parent node in the alphabet, and every word in its

right sub-tree follows it in the alphabet. Either pointer can be null, and leaf nodes in the

tree are those nodes at which both the left and right pointers are null. This is known as

a random binary search tree. When searching the binary tree, a comparison is made

between the word at the root of the tree and the string being searched for. If they are not

equal, either the left sub-tree is searched, or the right is searched, depending upon

whether the required string precedes the root word in the alphabet, or follows it. This

process continues until the required string is found in the tree, or until a leaf node is

Page 57

Chapter Three — Word Recognition

reached, which means that the required string does not exist in the tree. Search times

are approximately 0 (log2 n).

Treehead
Left and right
pointers

doggedcatch

doggydogcat cots

cot

Figure 3.2 — A binary tree representation of a lexicon

Binary trees can easily become unbalanced. A balanced tree is one in which the number

of levels hanging from its left branch is very close to the number of levels hanging from

its right branch. For a perfectly balanced tree, also known as an AVL tree1, the height

of the two branches should differ by at most one level. Search times are quicker,

1 after Aderson-Vel’skii and Landis, two Russian mathematicians (see Knuth, 1973)

Page 58

C hapter Three — Word Recognition

approaching 0 (log2 n), if a tree is balanced, but the construction time and complexity of

such a tree is greater than that of the random binary search tree which is not checked for

balance. A perfectly balanced binary search tree is fastest to search, but is complex to

maintain (Knuth, 1973; Wirth, 1976; Standish, 1980; Claybrook, 1983; Stubbs and

Webre, 1985).

The random binary search tree is easiest to implement, but care must be taken in the

construction of the word list. The first item in the list is taken as the root of the tree, so

if it is built from an alphabetically ordered word list, a degenerate tree will result, where

all the left pointers will be null (Knuth, 1973, p426; Claybrook, 1983, p95). This is the

equivalent of a linear list, but more wasteful of space. A “zig-zag” tree structure can

result from building from a list such as: cat, doggy, catch, dogged, cot, dog, cots, do.

The left and right pointers will alternately be null. Degenerate trees can be avoided

simply by “disordering” the list and ensuring that the first item is from approximately

the mid-point of the lexicon. This disordering was performed by reversing each string,

sorting the list alphabetically, and reversing each string again. The middle item was

then moved to the top of the list. The binary tree in figure 3.2 was constructed from the

resulting list: do, dogged, catch, dog, cots, cat, cot, doggy.

3.2.3 Multi-way tree structures

Multi-way trees are trees which have more than two pointers leading from each node.

They are faster to search than binary trees (Fredkin, 1960; Knuth, 1973), and for this

particular application it is apparent that a 26-way tree would be the most efficient

structure in order to take full advantage of the alphabet. Unsuccessful searches will

always be faster in a multi-way tree than in a binary search tree, which suits our

purpose as the majority of strings being searched for will not be in the word list. For

Page 59

Chapter Three — Word Recognition

example, of the 1,204 candidate strings from the data given earlier (§2.3), only 3

strings are allowable, namely pack, pact and pant.

3.2 .3.1 B-trees

B-trees are a form of multi-way tree where the growth of a tree is restricted (Bayer and

McCreight, 1972; Knuth, 1973). A B-tree is balanced, in other words the tree is

symmetrical so that all paths through it are the same length, so all leaf nodes appear on

the same level, and carry no information. A B-tree is said to be of order m when every

node has at least m/2 children, and at most m children, except the root and the leaf

nodes. The root has at least two children, unless it is a leaf. Insertions are quite simple

in B-trees, every leaf corresponds to a place where a new insertion might happen,

however deletions are slightly more complicated. B-trees are very good for storing

numbers (for example ORACLE the relational database stores its indexes as B-trees),

but it is not clear that they are particularly useful for storing words.

3 .2 .32 26-way tree

The 26-way tree is a multi-way tree with 26 pointers leading from each node. Searching

is simple, efficient and fast, as is the construction of the tree, however the memory

overhead is vast. Each node contains one letter rather than one word, thus allowing for

the study of sub-word letter sequences, but to make the searching algorithm most

efficient, all 26 routes from every node in the tree must be allowed for, and on average

most of these are wasted. Using two experimental word lists of 14,769 items and

79,065 items, the mean number of routes used is V26> and just less than V26

respectively. Each node has a flag which is set if that letter is an end of word (see figure

3.3).

Page 60

C hapter Three — W ord Recognition

L

3

f

H -

c

1'

h y / y

............................1.

l
0
I . . . II
♦

i

11
t

_ s _
----- 4--------

 End-of-word flag
 26 pointers

ĵ1 .

i

i
e

1i

U
d _

Figure 3.3 — A 26-way tree representation of a lexicon

Obviously this memory overhead can be greatly reduced by only allocating space for

those routes which are used (i.e. an n -ary tree where n is variable between 0 and 26),

for example typical routes from ‘z’ would be ‘e \ ‘i* and ‘o’. However, when searching

for a particular route from the *z\ a linear search must be employed to establish

whether it exists or not, which slows down the search time compared with the 26-way

tree where all 26 routes are allocated.

Page 61

C hapter Three — Word Recognition

3.2.3.4 Trie structures

Another type of multi-way tree is often known as a trie (from the word “retrieval”, but

pronounced as “try” to distinguish it from “tree” in speech) and was first introduced by

Fredkin (Fredkin, 1960; Knuth, 1973). A trie takes advantage of the redundancy of

common prefixes, and is essentially an m-ary tree, because each node specifies an

m-way branch. There are many alternative implementations of trie memory, in fact the

26-way tree just described could be said to be a type of trie. Figure 3.4 shows a trie

(for the lexicon cat, catch, cot, cots, do, dog, dogged, doggy) after Knuth.

1 2 3 4 5 6 7 8 9 10
A 3
B
C 2 catch
D 7
E dogged
F
G 9 10

0 5 8
P
Q
R
S cots
T 4 6

» • •

Y doggy
Z
— cat cot do dog

Figure 3.4 — A trie for a limited lexicon after Knuth

Starting with the first position of the word being searched for, the trie is checked in

column 1. If the word begins with ‘c’ or ‘d \ the trie is followed to the address (column

number) specified, hence words beginning with ‘c’ go to column 2, and with ‘d’ go to

column 7. Words beginning with other characters are (in this example) not represented.

The second letter of the word is now checked. Stored words in column 2 represent ‘ca’

and ‘co \ again no other sequences are allowed. The addresses are followed until words

Page 62

Chapter Three — W ord Recognition

become unique. For example in column 4 are found the words ‘catch’ and ‘cat’. Figure

3.5 shows a binary trie for the same lexicon, after Srihari (Srihari et al, 1983) who

implemented a trie to represent a lexicon, but only for 1,724 words (see figure 1.1).

t

t
t /:■-

t
h y A

i

t
s >

t
0 W ,

t

t
e T 3 Z .

d

Figure 3.5 — A binary trie for a limited lexicon

This method of storage is an inefficient use of memory compared to a binary search tree

or to the original word list, but searching is much faster for both the acceptance and

rejection of a given string. Knuth has shown that this will take on average 0 (log2 n /

log2 m) iterations, where n is the size of the lexicon and m is the order of the trie. A trie

neatly allows the study of sub-word letter sequences, i.e. it allows the immediate

determination of whether or not an initial sub-string is valid. A binary trie is different

from the binary tree described earlier because the two pointers leading out of a node

have different functions, and there is one letter per node, rather than one word per

node. The first pointer leads to other possibilities at that position in a word (alternative,

Page 63

Chapter Three — Word Recognition

brother or sibling pointers), and the second one leads to possibilities for the next

position in a word (son or child pointers). There must also be an end of word flag.

3.2.4 Tree compression

It is important to keep the amount of memory required by any structure to a minimum.

There are many ways in which this can be achieved. So-called compression methods

generally apply to particularly wasteful areas of the structure, and reduce, or compress,

these areas to use smaller amounts of memory (Knuth, 1973).

It is easy to see that tree structures representing lexicons (such as those just described)

are wasteful of memory because on average there is only one route leading from any

node. For every word ending in the letter sequence -ing, there is a separate set of three

nodes in the tree, one for the i, which points to the node for the n, which in turn points

to the node for the g. In a lexicon of just over 70,000 words nearly 6,000 end in the

sequence -ing. It is a similar situation for the ending -ed, and there are also large

numbers of words ending with -er, and -tion. A large amount of memory could be

saved if each occurrence of the same sequence of letters used the same set of nodes in

the tree structure. For example, in a tree where each nodes takes 16 bytes, compressing

the -ed endings would save 196448 bytes. If -ed, -ing, -er and -tion are all compressed,

the tree representing just over 70,000 words would be reduced from 2,628,928 bytes

to 1,972,416 bytes.

However, such reductions are only possible if the word ending forms a unique route in

the tree, and not if the ending is part of other words. For example walked, walking and

walker could be compressed, but alarming could not, because it forms part of

alarmingly. Compressing this occurrence of -ing would lead to the false impression that

walkingly is a word.

Page 64

Chapter Three — Word Recognition

It is not just at the ends of words where compression methods can be applied. Words

such as aardvark use a number of nodes which are not shared with any other words.

Ideally these unique sequences of nodes could be reduced into one single node (in a

similar way to the mixed-method tree described in § 3.3.2). However such hybrid

techniques mean the searching algorithm is not quite so straightforward, which is a

major disadvantage for this type of application.

3.2.5 Directed acyclic word graphs

It is not just at the ends of words where common letter sequences can make use of the

same nodes in a tree structure. This can be taken advantage of at any point within a

word. A tree can be constructed where this process is taken to its optimal conclusion,

so that all possible common letter sequences are shared. This structure is actually a

graph rather than a tree, and is known as a Directed Acyclic Word Graph (dawg).

The dawg is the most efficient implementation in terms of memory (Blumer et al, 1985;

Appel and Jacobson, 1988; Elliman and Lancaster, 1990). Appel and Jacobson stored

94,240 words in 175 Kbytes. A diagram showing a dawg structure of the lexicon used

so far would in fact be no different from the trie in figure 3.5. However using the

lexicon car, cars, cat, cats, do, dog, dogs, done, ear, ears, eat, eats (after Appel and

Jacobson), the features of the dawg can be clearly demonstrated, especially when

compared with the equivalent trie. Figure 3.6 shows a trie representation of the above

lexicon, figure 3.7 shows the dawg, and figure 3.8 shows a dawg represented as a

finite state recogniser of the same lexicon. This is how Appel and Jacobson represent it.

Page 65

C hapter Three — Word Recognition

i

i
i

e

0 /

r t y/s g n
i

s % / /

i

s
r r y ~ ~

y .

1 ±

t n
s

i +

Figure 3.6 — Trie representation of Appel and Jacobson lexicon

Figure 3.7 — Dawg of Appel and Jacobson lexicon

P a g e 66

Chapter Three — Word Recognition

r

< o

Figure 3.8 — A dawg represented as a finite-state recogniser (Appel and Jacobson,

1988)

A dawg is basically a trie where all equivalent sub-tries (i.e. identical patterns of

acceptable word endings) have been merged. Appel and Jacobson represent their dawg

as a finite-state recogniser of the lexicon. Nodes of the graph are the states of the finite-

state machine, edges of the graph are the transitions of the machine, and terminal nodes

are the accepting states. The language of a finite-state recogniser is the set of words that

it will accept. For any language there will be many different finite-state recognisers. In

particular there will be one with a minimum number of states, which is the one

represented by the dawg.

Taking the node in figures 3.6 and 3.7 to be 10 bytes (2 chars and 2 pointers, assuming

4 bytes for a pointer, i.e. a 32 bit word length machine), the trie would use 180 bytes

(18 nodes @ 10 bytes each), whereas the dawg would use only 110 bytes (11 nodes).

Search times should be the same because the same node structure can be used, but

building times would probably be much greater for the dawg. This is because the

structure is more complex, and additional searches would need to be made to check

whether paths already exist. For the trie, the current structure is searched as far as

possible following the sequence of letters in the new word to be added. When the

Page 67

Chapter Three — Word Recognition

required path does not exist, new nodes are allocated to build it. To add a new word

into the dawg, the current structure would need to be searched both forwards and

backwards to establish whether or not the required paths exist, which would slow

down the building algorithm (see § 3.3.3).

The dawg could probably be further reduced by replacing common suffixes such as

-ing, -tion, and -ed with a single node (as discussed with reference to tree structures in

§3.2.4). Given the nature of the dawg, it could also be made two-way, or bi­

directional. This would be searchable in either direction, which could be useful in some

parallel application for string searching, or just allowing for reverse searching because

the end of the string is more restrictive. However due to the effective doubling of the

number of paths through the dawg, making it bi-directional would increase its size

(Appel and Jacobson, 1988).

3.2.6 Hashing

There is a class of popular storage and search methods known as hashing (hash

encoding) or scatter storage techniques (Knuth, 1973; Aho et al, 1983; Cooper and

Clancy, 1985; see also §5.4.3). An arithmetical calculation is performed on a

particular item (in this case a word), thereby computing a function (known as the

hashing function) which gives the location of the item (and any associated data) in a

table — the hash table. This method is applied both for storing items in the table, and

for searching for items in a previously stored structure. Hashing functions often

indicate the same hash table entry. Although such clashes are difficult to avoid, straight­

forward methods can be employed to resolve them.

Hashing techniques are very fast, but do not allow the study of sub-word letter

sequences, which is particularly important in this case, as explained in §3.3 below.

Page 68

C hapter Three — W ord Recognition

The optimum size of hash table can only be determined if the approximate number of

items to be stored is known.

3.3 Implementations

Several types of tree structures were implemented for comparison: a binary tree

(§ 3.2.2), a 26-way tree (§ 3.2.3.2), a reduced memory tree (§ 3.3.1), two linked list

mixed-method trees (§ 3.3.2), one using the 26-way tree structure, and the other using

the reduced memory structure, a binary trie (§ 3.2.3.3) and a directed acyclic word

graph (§ 3.2.5). The binary tree structure was found to be very straightforward to

implement and use, but slow in look-up times, so multi-way trees were investigated. It

was thought that the fastest look-up would be achieved using a 26-way tree, so that

was implemented, and found to be extremely efficient, but the memory overhead was

too large for practical purposes.

Other multi-way trees were not implemented due to increase in search times (e.g. B-

trees, § 3.2.3.1) over the 26-way tree. Hash coding methods (§ 3.2.6) were also not

implemented as they do not allow for the study of sub-word letter sequences. The part

26-way tree, part linked list method was implemented for comparison purposes, and

because it appeared to be a simple way of reducing the amount of memory necessary.

The trie structure requires less memory than the 26-way tree, and look-up times are also

fast. See § 3.3.4 and § 3.3.5 for results of comparisons of implementations.

Using the binary tree structure, a successful search is when a node in the tree is reached

containing the candidate string. If a leaf node is reached, the search is unsuccessful.

Using the 26-way tree, a search is successful if each of the candidate letters in the string

can be followed to the next one, and if the last letter in the string is flagged for end-of-

Page 69

Chapter Three — Word Recognition

word in the tree. This means that if at any stage the required pointer to the next letter

does not exist, the search is unsuccessful.

Table 3.1 — Comparing candidate strings with the lexicon from figure 3.3

String Allowable in tree ?
cat yes
cad no
dog yes
dogg no

Therefore the search can be terminated before the complete candidate string is generated

from the graph of data (see §2.4 and figure 2.8). Each letter can be individually

checked against the tree to see if that particular path exists. For example, if the

candidate string starts with the letter b, check from the head of the tree to see if the 2nd

of the 26 pointers is set. If it is, follow the route down the tree to the ‘b’ node, and get

the next letter from the graph of data. Let’s say the next letter is e (i.e. candidate string

be) — look down the 5th of the 26 pointers from the ‘b’ node to see if it is set, and so

on, until the end of the candidate string is reached. If at any point the required pointer in

the tree is null, then that candidate string and all candidate strings beginning with those

letters cannot be allowable, because no words in the tree begin with that sequence of

letters. The next candidate letter at the present position in the graph is then tried. This

procedure continues until the end of the graph is reached. A complete candidate string is

only allowable if the end-of-word flag is set at the node in the tree for the last letter of

the string (see flowchart D2 in Appendix D).

The following data gives 24 candidate strings, namely:

catc, cats, cade, cads, cotc, cots, code, cods, oatc, oats, oadc, oads, ootc, oots,

oodc, oods, ate, aats, aadc, aads, aotc, aots, aodc, aods.

Page 70

Chapter Three — - Word Recognition

0 :99 [1]
1 c:89 o:71 a:45 [2]
2 a:85 o:29 [3]
3 t:74 d:42 [4]
4 c:52 s:13 [5]
5 :99 []

These candidate strings are compared against the 26-way tree of words (figure 3.3). As

each candidate string is generated, its successive letters are tested for existence in the

tree. If all such letters are found, the algorithm checks whether the resulting string is a

word (i.e. the end-of-word flag is set at the tree-node reached by the search). This

process results in only one allowable string: cots. These comparisons are illustrated in

the table 3.2 below.

Table 3.2 — Incremental comparison of candidate strings with the lexicon in figure 3.3

String generated by graph Exists in tree? Is it a word?
c yes -
ca yes -
cat yes -
catc yes no
cats yes no
cad no -
ce no -
CO yes -
cot yes -

cote no -
cots yes yes
cod no -

0 no -
a no -

An example word supercilious, compiled from simulated data (244,140,625 complete

candidate strings) was tested using the old method of complete string look-up (7 hours

and 48 minutes processing time), and the new letter by letter look-up (13 seconds

processing time) — these figures include the time taken to build the tree structure as

well as searching for the candidate strings. However on short words, the difference in

processing times was not so great. A test sentence from data from the recogniser {both

wizened men quickly judged four sharp vixens) took 17 seconds to build and search the

tree using the old method, whereas the new method took 13 seconds.

Page 71

Chapter Three — W ord Recognition

3.3.1 Reduced memory method

An alternative method was devised which includes the advantages of the 26-way tree

method, but reduces memory considerably (see figure 3.9). Instead of having 26

pointers to indicate the next letters in words, the new method uses a 32-bit integer, 26

bits of which are set (i.e. = 1) if that letter is allowable, and not (i.e. = 0) if that letter is

not allowable. The end of word flag is the most significant bit, leaving five bits unused

in which to encode the letter for that particular node.

e.g. For words beginning with c - allowable routes are a,e,h,i,l,o,r,u,y and z,

which gives 10 pointers associated with the V node.

00001011000100100100100110010001

which is :

0 (end of word flag), 00010 (character ‘c’ encoding) and

11000100100100100110010001 (26 bit indicators)

Each node also has one pointer which if used, points to a variable length array of

pointers to nodes (each node is 32 bits + 1 pointer), so from the above example, there

would be 10 elements in the array because 10 out of 26 bits are set. (See figure 3.9).

When searching for a particular string, it is immediately apparent at any node, whether

the required route from that node exists or not by checking the relevant bit of the 26

flags. If and only if it does, that route is followed, which means counting how many of

the 26 bits are set up to and including the required one, to establish which member of

the pointer array to follow to the next level in the tree. It is this count which increases

the search time from the original 26-way tree, but the decrease in memory usage is so

great as to out weigh this slower search. For example, if the search is for the string

chess, h is the 3rd bit of the 26 to be set, so follow the 3rd pointer of the 10 element

Page 72

Chapter Three — Word Recognition

array to reach the ‘h’ node on the level below, and so on until the entire string is found,

at the 2nd £s’ node, where the word flag is set.

X TOOOOO
i—oooooooooooooooooooo

oooooooooooooo
T —ooooooooooo

oooooo
T"oooooooooooooooooooo

oooo
T—ooooooooooooooooooo

ooooooooooooooooooooooooooooo

oo
CDoooo

O) oo oooo

ooooooooooooooooooooooooooo

oooooooooooooooooo
ooooooo

ooooooooooooooooo

ooooooooooooooooooooooooo

oo

oooooooooo

oooooooooooooooooooo
T -ooo

ooooooooooo TD ooo
oooo

o
XToooooooooo

oooooooooooooooooooooooooo

ooooooo
001ooooooooooooooooo
T—oo

oooooooooooooo
ooooooooooo
T—
oooo

o
f—ooooooooooooooooooooooo

ooooooooo
o oo

o

Figure 3.9 — A reduced memory tree

Page 73

Chapter Three — Word Recognition

3 .3 .2 M ixed-m ethod tree structures

There is an optimum point in the 26-way tree, below which it is more economical in

memory to represent the remaining parts of the words in a linked list than in the

standard tree nodes. This was suggested by Sussenguth (1963, see also Knuth, 1973).

See figure 3.10.

Knuth (1973, p483) explains that we “can save memory space at the expense of

running time if we use a linked list for each node vector, since most of the entries tend

to be empty”, which certainly applies to our lists of words. So this can save

considerably on memory, without substantially increasing search times, however the

building of such a mixed-method tree would be both awkward and slow due to all the

list manipulation necessary when adding new items.

For example, once a list goes beyond the optimal number, it must be un-linked, and the

words built into the standard 26-way node method, with new items added in linked lists

hanging from these new nodes, until they in turn reach the optimal value, and so on. If

the data produces an exactly balanced tree, then this optimal point would be at the same

level across all branches (Sussenguth, 1963), but this is not so with a lexicon, so the

construction is much more difficult. This method was in fact implemented to establish

its characteristics and for comparison with other methods, by building the tree as usual,

and then pruning the branches to give the required structure as in figure 3.10.

Comparisons of implementations are discussed below (§3.3.4).

C hapter Three — W ord Recognition

i
c

M - f

at

— -----

atch

i
ot

i
ots

i
d

- 4 -

i
og

i
i

oggy

Figure 3.10 — A mixed method tree (26-way tree with linked list)

3.3.3 Dawg

An attempt was made to construct the dawg shown in figure 3.7 from an ASCII word

list. Whilst the algorithm detailed in Appendix D (flowchart D3) was under

development, it became clear that this representation was not the best for this particular

structure. This is because multi-way nodes are represented via alternative (brother)

pointers, and as new words are added, non-words are often introduced. Figure 3.11

shows a dawg for the words stable, stabbed, stole, stolen, stable and dabbed. However

the non-words dable, dole, dolen, doles, stoles, dablen, dables and stablen have been

introduced. This means that to use the node structure from the trie, few routes would be

Chapter Three — Word Recognition

able to be re-used, resulting in a dawg which is little different from the original trie

(figure 3.6).

i

i

e

t
d 7 ,
1

i
%

i
t

n

Figure 3.11 — Dawg showing introduction of non-words

An alternative structure was devised which is similar to the finite-state recogniser in

figure 3.8, having labelled edges. The nodes are numbered for reference whilst the

dawg is under construction (see figure 3.12). A first pass program keeps a record of

available head and tail strings of words already stored in the dawg, and produces a list

of transitions between the nodes, or states of the dawg. The available head and tail

strings are stored in hash tables for speed of searching. As a new word is read from the

C hapter Three — Word Recognition

ASCII file, the head list is searched for the longest string available from the start of the

woTd. When this is established (it may be the empty string) the tail list is searched to

find the longest string available from the remaining part of the word (i.e. the word

minus the head string). Again this may be an empty string. A flowchart of this

algorithm is given in Appendix D (flowchart D3).

Figure 3.12 — Dawg with numbered nodes and labelled edges (first pass) for the

words stable, stole, stabbed and dabbed

The dawg will diverge from the node at the end of the head string, and converge again

at the first node of the tail string. The divergent and convergent nodes are joined by

adding nodes for any letters from the middle part of the word which are not yet in the

dawg. The transitions involved in these new nodes are printed out. Figure 3.12

produces the following transitions:

Node Letter Next node
0 s 1
1 t 2
2 a 3
3 b 4
4 1 5
5 e -1
6 b 7
7 e 8
8 d -1
0 d 9
9 a 10
10 b 6

Page 77

 — f'-'-'-—li-i—:—~ --— --— ‘i

Chapter Three — Word Recognition

Constructing new nodes in the dawg produces additional head and tail strings, so these

are added to the lists. Finally any head string which uses the convergent node number

must be removed as it is no longer available. Any tail string which uses the divergent

node number is also removed for the same reason. This is done to ensure non-words

are not introduced. Cycles can be introduced into the dawg if the divergent and

convergent node numbers are equal. This must be checked for — if it is the case, a new

head string with one fewer letter is used instead.

The list of transitions produced by the first program is sorted (numerically, by the first

node number), and the node numbers are converted into edge numbers, by a simple

nawk (Aho et al, 1988) program. A second pass program builds a dawg of labelled

edges (as shown in figure 3.13) without reference to nodes, from the list of edge

connections. The edges are stored in an array, so the edge number is its array index.

Each element of the array stores the letter for the current edge, and an index to which

edge follows (the equivalent of a child pointer). Multi-way nodes are represented by a

“continued” flag stored for each edge. If this flag is set, then the current edge has

alternatives (brothers). The list of transitions above yields the following set of edges:

Edge Letter Pointer to next edge Continue
0 d 12 1
1 s 2 0
2 t 4 0
3 a 5 1
4 o 6 0
5 b 7 1
6 b 9 0
7 1 8 0
8 e -1 0
9 b 10 0
10 e 11 0
11 d -1 0
12 a 13 0
13 b 9 0

Memory requirements for the constuction and storage of a dawg for various word lists

are given in § 3.3.5 (table 3.6).

Page 78

Chapter Three — W ord Recognition

4o

10e13b12a

Figure 3.13 — Dawg with numbered and labelled edges (second pass)

The exact formation of the resulting dawg varies depending upon the order in which the

words are presented. Figures 3.14 and 3.15 show alternative dawgs which represent

the same three words but presented in different orders. For longer word lists, this can

result in a different number of nodes (and therefore edges). This is because the sets of

head and tail strings available at any point may be different.

Figure 3.14 — Dawg for the words stable, table and stole

Figure 3.15 — Dawg for the words stole, stable and table

Chapter Three — Word Recognition

Consequently the amount of memory required for a dawg will also vary. Table 3.3

shows some alternative orderings for a word list of 2461 words, together with the

number of edges needed to represent them in a dawg structure. Obviously the order in

which the words are presented to the dawg building algorithm is important in order to

keep the amount of memory used to a minimum. There will probably be an optimal

ordering of the words which will give a minimal dawg, and further experiments should

be performed to discover this ordering.

Table 3.3 — Various orders of words and number of edges required for dawg

Order of words 2 Number of nodes Number of edges
Alphabetic 1684 4144
Reversed 1816 4276

Backwards 1614 4074
Backwards & reversed 1597 4057

3.3.4 Initial comparisons

Four trees were constructed from the same word lists, and candidate strings from a test

sentence checked against them. The results in table 3.4 were obtained for the test

sentence:

mary had a little lamb its fleece was white as snow and everywhere that
mary went the lamb was sure to go

2 Here, reversed is used to mean reverse alphabetic (e.g. ‘zoo’ comes before ‘apple’); backwards means

each word is considered back to front, for sorting purposes (e.g. ‘walked’ comes before ‘talk’).

Page 80

Chapter Three — Word Recognition

Table 3.4 — Memory requirements and search times for various tree structures

Tree structure Size of word Memory used Search time
list (Mb - 2 D.P.) (mins:secs)

26-way 14769 4.93 0:06
26-way + linked list 14769 1.02 0:07

reduced memory 14769 0.54 0:13
reduced mem + linked list 14769 0.36 0:12

26-way 60144 15.11 0:33
reduced memory 60144 1.65 0:16

sequential file (22 words) 60144 0.7 2:00

Search times for the 26-way tree are fastest of the above methods, although it is very

wasteful of memory. Especially for a large word list the memory requirements are

prohibitive. Using the linked list method, the amount of memory used is much more

acceptable, and there is virtually no change in speed for either tree structure. The

reduced memory method has extremely reasonable memory requirements, although

longer search times for the short word list compared with both 26-way tree methods.

The most interesting result is that it gives quicker search times for a long word list over

the 26-way methods. This is because the large 26-way tree (over 15Mb) had to page

(swap) its memory, because it was running on a file server with only 12Mb of physical

memory.

For comparison purposes it is interesting to note that searching a sequential ASCII file

using a standard Unix command (grep) takes approximately two minutes to look for the

22 words of the test sentence, not including all the alternative candidate strings for each

of these word positions. The word list takes 0.7 Mb to store in this ASCII form.

Experiments have shown that the shorter (14,769 item) word list contains insufficient

items for practical purposes (i.e. the correct words were not found in the list), so search

times for longer lists should be considered more important. There are disadvantages in

using too long a list, in that more of the candidate strings will be allowable, and

depending on the MRD that the list is taken from, can contain rare words that most

native speakers would not recognise as “real” words. For example the input word cake

Page 81

Chapter Three — Word Recognition

gave allowable candidates including roke, loke and boke. It is considered better

therefore to have a longer set of allowable candidate strings which includes the correct

word although this may often include rarely occurring words. A shorter lexicon will

discard the correct words on too many occasions. The exact size of the word list should

depend on the recognition application.

Given all these factors, the simple reduced memory method would be most appropriate

to the situation, being the optimum for memory size and search times for the 60,144

word list. It is also simpler to construct than a linked list mixed-method.

3.3.5 Further comparisons

After these initial comparisons had been completed, further experiments took place

which included a trie structure. The results in table 3.5 were obtained for the same test

sentence.

Table 3.5 — Memory requirements and search times for tree and trie structures

Tree structure Size of word Memory used Search time
list (Mb - 2 D.P.) (mins:secs)

! 26-way 15223 3.75 0:06
reduced memory 15223 0.55 0:12

trie 15223 0.81 0:09
26-way 43252 10.87 0:16

reduced memory 43252 1.58 0:15
trie 43252 2.34 0:13

26-way 60791 15.16 0:35
reduced memory 60791 2.2 0:20

trie 60791 3.3 0:16

It can be seen that the trie was in fact faster to search than the reduced memory tree in

all three cases, however it uses more memory (approximately one and a half times as

much as the reduced memory tree). It is also a particularly useful structure because it

allows further information to be stored at the nodes.

Page 82

Chapter Three — W ord Recognition

Further improvements could be made to either a tree or a trie structure by using a

method of tail end compression (§3.2.4). Common endings of words (for example -

ed, -ing, -tion) which are at present duplicated in the tree for words like walked,

walking, shouted, shouting, can be grouped together. This would not affect the speed

of look-up, but would again decrease the memory requirements.

Ultimately a dawg structure (§3.2.5 and § 3.3.3) gives the best memory reduction

(see table 3.6). The look-up speed should be similar to the trie (although this has not

yet been established), but build times are much greater, especially for larger lexicons

(for example 5,705 words takes approximately 10 minutes to build, but 68,856 words

takes just over 11 hours 3). Unfortunately, using the dawg means that any additional

information about words (e.g. grammatical category) would have to be stored

elsewhere (§5.4.3).

Table 3.6 — Memory requirements for dawgs for different length word lists

Number of
words

Number of
nodes

Number of
edges

Memory used
(bytes)

Reduced memory
(thousand bytes)

2461 1684 4144 33.152 16.576
5705 3235 8939 71.512 35.756

13706 6567 20272 162.176 81.088
30201 12715 42915 343.320 171.660
68856 24934 93789 750.312 375.156

The current dawg structure requires eight bytes per edge. This comprises a char for the

letter (1 byte), a boolean for the continued flag (1 byte) and a long integer for the next

3 These timings are for ail four stages of the dawg construction (first pass program producing

transitions, sorting, awk conversion program producing edge connections, and second pass constmction

program). The timings are for test runs on a Sun Sparc 2 fileserver with sole usage.

Page 83

Chapter Three — Word Recognition

edge index (4 bytes) — a total of 6 bytes which is rounded up to the nearest word

boundary (on a Sun Sparc 2 file server), hence 8 bytes. This information for each edge

could be packed into one 32-bit word (7 bits for the letter, 1 bit for the flag and 24 bits

foT the index), which would be only 4 bytes per edge. The last column in table 3.6

gives the memory requirement figures if this packing were carried out. The penultimate

column gives the current memory requirements, which are twice what is necessary.

It was not possible to compare the 26-way tree, reduced memory tree and trie directly

with the dawg because the word lists used in the earlier experiments were no longer

available. The test runs were also performed on a different machine so it makes little

sense to compare timings. There also seemed little point in rebuilding the earlier tree

structures with new word lists on the latest machines.

3.3.6 Faster building o f lexicon structure

Whichever tree structure is chosen, the time taken to build the structure from an ASCII

word list is a few minutes for approximately 70,000 words. This time is taken up by

reading each word from the ASCII file, working through it letter by letter, allocating

any new nodes required and setting up the pointers correctly. It would be preferable to

perform this process once only. The resulting structure can be saved in memory to be

loaded each time the system starts up. This loading process is very fast (a few seconds

for the same 70,000 words) because there is effectively only one piece of data to be

read, instead of 70,000.

This can be achieved by separating the building process into two stages. Firstly the

lexicon is pre-processed by using an array to hold the tree nodes, so that the memory

required is allocated in one contiguous amount, rather than dynamically allocating each

node. The pointers at each node become array indices rather than true memory

Page 84

Chapter Three — Word Recognition

addresses, but the structure is functionally unchanged. The nodes are built up per

word, letter by letter, as the words are read from the ASCII file, just as before. When

the structure is built, it is saved (in one chunk) to a binary file. This completes the pre­

processing stage. The second stage occurs when the system is started up. Space for the

tree structure array is allocated (again in one contiguous amount), and the binary file is

loaded into the array. This second stage is very fast.

3.4 Look-up performance

3.4.1 Failure o f look-up — Wild cards

Once the tree structures had been implemented, it was found that some of the problems

occurring from the recognition stage could very easily and neatly be solved from the

nature of the tree. For example if the recogniser can not produce any character at a letter

position within a word, we can use the tree of the lexicon to suggest what this missing

character, or “wild card” might be (e.g. ‘c a * e ’ the * could be ‘f \ ‘k \ V or ‘s’ etc.).

The path through the tree is followed as normal, i.e. through the ‘c’ and ‘a’ nodes, then

followed down all routes from the ‘a’ node to see if a path exists which ends in V ,

where the end of word flag is set. This method can be used even if the first letter

position is unknown, or if there is more than one letter unknown within a word,

whatever the word length. See also § 5.2.6 and § 5.3.3.3 for further discussion of

this topic, with some possible implementations.

Another problem with the accuracy of the recogniser is the placing of word boundaries.

When working with unconnected script, the samples of writing studied often had

unnaturally spaced characters and words. Instead of simply:

Page 85

Chapter Three — W ord Recognition

using small spaces between letters and larger spaces between words which can easily

be distinguished by the recogniser, the following was often found:

which obviously makes the contrast between letter and word spacing almost

indistinguishable. Where two or more words have been incorrectly joined together, it is

possible to utilise the structure of the word tree to note where ends of words may

occur. For example, if there is no allowable string which spans the whole graph, then

we can search in the same way as described above, but wherever the required path does

not exist in the tree, check if that position in the tree is flagged for end-of-word. If it is,

then take the next character in the graph, and start searching again from the head of the

tree. The search continues to generate all allowable phrases (sequences of words) from

the candidate letters in the graph. However this can give large numbers of phrases,

most of which are nonsense.

If word boundaries are inaccurate, this kind of approach may be the only way to find

them, except perhaps using syntactic information as well. Humans find it relatively

easy to read sentences such as packmybagswithfivedozenextraliquorjugs and will

generally use orthographic and syntactic information to do this, finding the word

boundaries subconsciously. It may be possible to improve searching by noting

sequences of letters commonly signalling the ends or beginnings of words, and/or by

expectation of a new word by syntactic category. However the longer the sequence

incorrectly joined, the more candidate strings/phrases are allowable. The sample input

data mybagswithfivedozen (five words incorrectly joined together, with a number of

alternative characters per letter position) generated 347,133 phrases of allowable

strings, so there is a trade-off between finding the correct sequence, time, and the

number of phrases found.

C. CLC\

Page 86

C hapter Three — W ord Recognition

3.4.2 Ordering the list o f allowable strings

Some way of ordering the list of allowable strings (or phrases) was needed, so that the

most likely can be displayed as output from the recognition and post-processing

system, with the other candidates available to be displayed if necessary. In this way,

when the number of allowable strings or phrases is high, a few most likely can be

stored — it was found that if all allowable phrases with long sequences were stored,

there was insufficient memory on the computer! In practice we have found the

combination (i.e. mean) of ranks to give the best results, but tends to produce tied

combined ranks frequently. By “best” results here it is meant that the correct word

occurs first or near the top of the ordered list of allowable strings. If the combined

ranks give an equal result, using the combined probabilities to order those allowable

candidate strings with the same ranks gives good results (see §2.3 for details of ranks

and probabilities).

3.4.3 Results

Two example passages were written by a small number of subjects, and the script

analysed by the current recognition system. The two passages are as follows:

Passage A (six samples of handwriting)

It has come to my attention that students have been copying software
with staff encouragement. Some students are now openly broadcasting
this fact. There are notices in departmental rooms regarding this matter
and I would remind you that such activities as copying are illegal
without a licence. It would be wise to desist from this activity forthwith.

Page 87

C hapter Three — W ord Recognition

Passage B (four samples of handwriting)

Recently in the Department there has been an instance o f a telephone
order which has been brought to my attention by the County Council
auditors. All orders must be placed through the Departmental secretary
with my prior authority. Without this we are breaking our governing
rules and it has been indicated that any future occurrence will make the
person concerned liable to disciplinary action. Thus the procedure must
cease.

The results found by taking the first ten allowable strings in order of combined ranks

and probabilities are shown in tables 3.7 and 3.8 below.

Table 3.7 — Passage A — Number of correct candidates (%)

Position Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6
1 64.8 56.1 51.0 62.3 68.0 58.2
2 92.6 73.7 64.9 79.2 86.0 80.0
3 92.6 80.7 78.9 90.6 92.0 87.3
4 94.4 84.2 82.4 90.6 94.0 90.9
5 94.4 93.0 94.7 92.5 96.0 90.9
6 94.4 94.7 94.7 94.3 98.0 92.7
7 100.0 98.2 94.7 94.3 98.0 94.5
8 98.2 98.2 94.3 98.0 96.4
9 98.2 98.2 94.3 98.0 96.4
10 100.0 98.2 98.1 100.0 98.2

Table 3.8 — Passage B — Number of correct candidates (%)

Position Sample 1 Sample 2 Sample 3 Sample 4
1 73.1 58.8 58.3 55.7
2 88.1 77.9 75.0 77.0
3 88.1 82.4 85.0 85.2
4 92.5 89.7 86.7 91.8
5 95.5 95.6 91.7 95.1
6 95.5 98.5 93.3 96.7
7 97.0 98.5 96.7 96.7
8 97.0 98.5 96.7 96.7
9 97.0 100.0 98.3 96.7
10 97.0 98.3 98.4

Page 88

C hapter Three — Word Recognition

The most important result from these experiments is that if the first ten positions of the

list of allowable candidate strings are considered, the correct words are present between

97% and 100% of the time, depending on the particular writing being analysed.

3 .5 Conclusions

For effective implementation of a lexical look-up technique, an efficient data structure is

needed for representation of the vocabulary. Such a data structure should be the best

compromise with regard to processing time and memory requirements. From our first

experiments with binary tree structures it became apparent that there were other

structures available which would give much faster search times. The speed of negative

searches is particularly important because most searches in the recognition system are

unsuccessful.

The 26-way tree structure gave very fast search times, but memory requirements were

almost unmanageable especially if the process was to be attempted on a small personal

computer. Hence other methods were tried in order to reduce the memory overheads,

and comparisons were made across a number of different methods.

Depending upon the particular system required, a balance must be found between the

main variables of speed of searching and amount of memory used, especially for a

larger vocabulary (approximately 60,000 to 70,000 words). The other major

consideration is ease of expansion of the data structure if further information about the

individual items of vocabulary is necessary. The facility to add more words to the

lexicon should also be considered, especially for proper nouns and technical terms.

This may require some kind of additional structure (at least temporarily) whilst the

system is on-line, until the trie can be re-built with the new words at a later stage.

Page 89

Chapter Three — W ord Recognition

For our system the trie structure (§3.2.3.3) was most appropriate given the need for

grammatical, morphological and semantic information in further stages of the script

recognition process (see chapter 4 for further details), however the reduced-memory

tree (§3.3.1) also gives fast search times and reasonable memory requirements,

especially for experimental purposes with different word lists and test data on a limited

memory computer.

The directed acyclic word graph (§3.2.5 and § 3.3.3) is the optimal structure for

saving memory, but no additional information can be stored for each word. Such

information is necessary for higher levels of analysis and will be discussed in chapter

four. In contrast the trie can store other information and is therefore more appropriate at

this stage. The dawg also takes much longer to construct, but would be ideal for a

dedicated application on perhaps a PC where memory must be kept to a minimum and

the structure would rarely need to be re-built.

Page 90

Chapter Four

Integration

4.1 Introduction

The previous two chapters have discussed a system for on-line handwriting

recognition. This system has a number of stages, beginning with a level of pattern

recognition. Sequences of x,y coordinates are collected, their Freeman encodings are

matched to a database, and a number of candidate characters are produced per character

position. At the lexical level, candidate characters are combined into strings, which are

checked against a tree structure of English words. Unacceptable strings are rejected,

acceptable strings are ordered by their likelihood of being the correct word, and a few

(usually less than twenty) top ranked words are stored for further processing.

The most successful handwriting recognition system to date is that-, of the human

information processing system. Although it takes many years for a child to master the

process of reading, once acquired, the skills are comprehensive and flexible enough to

cope with a diversity of written material in a variety of fonts and formats including

previously unknown ones such as unfamiliar handwriting.

The principal strengths of the human information processing system lie in its ability to

make selective use of available visual cues and to utilise an understanding of the text to

compensate for any degradation or ambiguity within the visual stimulus. This is

Page 91

Chapter Fow — Integration

possible because word images occur within a meaningful context, and we are able to

exploit the syntactic and semantic constraints of the textual material (Rayner et al,

1983). Similarly computerised handwriting recognition would be facilitated by the use

of such higher level knowledge.

Looking beyond the single word level, words combine into compounds and phrases,

which act linguistically as a single lexical item, although being comprised of more than

one orthographic word. The system should be able to make use of linguistic studies

about the structure of words, phrases and sentences to improve the recognition results.

This could be by establishing some criteria by which either more candidate words can

be rejected or the scores of more likely candidates can be increased.

Using higher level knowledge in an automatic handwriting recognition system

necessarily implies at least some integration of the different levels of processing and the

information required by and produced by each level. For example the system will need

to access information regarding the syntactic categories for all words in its vocabulary,

as well as morphological details. It will also need to be able to process punctuation

characters, upper case letters as well as lower case, digits and so on. Morphology can

be approached in a number of ways, and has often proved to be problematic in

computerised language processing systems. The following sections develop the idea of

an indexing system for access to the dictionary which neatly includes morphological

information.

Chapter three established that the current recognition system gives good results.

However it deals with only a limited situation. The script is assumed to consist merely

of lower case alphabetic characters, making up whole words, which are in turn

assumed to exist in the lexicon being used for the look-up. Each of these assumptions

will often not be the case, especially the first of these. Any text likely to be written will

Page 92

Chapter Four — Integration

include uppercase letters, digits and other non-alphabetic characters. Other non-lexical

items, such as abbreviations and acronyms, must also be allowed within the system. A

method which accepts characters of varying case will be discussed in this chapter,

along with other considerations for the integration of different levels of analysis within

the recognition system.

4.2 Internal lexical structure

Words are composed of one or more morphemes (Crystal, 1987). A morpheme is the

smallest unit of meaning in natural language. For example walking is composed of the

root morpheme <walk> and the inflection (or affix) -ing which is the orthographic

form of the morpheme <present participle>. Other affixes are -ed, -er and so on, hence

walk, walking (= walk + ing), walked (= walk + ed), walker (= walk + er). Some

affixes cannot simply be added to their stems, some other transformation of the word

must also take place. For example occur, occurring {occur, with doubled final

consonant + ing), occurred {occur, with doubled final consonant + ed), and many

plural forms when -s is added, such as cat, cats {cat + s), pony, ponies {pony, y

changes to ie + s).

Some recognition systems with lexicon-based look-ups have used a root morpheme +

inflection (or stem + affix) approach, whereby the affix is stripped from the word, and

the remaining base checked in a lexicon. This means that fewer lexical items have to be

stored in memory, thereby reducing the size required by the lexicon and search times of

the look-up. However there are many problems involved with affix-stripping systems

(Paice, 1977; Taft, 1979; Lovins, 1968; Resnikoff and Dolby, 1965, 1966).

Page 93

Chapter Four — Integration

4.2.1 Problems with affix-stripping algorithms

If a word is stripped of potential affixes, problems can occur because the word was not

actually affixed, for example consider king, which would be incorrectly stripped to k +

ing, or bother, which would be incorrectly stripped to both + er. Affixes also combine

together, so stripping rules must be applied more than once, looking for the longest

affix possible to begin, and in a certain order. Irregularly affixed words such as

corpora, oxen, and leaves must be stored separately in the dictionary, because rules

will not cope correctly with them. It is not possible to say, given an input word,

whether or not it is affixed. An approach such as “look the string up in the word list,

and if the search is unsuccessful, apply affix-stripping algorithms” is inappropriate for

a recognition system with so many candidate strings for every word position. Any

string which is not allowable in the word list would be tested for potential affixes,

when in fact the look-up which has already taken place, is sufficient for this level of

analysis. In fact storing all separate words, including all affixed ones, gives a better

solution because the look-up process is then less complex. The affixing information is

important for syntactic purposes, and any syntax analysis would need such

information. However to try to obtain this information at the lexical look-up stage

would be complicating this stage unnecessarily. It is better left to the syntactic stage

where the information is more directly relevant.

It is also interesting to note that due to the nature and structure of the look-up tree, the

amount of extra space needed to store all derivations of root words is much less than at

first glance. Including all derivations of words can increase the size of the list by up to

three times, but the size of the tree structure representation of this list may only be

slightly increased. This is because of the way the tree takes advantage of the number of

words beginning with the same sequence of letters. So for example, occur, occurred,

occurring, or funny, funnier, funniest only require a few extra nodes to store them in

Page 94

Chapter Four — Integration

the tree, as they begin with the same few letters, which already have nodes in the tree as

the root words.

For example, a word list of 32,920 items (without derivations) requires 1.55 Mb of

memory, whereas the corresponding word list including derivations (60,269 words)

requires 2.21 Mb of memory. In other words, a list of words twice as long requires a

memory increase of only 1.5 times.

Table 4.1 — Memory increase for tree of words including derivations

Number of words Number of nodes in tree Memory used (Mb)
32920 96984 1.55
60269 137836 2.21

Methods of tree end-compression (§ 3.2.4) or a dawg structure (§ 3.2.5 and § 3.3.3)

would also take advantage of the large numbers of words ending with the same

sequences of letters, so the increase in memory requirement for a word list including

derivations (compared to that without derivations) would be even smaller.

4.2.2 Approaches to morphology

In order for dictionaries to be accessed easily, to keep down storage costs, to aid

syntactic and semantic processing and to reflect the morphological properties of user

input, a morphologically based access system of some sort is required (e.g. Boguraev

and Briscoe, 1989).

There have been two general methods of using morphology to access a lexicon and to

produce a syntactic representation for an input string. One uses a word-grammar

system (e.g. Ritchie et al, 1987) to decompose input strings into constituent

morphemes and inflections. The other uses a limited rule-based affix-stripping routine

Page 95

Chapter Four — Integration

to analyse an input string into its root and inflection (e.g. Holmes, 1988; Ramsay and

Barrett, 1987). The latter is more limited in its range of coverage, but is

computationally less complex. The word-grammar approach often over generates by

producing morphologically legal but non-occurring words (e.g. inter-possess). The

affix-stripping approach requires a lot of lexical checking and may produce an incorrect

stem as discussed above (e.g. k + ing, both + er). Since these problems are all

magnified for a recognition application where multiple input occurs, a different

approach to analysing and representing morphology has been developed by Keenan

(Keenan and Evett, 1989). This is only for the English language, although it appears

that affix-stripping routines are more appropriate for languages such as Italian and

Spanish (and possibly German) because of the high number of regular inflections.

4.2.3 An alternative approach to morphology

Keenan’s approach is different from those described, since morphology for input is

pre-processed into the system (Keenan 1989). The entries of a dictionary can be

accessed via the headword addresses to obtain syntactic and semantic information. In

order to access this information, an indexing system has been developed which

incorporates morphology. This has been done in the following way. A list of non­

inflected words was obtained from a machine-usable version of the Oxford Advance

Learners Dictionary (OALD) (Hornby, 1988). Each of these was assigned a unique

root-morpheme index. Codes from the OALD were used to generate the inflections for

these basic words (e.g. comparative adjectives, plurals); the root index was then

inherited by the derivations. So, for example, funny, funnier and funniest would all

have the same index (see table 4.2).

Page 96

Chapter Four — Integration

Table 4.2 — Example words with their indices

Word Index
funny 320

funnier 320
funniest 320

leaf 772
leaves 781
walk 1234

walking 1234
walked 1234
wood 1670

These index numbers are stored in the look-up tree at the ends of words at each node

where the end of word flag is set, for each of the words represented in the tree. Note

that one orthographic form may have more than one index, for example for

homographs (e.g. cone), and for derivatives which could have different roots

(e.g. does). In these cases, multiple entries will be represented as potential candidates.

Since the recognition system already deals with multiple candidates as one of its basic

functions, this does not present an additional problem.

When the candidate letter strings are checked against the tree of acceptable words, the

indices for those strings which constitute acceptable words are obtained. Having

obtained the root index for a word from the tree, more information for that word can be

accessed if required. This might be additional information stored on disk, such as a

word’s definition. The entry stored in the dictionary is syntactically correct only for the

morphological root. Some alteration to the syntactic information will be required for

derivations. To determine the alterations required, the input string is compared with the

root string (stored in the first field of the dictionary entry). The syntactic information

for the input string is obtained by modifying the syntactic information for the root string

depending on the differences between the two strings and the part of speech of the root

string. Irregular derivations have their own entries.

Page 97

Chapter Four — Integration

Essentially, this method pre-processes affix-stripping into the system, avoiding the

problem of production of incorrect stems. While this is not as comprehensive a system

as a word-grammar, it is computationally simple, provides no look-up overhead, and

avoids over-generation (Keenan and Evett, 1989).

4 .3 External lexical structure

Words combine into larger units such as compounds, phrases, clauses and sentences.

Compound nouns, verbs, adjectives and so on are sequences of two or more words

that frequently occur together. They act linguistically and psycholinguistically (Wilson,

1984) as a single lexical unit. For example the meaning of above board has little to do

with the separate meanings of above and board. Generally a compound is not simply a

combination of the syntax and semantics of its separate words. The same can be said

for commonly used phrases (e.g. dear sir or madam, easy walking distance). Some

compounds and standard phrases like these are often highly domain dependent

(Warren, 1978).

Historically certain types of compounds develop over time from separate words,

usually become hyphenated, and finally lose the hyphen to produce one word, for

example tea cup, tea-cup, teacup. Often all three will be in use at one time. Currently in

English all three orthographic representations can be found, but they are linguistically

identical, i.e. acting as one lexical unit. Other languages are different in their

development of compounds — for example German misses the first two stages and

combines words straight away into a longer word. (e.g. Rathaus, Rat + Haus or

Krankenwagen, Kranken + Wagen). Dictionaries dedicated solely to common phrases

and idioms are available.

Page 98

Chapter Four — Integration

4.4 Recognition o f compounds

4.4.1 Introduction

Given the lexical look-up described in chapters two and three, the number of allowable

candidate strings per word position is often large, especially for words of length 3 to 6

(see below and Appendix B for examples). Table 4.3 shows the number of allowable

strings remaining after pattern recognition and lexical look-up for the test data:

any future occurrence will make the person concerned liable to
disciplinary action thus the procedure must cease.

Table 4.3 — Number of allowable words for a test sentence

Word No. of allowable strings
any 88

future 6
occurrence 1

will 77
make 40

the 18
person 3

concerned 5
liable 5

to 3
disciplinary 2

action 26
thus 131
the 26

procedure 1
must 9
cease 4

Longer words (approximately 10 letters and over) are on the whole uniquely

recognised. The list of allowable words is ordered, and only the top ten, or fewer are

stored in a suitable structure. Given an allowable candidate word which is known to be

able to start a compound or commonly used phrase, the list of allowable words for the

following word position can be checked to see whether any of those words could be the

second element of the compound or phrase, and so on through the following word

Page 99

Chapter Four — Integration

positions until the end of the compound or phrase is reached, or until the next word of

the compound is not found in the list of allowable words. For example, the allowable

candidate words for the two phrases easy walking distance and tennis courts are

shown below.

1)

2)

easy walking
cords revoking
colds rocking
aids
odds

farms courts
lawns devils
firms hairs
terms covers
forms
tennis
tailors
terrors
blows
fulfils

instance

Having conducted a few preliminary experiments to check the validity and effectiveness

of this approach, it was decided to construct another trie structure containing the

compounds and common phrase information. This trie is separate from the existing

look-up tree, but is accessed from the look-up if an allowable word is found which may

be part of a compound. This access is via a flagging system (see later §4.4.3).

This process is an extremely effective way of reducing the lists of allowable strings.

We can say that easy walking distance is more likely to be the correct sequence of

words rather than colds rocking enhance or any other combination of allowable

candidate strings. See Appendix C for some recognition results before and after the

application of compounding information.

The MRD which provides the morphological information described earlier also contains

information regarding compounds and some phrases. Others can be added manually to

Page 100

Chapter Four — Integration

tailor the MRD to a particular topic or area of usage. For example estate agent’s

property details, business letters, newspaper articles, novels and so on.

4.4.2 The compound tree

Each word in the lexicon has an associated index (as explained in §4.2.3), and each

compound or phrase also has an associated index, as shown in tables 4.4 and 4.5

below. The information about the compounds and common phrases needs to be

structured so that each element (i.e. each separate word) is linked together and can

access the compound’s index. A trie was constructed for this purpose (see figure 4.1).

Table 4.4 — Example indices for words that are part of compounds

Word Index for word
airing 6001
area 264
back 384
built 601

cupboard 1153
detached 1286
garden 2055
house 2324

in 2430 |
up 4994

wardrobe 6055

Table 4.5 — Example indices for compounds

Compound Index for compound
airing cupboard 46

back garden 1
built in 135

built in cupboard 3
built in wardrobe 192

built up 204
built up area 333

detached house 6

Page 101

Chapter Four — Integration

~o
CD

OCO-t—>
<d~o

CD
CD
ZJO_c CD

f
Cl
ZJ

o
CM

CO
2
CO poTco

co

ZJ-Q T O ­
CO

XOco
JD

CCD
*EcoO)

CD
JQ

2
IE
co
5

CM
C7>

■g
coo
CL13O E

O)c
‘co

*2
COoJD
Q .ZJO CDTt

Figure 4.1 — Tree structure representation of compounds using one word per node

The trie structure shown in figure 4.1 is wasteful of memory because each word is

stored at each node. This is not necessary because a word’s index number could be

used instead (see figure 4.2). Each node in the trie has the usual two pointers (one

pointing to a child node, and one pointing to alternatives or siblings). There is also a

third pointer which, if used, gives the index of the complete compound. When a path

through the tree is followed and a possible end of compound or phrase is reached, there

Chapter Four — Integration

OO
CD

CO
LO
T~ 1

CD

CD
CD
CM

■si*
C\J
CO
CM

Kt*
CD
CD

CD

o
CM

M-
CD
CM

CO
CO
CO

O
CD

O
CO

CM TO ­
CO

LO
LOI
O
CD

i TT
CD

CO
CO

If)LO
o
CM

CO
LO

CO

Figure 4.2 — Representation of compound tree structure using indices

is a pointer to the index of the whole compound or phrase so that information about its

syntax and semantics can be obtained from the dictionary. The syntax and semantics of

a compound or phrase is different from that of its constituent parts, but this required

information can be obtained from a MRD.

Page 103

Chapter Four — Integration

4.4.3 Flagging system

The tree representing the lexical look-up structure and the tree representing the

compound information are completely separate. Each word that can start a compound or

phrase is flagged as such. This flag is stored at the end of word node in the lexical

look-up tree. In fact other information about words needs to be stored, and this can be

achieved using the same flag, using a coding system described below.

Written language contains many cues beyond the word level which give information

about higher levels of structure. These cues include the occurrence of capital letters and

punctuation, so these would need to be acceptable to the recognition system, along with

abbreviations, acronyms, digits and other characters (such as ‘? \ T *%’ and so on).

Words which are names (proper nouns) which should always start with a capital letter

can be flagged in the lexical look-up tree so that this is checked against the candidate

character data at the look-up stage. A total of twelve codes are necessary for this flag to

encode the relevant information (see table 4.6).

Table 4.6 — The twelve flags with their corresponding meanings

Code Case status Compound status Example
0 starts with capital letter not Cindy
1 all same case not cat
2 any case (inc. mixed) not PhD
3 starts with capital letter part of Bridge
4 all same case part of cupboard
5 any case (inc. mixed) part of
6 starts with capital letter start of London
7 all same case start of airing
8 any case (inc. mixed) start of
9 misspelled word not reeieved
10 misspelled word part of cuboard
11 misspelled word start of detatched

Page 104

Chapter Four — Integration

Each node in the lexical look-up tree is now of the following form:

letter
end of word
flag

index flag

child pointer brother pointer

t

As the trie is being constructed from an ASCII word list, there is a problem to be

overcome. This is where there is more than one occurrence of the same orthographic

word (ignoring case), with different flag codes. For example frank (code 1), and Frank

(code 0). Only one code can be stored in the tree as that word’s flag, and in fact only

one is needed, because the codes form a hierarchy. A system was devised which

expresses this hierarchy in order to calculate which codes should have priority when a

duplicate word is encountered (see table 4.7).

Table 4.7 — Example words with multiple case codes showing which code has priority

Word Code Priority
airing 1
airing L_ 7 7
frank 1
Frank 0 1
house 1
house 4 4

A code of 7 implicitly allows a code of 1 (because they have the same case status, but 7

means the word can be the start of a compound), so 7 is given priority over 1, and 7 is

the code stored as the flag at that node in the tree. Similarly to express both codes 1 and

0, code 1 should be used because it allows both cases, and so on. To allow for all

possible combinations of the twelve codes, the data shown in table 4.8 was produced.

The table is actually symmetric, but can be thought of as though the row code would be

Chapter Four — Integration

that of the code stored so far in the tree, and the column code would be that of the new

code found in the word list.

Table 4.8 — Multiple case code priority

0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 2 3 4 5 6 7 8 9 10 11
1 1 1 2 4 4 5 7 7 8 10 10 11
2 2 2 2 5 5 5 8 8 8 11 11 11
3 3 4 5 3 4 5 6 7 8 9 10 11
4 4 4 5 4 4 5 7 7 8 10 10 11
5 5 5 5 5 5 5 8 8 8 11 11 11
6 6 7 8 6 7 8 6 7 8 9 10 11
7 7 7 8 7 7 8 7 7 8 10 10 11
8 8 8 8 8 8 8 8 8 8 11 11 11
9 9 10 11 9 10 11 9 10 11 9 10 11
10 10 10 11 10 10 11 10 10 11 10 10 11
11 11 11 11 11 11 11 11 11 11 11 11 11

When a candidate string is checked in the look-up tree, its case priority is now also

checked against the flag code found in the tree (see table 4.9).

Table 4.9 — Example candidate strings and their case priority

Candidate string Case priority
Cat 0
cat 1

CAT 2

If the tree flag code is greater than eight (i.e. 9, 10 or 11) any candidate string

(whatever its case priority) is said to be allowable - these are misspelled words.

Otherwise if the case priority equals that of the word in the tree, then the candidate

string is allowable. This is checked by dividing the flag code by three and comparing

the remainder with the candidate string's case priority. If they are equal, the string is

allowable. The only other acceptable conditions are when the flag code is 1,4 or 7, and

the candidate string begins with a capital letter. This deals with words other than proper

nouns which have been written with a starting capital, i.e. at the beginning of a

Page 106

Chapter Four — Integration

sentence. In this way both upper and lower case script (and mixed case) can be

accepted by the recognition system.

4.5 Integration o f higher

Acceptable candidate words from the lexical look-up stage of recognition can now be

checked for sequences of words which belong to compounds or common phrases.

Additional information about the candidate words is stored in the look-up tree (see

previous § 4.4), and is therefore available with every allowable candidate to be passed

onto further stages of analysis, as shown in the flowchart in figure 4.3 below.

The candidate words, their associated scores and dictionary indices are then passed on

to the syntactic or semantic analysis stages for further processing. Each word has one

or more grammatical category (e.g. noun, verb, adjective, preposition, conjunction)

associated with it, and these are collected for processing. Sequences of grammatical

category are scored for likelihood of occurrence in English. The scores of candidate

words are increased in proportion with their syntactic likelihood of occurring in that

word position (see § 4.5.1 for further details).

The candidate words, scores and indices are then passed onto the semantic analysis

stage where combinations of words are measured for likelihood of occurring together

by dictionary definition overlap and collocations (see § 4.5.2 for further details).

Page 107

C hapter Four — Integration

Handwriting

Freeman
database

lexicon

transition
matrices

semantic
information

x-y co-ordinates

character candidates

i Word tree and i
i compound tree i

candidate words
grammar codes

grammatical phrases

meaningful phrases

Semantic
analysis

Word-level
analysis

Character
recognition

Syntactic
analysis

Recognised text

Figure 4.3 — Overview of handwriting recognition system

Currently the system is discrete and sequential, however this is not necessarily the best

way of processing the candidate words. Each level has its own information to

contribute, and the process is not necessarily serial (see also figure 6.2), Words can be

processed by the syntactic and semantic analysers with or without compound

information, and indeed could be in either order. The process could be parallelised.

Page 108

Chapter Four — Integration

Information about the candidate words could be passed on at a variety of stages. After

each word is processed, after each sentence, or even at some point in between. There is

not really enough information available for processing to be after each word position,

because both syntax and semantics are concerned with linguistic units larger than a

single lexical item. They are concerned with how words combine together.

Consequently it would be more productive to start further processing after each

sentence, because there would be much more information to consider. However, it may

be that sentences cannot be detected reliably at the pattern recognition level. It would

also mean a longer wait before any processing can begin, and more data would need to

be held in memory. There may be some suitable compromise which will give any

syntactic and semantic analysis sufficient information about a particular word and those

surrounding it.

An effective structure which will hold the necessary information for all levels of

analysis is also required. It may be passed between the different stages (especially if the

processes follow serially) or may be accessed centrally (especially if the different

processes are executed in parallel). In fact the word look-up stage is an ideal site for

integrating different types of information because it provides the interface between the

low level pattern recognition and the higher levels of linguistic processing.

4.5.1 Syntax analysis

Handwriting recognition could be improved by implementing information about the

syntactic structure of text. This may be used to rule out phrases which are

grammatically unacceptable. The syntax analysis stage of recognition described here is

a statistical approach. Statistical methods for syntactic processing are more robust and

better suited to the recognition task than rule-based approaches. This particular

Page 109

Chapter Four — Integration

technique has been tested on text samples and an improvement in performance

demonstrated (Keenan et al, 1991).

The best known method in which information about syntax is implemented

computationally is the use of parsers based on competence grammars. Although such

parsers are linguistically sophisticated, they produce a number (sometimes large) of

parses for any sentence analysed, and require large amounts of computing resources. It

is also not clear that the grammars they are based upon are capable of generating the

range of constructions that occur in real life. For recognition purposes it is sufficient to

know whether or not word strings are grammatically acceptable, rather than to know all

possible parses. Statistical techniques achieve less deep analyses but are robust and

easier and more efficient to implement. Since they have been developed with reference

to real usage of language they are capable of dealing with language as it occurs.

4.5.1.1 Syntax implementation

In order for the syntactic analyser to process text, a number of resources are required.

These consist of a corpus to determine the syntactic patterns of the language, a lexicon

for storing the grammatical categories of the vocabulary, and a tag-set to encode the

grammatical information.

The corpus used for the current project is the Lancaster Oslo Bergen (LOB; Johansson

and Holland, 1987). It comprises approximately one million words of text derived

from a variety of British English (printed) texts. Each word is tagged with its

grammatical category. The lexicon (stored as the lexical look-up tree) currently in use

contains the grammatical information for more than 70,000 words and is derived from a

combination of the Text710 version of the Oxford Advanced Learner’s Dictionary of

Current English (OALDCE; Mitton, 1986) and the LOB corpus. This combination also

Page 110

JWI.: _ ..’V

Chapter Four — Integration

provides the tag-set of grammatical codes, resulting in a set of 109 tags. These are

represented by the integers 1 to 109. Most words belong to a number of grammatical

categories, although most of these are relatively rare and the most frequent category is

almost always sufficient. Consequently the grammatical tags for each word in the

lexicon are given a grammatical frequency factor (GFF) to distinguish the importance of

the different tags. The GFF represents the frequency of a tag for a word, relative to its

most frequent tag.

The application of syntactic information to handwriting recognition consists of two

phases: firstly acquisition and secondly recognition. During the acquisition or

development phase, transition matrices are created by analysing a corpus for

frequencies of transitions between grammatical categories (e.g. how many times a

determiner is followed by a noun). The frequencies are then normalised and stored in a

transition matrix.

The recognition phase is the run-time application of the information derived during

development. Given a graph or lattice of possible words, the syntactic processor ranks

the correct words according to their ability to combine grammatically with neighbouring

words. This decision is made by first finding the possible grammatical categories of the

words in the lattice. The categories are found from the lexicon. Then the probability of

each of the possible transitions between the categories is retrieved from the transition

matrix. The words are assigned a rating based on the probabilities of the transitions in

which they participate.

Experiments have shown that recognition is most improved when the total transition

probability rating is combined with the GFF and the score previously calculated from

the pattern and lexical recognition levels (Keenan et al, 1991). Appendix C gives details

of recognition results before and after syntax analysis.

Page 111

Chapler Four — Integration

This statistical syntax analysis technique can also predict the most likely category for a

particular word position, given the grammatical categories of surrounding word

positions. This information can be held in the central structure and may be made use of

in cases where a word is unknown (not recognised) for some reason. This will be

discussed in more detail in chapter five (§5.3.4.1).

4.5.1.2 Access to syntactic information

For ease of access, the grammatical categories and frequency numbers for each word in

the lexicon, are stored in the look-up tree. Each node in the tree is now of the following

form:

letter end of word
flag

index flag grammar
code

child
pointer frequency brother

pointer

t

This is overloading the tree unnecessarily, as it is now fulfilling two different functions

— firstly to establish whether or not a word exists, and secondly to provide a

convenient access method for other information. In chapter five, a further situation

provides an opportunity to separate these two functions (§5.4.3 and § 5.4.4).

4.5.2 Semantic analysis

Just as syntactic knowledge can be applied to computerised handwriting recognition,

the use of semantic information should also improve its performance. Phrases which

are most likely to be correct can be selected from the candidate phrases. Attempts to

develop theories of natural language semantics have tended to be for small and concrete

Chapter Four — Integration

domains (e.g. Katz and Fodor, 1963). Extending such theories for large real world

vocabulary is difficult. Firstly, the hand-crafting of features for a large vocabulary

would be an almost impossible task. Secondly, while some theories may work well for

concrete subjects such as “table” and “chair”, they may well not be applicable to

abstract concepts such as “justice”, “insurance” or “business”.

An alternative approach is to use existing sources of information about meaning.

Dictionaries and text corpora now exist in reasonable numbers in electronic form, and

they provide information about large vocabularies. The current system has developed a

number of techniques to apply semantic information from such sources (Rose et al,

1991). These are using a “definition overlap” technique (Lesk, 1988) from dictionary

definitions and from linguistic collocation information. The processing of text using

subject domains has also been investigated.

The “definition overlap” technique measures the likelihood that two words would occur

in the same sentence by comparing their definitions. If the first word is found in the

definition of the second, or vice versa, then the pair are said to have a strong overlap. If

they do not have a strong overlap, but a third word occurs in both the definitions, then

they are said to have a weak overlap. Any overlap established is scored accordingly,

strong scoring more than weak. Scores are calculated for all pairs of content words (i.e.

function words such as the, but, and are ignored) within four word positions of each

other. Experiments have shown that this method distinguishes between related and

unrelated pairs, although not with 100% accuracy. It also selects the correct word from

recognition candidates at a greater than chance level, with good results for definitions

taken from the OALDCE.

The same experiment using linguistic collocations instead of dictionary definitions

reliably chooses the correct candidate. Certain words form distributional patterns in

Page 113

Chapter Four — Integration

text, that is they frequently occur in combination with other words, these are the

collocates of that word. Collocational information is derived from the LOB corpus.

However the LOB corpus can only reasonably provide a collocation dictionary for

some 7130 entires. A corpus much larger than the LOB would be necessary to gain

sufficient information for a larger vocabulary.

Appendix C gives recognition results for a test sentence before and after semantic

analysis.

4.5.3 Interface structure

The different levels of analysis described above produce further information about the

remaining candidate words. The words themselves, and each piece of information

associated with them, need to be stored in some suitable structure which is available to

all levels of recognition. As a new piece of information is found, for example a word’s

grammar code is retrieved from the lexicon, it can be stored in this structure. Once

some processing has taken place and perhaps a score has been calculated for a word, it

can also be stored in this structure.

The current system holds a window of information about five word positions at any

one time. This seems to be sufficient at present as it holds more than one word, so a

number of positions can be compared, for example grammatical tri-grams can be

checked, or semantic overlaps (across a maximum of four word positions) compared.

More than five positions does not really provide any additional information, and of

course requires more storage. The structure implemented consists of two parts: a header

section and a list section. Figure 4.4 illustrates the structures.

Chapter Four — Integration

word position
= 0

position = 1 position = 2 position = 3 position = 4

number of number of number of number of number of
possible words possible words possible words possible words possible words

x-y boundaries x-y boundaries x-y boundaries x-y boundaries x-y boundaries

number of number of number of number of number of
segments segments segments segments segments

approx. number approx. number approx. number approx. number approx. number
of letters of letters of letters of letters of letters

score for score for score for score for score for
best word best word best word best word best word

list of words list of words list of words list of words list of words
and associated and associated and associated and associated and associated
information information information information information

......%.......

<■— J
imrnmm

<— ’
lllllii!

••• •• • •
gjp -

f ------' Z r ?

= word information
structure

word

recognition score

word's frequency

root index

flag code

grammar tags

grammatical score

semantic score

next word pointer

Figure 4.4 — Interface storage structure for candidate words and associated

information

Page 115

Chapter Four — Integration

The header section contains information about a word position in general (e.g.

numbered word position in the recognised text so far, total number of candidates found

to be allowable at that position, co-ordinates of x,y bounding box and so on). The list

section contains a list of the ten (or less) top ranked candidate words for that word

position, along with grammar codes, scores from all levels, index number and so on.

4.6 Special characters

In addition to allowing both upper and lower case letters of the words from a chosen

lexicon, the pattern recognition stage should also be able to recognise non-alphabetic

characters. For example digits, punctuation and other special characters such as Greek

letters and so on.

Marks of punctuation (full stop, comma, apostrophe, exclamation mark, question

mark, hyphen) and other special characters (all kinds of bracketing, £,$,%,&,*,/,\

could be passed from the recogniser as “words” (i.e. separated between two spaces) in

their own right, or as part of a word (i.e. between other letters, as the starting character

of a string, or as the finishing character of a string). For example:

house, and/or

done.

there!

(oops)

In these situations a lexical look-up is obviously inappropriate. Separate characters are

easily accounted for, as are special characters at the beginning or end of words, they are

simply ignored for look-up purposes. It is more difficult if they occur between letters

(e.g. andlor, &*****<i). it may be possible to check for the existence of a word before

the special character, and another afterwards. For hyphenated words and apostrophes,

Page 116

Chapter Four — Integration

certain rules can be applied. For example tea-cup, this could be allowed if the string

preceding the hyphen is a word (found by the look-up) and also the string following the

hyphen. So tca-cup would not be allowable. If an apostrophe is found, only a few

strings could follow it, so these can be checked for (e.g. n ‘t, ‘s, ‘re, '11, s' and so on).

In fact the kind of strings apostrophes occur with are also from a relatively small set.

Strings such as won't, can't, they're and so on could actually be included in the look­

up tree and flagged as requiring an apostrophe between two letter positions.

F o r 's, s' etc, (i.e. possessives, both singular and plural, and it's) this would be a

simple check to see if the string preceding the apostrophe could have such a possessive

(i.e. it is a noun or pronoun — e.g. the dog's bone, my sister's house, the boys'

sweets).

Similarly there are a small number of cases where digits are found mixed with letters

(e.g. 1st, 2nd, 3rd, 4th, 126th and so on). These could be checked. Strings such as

hou5e would have to be ruled out (as 5 often confuses with s). A string consisting of

all digits (i.e. a sequence of digits between two spaces) should also be allowed, for

telephone numbers, addresses etc). Any other sequence should not be allowable.

Other strings which should be checked for in the system could be Greek characters

(again these are acceptable if found on their own, or if the sequence is a formula for

example, but should not be allowable if they are mixed with alphabetic characters).

Similarly for Roman numerals e.g. MCMLXXXIX, the problem here is of course that

Roman numerals look exactly like any sequence of upper case letters, and would

therefore be passed for lexical checking. Sequences such as post codes could be

checked against their own particular syntax. For example NG9 1PR is acceptable, but

NG67 is not because 67 is outside the range of acceptable area digits for Nottingham.

Page 117

Chapter Four — Integration

Some algorithms have been implemented as part of the current recognition system.

These accept some special characters and some sequences of “mixed” characters. For

example, the following would now all be allowed by the system:

word 1234 (word) [1234] < > 63% % word-word

4.7 Conclusions

This chapter has shown that recognition can be improved by using additional linguistic

information. This includes compound words, common phrases and idioms, syntax and

semantics. A method which deals neatly with the potential problem of morphology has

been presented. This used existing and available information from a machine-readable

dictionary source to develop an indexing system. These indices are stored in the lexical

look-up tree, along with other information (such as grammatical category) required by

higher levels of analysis. The look-up tree is an ideal site for integrating different types

of information because it provides the interface between the low level pattern

recognition process and higher level linguistic processes.

The machine-readable dictionary also contains details of compounds and commonly

used phrases. The use of such structures to aid recognition was investigated and an

initial method has been implemented which employs another trie data structure to hold

compounding information. A system of coded flags has also been discussed which

provides access to compound and case information. The inclusion of other characters

such as punctuation and digits has been considered and some simple cases included in

the system.

Methods for implementing techniques which make effective use of higher level

information have been described. A suitable structure which aids the integration process

by storing the required and produced information has been established. Attempts have

Page 118

Chapter Four — Integration

been made to combine all such information in some meaningful way for this particular

application of handwriting recognition, and results have been presented which show a

significant improvement in recognition.

Page 119

Chapter Five

Combining Sources of
Information

5.1 Intro

The previous chapter discussed the integration and interface between the different levels

of analysis of the handwriting recognition system. This included details of the

information needed by each level of analysis, and the additional information produced

by that level. Such information needs to be considered together when selecting the most

likely word from all candidates, which implies that the information must be combined

in some way. So far it has been assumed that levels of processing within the system

operate serially, from the pattern recognition, to the lexical look-up, then onto syntactic

and semantic analysis. In other words information is collected at the pattern recognition

stage, and all further levels select from this. This need not be the case, since each level

has information of its own to contribute to the overall picture, as well as selecting from

the existing information. The current chapter will discuss ways in which all levels of

analysis can suggest alternative or additional candidate letters, words (or perhaps

phrases) in order to supplement information from the pattern level. The discussion will

include areas where the pattern recogniser could be improved, and will describe

methods used to implement some of these ideas. In particular these ideas will be applied

Chapter Five — Combining Sources o f Information

to existing errors within the system. This will necessarily involve some interaction

between the different levels of analysis.

Psychological models of Teading propose interaction of levels of information in the

human language processing system. In particular, Morton’s “Logogen Theory”

(Morton, 1969), Marslen-Wilson’s “Cohort Theory” of word recognition (Marslen-

Wilson and Welsh, 1978), and Rumelhart and McClelland’s “Interactive Activation

Model” (McClelland and Rumelhart, 1981; Rumelhart and McClelland, 1982) are

relevant here.

5.1.1 Psychological theories of word recognition

According to Logogen Theory, each word in the mental lexicon is assumed to have a

“logogen”. This is a theoretical entity that contains a specification of the word’s

defining characteristics. Word recognition occurs when the activation of a single lexical

entry (i.e. a logogen) crosses some critical threshold value. Logogens accept input from

both bottom-up sensory analysers, and top-down contextual mechanisms. Both

sensory and contextual information interact in such a way that there is a trade-off

between them; the more contextual information input to a logogen from its top-down

sources, the less sensory information is needed to bring the logogen above threshold

for activation.

Cohort Theory views word recognition (for speech input) as a bottom-up process of

eliminating possible candidates by de-activation. This is in contrast with its predecessor

(Logogen Theory) which assumes activation of only a single lexical item. According to

Marslen-Wilson and Welsh, a set of potential word candidates (the “cohort”) is

activated during the earliest phases of the word recognition process solely on the basis

of bottom-up sensory information. That is, all words sharing the same initial sound

Page 121

Chapter Five — Combining Sources of Information

characteristics become activated in the system. As the system detects mismatches

between initial bottom-up sensory information and the top-down information about the

expected sound representation of words generated by context, inappropriate candidates

within the initial cohort are de-activated. A word is said to be recognised at the point

when a particular word can be uniquely distinguished from all other words in the

cohort. As in Logogen Theory, word recognition and the subsequent lexical access are

viewed as a result of a balance between the available sensory and contextual

information about a word at any given time. In particular, when de-activation occurs on

the basis of contextual mismatches, less sensory information is therefore needed for a

single word candidate to emerge.

In Rumelhart and McClelland’s Interactive Activation Model, perception results from

excitatory and inhibitory interactions of detectors for visual features, letters, and words.

The central feature of this model is that the processing of information in reading is

assumed to consist of a series of levels. Each level is concerned with forming a

representation of the input at a different level of abstraction. Information flows in both

directions at once - from lower to higher levels and from higher to lower levels. A

visual input excites detectors for visual features in the display. These excite detectors

for letters consistent with the active features. The letter detectors in turn excite detectors

for consistent words. Active word detectors mutually inhibit each other and send

feedback to the letter level, strengthening activation and hence perceptibility of their

constituent letters. Context also aids perception. Hence perception is fundamentally an

interactive process. So top-down (or “conceptually driven”) processing works

simultaneously and in conjunction with bottom-up (or “data driven”) processing.

The current script recognition system processes information in a similar fashion to that

of Rumelhart and McClelland’s model. The pattern recognition stage takes input of a

visual kind and extracts features, which are passed on to letter and word levels of

Chapter Five — Combining Sources o f Information

processing. However there is no feedback in our system at present. A study of the

above model suggests strongly that such a feedback mechanism would facilitate

recognition, if some suitable implementation could be devised. Taking this further,

interaction with higher contextual knowledge is also possible. Higher levels of syntactic

and semantic processing can provide their own information to add to existing word

level information. This information may confirm existing candidates (excitatory

connections), or may conflict with existing candidates (inhibitory connections). Our

word information would have to be stored in some appropriate fashion to facilitate

“activation” of certain words from both directions, i.e. from both the contextual and the

feature/letter levels.

5.1.2 Examples o f the use o f higher level knowledge

As we have seen so far, the results from pattern recognition are far from perfect, and no

matter what improvements are made to recognition, it is never going to reach 100%

accuracy. People can write words so that they look like other words, or don’t look like

any word at all, so the correct word can only be found from the surrounding words in

context. For example:

1. “The slope was very sleep” (uncrossed t)

2. “I put the clog on a lead” (badly written d)

Page 123

Chapter Five — Combining Sources o f Information

3. “All the people arc boring” (badly written e)

o i l

4. “I put my boots down on the table” (meant books)

In example 1 above, the t of steep has been left uncrossed, making the word look like

sleep instead, and in example 2 the word dog looks like clog. Even a reliable pattern

recogniser could only find a word which best fits the script as it appears, having no

knowledge to suggest that that word is incorrect. A good system needs to be able to

detect when errors occur, and hopefully also be able to employ some means of

correcting them, or at least attempting to correct them. Higher levels of analysis can

provide extra knowledge, both to aid detection of errors, and to make alternative

suggestions for possible correction of a detected error. However, using information

from more levels of analysis means finding some suitable way of combining that

information.

Example 1 above should be detected as an error by analysis of the grammatical

categories of the words. Syntax suggests that an adjective should follow the word very,

but sleep is either a noun or a verb. The sequence very steep is (syntactically) 1,500

times more likely to occur than very sleep (from transition frequency counts of the

LOB corpus). Similarly for example 3, the words people and arc are less likely to

occur together than people and are. However for examples 2 and 4, syntactic analysis

would not identify any problems, because they are grammatically acceptable. Example

Chapter Five — Combining Sources o f Information

2 does not really make sense (although it is possible to think of situations where this

might occur), but example 4 does. Semantic analysis of these examples might be able to

identify a problem with 2, but example 4 would probably pass through all processing

and be accepted. There is no way of knowing that the writer intended to write the word

books, but by a lexical substitution error wrote boots instead.

Given the current recognition system, it is most unlikely that such examples will occur

in this form. As we have seen in previous chapters, it is infrequent that allowable

candidate words are unique. From a sample of 106 words, approximately 13% were

unique (12% gave no allowable words, 27% had between 2 and 5 allowable candidate

words, 33% between 6 and 20 candidates, and 15% more than 20 candidates).

Consequently there will be other candidate words at most word positions, and all

combinations of words must be considered. Given a choice between sleep and steep for

example 1, both syntax and semantics would choose steep. Similarly for example 3,

syntax would choose are over arc, and for example 2, semantics would choose dog

rather than clog. Example 4 still remains a problem, but it may be that books could be

suggested as more likely than boots from semantic co-occurrence information, or from

frequency of use from a corpus {books is five times more likely to occur than boots),

especially if weighted from a count of occurrence in the script recognised so far.

However these choices will only occur if the coiTect words are contained in the list of

alternative candidate words, which may not be the case. It must also be noted that

preceding word positions may have been recognised incorrectly, given that most

positions have alternative candidates, and often the correct word is not first in the

ordered list. This means that the situation is more ambiguous than as just described.

Whether the alternative candidates confuse the situation more often than they aid it can

only be found from adequate testing of the system. Table 5.1 shows sample recognition

results for examples 1 to 4 discussed above.

Page 125

Chapter Five — Combining Sources o f Information

The intended words for examples 1 and 4 (steep and books, respectively) did not occur

as alternatives. In example 2 the intended word dog was the second candidate word,

and in example 3 the intended word are was the top candidate, actually rated higher than

the “correct” word arc. The intended words might be able to be suggested for examples

1 and 4 if a method of whole word recognition were employed, because sleep and

steep, boots and books have the same overall shape.

Traditional spelling error detection and correction data is for typed input. For

handwriting there are problems not only of spelling errors, but also illegible words. For

recognition, a third problem is idiosyncrasies of the recogniser. Errors in the current

script recognition system must be studied in detail in order to establish whether they can

Table 5.1 — Recognition results for deliberate errors

Word Rank of
correct word

Total no.
allowable cands.

Top
candidate

Next few candidates

the 1 14 the for too few ten tea tore
slope 2 4 hope scope dope
was 1 28 was race voice has iris overs oars
very 2 44 way ray vary ivory ivy only wiry
sleep 5 36 deep shop keep ship slap sloop sheep

I 1 2 I 1
put 2 6 but port pat fall tall
the 1 9 the too till fill toil

clog 1 7 clog dog slog clay day slay
on 1 4 on oh or oil
a 1 2 a n

lead 1 12 lead load bad local
all 1 8 all ale ace cill cool oil
the 1 27 the for few too ten tea tell

people 1 2 people pebble
arc 2 22 are air our own core corn cove owe

boring 1 4 boring boiling bowling poring pouring
I 1 2 I 1

put 2 46 pat port but bat foot roof woof out
my 1 5 my ivy wig rug wry j

boots 1 1 boots
down 1 6 down clown colour odour clover dover

on 1 21 on or
the 1 10 the tell top thy fog she

table 1 5 table fable feeble foible tousle

Chapter Five — Combining Sources o f Information

always be identified. If they can, then effective error correction methods can be

considered. These may be standard algorithms, or alternative techniques may be

suggested by the specific types of error produced in the system. For example there may

be further information available at the pattern level, or provided by higher levels of

analysis, which will be able to suggest alternative candidate words for the position in

error. If an effective method can be found, then it may be possible to utilise the same

information to aid the choice of candidate words in positions where no error has been

found.

In summary, the areas to be addressed in this chapter are:

• the identification, or detection of errors in the system;

• the correction of errors if any have been detected;

finding additional information which can aid both of the above;

• combining this information in some meaningful way.

5.2 Errors

5.2.1 Introduction

Given the lexical look-up of the script recognition system, as described in earlier

chapters, there are cases wheTe the system will not be able to suggest any allowable

candidate string. There will also be cases when a stray candidate from the lexical look­

up is rejected by the later stages of analysis. There are various possible reasons for

these failures, including errors of recognition and errors of spelling. Such errors could

also produce an incorrect but acceptable candidate. This could only be detected and

corrected by the user. The system can only attempt to deal with possible errors of

recognition or spelling. Mis-recognitions and errors of spelling are impossible to

distinguish from each other, given the nature of the data output from the pattern

C hapter Five — Combining Sources o f Information

recogniser, however they should be detected and corrected if possible. The following

sections discuss accepted literature methods of error detection and correction.

5 .2.2 Traditional methods for detecting errors

Humans, when reading, often miss spelling errors, because their expectations of what

the text should say, influence the visual system, so that they read the intended word,

rather than what is actually in front of them. This is especially so for handwriting,

when not only spelling errors, but also illegible words can be deduced from the

context.

With the increase in word and text processing computer systems, programs which

check and correct spelling have become more and more common (see Peterson, 1980

for a review). A standard method of spelling error detection (also known as checking or

verifying) is a deterministic approach by look-up in a table or word list (Bledsoe and

Browning, 1959; Shinghal and Toussaint, 1979; Srihari, Hull and Choudhari, 1983;

Bozinovic and Srihari, 1982; Berghel, 1987). If the word is not found then it is said to

be misspelled, so either correction is attempted, or it is returned to the user for

verification.

Alternative techniques are probabilistic, using constituent analysis (n-grams or string

segments), which are faster than lexicon search routines, but less precise. For example

the unix facility TYPO checks sequences of di-grams and tri-grams and computes an

index of peculiarity for each word — if a word contains several very rare di- or tri­

grams, it is potentially misspelled (Morris and Cherry, 1975). Many other systems

(Riseman and Hanson, 1974; Ullman, 1977; Hull and Srihari, 1982) use similar

methods with grams, but it should be noted that the majority of these are designed to

Page 128

Chapter Five — Combining Sources o f Information

check the spelling of typed input. Any studies of handwritten spelling errors (e.g. Ellis,

1979; Wing and Baddeley, 1979; Mitton, 1987) weTe manually checked.

There are also hybrid techniques which use some of both look-up and constituent

analysis. These include affix stripping routines. Constituent analysis is used to identify

and remove legitimate affixes from word tokens, and a table look-up procedure is

employed to determine whether or not the root of the word is correctly spelled.

Given an input file of text, the task of a spelling checker is to identify those words

which are incorrect, but first it must perform some document normalisation. This

includes the standardisation of words with regard to case (so “DOG” matches “dog”) or

to alternative spelling (so “judgment” matches with “judgement”), the removal of any

formatting symbols, and sensible handling of digits, apostrophes, hyphens and

punctuation symbols. For example hyphens functioning as delimiters are essential,

whereas those signifying word breaks at the ends of lines are extraneous, and the two

parts of the word should possibly be joined together.

A good spell checker has to minimise errors both of type 1 (a correct word is marked as

incorrectly spelled), and of type 2 (an incorrectly spelled word is not marked). A

checker that detects errors simply by lexical look-up will obviously fail to spot “real

world” errors, such as wether for whether, i.e. where a misspelling has transformed

one English word into another. The problem becomes worse as the dictionary gets

larger. A checker that did not have wether in its lexicon would flag wether as an error

(correctly or not), but one with a comprehensive dictionary would fail to do so.

Interestingly, it appears that if a word is misspelled, any errors will usually be later in

the word, the first letter is usually correct (Mitton, 1987). The few first letter errors

which do occur are in words with silent consonants, for example know and write.

Errors are often phonetically based, so / may be written for ph and so on. Another

Page 129

- i ----------------1——:---—1—-----------ilill —-----♦-■-r-j-j:----il--■* * J • - -i' $>2 -• ..'VI-‘ '-‘A. — *̂ s * ~ ■ i- -

Chapter Five — Combining Sources o f Information

study of typing errors showed that lower frequency letters are more likely to be

replaced by higher frequency letters (Grudin, 1983).

5.2.3 Classification o f spelling errors

Damerau (1964; see also Peterson, 1980; Ullman, 1977) states that 80% of errors are

the result of the following four types of error (for typescript). Presumably the

remaining 20% are formed from combinations of these four classifications:

1) transposition of two letters;

2) one extra letter, or insertion;

3) one missing letter, or omission;

4) one wrong letter, or substitution.

The following table shows some examples of these errors. Resulting error type A

means that the intended word is transformed into another English word (a “real world”

error, whereas type B is where it has been transformed into a non-English string.

Table 5.2 — Examples of errors

Error type Intended word Resulting error A Resulting error B
1 cast cats
1 received recieved
2 breath breathe
2 hopeful hopefull
3 breathe breath
3 change chage
4 care case
4 student sludent

C hapter Five — Combining Sources o f Information

Salmina and Khodashinskii (1986) give the same four classes of errors (their examples

being from Russian typescript) and include approximate percentages of occurrence of

the four types:

1) transpositions 10 - 15 %

2) insertions 25 - 35 %

3) omissions 30 - 40 %

4) substitutions 15 - 20 %

These are the most frequently occurring errors, and infrequent errors such as

combinations of the above, account for approximately 4 - 9 % of the total.

Wing and Baddeley (1979) used the same four classifications for handwritten errors:

1) transpositions 3 %

2) insertions 13 %

3) omissions 49 %

4) substitutions 36 %

5.2.4 Methods fo r error correction

As we have seen, generally some kind of n-gram or lexical check is used for error

detection. Spelling correction algorithms usually suggest a few alternative words which

are in some sense similar to the detected misspelled word. A mathematical function

grades how different these suggestions are from the misspelling, and the nearest few

are suggested.

Given Damerau’s four main error types, it is possible to approach these situations in

order to find potential correct words. For each type of error, an algorithm can be found

Chapter Five — Combining Sources o f Information

which will attempt to find the intended word. For a string of length m characters, there

will be an additional 4m searches of the lexicon.

Table 5.3 — Algorithms for error correction

Error type Correction algorithm No. searches
transpositions transpose each adjacent pair of

letters
m -1

insertions remove each letter in turn m
omissions add a “wild card” between existing

letters, also at the start and finish
m + 1

substitutions substitute a wild card for each
letter position

m

Peterson (1980) explains that most misspellings can be generated from their correct

counterparts by using these four rules, and in fact form the basis of the DEC-10

spelling corrector. The resulting strings produced by applying the rules are searched for

in the lexicon in the normal way. Thus a candidate list of possible words is formed by

multiple searches of the lexicon. The search techniques can be improved, for example

by using a lexicon which is indexed by length. For each of the additional searches of

the lexicon, the length of the required string is always known, so searching the whole

lexicon is wasteful. However this also depends on the chosen memory structure for the

lexicon. These tend to be standard methods such as hashing (§5.4.3), trees or tries

(see chapter 3). Peterson (1980) comments that spelling correction is not cheap, but

then neither is it prohibitively expensive, and it is not normally needed. It is only

employed for the word tokens from the input text which have not been found in the

lexicon.

Common literature methods (Tappert, 1982; Hall and Dowling, 1980; Berghel, 1987)

have used string matching techniques, (e.g. nearest match methods, approximate string

matching) to find candidates for intended words once an erroT has been identified.

However most of these assume that misspelled words have been identified, and

concentrate on methods of comparison of the word in error to a number of candidates.

Page 132

Chapter Five — Combining Sources o f Information

Factors such as the number of letters different, and word length are often involved. The

algorithms suggest one candidate to be more likely than the others.

Spelling correcting programs can be interactive. When a misspelling is identified, it is

highlighted, and a number of options are available to the user. The program can suggest

a list of alternative words and allow the user to choose a substitute, the user can edit the

file to correct the word, or the user can confirm that this is in fact a correctly spelled

word, and should be added to the program’s dictionary. Thus correction involves

substituting the correct spelling of the intended word for its misspelled counterpart, but

controlled by the user. It would be undesirable for this process to be fully automated.

A spelling corrector must of necessity use a lexicon. Typically several lexical lists are

used, especially when primary storage is at a premium. The lists are arranged in a

hierarchy (Peterson, 1980), for example there may be a small, static lexicon of very

common words (perhaps 100-200), and a dynamic small to moderately sized document

specific lexicon (perhaps 1000-2000). In secondary storage there will be a large, static

lexicon of anything between 10,000 to 100,000 words.

Having found a set of words from the lexicon which may be the correct spelling of an

identified misspelling, common correction techniques compute an index of matching for

each candidate word. This can be thought of as a probability measure that the word

token in question resulted from a misspelling of a dictionary word. Berghel (1987)

distinguishes between three types of orthographic similarity. They are firstly,

positional similarity, a relation referring to the degree to which matching characters in

two strings are in the same position. Secondly, ordinal similarity, a relation referring to

the degree in which characters in two strings occur in the same order. Thirdly, material

similarity, a relation referring to the degree to which two strings consist of the same

characters.

Page 133

n o c k Li ■ ■. * •--* t... i' ■ "i -v-v iisV. -£>. -i

C hapter Five — Combining Sources o f Information

These three classes fit neatly with Damerau’s four types of errors. Substitution errors

are positional, transpositions are material, and both insertions and omissions are

ordinal. Berghel goes on to explain that positional similarity is too narrow for spelling

correction, whereas material similarity is too broad. Ordinal similarity is the one that

many algorithms have employed, for example Soundex (Odell and Russell, 1918 and

1922).

Additional information can often be used to increase correction accuracy and speed, for

example by studying the sources of errors. For typed input this can mean knowing the

layout of the keyboard, because keys close to each other are more likely to have been

substituted, inserted or transposed. For true spelling errors (rather than typographical

mistakes), a corrector which knows something about pronunciation will do better than

one without, because a writer who is unsure of a spelling will probably attempt to spell

a word as it sounds (Mitton, 1987). The following sections analyse the types of errors

found from test data from the script recognition system, and discuss the feasibility and

effectiveness of applying standard spelling correction techniques.

5.2.5 Analysis o f errors from a recognition system

The following table of classifications of errors from test recognition data shows that it

is impossible to tell what type the original error was. A word can be misspelled, mis-

recognised or mis-written, but all three cases appear the same when looking at the

pattern recogniser output. These examples are from ten samples of two test passages (6

samples of 57 words, and 4 samples of 79 words, i.e. a total of 658 words). 36 words

were incorrectly recognised. The strings in the recogniser output column are the

calculated top ranked candidate string for each word. No words were found to be

allowable in these positions, so instead the top-ranked string is stored.

Chapter Five — Combining Sources o f Information

Table 5.4 — Classification of errors from recogniser

Intended word Recogniser output Type of error
students sludents substitution
copying copying substitution
forthwith forthw-ith

in In substitution
departmental deparl-mental

that M -
desist desisl-

authority authoritvj
action actiin substitution

occurrence occurence omission
must musl substitution
in the inle
county cou\nty

breaking brecMdng
has ha? unknown char

occurrence occuNrence
liable liaNsle
thus lhus substitution
the fhe substitution

software soltwNare
this thi? unknown char
are \are

departmental deportmental substitution
would w-ould

are Ire substitution
forthwith forthwiNh
remind rNemi?d

are ore substitution ?
brought bro?ght unknown char
council councill insertion
orders ords

has hus substitution
been beeh substitution

future futule substitution
will will

disciplinary disciiplinary insertion

Of these 36 errors, all but one were detected because the initial lexical look-up found no

other candidate string to be allowable at each of these word positions. The one case

where another string was allowable is where the intended word are was recognised as

ore. However because ore is a noun and are is a verb, this error would most likely be

spotted by the syntactic analysis, because ore would not fit into the same word position

as are in the sentence.

Chapter Five — Combining Sources o f Information

It can be seen from the table above that the most frequently occurring errors are of the

substitution type. Of the 36 errors, there were 13 occurrences of the substitution error,

which is a third of the total. There are also two errors of insertion of an extra letter, and

one of omission of a letter. This gives a total of 16 out of 36 which could be solved

using standard error correction algorithms. Including the four cases of an unknown

character, this gives 20 out of 36 cases which could be solved. The remaining 16

occurrences are mostly combinations of at least two of the described problems. It is

also interesting to note that for 33 out of the 36 errors, the top rated candidate strings

have the same overall word shape as the intended words (see §5.3.3.2 for further

discussion of word shape).

It should be noted here that the recognition output such as 6\ ” and are strokes of the

pen which the recogniser has been unable to join to any other stroke to give a possible

letter. In fact they are produced by ligatures which were missed during pattern

recognition when ligatures are removed from the sequences of Freeman vectors. The

character “?” is the recogniser’s unknown character, a stroke which does not match

with any vector encoding in the database.

5.2.6 Unmatched characters

The character or “wild card” character (mentioned previously in §3.4.1) is

sometimes given as output from the pattern recogniser for letter positions where the

recognition could not match with any known character encoding. A fairly simple

algorithm has been implemented to search for possible alternatives for these letter

positions, given the surrounding candidate letters (as detailed in §3.4.1). The initial

results from this implementation show it to be effective in many cases, but rather

counter-productive in others. In the example passages of test data discussed in the

previous section, four out of the 36 words in error contained an unknown character.

Page 136

Chapter Five — Combining Sources o f Information

Three of these four cases can be solved by the implemented algorithm, as shown in the

following table.

Table 5.5 — Cases of unknown characters

Intended word Recogniser output Solved ? No. of candidates found
has ha? yes 9
this thi? yes 2

remind i\3mi?d no 0
brought bro?ght

—m
1

It was found that by removing a backslash “\” from a candidate string after the letters r,

v and w gave an allowable word. This changes two of the above 36 errors. One of

these (,software, recognised as “soltwNare”) would now become a simple substitution

error, and the other {remind, recognised as “r\emi?d”) would become a simple

unknown character problem, with only one word in the lexicon which matches the

pattern. This means that all four cases can now be solved. A remaining problem with

substitutions for unknown characters is that the resulting candidates cannot be ordered

by likelihood of being correct, because the word could equally well be any of them. For

example for “ha?”, if had, hag, ham, has, hat, haw and hay were found to be

candidates, it would be left to further stages of analysis of the system to determine

which of these is more likely to be the intended word, although they can be suggested

in order of their frequency of use calculated from a corpus of English text.

5 .2.7 Detection and types o f errors in our system

Looking at an example from recognition test data, an original handwritten word was

students, but was recognised as students. It is possible to imagine that the person

writing it didn't cross the t, which is a common occurrence in handwriting. Should that

be classified as a misspelling, or was it just “wrongly” written? There is certainly a

theoretical distinction, but from the practical view of attempting correction, there

probably is not.

Page 137

Chapter Five — Combining Sources o f Information

As far as the script recognition system is concerned, the cases which suggest that a

word is an error, are where the lexical look-up gives no allowable candidate strings, or

all candidate strings are rejected by further stages of analysis. Thus for detection of

errors, there are two situations:

1) no allowable candidate strings;

2) candidates rejected by higher levels of analysis (syntax and semantics).

The reasons for these two situations arising could be because the correct word is not in

the word list, but this in fact accounts for very few cases. Or it may be because the

recogniser has for whatever reason, not suggested the correct letters. This could be

because the word was misspelled in the original script (user dependent error), or due to

mis-recognition of at least one character (recogniser dependent error). Thus there are

three reasons for errors occurring:

1) misspelling

2) mis-recognition

3) correct word is not in the lexicon

There is a theoretical distinction between (1) a misspelling and (2) a mis-recognition,

but the results from recognition will not enable us to distinguish between them, and

indeed they can be treated similarly for attempted correction. It is feasible that there will

be situations where words that are misspelled or mis-recognised are actually

transformed by the error into other words, (i.e. resulting in error type A — §5.2.3)

which could fit into the sentence. It is uncertain how likely this is to occur, but the

possibility seems remote. Of the 36 errors discussed above, only one gave a “real

world” error. In such cases the system will be unable to spot any error as they will pass

successfully through all stages of analysis. These could only be corrected by the user.

It is also not clear whether there is a direct relationship between the two cases where

errors can be detected, and the three reasons for errors. This is another interesting

Page 138

Chapter Five — Combining Sources o f Information

theoretical point, but probably of little consequence as far as error correction is

concerned.

5.2.8 Application o f traditional methods to the recognition system

It is not certain whether it would be worthwhile to apply common methods of coping

with misspellings to our recognition system. Initial experiments have suggested that

most traditional methods would not be immediately applicable, because of the nature of

the original data from the pattern recogniser. However by applying combinations of

other algorithms, it may be possible to take some relatively simple steps towards

improving existing recognition rates by some kind of error correction system. For

example the letters / and t are often confused with each other, so t could be substituted

for all occurrences of /, and I could be substituted for all occurrences of t.

If the algorithms for correction of the above four types of spelling errors were to be

applied to our system, it is unlikely that applying them to the highest-rated allowable

string (if there aTe any allowable strings) is going to find the intended word. However it

is not clear whether they should be applied to the complete list of allowable words, or

to the list of candidate strings, or indeed to some subset of either. The major problem in

this situation is the number of candidates involved. If correction techniques are

employed upon the list of allowable strings, the intended word may still not be found

because it is sufficiently different from the entries in the existing list of allowable

strings. In many cases this list already numbers over 100, so correction techniques

applied to such a long list would probably take too long to be worthwhile

implementing, and the results from such techniques would produce many more

candidates which would all have to be processed through the remaining stages of the

recognition system.

Chapter Five — Combining Sources o f Information

Alternatively these techniques could be applied to every one of the candidate strings for

each word position identified as a potential error (again it should be noted that this

assumes that errors can be identified, which may be doubtful for our system). However

we have already seen (see Appendix B) that the total number of candidate strings can

number in the thousands, so any correction techniques applied to these would reach

explosive proportions in terms of time taken and number of additional candidates

produced. Some experiments must be tried on words of varying length to establish how

explosive the problem really is. To apply such techniques to a relatively small subset of

candidate strings is a preferable solution, but some grounds for deciding on a subset

would have to be established.

This could be done by using the ranks of the candidate letters to direct correction.

Using the ranking (or confidence) information for the list of candidate strings, we can

reduce the problem somewhat, by trying the standard four error correction approaches

on just the top 10 candidate strings. It may also be feasible to look at individual letter

confidences to determine an ordering of letter positions in which to apply the

substitution algorithm. Whether this would help to solve the problem is uncertain, and

some initial experiments would have to be undertaken to establish its effectiveness. Just

because the recogniser has little confidence in a particular character need bear no

resemblance to whether or not that is the incorrect character in a misspelled word.

However it may help with badly written (and therefore mis-recognised) words.

Given the problems explained above, it may be difficult, and in some cases counter­

productive to attempt any correction of errors within our system, however initial

investigations suggest there may be particular situations where correction can be

attempted and is in fact useful to improve recognition rates.

Page 140

Chapter Five — Com bining Sources o f Information

Looking at the remaining 16 error cases from our system (see table 5.4) in more detail,

it is clear that some of these can in fact be solved by applying some simple substitutions

where the recognition has failed. For example will was recognised as “w ill” (top

candidate), so substituting w for “vv” would provide the correct result. Similarly

departmental was recognised as “deparl-mental”, so looking for sequences such as “1-”

and substituting t would give the correct result (also y for “vj”, a for “c\’\ and there

may well be others). In fact simple substitutions of characters such as I, i, t , f , and

for each other is an effective first attempt to find correct words, because these

characters frequently confuse with each other.

Furthermore, if the characters “\ ” and are ignored completely, another four

examples could be solved (i.e. forthw-ith, couNnty, \are, w-ould). This gives a grand

total of 30 out of 36 errors which could be corrected, by using simple algorithms as a

first attempt before going into more complicated algorithms which may be impractical.

Such impracticality could perhaps be measured as a function of word length. If the

word is short (i.e. less than some lower bound) then attempt some correction. If the

word is too long (i.e. longer than some upper bound) then do not attempt correction, in

which case the word might be sent back to the user to be re-written.

The important point to note as a summary here, is that the algorithms suggested for

solving 30 out of 36 errors, would find the correct (i.e. intended) word by looking only

at the top ranked candidate string, which neatly solves the problem described earlier of

what to choose as a starting point for possible error correction, and avoids the

potentially explosive situations.

Chapter Five — Combining Sources o f Information

5.2.9 Alternative methods for correction of errors

As explained above, attempting correction on all candidate strings would reach

explosive proportions in most cases, but correction techniques can be directed, in order

to reduce the number of strings on which the algorithms are tried.

A completely different approach for solving user dependent errors (misspellings)

involves inserting common misspellings into the tree of the lexicon (Peterson, 1980).

Such entries would have to be flagged in the tree structure to show that they are

misspellings to distinguish them from correct words (as mentioned previously in

§4.4.3 during the discussion of the flagging system and the 12 codes necessary to

represent proper nouns, compounds and phrases). Thus greatfully would be flagged as

a misspelling of gratefully and prehaps as a misspelling of perhaps. A misspelled

word included in the tree would have the index of its corresponding correct word. For

example recieve would have the same index as receive and so on.

As Peterson (1980) explains, “this approach has not been included in any current

spellers, probably because of the lack of an obvious source of known misspellings and

the low frequency of even common misspellings”. Any list of common misspellings

would most likely have to be collected by hand. Some could perhaps be collected from

the input to currently available spelling checkers, as long as the words are verified as

worthwhile including as common misspellings. How much this would increase the size

of the tree structure and the speed of look-up, is not clear because it depends upon the

number of words stored.

For example, the following misspellings of accommodation may occur: accomodation,

acommodation, acomodation, accomadation, acommadation and acomadation. This

makes six extra words, at least, but they are not equally as common. Some criteria for

Chapter Five — Combining Sources o f Information

deciding what to include and what not to include would have to be established. It is also

very difficult to say how successful this would be within the current recognition

system.

52.10 Conclusions

The above discussions have noted that in general, error detection and correction are

difficult techniques to implement, especially given the ambiguous nature of script

recognition data. However, by studying individual errors, it has been demonstrated that

in fact simple algorithms can be implemented which significantly improve recognition

rates. For example from the sample data of 658 words, there were 36 errors

(i.e.recognition rate following lexical look-up of 94.5%, taking up to ten allowable

strings per word position). If 30 of the 36 eiTors can be corrected, this gives a

recognition rate of 99%.

Without knowledge of the particular type of error, any attempted correction is bound to

give the incorrect solution in some cases, but more detailed investigation is necessary to

establish whether this proportion is significant.

Heuristics are obviously needed, and in fact looking at the types of errors actually

found in recognition data, some suggested ones would appear to be quite successful.

Algorithms such as reversing sequences of ie to ei following a letter c are effective

first attempts before going on to more complicated techniques, or even instead of such

techniques which may turn out to be counter-productive in terms of time taken and the

number of candidates produced. The errors from the recognition system can usually be

detected, and are often solved by simple methods of correction due to prior knowledge

of the types of recognition errors found. More traditional error correcting techniques

Page 143

Chapter Five — Combining Sources o f Information

can be used as a last resort, and if they are applied to just the top-rated candidate string

this should avoid the potentially explosive problem.

A combination of inserting common spelling errors into the tree structure of the lexicon,

and using heuristic methods, should be particularly effective.

5.3 Interaction b e t w e e n l e

5.3.1 Introduction

The preceding section discussed traditional error detection and correction methods,

mostly applied to typographical spelling errors. It is uncertain whether they are directly

applicable to our system, where the majority of errors are specific to the pattern

recogniser. Only a few of the errors are of the same kind as spelling or typing errors.

With knowledge of the particular error, it is possible to implement some correction

algorithms. However this knowledge is not available in our recognition system. The

indication of a possible error is if the lexical look-up produces no allowable candidate

strings, or if all candidates at a word position are rejected by further stages of analysis.

Thus we can detect at least some of the errors — others may slip through un-detected if

one of the candidate words (although incorrect) fits into the sentence.

The following discussion investigates improvements which could be made to augment

the pattern recognition information. Taken together with higher level knowledge, these

could provide us with an alternative technique for correcting errors within the system. It

may also be possible to use higher level knowledge to contribute additional information

rather than merely selecting from existing candidates.

Chapter Five — Combining Sources o f Information

Currently, the recogniser does not fully exploit information about the physical

properties of the input. That is, it does not directly make use of information about the

length of words, or information about the overall word shape. The recogniser codes the

input as letter strokes which are then combined to produce possible characters. Physical

size and position of strokes are not incorporated into the coding scheme. Thus

information about the presence or absence of ascenders and descenders is only implicit

and not directly derivable from the coded version of the input. Information about shape

and size will of course be to some extent writer dependent. However, parameters for

them for individual writers could be extracted from an initial training phase for a script

recognition system. Additionally, length and shape need not be dependent upon

absolute physical size but could be coded in a way that represented information about

them relative to any individual input letter string. For example, the approximate number

of characters per string could be used in later stages of processing, and information

about the extension of characters relative to a middle zone could be calculated.

Knowing word length and word shape is effective in reducing the number of possible

words (Sinha, 1990); we need to know how useful information about them is when it

is only approximate and uncertain.

Such information would be useful in a number of instances. Firstly, when the letter

strings have been looked-up in the word-list, a number of word candidates remain. If it

were the case that some of the remaining words were radically different from the

approximate values for shape and length they could be removed from the list of

candidates. Secondly, there are a number of different types of situation where there is

missing information: either the recogniser produces no candidates for a letter string, or

it produces some candidates. Where nothing is forthcoming for a word position, shape

and length could be used along with higher level information to select potential words;

where some characters are suggested these could be used in addition to this

information; if only one or two letter positions in a word have no candidates, shape

Page 145

 '■ -' —— '■— ; !-!— — - - — — - ■ - *-'• - * - - - --- - ~ i - w . .V r .V iV . -

Chapter Five — Combining Sources o f Information

information could be used to select letter candidates, along with the restrictions

provided by the adjacent letters. Finally, it may be the case that a number of word

candidates are produced, but they appear to be incorrect. Again, knowledge about

physical properties and higher level attributes could be used to select alternative words.

The syntax analyser currently operates using statistical information about the

combination of sequences of grammatical categories. Thus for any word position it can

produce predictions about the expected grammatical category for that position. Such

information could be usefully combined with lower level information to help improve

performance.

The following sections investigate the utility of these different sources of information,

given that they will of necessity be uncertain. If they do appear to be effective for

recognition, this will have consequences for the design of pattern recognisers.

5.3.2 Initial investigations

From the above discussion, two cases where improvement is needed have been

identified:

Case 1 — to reduce the list of candidate words;

Case 2 — to suggest some candidates where none was found from the original

data.

For Case 2, there are actually two sub-cases, although they can be treated similarly:

Case 2a — where no candidate words are found from the word look-up at all;

Case 2b — where none of the candidate words seem to fit with the syntactic

processing of the sentence.

Page 146

Chapter Five — Combining Sources o f Information

From initial investigations, it appeared that some measure of the number of letters in a

word, and the word shape, would be quite restrictive for the list of possible candidates

(for Case 1), as discussed below.

5.3.3 Case 1 — Reducing the list o f candidate words

5.3.3.1 Word length

The initial investigations involved analysing samples of handwriting and calculating the

effectiveness of the word length and shape information, assuming that such information

were available. Table 5.6 shows a sample passage of handwritten text together with the

recognition results for it, and the reductions in the number of candidates which would

have been allowed, had a measure of word length been used.

This data is for a trained writer (ie. the Freeman vector database contains details of the

writer's handwriting), and as can be seen, the number of candidate words can be high,

and in such cases the spread of lengths of the candidates is quite wide. It would be

desirable to be able to discard those candidates which are too short or too long to be the

correct word — this would reduce the number of candidate words to be considered for

further processing.

To achieve this aim a measure of approximate number of letters in a word is needed. As

a first attempt we have tried to calculate this from the mean letter width for a particular

writer, which can be obtained from the raw x-coordinate data for the script at training

time. The mean letter width value is obtained by summing the x differences (x max - x

min) for each word in the training set, and dividing by the number of letters written.

Page 147

Chapter Five — Combining Sources o f Information

Table 5.6— Length distribution of candidate words

Word Position
in list

Total no.
cands

Length distribution of candidates No. candidates
2 3 4 5 6 7 8 9 10 11 12 Same length ±1

any 1 88 15 44 28 1 15 59
future 1 6 3 3 3 6

occurrence 1 1 1 1 1
will 1 77 1 30 44 2 44 76
make 1 40 10 18 12 10 28
the 1 18 7 11 7 18

person 1 3 1 2 2 3
concerned 1 5 2 3 3 5

liable 1 5 5 5 5
to 1 3 3 3 3

disciplinary 1 2 2 2 2
action 2 26 6 14 5 1 5 20
thus 2 131 3 24 49 18 4 24 76
the 1 26 7 19 7 26

procedure 1 1 1 1 1
must 1 9 3 6 3 9
cease 2 4 4 4 4

During look-up, the number of letters in a word of script is calculated by the x

difference of the word divided by the mean letter width figure. Allowing for the actual

word being within ±1 of this figure, we have a measure of approximate word length.

The following table shows experimental results summed for four writers using this

calculated mean letter width figure, allowing only those candidate words which are

within ±1 of the calculated word length.

Table 5.7 — Reduction of number of candidates using length restriction

No. of
words tested

No. of word
candidates generated

Percentage of
candidates discarded

Percentage of candidates
incorrectly discarded

319 4259 18 0.25

The number of candidate words being discarded as too short or too long is quite small,

and in fact the number of correct candidates being incorrectly discarded is slightly

discouraging. The effectiveness of a measure of word length is very writer dependent,

and alternative methods of calculating this figure more accurately and consistently need

to be evaluated.

Chapter Five — Combining Sources o f Information

5.33 .2 Word shape

It has been shown that overall word shape by some coding of ascending and

descending letters relative to a mid zone (upper, middle and lower zone) is restrictive

across a lexicon (Sinha, 1990). See also Appendix E for lexicon frequency counts of

word shape.

upper ___ ascender type

Each letter of the alphabet is given a code (‘m \ ‘u’ or *1* — corresponding to 1, 2, 3

after Sinha), so a word gets a complete code string. This code string can also be

reduced, so only the changes are noted, sequences of the same code are reduced to a

single code.

code ‘u’ => upper zone => b d f h i k l t
code ‘m’ => mid zone =s> a c e i m n o r s u v w x z
code T => lower zone f g j p q y z

The coding of letters into the three categories should be a little flexible for letters such

as/, i, and z which can be written in different ways, so a coding of ‘a’ was included to

represent any zone. The following table shows some example words with their

corresponding zone codes and reduced zone codes.

As can be seen, words such as dog, frog and happy, have different zone codes, but

these all reduce to the same reduced zone code. If shape information were available

accurately from the pattern recogniser it should enable more candidate words to be

discarded due to incorrect shape. For example if we know that a section of script has an

mid
lower descender type

Page 149

Chapter Five — Combining Sources o f Information

ascender close to the beginning of a word, and there are candidate words without one,

then we can reject those candidates.

Table 5.8 — Example zone codings for words

Word Zone code Reduced zone code
cat mmu mu
dog uml uml
frog umml uml

happy umlll uml
sad mmu mu

window mamumm mamum
parrot lmmmmu lmu

Initial experiments showed that shape information is potentially very useful for

reducing the number of candidate words (see Table 5.9).

Table 5.9 — Analysis of recognition results including shape information

Word Position Total no. of No. candidates No. candidates
in list candidates matching exact code matching reduced code

any 1 88 1 3
future 1 6 1 4

occurrence 1 1 1 1
will 1 77 2 7

make 1 40 1 6
the 1 18 1 11

person 1 3 1 1
concerned 1 5 1 1

liable 1 5 1 1
to 1 3 2 2

disciplinary 1 2 1 1
action 26 2 6
thus 131 4 16
the 1 26 3 10

procedure 1 1 1 1
must 1 9 2 4 !
cease 2 4 1 1

The above table shows the reduction is very effective if candidates can be rejected by

exact zonal coding of the letters (eg. candidates will and hill would be kept for code

“muuu”, but roll and wool would be rejected). However this by definition means only

accepting candidates exactly the same length, which we have already established is

Page 150

Chapter Five — Combining Sources o f Information

most likely not going to be possible, so allowing candidates with the same reduced

zonal coding is more realistic (eg. for code “muuu” all candidates will, rill, roll, wool,

awl, oval and oral would be kept). However this still gives considerable reduction,

much better than that already seen above for word length, but taken together with some

approximate word length measure would be even more effective. This is of course with

the proviso that these measures can be calculated accurately. Methods for achieving

these measurements accurately require further investigation.

At present, the recogniser gives an indication of zone (cu \ ‘m5 or ‘1’) for each

candidate letter, (which may in fact not match the usual zone for that letter). No

checking is done for this, because the letter was suggested as possible purely through

its Freeman-encoded match with an encoding in the database. However this existing

code can actually be made use of, as discussed below.

5 .33 .3 Wildcards

Sometimes the recogniser gives no candidate letter when nothing matches in the

Freeman vector database (§3.4.1 and §5.2.6), and in such situations a “wild card”

algorithm is implemented to attempt to fill such blank letter positions (shown as *

below) by searching in the word look-up tree.

eg. ca*e *ope dea* p**t

This can be done for any letter position, including the first and the last letters of a word,

and for more than one letter position, although it is not a good policy to allow more

than two per word if the accuracy of the recogniser is to be relied on at all.

Page 151

C hapter Five — Combining Sources o f Information

Searches in the lexicon may give:

cafe dope dead part
cake hope deaf peat
came rope deal pest
cape dear poet
care punt
case

However as with other characters, the recogniser gives a zone code for a wild card

position as well. It also tells us whether the unknown letter is a single segment letter, or

made up from a combination of two segments. Taking these two pieces of information

together, we can categorise all 26 letters:

Table 5.10 — Letters categorised by segment source and zone

Letter source Upper zone Mid zone Lower zone
Single segment

Combination of segments
f i l t c e i o r s v f j z

b d h k a n o r u v w x g p q y

So instead of trying all 26 letters at a wild card position, we only need to try the letters

in one of these 6 subsets. This cuts down both the necessary search and the number of

candidates found to be allowable.

Again the usefulness of the zonal information tends to very writer dependent, as some

writers are very “mid zone”. Making full use of the shape information may also mean

coding the lexicon by shape for ease of search.

As an experiment, using the currently available zone codes from the recogniser, if the

recogniser’s zone code of a candidate word does not match the shape code of the word,

the confidence in the candidate word can be reduced, thus it will be further down in the

rank ordered list of candidate words. The following table shows results for three

untrained writers (U).

Chapter Five — Combining Sources o f Information

Table 5.11 — Performance of the recogniser’s zone codes

Writer No. correct candidates Total no. words
incorrectly moved down the list tested

U1 10 106
U2 7 105
U3 14 106

For these untrained writers, the results are rather discouraging. It is hoped that this

stems from the fact that the zonal code given per letter by the recogniser is not as

accurate as some overall shape information would be, if it were obtained from the x,y

coordinates of the script.

An alternative coding for shape that will give better results is required. A less restrictive

coding would be more useful for case 2, but not for case 1. Any alternative coding

technique suggested would have to provide an acceptable trade-off between the

reduction of the number of candidates, and selecting the coirect woTd.

5 .33 .4 First letters o f words

Generally, writers form letters more clearly at the start of words, so the effectiveness of

the recogniser at the beginning of words was investigated. The following table shows

results for three untrained writers (U), and one trained writer (T).

Table 5.12 — Performance of recogniser for first letters of words

Writer No. words where first letter
was incorrectly identified

Total no.
words tested

Percentage first
letters correct

U1 5 106 95
U2 12 105 89
U3 22 106 79
T1 1 22 95

Page 153

Chapter Five — Combining Sources o f Information

5.3.4 Case 2 — Suggesting candidates

5.3.4.1 Interaction with syntactic processing

The preceding sections investigated a number of potentially useful techniques to aid

Case 1, namely reducing the number of candidate words found by the word look-up.

For Case 2a, we could employ some search of the lexicon on our partial information,

such as by first letter of the word, approximate word length and word shape.

For Case 2b (and indeed also for Case 2a), if some predictive feedback from the

syntactic processing stage were also available, (as detailed in chapter 4) the lexicon

could be searched on the partial information, and also by probable grammatical

category. The lexicon is coded into 109 separate grammar codes. Tables 5.13 i-iv show

sample distributions of words in a lexicon of just over 60,000 items, by length, first

letter and grammatical category, for some of the letters in the alphabet, and a selection

of grammar codes.

Obviously the effectiveness of the lexicon search on a combination of the partial

information depends greatly on exactly what is being searched for — a short adjective

beginning with z would be almost uniquely identified, whereas a mid length noun

beginning with s would be virtually impossible to find. However this data does not take

word shape into account. Taken together with shape information the searches should be

vastly reduced. This requires much further evaluation and testing, for example to obtain

the frequency distribution of the lexicon by word shape (probably using the reduced

zone codes), and cross-referencing with this data.

C hapter Five — Combining Sources o f Information

Table 5.13 i — Numbers of words in lexicon by length and first letter

First letter
of word

All
lengths

3-5
letters

4-6
letters

5-7
letters

6-8
letters

7-9
letters

8-10
letters

a 3393 366 676 1015 1311 1506 1514
d 4050 413 776 1207 1582 1785 1716
j 527 126 210 285 297 244 150
n 1023 161 272 388 457 472 408
p 5128 517 997 1600 2042 2286 2171
s 7102 899 1773 2696 3406 3539 3137
z 87 30 42 44 42 31 17

Table 5.13 ii — Numbers of common singular nouns by length and firstletter

First letter
of word

All
lengths

3-5
letters

4-6
letters

5-7
letters

6-8
letters

7-9
letters

8-10
letters

a 946 142 223 302 376 450 439
d 989 154 255 301 381 399 391
j 160 58 78 75 71 49 43
n 315 60 96 108 137 135 132
p 1517 239 408 552 628 660 606
s 1900 365 590 743 797 820 742
z 27 10 17 11 14 8 7

Table 5.13 iii — Numbers of prepositions in lexicon by length and first letter

First letter All 3-5 4-6 5-7 6-8 7-9 8-10
of word lengths letters letters letters letters letters letters

a 20 12 15 13 5 4 2
d 2 0 1 2 2 1 0
J 0 0 0 0 0 0 0
n 3 2 2 1 0 0 0
P 2 1 1 1 1 1 0
s 0 0 0 0 0 0 0
z 0 0 0 0 0 0 0

Table 5.13 iv — Numbers of adjectives in lexicon by length and first letter

First letter AH 3-5 4-6 5-7 6-8 7-9 8-10
of word lengths letters letters letters letters letters letters

1 a 384 37 79 124 164 188 197
d 404 45 74 92 133 166 191
j 39 9 20 28 24 16 9
n 144 26 35 51 54 67 62
P 604 44 92 148 198 231 267
s 507 91 211 297 359 341 315
z 6 2 2 3 3 3 2

Page 155

Chapter Five — Combining Sources o f Information

Appendix E contains some frequency counts of word shape information using the zone

codes introduced in §5.3.3.2, for a number of different word lengths. The tables

show that this information is not restrictive across a large lexicon, especially for the

words of commonly occurring lengths. However for a much smaller vocabulary, the

zonal information seems to be more restrictive, especially when applied in combination

with word-initial characters.

5.3.5 Conclusions

The above experiments and discussions have identified some potentially useful

information for improving current handwriting recognition systems. We have seen that

this information is really only useful if it can be obtained accurately and consistently

across writers. However even currently available estimates already show encouraging

results in the case 2 scenario described above. In this situation, any information, even

vague or partial, is better than nothing, and is in fact useful to restrict any lexicon

search. We have also seen that results are much better for trained writers, and it may be

that a “general purpose” system for any writer will not prove to be an effective system

for cursive handwriting.

It appears that the word length information is not very useful unless it can be calculated

accurately. However the word shape information seems much more promising,

especially when combined with some predictive feedback from the syntactic analyser

and some partial character information from the pattern recogniser.

The results provide a strong argument for using physical information in a pattern

recogniser. The current recogniser should be improved so that better advantage can be

taken of these factors. They must be available accurately and consistently if they are to

be relied upon. Similarly any predictions from syntactic analysis must contain the

Page 156

Chapter Five — Combining Sources o f Information

correct code. It may be found from testing that this is impossible to achieve due to the

ambiguity in previous word positions. Semantic analysis may also be able to provide

some feedback mechanism concerning the domain of the sentence so far. This could

also suggest candidate words in conjunction with other information, if the unknown

word is a content word.

5 .4 Structure for storage

5.4.1 Introduction

The preceding discussions have established that in a number of cases, some kind of

lexicon search by general information about words would be useful to correct any

detected errors within the script recognition system. Given certain pieces of data, it is

necessary to calculate how many words in the lexicon match this search criteria. It is

not worthwhile retrieving the matched word strings themselves if the number of

matches is too large, but it is if this number is within a reasonable limit. A suitable

structure for storing the required information in memory must be established.

5.4.2 Search methods

A standard method for searching any kind of database (and a lexicon with various

pieces of additional information can certainly be thought of as a database) on a key

other than the primary one (the primary key for a lexicon is the word itself) is by using

inverted list structures (Claybrook, 1983; Date, 1986). An inverted list is simply a list

of indexes, it is known as “inverted” because the accessing is in some sense

“backwards”. Relations in databases are designed to be searched by the primary keys.

Each different piece of information in the structure being accessed has its own list of

Page 157

1 _______--- ' - ■ ^ . ‘ ' : - V *• M ><£■ . ,

Chapter Five — Combining Sources o f Information

indexes. Hence all words with grammar code 4 could be accessed together from the

relevant list, for example, or all words six letters long, and so on.

However inversion would not appear to be particularly appropriate given the actual data

involved in this case. A better method can be found, given the two important

considerations of speed of search and memory requirements for storage. The chosen

method which has been implemented is described below, and became known as the

“backwards”, or “inverted look-up”.

5.4.3 Inverted look-up structure

The required information is at present stored in the trie (§4.5.1.2). It can alternatively

be stored in an array where the number of array elements is the number of words in the

lexicon. The main search criteria are most likely to be length, grammar code and first

letter. This should give sufficient cut down of search so that word shape need only be

checked on a relatively small number of words. Hence word shape information need

not be stored in the inverted look-up structure, it can be generated from the matched

words at run-time and compared with the shape of the unknown word being searched

for. The information needs to be stored in such a form that will facilitate fast testing of

whether it matches what is being searched for. The fastest comparison is bit-wise, so

the data is stored in two 32 bit integers as follows.

The first letter of the word is stored simply as one of the rightmost 26 bits out of the 32

available in the first long integer. The length and grammatical code are both stored in

the second long integer. The rightmost 10 bits are reserved for the length information.

Length is stored as exact length ±1, so for example if a word has 5 letters, then bits 4,

5 and 6 will be set. For words with only one letter, bits 1 and 2 are set. Ten bit

positions are sufficient for most words (83% of words in a lexicon of 70,000 words

Page 158

 V I- • : i t . ^ : .-i

Chapter Five — Combining Sources o f Information

axe up to 10 letters long), so for words 10 letters long, bits 9 and 10 are set, and for

words more than 10 letters long, only bit 10 is set. If the length being searched for is

10 or more letters, a further test checks for a ±1 match with the required length.

If the bit-wise comparisons match (and the length is checked more accurately if it is

more than 10) then the word shape is checked. If this matches, then the array subscript

is saved. If the number of successful matches is less than some specified number (the

system has been tested with this limit set to 100), then the actual words for the saved

array subscripts are retrieved from the structure. The ten most frequently occurring

(from a corpus frequency count) are ordered and can either be presented to the user, or

passed on to further stages of analysis, depending upon the implementation.

The word strings themselves are stored in a simple array structure. This is because it

would be wasteful to store a character array as part of the main lexicon structure. Either

a maximum word length array would have to be part of the structure, which wastes a

lot of memory for the words (almost all of the lexicon) which are shorter than that

maximum. A dynamic allocation of exactly the right amount of memory for the word

cannot be implemented because the structure needs to be contiguous in memory for the

fast saving and reading in from a file (as discussed in §3.3.6). So the main lexicon

structure contains a pointer (actually another array subscript) to the words array in order

to access the word string itself.

Given the preceding description of the lexicon structure, there is one major drawback.

The lexicon structure contains exactly the same information as the look-up tree. This is

a problem not only conceptually (it is pointless duplicating the information), but also

from a practical point of view. The information may become inconsistent, and even if

this is carefully watched, the two structures are using more memory than is really

necessary, due to the duplication. However it is possible to find a method which allows

Page 159

Chapter Five — Combining Sources o f Information

the additional information to be removed from the tree (as previously mentioned in

§4.5.1.2). It is needed when the ordinary (forwards) look-up finds a word, but can

just as easily be accessed from the new lexicon structure by using a hashing algorithm

on the word string.

A hashing algorithm computes the location of a particular array element (Knuth, 1973;

Cooper and Clancy, 1985; Claybrook, 1983). The algorithm is used both for originally

arranging the array, and to check whether a particular value is present. A good hash

function will distribute values uniformly throughout a waiting array (used for access)

called the hash table. If the returned hash value is greater than the defined table size, the

modulus operator wraps around back to the start of the table. If a hash function were

perfect, it would automatically put every incoming value into a different slot in the hash

table. Unfortunately, hash functions tend to be imperfect. Unless the table is made

excessively large, two or more different values will eventually be sent to the same slot.

This is called a collision.

To avoid clustering of collisions, chaining was chosen as a collision resolution

technique. Instead of storing the values themselves in the hash table, each table entry

becomes the head of a linked list. Incoming values are stored by adding them to the

appropriate linked list. Collisions add new elements to the linked list associated with

that particular hash value. Some lists end up longer than others, but no values interfere.

When searching a chained hash table, the appropriate chain must be traversed to locate

the required element.

There are no “best” methods with hashing, there are always trade-offs to be considered

between computer storage space and search times. A large size hash table means using

a large amount of memory, but a minimally-sized hash table means slower searching

and resolving collisions. The chosen lexicon of approximately 70,000 words, with an

Page 160

Chapter Five — Combining Sources o f Information

average chain length of 10, gives a table size of 7,000. Choosing a prime number as the

table size helps to distribute elements evenly throughout the table (e.g. 7001).

5.4.4 Conclusions

This new method described above is not noticeably any slower than the old one, nor is

it noticeably faster. However it does mean that the additional information can be

removed from the look-up tree, which in turn means that a compression method can

now be applied to the tree, such as utilising a directed acyclic word graph (§ 3.2.5 and

§ 3.3.3). Consequently the system is left with a more useful structure for the storage of

the lexicon, which can be searched on a number of factors to attempt correction of

recognition errors. This structure should be generally more useful in the future because

it can easily be expanded to store extra information, should this become necessary.

Table 5.14 shows that the combination of hash table and dawg (last column) has very

similar memory requirements to the uncompressed trie including all extra word

information (second column).

Table 5.14 — Memory requirements (thousand bytes) for trie, dawg and hash table for

various word lists

Number
of words

Trie including
word info.

Trie without
info.

Hash table for
word info.

Dawg Dawg +
hash table

2461
13706
30201
68856

140.364
748.136

1649.900
3568.168

110.832
583.664

1287.488
2628.928

85.027
580.224

1257.093
2860.509

33.152
162.176
343.320
750.312

118.179
742.400

1600.413
3610.821

5 .5 Experimental results

A passage of test data (written by one person) was used to test the inverted look-up

technique on word positions where no candidate words suggested from the

Chapter Five — Combining Sources o f Information

combination of recognised alternative characters were found in the lexicon. Tables 5.15

i-iii give recognition results for three different lexicons. The passage was as follows:

Professor Sloman has brought spelling up to date except where this
would involve changes in pronunciation, accentuation and capitalization.
In the introduction he has covered every aspect o f the play under the
headings o f date, sources, structure and theme, language and metres,
staging and texts.

Tables 5.15 i-iii give the number of candidate words found, the ranked position of the

correct word in the list of candidates, and four columns detailing the additional

information being searched for in the cases where no candidates were found. The letter

“y” here means the information was correct, “n” means it was incorrect. The figure “0”

in the grammar code column means that the syntax analysis could not suggest a code.

This usually occurs when one of the previous word positions had no candidate words.

The final column gives a reason if the correct word was not identified by any method.

A number in this column signifies more than one reason; “lex” means the correct word

was not in the lexicon; “recog” means the recogniser did not provide all the characters;

“shape” means the word shape zone information was incorrect; “gram” means that the

predicted grammar code was incorrect; and “>100” means that more than 100 words

were suggested, so they were not retrieved from the hash table.

It can be seen that as the lexicon size increases, more candidate words are allowable, so

sometimes the inverted look-up is not used when it might have found the correct word.

However some correct words are not in the smaller lexicons. Larger lexicons also result

in more than 100 words matching the partial information more often. Of the four

features of additional information, it is the grammar code that is most often incorrect.

This is because the prediction algorithm relies on the previous word positions being

identified correctly, and this is often not the case.

Chapter Five — Combining Sources o f Information

Table 5.15 i — Recognition results from inverted look-up (4506 word lexicon)

Word No. of
cands

Pos of
correct

Word
length

Gram.
code

First
letter

Shape Reason

professor 46 11 y 0 y y
sloman 0 n 0 y y lex

has 6 1
brought 8 y 0 y n 2
spelling 1 lex

up 1 1
to 1 1

date 1 1
except 2 1
where 2 y n y y gram

this 6 1
would 1 y n n n 3
involve 10 y n y y gram
changes 2 1

in 6 1
pronunciation 0 y n y y gram
accentuation 0 y 0 y y lex

and 2 1
capitalization 0 n 0 y n 2 + lex

in 7 1
the 4 1

introduction 0 y n y n 2
he 3 1

has 9 1
covered 5 2
every 0 y n y y gram
aspect 2 2

of 1 recog
the 10 recog

play 1 1
under 4 1

the 6 i 1
headings 0 y n y y lex

of 4 1
date 1 1

sources 0 y n n n 3
structure 1 1

and 3 1
theme 1 1

language 0 y n n n 3
and 4 recog

metres 1 lex
staging 0 y n y y lex

and 3 1
texts 126 _ j 0 y n > 100

Chapter Five — Combining Sources o f Information

Table 5.15 ii — Recognition results from inverted look-up (21011 word lexicon)

Word No. of
cands

Pos of
correct

Word
length

Gram.
code

First
letter

Shape Reason

professor 239 y 0 y y > 100
sloman 1 lex

has 8 1
brought 2 y n y n 2
spelling 3

up 6 1
to 1 1

date 2 1
except 2 1
where 5 y n y y gram
this 14 1

would 8 y n n n 3
involve 472 y n y y 2
changes 2 1

in 10 1
pronunciation 1 1
accentuation 0 y n y y 1+ lex

and 11 1
capitalization 1 n 0 y n 2+ lex

in 11 1
the 9 1

introduction 0 y n y n 2
he 7 1

has 16 1
covered 8 2
every 7 recog
aspect 2 2

of 6 recog
the 23 recog
play 3 1

under 8 1
the 14 1

headings 3 y n y y 1+lex
of 4 1

date 1 1
sources 0 y n n n 3
structure 1 1

and 11 1
theme 1 1

language 0 y n n n 3
and 14 recog

metres 5 4
staging 1 1

and 12 1
texts 3 recog

Chapter Five — Combining Sources o f Information

Table 5.15 iii — Recognition results from inverted look-up (68856 word lexicon)

Word No. of
cands

Pos of
correct

Word
length

Gram.
code

First
letter

Shape Reason

professor 761 > 100
sloman 3 lex

has 16 1
brought 3 y n y n 2
spelling 6 recog

up 13 1
to 1 1

date 5 1
except 2 1
where 3 y n y y gram
this 28 1

would 1 y n n n 3
involve 0 y n y y gram
changes 4 1

in 11 1
pronunciation 1 1
accentuation 0 y n y y gram

and 19 1
capitalization 19 n 0 y n 3

in 14 1
the 14 1

introduction 0 y n y n 2
he 12 1

has 29 1
covered 23 2
every 23 recog
aspect 2 2

of 8 recog
the 28 recog

play 8 1
under 14 1

the 18 1
headings 6 2

of 10 1
date 2 1

sources 1 recog
structure 2 1

and 15 1
theme 3 1

language 0 y n n n 3
and 23 recog

metres 6 4 recog
staging 2 1

and 16 1
texts 8 recog

Page 165

Chapter Five — Combining Sources o f Information

5.6 Conclusions

This chapter has identified the kinds of problem areas leading to errors in the

handwriting recognition system. These include misspellings and mis-recognitions either

due to badly written words or to idiosyncrasies of the pattern recogniser. It appeals that

most errors will be detected because none of the candidate strings is found to be

allowable by the lexical look-up.

A number of alternative techniques for error correction were introduced and evaluated.

Traditional methods seem unlikely to be useful, mainly due to the ambiguity of an

original character string to compare with, and because algorithms may reach explosive

and counter-productive proportions if many original candidate strings are used. In

practice, a number of intermediate “tweaks” of recognition data seem particularly

effective for the types of errors found from the test data collected so far. Indeed they

have suggested a few areas where the pattern recogniser seems quite weak.

In addition, a number of potentially useful pieces of information were identified. These

include extra physical information from the pattern level — namely some measure of

word length and word shape. This might be a count of the number of ascending and

descending letters in a word, and their approximate position, i.e. near the beginning,

middle or end of a word. First letters of words need to be more accurately recognised,

and the number of letter candidates could be reduced, especially as writers form the

beginnings of words more clearly. There are also no ligatures to confuse the start of the

letter as there are in other letter positions. Other information from higher levels of

analysis, for example the grammar code, may also be useful, especially if the possible

codes can be identified more accurately. Positions where the identified code is a large

category (e.g. nouns), even when subdivided (e.g. singular countable nouns) need

much better information from other levels. In these cases it may be that searches may

Page 166

Chapter Five — Combining Sources o f Information

have to rely on matches with length, shape and first letter. Semantic analysis may also

help by identifying a domain code for content words. The exact method for effectively

applying all available information needs more evaluation, but initial experimentation is

encouraging.

Given this information as used in the treatment of errors, there are indications that it

may also be effective to apply it to aid the reduction of the list of candidate strings in

word positions where no error has been detected. Again this needs further evaluation,

but a useful lexical database structure has been established. A truly interactive system

(after Rumelhart and McClelland’s parallel distributed processing model of word

perception) could use higher level information to reject unsuitable candidate words.

Other candidates could also be suggested which may be better than those found simply

from the pattern recognition and lexical check.

In conclusion, it seems that it is in fact possible to get higher levels of analysis to

contribute to recognition. They can help to identify errors, and to solve some of these

errors with additional help from extra physical information from pattern level.

Improved recognition rates can be achieved, the process is no slower, and has obvious

leanings to parallelisation of at least some stages of the recognition process.

Chapter Six

Summary and Discussion

6.1 Summary

The preceding chapters have described a script recognition system which attempts to

overcome the inherent problem of ambiguity present in handwriting. A functional

system has been demonstrated through experimental results. Using a number of

sources of information, including orthography and higher level linguistic constraints,

the system shows improved results, and word recognition rates can reach 98%. Figure

6.1 shows the various stages of the current system.

6.1.1 Introduction and review

The automatic recognition of handwriting is necessary as a natural mode of

communication with computers, and appears to be appropriate for a number of

applications. Interest in this field has expanded in recent years, along with interest in

speech recognition and optical character recognition (OCR), especially with the

advances in technology. However there is insufficient information present in script for

unambiguous identification of characters and words. Human readers can understand

many badly formed letters and seemingly illegible words due to information gained

from the surrounding context. A number of past and current approaches to the area of

handwriting recognition were reviewed. These various approaches have a number of

Page 168

C hapter Six — Summary and D iscussion

problems, and it was established that contextual information is necessary in addition to

a pattern recogniser. Some systems have employed letter level and word level

information, in the form of n-grams or a limited word look-up. Machine-readable

dictionaries can be used as a source of linguistic information.

They were

They were

cards
cords

playing cards

playing
praying
plumage

WORD RECOGNITION

cards
cords
conds
covcls
cavds

playing
praying
plumage
pbying
plaginy

playing cards
playing cords
praying cards
praying cords

Figure 6.1 — System overview with example recognition

Page 169

Chapter Six — Summary and D iscussion

6.1.2 Pattern recognition

Pattern recognition techniques were introduced, specifically those used for

handwriting. Details of the particular on-line cursive script recogniser and the interface

to further levels of processing were given. Briefly, sequences of x,y coordinates are

collected, their Freeman vector chain codes are matched to a database, and a number of

candidate characters are produced per character position. The output from the pattern

recogniser is poor, and requires further processing to improve. Methods commonly

used for such processing involve using transitional probabilities (for example the

Viterbi algorithm or Markov modelling), using information about how letters combine

(for example n-grams), using lexical look-up, or combinations of these.

Statistical methods involve selecting one “correct” answer and thus have a built-in

margin of error. Experimental results showed that a lexical look-up is more effective

than n-grams in terms of reduction of candidate strings. It also gives a more useful

reduction because it guarantees lexical output. The limitation of this method is that an

input word may not be included in the look-up vocabulary, however this is unavoidable

(see discussion §6.2). This particular problem also exists for statistical methods since

they sample from the language and assume a reliable distribution.

6.1.3 Word recognition

For effective implementation of a lexical look-up technique, an efficient data structure is

needed for representation of the vocabulary. Such a data structure should be the best

compromise with regard to processing time and memory requirements. A number of

alternative structures (lists, trees, hash tables and graphs) were described, illustrated

and compared. The speed of negative searches is particularly important because most

searches in the recognition system are unsuccessful. Details and results of comparisons

Page 170

Chapter Six — Summary and D iscussion

between some implemented data structures were presented, and some methods of

memory reduction such as tail-end compression and the use of a directed acyclic word

graph were discussed.

For our system the trie structure (§3.2.3.3) was most appropriate given the need for

grammatical, morphological and semantic information in further stages of the script

recognition process, however the reduced-memory tree (§3.3.1) also gives fast search

times and reasonable memory requirements, especially for experimental purposes with

different word lists and test data on a limited memory computer. The dawg structure

(§3.2.5 and § 3.3.3) is optimal for memory requirements (§3.3.5), but does not

allow additional information about words to be stored. The trie structure does allow

such information to be stored at the end of word nodes.

Acceptable word candidates remaining after lexical look-up are stored for further

analysis.

6.1.4 Integration

Recognition can be improved by using additional linguistic information. Alternative

word candidates are combined to form candidate phrases, many of which may be

ungrammatical or meaningless. Techniques for the integration of further levels of

processing were discussed along with information needed by and produced by each

level. These include for example syntax and semantics, and the use of information

about compounds, commonly used phrases and idioms. A suitable structure for the

transfer and sharing of information between all levels of processing was illustrated.

Results showing improved recognition rates after further analysis are presented. The

use of compounding information has been implemented, and tested on small samples of

test data taken from an Estate Agent's document. The results can be seen in Appendix C

C hapter Six — Summary and D iscussion

which shows the improved recognition when using information about compounds and

phrases.

A morphological indexing system was developed whereby each word in the lexicon is

associated with its root. These indices are stored in the lexical look-up tree. The tree is

an ideal site for integrating different types of information because it provides the

interface between the low level pattern recognition process and higher level linguistic

processes. Additional information such as grammatical category and word frequency

can also be accessed via the tree structure, and a set of coded flags was developed to

provide details about compounds and case. The recognition system was also extended

to allow punctuation marks, digits and other non-alphabetic characters in certain

situations.

6.1.5 Combining sources o f information

The different levels of analysis in the handwriting recognition system are similar to

those used by the human processing system. Psychological studies of word recognition

propose models of interaction between the different levels of processing which combine

to give recognition. Such models receive information from both top-down and bottom-

up sources, and feedback exists between all levels. This principle could be applied to

the current script recognition system to make best use of all available information. It

could be especially useful to solve recognition errors.

Such errors were studied, along with traditional error correction techniques. Alternative

sources of information were investigated, with the aim of discovering additional

information which could aid error detection, correction and even recognition. These

include physical measures of word length and overall word shape (e.g. details of

ascending and descending characters), the accuracy of recognition of the first letters of

Page 172

Chapter Six — Summary and Discussion

words, and possible feedback from syntactic analysis. Alternative candidate letters and

words may be suggested where recognition has failed to provide any. An “inverted”

search method based on partial information about words is discussed. This includes a

large hash table structure to store all additional information about the words in the

lexicon. Consequently this data can be removed from the lexical look-up tree, which

means that the dawg structure mentioned in chapter three becomes viable. Initial

experimental results were presented.

6.2 Discussion

The preceding chapters have detailed a script recognition system, which has been

summarised above. The results from the current system are insufficient for a really

practical system. Improvements are necessary in a number of areas. For example the

pattern recogniser could make much better use of partial information, and more accurate

information is needed from higher levels of analysis. The exact implementation of

different areas of the system will also depend on the particular application and will

therefore need to be tailored.

The methods described and implemented are not only applicable to on-line cursive

script recognition. The techniques are more generally applicable to all areas of text

recognition. This includes both on and off-line cursive and unconnected handwriting

and optical character recognition (OCR). The data structures developed for the

representation of lexicons are useful in any situation where vocabularies are needed, for

example in word processors, spelling checkers, or for the classification of electronic

documents (such as e-mail). Semantic domain codes can be used for identifying the

subject areas of text (Walker, 1986; Rose, 1991). The current system has been

developed for English, but the methods would be applicable to other languages which

use the same or similar alphabets.

Chapter Six — Summary and D iscussion

The advent of notepad computers brings many new opportunities for applications

suitable to this new form of computer. They are lightweight (a few pounds),

approximately A4 in size, and easily portable, yet still include powerful processors.

The equivalent of a 386 PC is already available, and a 486 is planned. Millions of

people work away from their desks, so the situations where such a computer may be

appropriate are widespread. These include note-taking almost anywhere, form-filling,

taking orders, stock control and so on in warehouses. Notepad computers are already

on trial in a hospital accident and emergency unit, and doctors and dentists surgeries are

other potential markets. This kind of technology would be useful wherever diagrams

need to be drawn with notes, and for almost any type of salesman. Many of these

applications may need some form of handwriting recognition. It should be noted

however, that many computer applications may not require recognition of pen input.

Sometimes it is necessary and desirable to leave hand-drawn and handwritten input as it

is. Recognition and associated techniques are also applicable to standard computers of

all forms, mainframes, workstations and personal computers, especially in office

systems.

There may also be educational applications, perhaps for teaching children to write. The

system will only recognise standard letter formations so the characters must be written

properly by the children. Important work is also progressing in the recognition of

engineering drawings for both the lines of the drawings and for text found on the

diagrams (Waite, 1989; Dori, 1991; Lysak and Kasturi, 1991), and of musical notation

(Fahmy and Blostein, 1991).

The current state of handwriting recognition can reach high recognition figures, but

only on consistently reasonably neat handwriting, even for a user-dependent system. A

pattern recogniser working on some form of segmentation relies on the fact that the

input script contains all the necessary characters correctly formed. More often than not

Chapter Six — Summary and D iscussion

these constraints are not met, especially in note-taking situations when users are by

necessity writing speedily. Script becomes untidy, can often become illegible, and only

comprehensible given the surrounding context, and even then still occasionally

impossible to interpret. Script will also contain many abbreviations, often unique to the

individual writer.

A truly usable recognition system would have to learn from whole word recognition

techniques and combine them in some fashion with existing segmentation techniques

(Ho et al, 1991; Hull et al, 1991). This may also include some “fuzzy-matching”

(nearest matches) of the lexicon on partial information. For example writers usually

form the beginnings of words reasonably well, but often this tails off towards the ends

of words. Partial matches with the lexicon may have a few characters from the

beginning of a word, together with approximate word shape information (see also

§6.3). Assuming the lexicon includes all words necessary, the recognition process can

be lexically driven, in other words the pattern recogniser need not pursue segmentations

which lead to characters that cannot follow the preceding characters because that

sequence does not occur in any of the words in the lexicon. The lexicon would have to

include the usual forms of abbreviations used by a particular writer.

The above considerations make a general purpose handwriting recognition system a

virtual impossibility. The particular application must be tailored (in terms of lexicon)

and trained for individual users. Any training should be user-friendly to a naive user —

a doctor or warehouse clerk does not want to be concerned with the segmentation

required for handwriting recognition.

Different recognisers have different areas of strength and weakness, so it may be

possible to combine them into one system. The final decision about a word’s identity

would be made by combining the results of all recognisers in use, assuming lexical

Page 175

Chapter Six — Summary and Discussion

output from each. The most meaningful and effective way in which such output can be

combined is a topic of on-going research (Hull et al, 1991). Hull has found that a

reasonable measure appears to be the “borda” count, which is a sum of the distance of a

particular word from the bottom of each ranking in which it occurs. The word with the

maximum borda count is chosen as the best candidate.

There will always be cases where the look-up either fails to find any allowable strings,

or the correct word (i.e. the input word of script) is not in the list of allowable strings.

Chapter five dealt with misspellings and mis-recognitions, but there are always going to

be cases when the input word is not in the look-up word list. Obviously the choice of

which words are included in the look-up word list is paramount to the efficiency of the

system. Too short a list means that the input words will quite often be missed, and too

long a list can mean that the list of allowable candidate strings is vast, and will often

contain words that most people would not recognise as English words. In fact,

however complete a word list you may think you have, it will never give full coverage

(Sampson, 1989). It is therefore better to reach some compromise, and perhaps use a

word list tailored to the particular domain. It may be appropriate to have a basic core

vocabulary in use all the time, with additional lexicons available depending on the

particular domain of application. There will also be the need for a user-specific lexicon

with the facility to add and delete items, especially for proper nouns, individual

abbreviations and misspellings, as well as words which may have been missed by the

other dictionaries.

For situations when all other attempts to suggest a word have failed, it would be

preferable to provide a string of characters which is in some way a best guess, even if

that string is not a word known to the lexicon. A closest match algorithm would be of

use here, or some combination of the highest rated character candidates which contains

frequently occurring sequences. The orthographic information stored in the lexical

Page 176

Chapter Six — Summary and D iscussion

look-up tree could be used in a similar way to n-gram look-up discussed earlier,

whereby non-occurring letter sequences are ruled out, and alternative character

candidates are tried instead. General word shape information could be used in addition.

To provide a user-friendly environment based upon the latest Human Computer

Interface techniques, the script recognition system could incorporate an interactive

gesture-based front-end (Welbourn and Whitrow, 1989; Wilson and Whitrow,

forthcoming). This may be as part of a pen-driven word processor where already

existing text can be edited as with pen and paper at present. Gesture-based editing

symbols for insert, delete, move text and so on would be included, and any inserted or

altered text could be handwritten and recognised. Such systems would also be useful

for the recognition and editing of diagrams.

Other kinds of information give cues in written language, for example the layout of the

writing (or typescript). This includes the spacing between sections of text, the

paragraphs, headings, subheadings and so on. This information is useful for syntax,

and semantics (for example, a heading gives clues to the domain or content of

following text). Form filling applications can give this kind of information accurately,

for example where an address or a telephone number is expected, so the restrictions put

on allowable strings are even greater.

Both syntactic and semantic information could be used more effectively than at present.

Some kind of feedback process could be implemented whereby all levels of analysis

can learn from the identification of the correct words as chosen by the user (see figure

6.2). The system should assume that the top-rated candidates are correct unless the user

chooses another of the existing candidates or enters an alternative word. Given this new

information, both the syntax and semantic processors can update their information

accordingly. This should improve any predictions made for unknown or mis-

Chapter Six — Summary and D iscussion

recognised words. Not only can the pattern recognition stage be lexically-driven, but

suggestions can also be made from higher level knowledge which will affect the

recognition process. As words are confirmed, all levels should be able to improve their

future results. The large numbers of incorrect candidates contribute to the deterioration

in performance of the higher levels of analysis. If these numbers can be reduced by a

system that learns, the over all recognition performance should be increased.

Handwriting

x-y co-ordinates

Character
recognition

character candidates

Word-level
analysis

candidate words candidate words

Syntactic ^
analysis —

Semantic
analysis

- grammatical phrases meaningful phrases

Recognised text

Figure 6.2 — Contextual recognition system with feedback of information

Page 178

Chapter Six — Summary ami D iscussion

6.3 Future work

There are a number of areas where further work would be most important. Some of

these have been identified in the above discussion. The following ideas are more

immediately applicable to the current system. The pattern recogniser should be

improved, perhaps by the use of some interactive techniques whereby the recogniser

and the lexical look-up work together so that the look-up may be able to predict which

characters could be next within a word. Not only may the recogniser be able to be

lexically-driven, but other levels of information (e.g. syntax and semantics) should also

be able to direct the pattern recognition. In fact all levels should be able to interact and

feed information back to each other. The current architecture will not easily allow this,

because the processes are separate and serial. Alternative architectures including some

parallelisation would appear to be very useful for this situation (see figure 6.2).

The pattern recognition should also be able to identify the beginnings of words much

more accurately than at present, and more investigation of the efficacy of some measure

of word length would be useful. Whole word recognition would appear to have its

place especially when used in conjunction with other recognition techniques, but the

current recogniser does not supply this type of information. It may be that a separate

recogniser could be constructed that would concentrate on these sort of features, i.e. the

shape of a word found from its ascending and descending characters.

In a lexicon of only 4,000 words, the most frequently occurring tri-gram at the start of

a word only occurs 52 times (it is the tri-gram pro). A measure of word shape

information such as the reduced zone code discussed in §5.3.3.2 is then restrictive

across those 52 words. More details of the frequency distribution of word-initial tri-

grams are given in Appendix E.

Chapter Six — Summary and Discussion

The system should be tailored to a particular domain, as accuracy can be much greater

in a restricted situation. The layout of documents can provide additional information

which also places constraints on the recognition process. For example in the layout of a

letter, different dictionaries should perhaps be accessed in different parts of the letter. A

form filling application would also restrict recognition to digits or capital letters in

certain places. An order form for spare parts for motor cars would probably only have

to recognise digits and part names, which would be from a small domain-specific

lexicon.

6.4 Conclusions

To conclude, a basic script recognition system has been demonstrated. It is functional,

and gives very encouraging results. At present the system allows a large vocabulary of

English words which can be represented in memory with practical size and processing

requirements, and is searchable in real time. Recognition rates are as yet insufficient for

a practical system, and need considerable improvement. The preceding chapters have

indicated some areas where improvements need to be made, and have suggested some

techniques for this. This system could be useful in a number of situations (as discussed

above), and the lexical look-up and use of additional linguistic information is not

restricted to on-line handwriting recognition.

As an area for on-going research, the system could be both extended to allow input

from other recognisers for alternative applications, and also restricted to particular

domains.

Page 180

Bibliography

TE Ahlswede (1985) ‘A toolkit for lexicon building’, Proc. 23rd Ann. meeting of
Assoc. Comput. Ling., Chicago, pp. 268-276

AV Aho, JE Hopcroft and JD Ullman (1983) ‘Data Structures and Algorithms’,

(Addison-Wesley)

AV Aho, BW Kernighan and PJ Weinberger (1988) ‘The AWK Programming

Language’, (Addison-Wesley)

W Amsbury (1985) ‘Data Structures: from arrays to priority queues’, (Wadsworth)

RA Amsler (1982) ‘Computational lexicology: a research program’, Proc. AFIPS Nat.
Comp. Conf, Houston, 51, pp. 657-663

RA Amsler (1984) ‘Machine-readable dictionaries’, Annual review o f information

science and technology (ARIST), 19

AW Appel and GJ Jacobson (1988) ‘The world’s fastest scrabble program’,

Communications o f the ACM, 31(5), pp. 572-578 + 585

R Bayer and E McCreight (1972) ‘Organization and maintenance of large ordered

indexes’, Acta lnformatica, 1 (3), pp. 173-189

HL Bergel (1987) ‘A logical framework for the correction of spelling errors in

electronic documents’, Information Processing and Management, 23 (5), pp. 477-494

Page 181

B ib lio g ra p h y

WW Bledsoe and I Browning (1959) ‘Pattern recognition and reading by machine’,

Proc. Eastern Joint Computer Conf.

A Blumer, J Blumer, D Haussler, A Ehrenfeucht, MT Chen and J Seiferas (1985) ‘The

smallest automaton recognising the subwords of a text’, Theor. Comput. Sci., 40, pp.

31-55

B Boguraev and T Briscoe (1989) (Eds) ‘Computational Lexicography for Natural
Language Processing’, (Longman, London)

B Boguraev, D Carter and T Briscoe (1987) ‘A multi-purpose interface to an on-line

dictionary \Third conference o f the European Chapter o f the Association for

Computational Linguistics, Copenhagen, Denmark

B Boguraev, T Briscoe, J Carroll, D Carter and C Grover (1987) ‘The derivation of a

grammatically indexed lexicon from the Longman Dictionary of Contemporary

English’, Association for Computational Linguistics

B Boguraev and T Briscoe (1987) ‘Large Lexicons for Natural Language Processing:

Utilising the Grammar Coding System of LDOCE’, Computational Linguistics, 13

RS Boyer and JS Moore (1977) ‘A fast string searching algorithm’, Communications
o f the ACM, 20 (10), pp. 762-772

RM Bozinovic (1985) ‘Recognition of off-line cursive handwriting — a case of multi­
level machine perception’, Unpublished PhD thesis, University at Buffalo (SUNY),
New York

RM Bozinovic and SN Srihari (1982) ‘A string correction algorithm for cursive script

recognition’, IEEE Trans, on Patt. Anal, and Mach. Intell., PAMI-4 (6), pp. 655-663

RM Bozinovic and SN Srihari (1989) ‘Off-line cursive script word recognition’, IEEE

Trans, on Patt. Anal, and Mach. Intell., PAMI-11, pp. 68-83

Page 182

B ib lio g ra p h y

D Bradley (1980) 'Lexical Representation of derivational relation', in: M Aronoff and

M-L Kean (eds) *Juncture’, Anma Libri, pp.37-55

R De la Briandais (1959) ‘File Searching Using Variable Length Keys’, Proceedings of

the Western Joint Computer Conference, 15, pp. 295-298

MK Brown and S Ganapathy (1980) ‘Cursive script recognition’, Proc. Int. Conf. on

Cybernetics and Society’, pp. 47-51

RM Brown, TH Fay and CL Walker (1988) ‘Handprinted symbol recognition system’,
Pattern Recognition, 21 (2), pp. 91-118

J Brustkern (1985) ‘Structure of a word database for the German Language’, Proc.

Intl. Conf. on Databases in Humanities and Soc. Sc., pp. 31-36

DJ Burr (1983) ‘Designing a handwriting reader’, IEEE Trans. Patt. Anal, and Mach.
Intell., PAMI-5, pp.554-559

N Calzolari (1984) ‘Detecting patterns in a lexical database’, Proc. COLING 84, pp.
170-173

JM Carroll (1979) ‘Complex compounds: phrasal embedding in lexical structures’,

Linguistics 17, pp. 863-877

DM Carter (1987) ‘An Information-Theoretic Analysis of Phonetic Dictionary Access’,

Computer Speech and Language, 2, pp. 1-11

JM Cattell (1885) ‘The inertia of the eye and brain’, Brain, 8, pp. 295-312

BG Claybrook (1983) ‘File Management Techniques’ (Wiley)

R Coates (1987) ‘Lexical Morphology’, in: J Lyons et al (eds) 'New horizons in

linguistics 2’, pp. 103-121 (Penguin Books)

M Coltheart (1980) ‘The semantic error: types and theories’, in: M Coltheart and JC

Marshall (eds) ‘Deep Dyslexia’ (RKP)

Page 183

B ib lio g ra p h y

D Cooper and M Clancy (1985) ‘Oh! PascalV (Norton)

JR Cowie (1987) ‘A direct access technique for sequential files with variable length

records’, Software - Practical Experience (UK), 17 (10), pp. 719-728

D Crystal (1987) ‘The Cambridge Encyclopedia of Language’ (CUP)

FJ Damerau (1964) ‘A technique for computer detection and correction of spelling

errors’, Comm. ACM, 1 (3), pp. 171-176

CJ Date (1986) ‘An Introduction to Database Systems — Vol. I’ (Addison-Wesley)

JL Dawson (1974) ‘Suffix removal and word conflation’, ALLC Bulletin, 2 (3), pp.

33-46

AS Dolgopolov (1986) ‘A program of automatic text correction’, Auto. Doc. and Math.
Linguist. (USA), 20 (4), pp. 116-121

D Dori (1991) ‘Symbolic representation of dimensioning in engineering drawings’

Proc. ICDAR-91 1st Inti Conf. on Document Analysis and Recognition, pp.

1000-1010

P Downing (1977) ‘On the creation and use of English compound nouns’, Language,
53, pp.810-842

LD Earnest (1962) ‘Machine recognition of cursive writing’, Information processing

1962 (Proc. IFIP Congr.), pp. 462-466

RW Ehrich and KJ Koehler (1975) ‘Experiments in the contextual recognition of

cursive script’, IEEE Trans. Computers, 24, pp. 182-194

MA Eldridge, I Nimmo-Smith and AM Wing (1984) ‘The variability of selected
features in cursive handwriting: Categorical measures’, Journal o f the Forensic Science
Society, 24, pp. 179-219

Page 184

B ib lio g ra p h y

DG Elliman and IT Lancaster (1990) ‘A review of segmentation and contextual analysis
techniques for text recognition’, Pattern Recognition, 23 (3/4), pp. 337-346

AW Ellis (1979) ‘Slips of the pen’, Visible Language, 13 (3), pp. 265-282

LJ Evett and GW Humphreys (1981) ‘The use of abstract graphemic information in

lexical access’, Quarterly Journal o f Experimental Psychology, 33A, pp. 325-350

LJ Evett, CJ Wells, FG Keenan, TG Rose and RJ Whitrow (1989) ‘How words

combine: the effects of consraints op word combinations on word recognition’, Esprit
research report.

LJ Evett, CJ Wells, FG Keenan, TG Rose and RJ Whitrow (1991) ‘Using liguistic

information to aid handwriting recognition’, Proc. 2nd Intl. workshop on Frontiers in

Handwriting Recognition, pp. 303-311

H Fahmy and D Blostein (1991) ‘A graph grammar for high-level recognition of music

notation’ Proc. ICDAR-91 1st Inti Conf. on Document Analysis and Recognition, pp.

70-78

F Fallside and WA Woods (1985) ‘Computer Speech Processing’ (Prentice-Hall)

RF Farag (1979) ‘Word-level recognition of cursive script’, IEEE Trans. Computers,
28 (2), pp. 172-175

DM Ford and CA Higgins (1990) ‘A tree-based dictionary search technique and

comparison with n-gram letter graph reduction’, in: R Plamondon and CG Leedham
(eds)’Computer Processing o f Handwriting’ (World Scientific) pp. 291 -312

DM Ford (1991) ‘On-line recognition of connected handwriting’, Unpublished PhD

thesis, University of Nottingham, England

E Fredkin (1960) ‘Trie Memory’, Communications of the AC M , 3 (9), pp. 490-499

Page 185

B ib lio g ra p h y

H Freeman (1961) ‘On the encoding of arbitrary geometric configurations’, IEE Trans,
on Electronic Computers, pp. 260-268

CC Fries (1952) ‘The structure o f English’ (Longman) pp. 87-141

LS Frishkopf and LD Harmon (1961) ‘Machine reading of cursive script’ in: C Cherry

(ed), ‘Information Theory’ (Butterworth) pp. 300-316

EJ Galli and H Yamada (1967) ‘An Automatic Dictionary and the Verification of

Machine-Readable Text’, IBM Systems Journal, 6 (3), pp. 192-207

EJ Galli and H Yamada (1968) ‘Experimental studies in computer assisted correction of
unorthographic text’, IEEE Trans. Eng. Writing and Speech, EWS-11 (2), pp. 75-84

JJ Giangardella, JF Hudson and RS Roper (1967) ‘Spelling correction by vector

representation using a digital computer’, IEEE Trans. Eng. Writing and Speech, EWS-

10 (2), pp. 57-62

CD Gibler and DS Childress (1984) ‘Adaptive dictionary for computer-based
communication aids’, Proc. Sixth Ann. Conf on rehabilitation engineering promise o f
technology, pp. 165-167

A Goshtasby and RW Ehrich (1988) ‘Contextual word recognition using probabilistic
relaxation labelling’, Pattern Recognition, 21 (5), pp. 455-462

J Grudin (1983) ‘Non-hierarchic specification of components in transcription
typewriting’, Acta Psychologica, 54, pp. 249-262

PAV Hall and GR Dowling (1980) ‘Approximate string matching’, ACM Computing
Surveys, 12 (4), pp. 381-401

P Hanks (ed) (1978) ‘The Collins Dictionary o f English Language’ (Collins)

AR Hanson, EM Riseman and E Fisher (1976) ‘Context in word recognition’, Pattern

Recognition, 8, pp. 35-45

B ib lio g ra p h y

LD Harmon (1962a) ‘Automatic reading of cursive script’, in: GL Fisher Jr. et al (eds)

‘Optical Character Recognition’, (Spartan, Washington DC) pp. 151-152(A)

LD Harmon (1962b) ‘Handwriting reader recognizes whole words’, Electronics, 35,

pp. 29-31

LD Harmon (1972) ‘Automatic recognition of print and script’, Proc. IEEE, 60, pp.

1165-1176

L Henderson (1982) *Orthography and word recognition in reading’ (Academic Press)

CA Higgins and RJ Whitrow (1984) ‘On-line cursive script recognition’, Proc. Interact
84, 1&IFIP Conf. HCI, pp. 140-144

CA Higgins and DM Ford (1991a) ‘A new segmentation method for cursive script
recognition’, Proc. 2nd Intl. workshop on Frontiers in Handwriting Recognition, pp.
241-252

CA Higgins and DM Ford (1991b) ‘Stylus driven interfaces — the electronic paper

concept’, Proc. ICDAR-91 I st Inti Conf. on Document Analysis and Recognition, pp.

853-862

TK Ho, JJ Hull and SN Srihari (1991) ‘Word recognition with multi-level contextual

knowledge’, Proc. ICDAR-91 1st Inti Conf. on Document Analysis and Recognition,
pp. 905-915

JN Holmes (1988) ‘Speech synthesis and recognition’ (Van Nostrand Reinhold)

AS Hornby (1988) ‘Oxford Advanced Learners Dictionary’ (Oxford University Press)

Y Huizhong (1986) ‘A new technique for identifying scientific/technical terms and

describing scientific texts’, Literary and Linguistic computing, 1 (2), pp. 93-103

JJ Hull (1986) ‘Hypothesis generation in a computational model for visual word
recognition’, IEEE Expert, pp. 63-70

B ib lio g ra p h y

JJ Hull (1987) ‘A computational theory and algorithm for fluent reading’, Proc. 3rd
Conf. on AI aplications, pp. 176-181

JJ Hull, TK Ho, J Favata, V Gorindaraju and SN Srihari (1991) ‘Combination of

segmentation-based and wholistic handwritten word recognition algorithms’ Proc. 2nd

Intl. workshop on Frontiers in Handwriting Recognition, pp. 229-240

JJ Hull and SN Srihari (1982) ‘Experiments in text recognition with binary n-gram and

viterbi algorithms’, IEEE Trans, on Patt. Anal, and Much. Intell., pp. 520-530

JJ Hull, SN Srihari and R Choudhari (1983) ‘An integrated algorithm for text

recognition: comparison with a cascaded algorithm’, IEEE Trans. Patt. Anal, and

Mach. Intell., PAMI-5, pp. 384-395

GW Humphreys, LJ Evett and PT Quinlan (1990) ‘The orthographic description in

visual word processing’, Cognitive Psychology, 22, pp. 517-560

P Isabelle (1984) ‘Another look at complex nominals’, Proceedings of CO LING 84.
Association for computational linguistics, pp. 509-516

M Isoda, H Aiso, N Kamibayashi and Y Matsunaga (1986) ‘A model for a lexical

knowledge base’, Proc. COLING 86, pp. 451-453

JK Jankovic (1986) ‘The N-V dichotomy in the structure of English noun

compounds?’, Literary and Linguistic Computing, 1 (2), pp. 143-155

S Johansson and K Hofland (1987) ‘The Tagged Lob Corpus: Description and

Analyses’ in: W Meijs (ed) 'Corpus Linguistics and Beyond’ , Proc. 7th Intl. Conf. on
Computerised Corpora, Rodopi, Amsterdamk

PN Johnson-Laird (1987) ‘The mental representation of the meaning of words’,
Cognition, 25, pp. 189-211

Page 188

B ib lio g ra p h y

M Kadirkamanathan and PJW Rayner (1990) ‘A scale-space filtering approach to

stroke segmentation of cursive script’ in: R Plamondon and CG Leedham

(eds)'Computer Processing of Handwriting’ (World Scientific) pp. 133-166

JJ Katz and JA Fodor (1963) ‘The structure of a semantic theory’, Language, 39, pp.
170-210

WJ Kashyap and BJ Oommen (1984) ‘Spelling correction using probabilistic

methods’, Pattern Recognition letters, 2 (4), pp. 147-154

FG Keenan (1989) ‘Overview of a post-processing system for script recognition’,

Esprit Working Group Meeting, Ulm, W. Germany

FG Keenan, LJ Evett and RJ Whitrow (1991) ‘A large vocabulary stochastic syntax

analyser for handwriting recognition’ Proc. ICDAR-91 ist Intl. conf. Document
Analysis and Recognition, pp. 794-802

FG Keenan and LJ Evett (1989) ‘Lexical structure for natural language processing’,

Proc. First Int. Workshop on Language Acquisition IJCAI-89, Detroit, USA

DE Knuth (1973) ‘Art o f Computer Programming vol 3: Sorting and Searching’

(Addison-Wesley)

JF Korsh (1980) ‘Data Structures, Algorithms and Program Style’ (Wadsworth)

H Kucera and WN Francis (1967) ‘Computational Analysis o f Present-Day American

English’, (Brown University Press)

SM Lamb and WH Jr Jacobsen (1961) ‘A High-Speed Large-Capacity Dictionary
System’, Mechanical Translation, 6, pp. 76-107

G Leedham (1990) ‘Automatic recognition and transcription of Pitman’s handwritten
shorthand’, in: R Plamondon and CG Leedham (eds)’Computer Processing o f
Handwriting’ (World Scientific) pp. 235-269

Page 189

B ib lio g ra p h y

WG Lehnert and MH Ringle (eds) (1982) ‘Strategies for natural language processing’,
(Lawrence Erlbaum Associates)

M Lesk (1986) ‘Why I want the OED on my computer and when I'm likely to have it’,

SIGCUE Outlook (USA), 19 (1-2), pp. 62-66

JN Levi (1978) ‘The syntax and semantics o f complex nominals’ (Academic Press)

JB Lovins (1968) ‘Development of a stemming algorithm’, Mechanical Translation,

11, pp.22-31

HP Luhn (1959) ‘Potentialities of auto-encoding of scientific literature’, Technical

Report RC-101, IBM Corp., Research Center, Yorktown Heights, New York

DB Lysak Jr. and R Kasturi (1991) ‘Interpretation of engineering drawings of

polyhedral and non-polyhedral objects’ Proc. ICDAR-91 1st Inti Conf. on Document
Analysis and Recognition, pp. 79-87

K Maly (1976) ‘Compressed Tries’, Communications o f the ACM, 19 (7), pp.

409-415

E Marsh (1984) ‘A computational analysis of complex noun phrases in Navy

messages’, Proceedings ofCOLING 84. Association for computational linguistics, pp.

505-508

WD Marslen-Wilson and A Welsh (1978) ‘Processing interactions and lexical access
during word recognition in continuous speech’, Cognitive Psychology, 10, pp. 29-63

JL McLelland and DE Rumelhart (1981) ‘An interactive activation model of context

effects in letter perception: part 1, An account of basic findings’, Psychological

Review, 88 (5), pp. 375-407

W Meijs (1985) ‘Lexical organisation from three different angles’, ALLC Journal, 6,
pp. 1-10

Page 190

' • " I , _______________________ :i.....■-- ^ _ i - 1 '

B ib lio g ra p h y

G and C Merriam Co. (1963) ‘ Webster's New Collegiate Dictionary (7th Edition)’, (G.

and C. Merriam Co., Springfield, Massachusetts)

WJ Meys (1975) ‘Compound adjectives in English and the ideal speaker listener’,

(North Holland)

GA Miller, EB Newman and EA Friedman (1958) ‘Length-frequency statistics for

written English’, Information and Control, 1, pp. 370-389

DC Mitchell (1982) ‘The Process o f Reading — A Cognitive Analysis o f Fluent
Reading and Learning to Read’ (Wiley)

R Mitton (1986) ‘The Machine Usable Form o f the Oxford Advanced Learners
Dictionary’, Oxford Text Archive

R Mitton (1987) ‘Spelling checkers, spelling correctors and the misspellings of poor

spellers’, Info. Proc. and Mgmt., 23 (5), pp. 495-505

P Morasso and S Pagliano (1991) ‘Neural models for handwriting recognition’, Proc.
2nd Intl. workshop on Frontiers in Handwriting Recognition, pp. 327-340

J Morton (1964) ‘The effects of context on the visual duration threshold for words’,

British Journal o f Psychology, 55, pp. 165-180

J Morton (1969) ‘Interaction of information in word recognition’, Psychological
Review, 76 (2), pp. 165-178

J Morton (1970) ‘A functional model for memory’, in: DA Norman (ed)’Models o f
Human Memory’ (Academinc Press), pp. 203-254

JH Munson (1968) ‘Experiments in the recognition of hand-printed text: Part I -
Character recognition’, Proc. AFIPS Fall Joint Computer Conference, pp. 1125-1138

MS Neff, RJ Byrd and OA Rizk (1988) ‘Creating and querying lexical databases’,

Proc. Conf. on Appl. Nat. Lang. Processing, pp. 84-92

Page 191

B ib lio g ra p h y

DL Neuhoff (1975) ‘The Viterbi algorithm as an aid in text recognition’, IEEE Trans.

Inform. Theory, 21, pp. 222-226

J Nievergelt (1974) ‘Binary search trees and file organisation’, Computing surveys,

6(3)

MK Odell and RC Russell (1918) US Patent no. 1,261,167 and (1922) US Patent no.
1,435,663

MA O’Hair and M Kabrisky (1991) ‘Recognizing whole words as single symbols’,

Proc. ICDAR-911st Intl. Conf. on Document Analysis and Recognition, pp. 350-358

Oxford (1989) T/ie New Oxford English Dictionary’, (Oxford University Press)

CD Paice (1977) ‘Information retrieval and the computer’, (MacDonald and Jane's

Computer Monographs)

G Pavlovic-Lazetic and E Wong (1986) ‘Managing text as data’, Proc. VLDB Twelvth

Intl. Conf., pp. 111-116

JL Peterson (1980) ‘Computer programs for detecting and correcting spelling errors’,

Comm, o f ACM, 23 (12), pp. 676-687

JL Peterson (1982) ‘Use of W7 New Collegiate Dictionary to construct a master
hyphenation list’, Proc. AFIPS Nat. Comp. Conf, 51, pp. 665-670

E Picchi and N Calzolari (1986) ‘Textual perspectives through an automized lexicon’,

Proc. o f XII Intl. ALLC Conf

DB Pisoni, HC Nusbaum, PA Luce and LM Slowiaczek (1985) ‘Speech perception,

word recognition and the structure of the lexicon’, Speech Communication 4, pp.

75-95

P Procter (ed.) (1978) ‘Longman's Dictionary of Contemporary English’, (Longman

Group Ltd.)

Page 192

B ib lio g ra p h y

A Ramsay and R Barrett (1987) ‘AI in Practice: Examples in POP 11’, (Ellis Horwood)

J Raviv (1967) ‘Decision making in Markov chains applied to the problem of pattern

recognition’, IEEE Trans. Inform. Theory, IT-3, pp. 536-551

K Rayner, M Carlson and L Frazier (1983) ‘The interaction of syntax and semantics

during sentence processing: Eye movements in the analysis of semantically biased

sentences’, Journal o f Verbal Learning and Verbal Bahaviour, 22 (3), pp. 358-374

HL Resnikoff and JL Dolby (1965) ‘The nature of affixing in written English: Part I ’,

Mechanical Translation, 8 (3), pp. 84-89

HL Resnikoff and JL Dolby (1966) ‘The nature of affixing in written English: Part IT,

Mechanical Translation, 9 (2), pp. 23-33

EM Riseman and RW Ehrich (1971) ‘Contextual word recognition using binary

digrams’, IEEE Trans. Comput., 20 (4), pp.397-403

EM Riseman and AR Hanson (1974) ‘A contextual post processing system for error

correction using binary n-grams’, IEEE Trans. Comput., C-23, pp.480-493

G Ritchie, A Black, S Pulman and G Russell (1987) ‘The Edinburgh Morphological

Analyser and Dictionary System: System Description, Version 3’, Software Paper 11,

Dept, of AI, University of Edinburgh

T Roeper and MEA Siegel (1978) ‘A lexical transformation for verbal compounds’,
Linguistic Inquiry, 9 (2), pp. 199-260

TG Rose LJ Evett and RJ Whitrow (1991) ‘The use of semantic information as an aid

to handwriting recognition’, Proc. ICDAR-911st Inti Conf. on Document Analysis and

Recognition, pp. 629-637

A Rudnicky and L Baumeister (1987) ‘The lexical access component of the CMU

continuous speech recognition system’, Proc. Intl. Conf. Acoustics and Signal
Processing, 1, pp. 376-379

B ib lio g ra p h y

DE Rumelhart and JL McLelland (1982) ‘An interactive activation model of context

effects in letter perception part 2. The contextual enhancement effect and some tests and

extensions of the model’, Psychological Review, 89 (1), pp. 60-94

GJ Russell, SG Pulman, GD Ritchie and AW Black (1986) ‘A Dictionary and

Morphological Analyser for English’, Proc. 11th Intl. Conf. Computational
Linguistics, pp. 277-279

NY Salmina and IA Khodashinskii (1986) ‘Methods and tools of automatic spelling

correction’, Auto. Doc. and Math. Linguist. (USA), 20 (5), pp. 105-112

G Sampson (1989) ‘How fully does a machine-readable dictionary cover English

text?’, Literary and Linguistic Computing, 4(1), pp. 29-35

KM Sayre (1973) ‘Machine recognition of handwritten words: A project Teport’,

Pattern Recgnition, 5, pp. 213-228

LRB Schomaker and HL Teulings (1990) ‘A handwriting recognition system based on

properties of the human motor system’, Proc. Intl. Workshop on Frontiers in
Handwriting Recognition, Montreal

LRB Schomaker and HL Teulings (1991) ‘Stroke- versus character-based recognition

of on-line, connected cursive script’, Proc. 2nd Intl. Workshop on Frontiers in

Handwriting Recognition, pp 265-277

R Schreuder (1986) ‘Using lexical databases in psycholinguistic research’, Interfaculty

research unit for language and speech, University of Nijmegen, Netherlands

EJ Schuegraf (1976) ‘A survey of data compression methods for non-numeric

records’, Cam. J. Info. Sci., 2 (1), pp. 93-105

E Schwartz (1963) ‘A dictionary for minimum redundancy encoding’, / . o f ACM, 10,
pp. 413-439

B ib lio g ra p h y

BA Sheil (1978) ‘Median Split Trees: A Fast Lookup Technique for Frequently

Occurring Keys’, Communications o f the ACM, 28, pp. 947-958

D Sherman (1974) ‘A new computer format for W7 Collegiate Dictionary’, Comput.

and Hum. (USA), 8 (1), pp. 21-26

R Shinghal, D Rosenberg and GT Toussaint (1978) ‘A simplified heuristic version of a
recursive Bayes algorithm for using context in text recognition’, IEEE Trans. Syst.
Man. and Cybern., SMC-8 (5), pp. 412-414

R Shinghal and GT Toussaint (1979a) ‘Experiments in text recognition with the

modified viterbi algorithm’, IEEE Trans, on Pattern Analysis and Machine Intelligence,

PAMI-1 (2) pp. 184-193

R Shinghal and GT Toussaint (1979b) ‘A bottom-up and top-down approach to using

context in text recognition’, Intl. Journal o f Man-machine studies, pp. 201-212

JM Sinclair (1966) ‘Beginning the study of lexis’, in: C Bazell et al (eds)’In memory of
JR Firth’ (Longman) pp. 410-30

RMK Sinha (1987) ‘Some characteristic curves for dictionary organization with digital

search’, IEEE Trans. Syst. Man. and Cybern., SMC-17 (3)

RMK Sinha and B Prasada (1988) ‘Visual text recognition through contextual

processing’, Pattern Recognition, 21 (5), pp. 463-479

RMK Sinha (1990) ‘On partitioning a dictionary for visual text recognition’, Pattern

Recognition, 23 (5), pp. 497-500

J Skrzypek, E Tisdale and K Frankel (1991) ‘Neural architectures for recognition of

cursive handwriting: comparative analysis’, Proc. 2ndIntl. workshop on Frontiers in
Handwriting Recognition, pp. 341-351

SN Srihari, JJ Hull and R Choudhari (1983) ‘Integrating diverse knowledge sources in

text recognition’, ACM Trans, on Office Systems, 1 (1), pp. 68-87

Page 195

Bibliography

SN Srihari and RM Bozinovic (1987) ‘A multi-level perception approach to reading
cursive script’, Artificial Intelligence, 33, pp. 217-255

TAStandish (1980) ‘Data structure techniques’ (Addison-Wesley)

DF Stubbs and NW Webre (1985) ‘Data structures with absract data types and pascal’

(Brooks/Cole)

EH Sussenguth Jr (1963) ‘Use of Tree Structures for Processing Files’,

Communications o f the ACM, 6 (5), pp. 272-279

MN Swamy and K Thulasixaman (1981) ‘Graphs, Networks and Algorithms’ (Wiley)

M Taft (1979) ‘Lexical access via an orthographic code: the Basic Orthographic

Syllabic Structure (BOSS)’, Journal of Verbal Learning and Verbal Behaviour, 18, pp.

21-39

M Taft (1983) ‘The decoding of words in lexical access: a review of the morphographic

approach’, in: Besner, MacKinnon and Waller (eds) ‘Reading research’, 5

M Taft (1987) ‘Morphological Processing: The BOSS re-emerges’, in: M Coltheart
(ed) Proceedings o f the 12th international symposium on Attention and Performance

(Lawrence Erlbaum Associates) pp. 265-279

CC Tappert (1982) ‘Cursive script recognition by elastic matching’, IBM Journal o f
Research and Development, pp. 765-771

CC Tappert (1988) ‘A divide-and-conquer cursive script recognizer’, IBM Res.
Report, RC14070

CC Tappert, CY Suen and T Wakahara (1990) ‘The state of the art in on-line

handwriting recognition’, IEEE Trans, on Pattern Analysis and Machine Intelligence,
12 (8), pp. 787-808

Page 196

B ib lio g ra p h y

W Teubert (1984) ‘Applications of a lexical database for German’, Proc. CO LING 84,
pp. 34-37

HL Teulings, LRB Schomaker, J Gerritsen, H Drexler and M Albers (1990) ‘An on­

line handwriting-recognition system based on unreliable modules’ in: R Plamondon and

CG Leedham (eds)’Computer Processing o f Handwriting’ (World Scientific) pp.

167-185

HL Teulings and LRB Schomaker (1991) ‘Unsupervised learning of prototype

allographs in cursive-script recognition using invariant handwriting features’, Proc. 2tld

Intl. workshop on Frontiers in Handwriting Recognition, pp. 45-55

P Trigano, P Morizet-Mahoudeaux and P le Beux (1988) ‘Dialphil - a man machine
interface in natural language’, Proc. 2nd Intl. Exp. Sys. Conf, pp. 391-398

H Trost and E Buchberger (1986) ‘Towards the automatic acquisition of lexical data’,

COLING 86, pp. 387-389

JR Ullman (1977) ‘A binary n-gram technique for automatic correction of substitution,

deletion, insertion and reversal errors in words’, The Computer Journal, 20, pp. 141-

147

RL Venezky (1970) ‘The structure of English Orthography’, Janua Linguarum 82,
(Mouton Press)

AJ Viterbi (1967) ‘Error bounds for convolutional codes and an asymptotically optimal

decoding algorithm’, IEEE Trans. Inform. Theory, IT-13, pp. 260-269

M Waite (1989) ‘Data structures for the reconstruction of engineering drawings’,
Unpublished PhD thesis, Nottingham Polytechnic

DE Walker (1986) ‘Knowledge resource tools for information access’, Future
Generation Computer Systems, 2 (3), pp. 161-171

Page 197

B ib lio g ra p h y

DE Walker (1989) ‘Developing lexical resources’, Proceedings o f the Fifth annual
conference o f the UW centre for the New Oxford English Dictionary, pp. 1-22

B Warren (1978) ‘Semantic patterns o f Noun-Noun compounds', Gothenburg studies

in English, no. 41

E Wehrli (1985) ‘Design and implementation of a lexical database’, Proc. 2nd Conf.
Europ. Chap. Assoc, for Comput. Ling., pp. 146-153

ESC Weiner (1985) ‘The new OED: problems in computerization of a dictionary’,

Univ. Comput. GB (OUP), 7 (2), pp. 66-71

LK Welbourn and RJ Whitrow (1990) ‘A gesture based text and diagram editor’, in: R

Plamondon and CG Leedham (eds)' Computer Processing o f Handwriting' (World

Scientific) pp. 221-234

CJ Wells, LJ Evett, PE Whitby and RJ Whitrow, (1989) The use of letter patterns for

script recognition, Proc. IEE Colloquium, Oct. 1989

CJ Wells, LJ Evett, PE Whitby and RJ Whitrow (1990a), ‘The use of orthographic

information foT script recognition’, in: R Plamondon and CG Leedham (eds)’Computer

Processing o f Handwriting’ (World Scientific) pp. 273-289

CJ Wells, LJ Evett, PE Whitby and RJ Whitrow, (1990b) ‘Fast dictionary look-up for
contextual word recognition’, Pattern Recognition, 23 (5), pp. 501-508

CJ Wells, LJ Evett, and RJ Whitrow, (1991) ‘Word look-up for script recognition —
Choosing a candidate’, Proc. ICDAR-91 1st Inti Conf. on Document Analysis and

Recognition, pp. 620-628

RJ Whitrow and CA Higgins (1987) ‘The application of n-grams for script

recognition’, Proc. 3rd Int. Symp. on Handwriting and Computer Applications, pp.
92-94

B ib lio g ra p h y

M Wilson (1984) ‘The composition of the mental lexicon’, Unpublished PhD thesis,

Cambridge University

M Wilson (1987) ‘MRC Psycholinguistic Database: Machine Usable Dictionary.

Version 2.00’, RAL-87-054, Rutherford Appleton Laboratory

MS Wilson and RJ Whitrow (forthcoming) ‘The development of a gesture based

freehand editor’, paper to be presented at HCI92, People and Computers

AM Wing (1979) ‘Variability in handwriting characters’, Visible Language, 13 (3), pp.

283-298

AM Wing and AD Baddeley (1979) ‘Spelling errors in handwriting’, in: U Frith (ed)

‘Cognitive Processes in Handwriting’ (Academic Press)

PH Winston (1984) ‘Artificial Intelligence’ (Addison-Wesley)

N Wirth (1976) ‘Algorithms + Data Structures = Programs’ (Prentice-Hall)

KH Wong and F Fallside (1985) ‘Dynamic programming in the recognition of

connected handwriting script’, Proc. 2nd Intl. Conf. on Artificial Intelligence

Applications, (IEEE Comput. Soc.), pp. 666-670

PT Wright (1989) ‘Algorithms for the recognition of handwriting in real-time’,

Unpublished PhD thesis, Nottingham Polytechnic

Page 199

Appendix A

Table AI — Example pattern recogniser results

Word Recognised as
a Ol

superb siyroib
detached defadiod

house howse
situated atiiafed

in cii
a oe

most iiioid
sought sovwfiie
after affci

residential iendaitoh
area aioi
on oiii
the fhc

carters xerkrs
estate chcife
within mhwii
easy covsij

walking wahaiioj
distance dihaiia

of oif
western iisfciii
grove cfiivie
with iiith / iiihi
its its

multiple iuiihysb
shopping dwippwg
facilities faochfies

N.B. “Recognised as” means the highest rated candidate string that the pattern

recogniser would have chosen, given no further processing, i.e. no lexical look-up.

Page 200

Appendix B

Passage of test data:

a superb detached house situated in a most sought after residential area
on the carters estate within easy walking distance of western grove with
its multiple shopping facilities, the cliff top with its access to sandy
bathing beaches is also within easy walking distance, the area is well
served with excellent local sporting facilities including numerous local
golf courses, tennis courts and local sports centres which are all within
easy reach, the area is also well served with excellent local schools for
children o f all ages, the property is in need o f modernisation and
redecoration but offers good sized accommodation with three reception
rooms, four good bedrooms and large secluded well stocked rear
garden.

Table B1 (overleaf) shows results from look-up in a lexicon of 15,223 words.

Page 201

A ppendix B

Table B1— Numbers of candidate strings produced for a passage of test data

Word No. of candidate strings No. allowable
a 16 1

superb 222196 0
detached 588362328 3

house 305305 2
situated 41927138 3

in 96 5
a 27 1

most 59814 10
sought 8242458 1
after 15744 11

residential 12335900000 1
area 8202 4
on 386 4
the 611 10

carters 203586 7
estate 91560 2
within 4013362 5
easy 6036 8

walking 257735766 4
distance 36896304 1

of 136 4
western 1655245 2
grove 64451 1
with 13957 8
its 39 2

multiple 395809874 1
shopping 64433076 0
facilities 50511162 9

the 611 10
cliff 4824 4
top 372 4

with 20783 11
its 66 3

access 48576 39
sandy 649464 4

bathing 292947684 4
beaches 4270144 11

is 13 1
also 5484 4

within 4125537 4
easy 5204 5

walking 345349488 3
distance j 38645296 3

Page 202

A ppendix B

Table B1 (continued)

Word No. of candidate strings No. allowable
the 496 8

area 11169 6
is 15 1

well 1913 9
served 43530 5
with 16909 1

excellent 15211278 1
local 21378 1

sporting 4627560 1
facilities 91260610 8
including 11607300000 2
numerous 15334700000 2

local 15511 71
golf 2760 1

courses 483330 1
tennis 562347 51
courts 18137 3

and 17602 6
local 32094 1

sports 19170 | 2
centres 308338 31
which 966712 7

are 672 8
all 652 5

within 4410160 7
easy 13364 4
reach 844620 17

Page 203

A ppendix B

Table B1 (continued)

Word No. of candidate strings No. allowable
the 833 13

area 17265 11
is 13 2

also 3114 1
well 2725 13

served 102489 7
with 27310 12

excellent 43207298 2
local 18594 2

schools 593082 1
for 207 4

children 38863960 3
of 167 8
all 364 6

ages 6188 7
the 475 7

property 25083010 2
is 13 1
in 91 5

need 11103 29
of 167 7

modernisation 149629000000000 1
and 14566 7

redecoration 600077000000 1
but 3270 5

offers 8446 3
good 5663 4
sized 1108 1

accommodation 4850070000000000 1
with 33938 5
three 15913 3

reception 389160864 1
rooms 884128 2
four 29499 62
good 14098 4

bedrooms 313429991 1
and 21160 4

large 63151 1
secluded 7392332 1

well 1770 6
stocked 444636 2

rear 23610 9
garden 7378812 1

Page 204

Appendix C

Recognition results from lexical look-up, with no use of compounding information:

a (l/l) —(0) detached(l/3) house(l/2) situated(l/3) in(l/5) a (l/l) most(l/10)

sought(l/l) after(l/10) residential 1/1) area(l/4) on(l/4) flu(3/10) carters(l/7)

estate(l/2) within(l/5) easy(l/8) walking(l/4) distance(l/l) of(l/4) western(l/2)

grove(l/l) with(l/8) its(l/2) multiple(l/l) —(0) families(2/9). the(l/10) cliff(l/4)

top(l/4) with(l/10) its(l/3) access(l/10) to(l/l) sandy(l/4) framing(2/4) beaches(l/10)

is(l/l) dine(2/4) whim(2/4) easy(l/5) walking(l/3) distance(l/3). the(l/8) area(l/6)

is(l/l) coal(9; correct word not recognized) sewed(4/5) mill(l; correct word not

recognized) excellent(l/l) local(l/l) spoiling(l; correct word not recognized)

facilities(l/8) including(l/2) numerous(l/2) local(l/10) golf(l/l) courses(l/l),

tennis(l/10) comb(l; correct word not recognized) duel(4/6) local(l/l) sports(l/2)

cams(2/10) which(l/7) arc(3/8) cry(4/5) whim(2/7) easy(l/4) reach(l/10). he(2/10)

and(2/10) us(2/2) also(l/l) wool(2/10) saved(3/7) with(l/10) excellent(l/2) local(l/2)

schools(l/l) for(l/4) children(l/3) of(l/8) all(l/6) ages(l/7). the(l/7) property(l/2)

is (l/l) in(l/5) weed(2/4) off(2/6) modernisation(l/l) anal(2/7) redecoTation(l/l)

but(l/5) offers(l/3) god(3/4) sized(l/l) accommodation(l/l) with(l/5) three(l/3)

reception(l/l) rooms(l/2), four(l/10) grid(2/4) bedrooms(l/l) and(l/4) large(l/l)

secluded(l/l) well stocked(l/2) wear(9; correct word not recognized) garden(l/l).

Appendix C

Recognition results after look-up in compound tree:

a (l/l) —(0) detached house(l/l) situated(l/3) in(l/5) a (l/l) most(l/10) sought

after(l/l) residential area(l/l) on(l/4) flu(3/10) carters(l/7) estate(l/2) within(l/5) easy

walking distance(l/l) of(l/4) western(l/2) grove(l/l) with(l/8) its(l/2) multiple(l/l)

—(0) families(2/9). the(l/10) cliff top(l/l) with(l/10) its(l/3) access(l/10) to (l/l)

sandy(l/4) framing(2/4) beaches(l/10) is(l/l) dine(2/4) whim(2/4) easy walking

distance(l/l). the(l/8) area(l/6) is(l/l) coal(9; correct word not recognized) sewed(4/5)

mill(l; correct word not recognized) excellent 1/1) local(l/l) spoiling(l; correct word

not recognized) facilities(1/8) including(l/2) numerous(l/2) local(l/10) golf

courses(l/l), tennis(l/10) comb(l; correct word not recognized) duel(4/6) local(l/l)

sports centres(l/l) which(l/7) arc(3/8) cry(4/5) within easy reach(l/l). he(2/10)

and(2/10) us(2/2) also(l/l) wool(2/10) saved(3/7) with(l/10) excellent 1/2) local

schools(l/l) for(l/4) children(l/3) of(l/8) all(l/6) ages(l/7). the(l/7) property(l/2)

is (l/l) in(l/5) weed(2/4) off(2/6) modernisation(l/l) anal(2/7) redecoration(l/l)

but(l/5) offers(l/3) good sized accommodation(l/l) with(l/5) three(l/3) reception

room s(l/l), four(l/10) grid(2/4) bedrooms(l/l) and(l/4) large(l/l) secluded(l/l)

vial(4/6) stocked(l/2) wear(9; correct word not recognized) garden(l/l).

The above results are from look-up in a lexicon of 15223 words.

Page 206

A ppendix C

Recognition results with top five candidate words for the test sentence:

the cliff top with its access to sandy bathing beaches is also within easy
walking distance

Table Cl — Recognition results after lexical check

Word Candidates and scores
the the (100) me (100) flu (93) file (85) five (80)
cliff cliff (76) dolt (60) cook (50) colic (40)
top top (80) his (80) tip (67) lip (53)
with with (100) him (87) oath (85) mill (80) wifi (80)
its its (100) us (90) ox (70)

access access (97) does(95) cubes (84) dices (84) codes (80)
to to (100)

sandy sandy (100) sanely (93) sorely (87) solely (80)
bathing framing (100) bathing (94) training (70) paining (69)
beaches beaches (94) barons (83) baring (73) having (70) havens(70)

is is (90)
also dine (85) dire (75) also (75) cure (70)

within whim (100) within (100) whom (80) follow (60)
easy easy (95) cords (88) colds (76) odds (75) aids (75)

walking walking (83) revoking (78) rocking (66)
distance distance (93) enhance (80) instance (78)

Table C2 — Recognition results after compounds checked

Word Candidates and scores
the the (100) me (100) flu (93) file (85) five (80)
cliff cliff (100)
top top (100)

with with (100) him (87) oath (85) mill (80) will (80)
its its (100) us (90) ox (70)

access access (97) does(95) cubes (84) dices (84) codes (80)
to to (100)

sandy sandy (100) sanely (93) sorely (87) solely (80)
bathing framing (100) bathing (94) training (70) paining (69)
beaches beaches (94) barons (83) baring (73) having (70) havens(70)

is is (90)
also dine (85) dire (75) also (75) cure (70)

within whim (100) within (100) whom (80) follow (60)
easy easy (100)

walking walking (100)
distance distance (100)

Page 207

Appendix C

Table C3 — Recognition results after syntactic analysis

Word Candidates and scores
the the (150) me (145) file (126) five (122) tire (121)
cliff cliff (150)
top top (150)

with with (150) him (134) win (128) oath (128) mill (124)
its its (148) us (140) ox (115)

access access (146) does (142) dices (132) cubes (131) codes (129)
to to (150)

sandy sandy (150) sanely (132) sorely (126) solely (119)
bathing framing (150) bathing (144) training (120) paining (90)
beaches beaches (138) barons (127) havens (114) hiding (107) failing (92)

is is (140)
also dine (132) also (125) dire (124) cure (117)

within within (150) whim (133) whom (129) follow (103)
easy easy (150)

walking walking (150)
distance distance (150)

Table C4 — Recognition results after semantic analysis

Word Candidates and scores
the the (175) me (170) file (140)
cliff cliff (175)
top top (175)
with with (175) him (159) wiU (141) oath (136)
its its (173) us (165)

access access (168) does (167) dices (147) dicey (142) odes (142)
to to (175)

sandy sandy (175) sanely (136) sorely (130)
bathing bathing (169) framing (159)
beaches beaches (163) barons (137) havens (115)

is is (165)
also also (150) dine (133) dire (126) cure (121)

within within (175) whom (154) whim (142)
easy easy (175)

walking walking (175)
distance distance (175)

Page 208

Appendix D

start

initialise forward
pointers, backward
pointers and string

are there 's^
more routes
Jo follow3/

No, No Yesend of
graph ?

start of
graph ?

Yes Yes No

finishfollow next
forward pointer

check for string
in lexicon

add letter from
current node to
string

follow backward
pointer

increment
forward pointer

Flowchart D1 — Graph traversal algorithm (§2.5)

Page 209

A ppendix D

start

initialise forward
pointers, backward
pointers, string and
tree node

are thereN ^
more routes
to follow 1/

No Yesend of
graph ?

start of
graph ?

Yes Yes No

follow next
forward pointer

^ is end
of word flag
V set ? /

finishYes

add letter from
current node to
string and store
tree node

/ print word
/ found or

/ process /
further /

/ d o e s \ No
letter exist in">->-
\ tree

follow backward
pointer

Yes

increment
forward pointer

Flowchart D2 — Algorithm for checking letter strings against tree structure of lexicon

(see §3.3)

Appendix D

are there
more words

?

)finish

get next
word

find longest head
string and
divergent node
number

find longest tail string
from remainder of
word and convergent
node number

remove last
letter from
head string

are
Yes /'d ive rg e n t and

^ \ convergent node§
equal ?

connect divergent and
convergent nodes by
adding nodes for
middle part of string

delete te
entries i
diverger
number

iii list
ising
it node

><

delete he
entries u
converge
number

?ad list
sing
jnt node

print new
transitions

add tail string + all
but longest mid
string to tail list

add head string +
all but longest mid
string to head list

Flowchart D3 — Dawg construction algorithm (§ 3.3.3)

N
um

be
r

of
oc

cu
rr

en
ce

s

Appendix E

N.B. The data for figures El to E7 was collected from a lexicon of 68856 words.

Tables E3 to E9 are for words of lower case only (i.e. no proper nouns or acronyms).

Histogram El — Lexicon frequency distribution by length

12000 T

CD
CDo>0000 - - CDcn

CD
oo

CMr-
8000 --

6000 --

CD
CMo>4000 -

CD

2000 - -

CM jr.
CO CO CO
P S 3 CD CO

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23

Length (number of letters)

Page 212

Nu
m

be
r

of
oc

cu
rr

en
ce

s

Appendix E

Histogram E2 i — Lexicon frequency distribution by first letter

1000 T

900 --

800

700

600

500 - ■ !

400 -■!

300

200

100 Cj B
CM

A B C D E F G H I J K L M N O P Q R S T U V W

First letter of word

Page 213

Appendix E

Histogram E2 ii Lexicon frequency distribution by first letter

8000

7000

6000

5000 4-

4000

3000 41

2000 - j

1000 41
0

N-
a CO

CO

m

a b c d e f g h i j k l m n o p q r s t u v w x y z

First letter of word

Table E3 — Zone code frequency distribution of two letter words

[8 out of 9 possible codes occur]

Zone code Frequency
11 0
ul 1
lu 1
ml 4
lm 5
uu 6
mu 13
um 15
mm 30

Total 75

Page 214

@
15

9

Appendix E

Table E4 — Zone code frequency distribution of three letter words

[22 out of 27 possible codes occur]

Zone code Frequency Example word
mlu 2 apt
mil 2 egg
ulm 2 dye
luu 2 jib
lum 4 gin
lul 4 ply

mlm 8 ape
uul 9 big
mul 10 alp
1ml 11 peg
uuu 14 hid
uum 17 the
muu 18 wit
lmu 20 yet
mml 26 rag
1mm 26 yes
mum 28 elm
umu 31 but
uml 35 fog

mmu 63 and
umm 63 has
mmm 75 men
Total 470

Page 215

Appendix E

Table E5 — Zone code frequency distribution of four letter words

[59 out of 81 possible codes occur]

Zone code Frequency
mlml 1
mlul 1
mllm 1
umlu 1
umll 1
uulu 1
luul 1
11mm 1
mmlu 2
mmll 2
mulu 2
mluu 2
ulmu 2
ullm 2
mmul 3
mlum 3
uuul 3
luml 4
luum 4
luuu 4
lulm 4

mulm 5
uulm 5
lmul 5
mlmu 6
ulmm 7
uuml 9
lumu 9
muul 11
umul 11
uuuu 11
lmlm 11

mlmm 12
lumm 14
muuu 18
lmml 18

(continued overleaf)

Appendix E

Table E5 (continued)

Zone code Frequency
lmuu 20
uuum 21
mmlm 23
umlm 25
muml 26
uumu 31
lmum 35
mumu 38
muum 39
umml 39
lmmm 40
mmml 41
lmmu 48
mmuu 51
umum 52
uumm 53
umuu 56

mumm 57
mmum 87
mmmu 132
ummu 143

mmmm 144
ummm 147
Total 1545

Page 217

Appendix E

E6 — Zone code frequency distribution of five letter words

[147 out of 243 possible codes occur]

Zone code Frequency
32 codes 1
11 codes 2
12 codes 3
10 codes 4
8 codes 5
3 codes 6
4 codes 7
3 codes 8
4 codes 9
7 codes 10
1 code 11
5 codes 12
2 codes 13
1 code 15
3 codes 16 |
2 codes 19
2 codes 20 |
2 codes 21
1 code 23

2 codes 24
3 codes 27
1 code 28
2 codes 29
1 code 30

mmmuu 33
lmmum 34
lmmmu 35
umumu 37
mmmml 38
umuum 42
uummu 42
mmumu 44
mumum 46
umumm 51
uummm 51
ummuu 56
lmmmm 58
mmuum 66
mummu 72
mmmum 89
mummm 101
mmumm 104
ummmu 110
ummum 110
mmmmu 118
mmmmm 143
ummmm 148

Total 2596

Page 218

Appendix E

E7 — Zone code frequency distribution of six letter words

[307 out of 729 possible codes occur]

Nmber of codes Frequency
69 codes 1
41 codes 2
25 codes 3
27 codes 4
12 codes 5
9 codes 6
10 codes 7
9 codes 8
7 codes 9
10 codes 10
5 codes 11
8 codes 12
4 codes 13
3 codes 14
4 codes 16
7 codes 17
5 codes 18
2 codes 19
1 code 20
3 codes 21
3 codes 22
4 codes 23
1 code 24
1 code 25
1 code 26

5 codes 27
2 codes 28
3 codes 29

(continued overleaf)

Page 219

A ppendix E

Table E7 (continued)

Zone code Frequency
mmmuml 32
Immmmm 32
lmmumu 35

uummmm 37
ummuum 44
mumumm 45
mmummu 46
mummum 46
umuumu 47

mmmuum 51
mmuumu 54
umuumm 58
mummmu 59
mmmmum 65
ummmum 65
mummmm 70
ummumm 73
mmmumu 80
ummumu 80

mmummm 87
mmuumm 98
ummmmu 98
mmmumm 106
mmmmmu 113
ummmmm 119
mmmmmm 143

Total 3622

Page 220

A ppendix E

Table E8 — Word-initial tri-gram frequency distribution

[taken from a lexicon of 3,994 words — 1021 grams occur]

Occurrences Number of tri-grams Tri-gram
0 16555
1 310
2 223
3 112
4 93
5 81
6 48
7 37
8 28
9 18

10 9
11 12
12 9
13 5
14 6
15 7
16 1
17 4
18 1
19 3
20 0
21 3
22 2
23 0
24 1
25 1
26 1
27
28 1
31 1 sta
32 1 for
35 1 com
47 1 con
52 1 pro

Page 221

• ^ * r • ■ ^
iH

Appendix E " J i

Table E9 — Reduced zone code frequency distribution of words beginning pro %

[taken from a lexicon of 3,994 words]

P
i
I
it

Zone code Frequency
lmlum 1
lmlu 1
lmlul 1

Imumul 1
Imlmlmum 1

lmlmul 2
imuml 2

lmlmum 3
lmu 4

lmlmu 4
lmumu 4

lmumum 4
lm 5

lmlm 7
lmum 13
Total 53

Page 222

