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athlete status in football: a systematic review and meta-analysis 15 

 16 
The aim of this review was to assess the association of ACTN3 R577X and ACE I/D 17 
polymorphisms with athlete status in football and determine which allele and/or genotypes 18 
are most likely to influence this phenotype via a meta-analysis. A comprehensive search 19 
identified 17 ACTN3 and 19 ACE studies. Significant associations were shown between 20 
presence of the ACTN3 R allele and professional footballer status (OR = 1.35, 95% CI: 21 
1.18-1.53) and the ACE D allele and youth footballers (OR = 1.18, 95% CI: 1.01-1.38) 22 
compared to a control group. More specifically, the ACTN3 RR genotype (OR = 1.48, 95% 23 
CI: 1.23-1.77) and ACE DD genotype (OR = 1.29, 95% CI: 1.02-1.63) exhibited the 24 
strongest associations, respectively. These findings may be explained by the association of 25 
the ACTN3 RR genotype and ACE DD genotype with power-orientated phenotypes and the 26 
relative contribution of power-orientated phenotypes to success in football. As such, the 27 
results of this review provide further evidence that individual genetic variation may 28 
contribute towards athlete status and can differentiate athletes of different competitive 29 
playing statuses in a homogenous team-sport cohort. Moreover, the ACTN3 R577X and 30 
ACE I/D polymorphisms are likely (albeit relatively minor) contributing factors that 31 
influence athlete status in football. 32 
 33 
Keywords: Soccer; Team-Sport; Genetics; SNP; Genomics.  34 
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1 Introduction  35 

Actinin alpha 3 (ACTN3), a member of the actin family, is a sarcomeric protein which is greatly 36 
expressed in muscle tissue 1. A function of the ACTN3 protein involves crosslinking fast-twitch (type 37 
II) actin filaments in skeletal muscle fibres 2. Thus, the expression of the ACTN3 protein in glycolytic 38 
skeletal muscle is thought to be a contributing factor to the generation of powerful and explosive muscle 39 
contractions; through optimal coordination of type II muscle fibres 3. The coding of the ACTN3 protein 40 
is controlled by the ACTN3 gene, located on chromosome 11q13.2. A common genetic variant in the 41 
ACTN3 gene has been identified which significantly alters the production of the ACTN3 protein 4. The 42 
genetic variation is a nonsense single nucleotide polymorphism (SNP) which can introduce a premature 43 
stop codon within the gene at position 577 (rs1815739) 5. Cytosine is the most common nucleotide at 44 
this position (i.e., CGA), which encodes the amino acid, arginine (R) 2. Alternatively, thymine can be 45 
possessed by an individual (i.e., TGA), producing the stop codon (X); potentially resulting in an 46 
individual being deficient in ACTN3 4.  As the ACTN3 gene portrays a role in force production, it has 47 
been hypothesised that the performance of activities requiring extensive force production (i.e., 48 
sprinting, jumping, weightlifting) would be influenced by whether an individual possesses the R allele 49 
or RR genotype. Many studies have reported that either the RR genotype was over-represented, or the 50 
XX genotype was underrepresented, in power-related sports (e.g., 100m sprint, rowing, speed skating, 51 
artistic gymnastics, sprint swimming, Olympic weightlifting) across American, Polish, Finnish, Italian, 52 
Japanese, Israeli, and Russian cohorts 6–15. Indeed, Ma and colleagues 16 conducted a meta-analysis on 53 
23 studies involving power and endurance athletes and discovered that the R allele was only associated 54 
with power athletes. Moreover, a recent meta-analysis on solely power athletes reported similar 55 
associations between the R allele and power athletes across 38 studies 17. 56 

Another commonly investigated gene in sport performance is the angiotensin I converting 57 
enzyme (ACE) gene. The angiotensin I converting enzyme catalyses the degradation of the inactive 58 
decapeptide angiotensin I, and subsequently generates the physiologically active peptide, angiotensin 59 
II; an oligopeptide of eight amino acids that binds to specific receptors in the body affecting several 60 
systems 18,19. Angiotensin II can constrict blood vessels and stimulate aldosterone production, resulting 61 
in increased blood pressure, thirst, or the dire for salt. As such, the ACE enzyme is the most crucial 62 
component of the renin-angiotensin system (RAS), as it is a potent vasopressor and aldosterone-63 
stimulating peptide which regulates blood pressure and fluid-electrolyte balance 20. A polymorphism 64 
has been identified within intron 16 of the ACE gene, located on chromosome 17q23.3 65 
(NC_000017.11), which results in a substantial variation of RAS activity 21,22. The polymorphism is 66 
known as an insertion/deletion (indel) polymorphism, with the insertion (I allele) and deletion (D allele) 67 
representing the presence and absence of a 287-bp Alu-sequence respectively. Specifically, the I allele 68 
has been associated with lower serum and tissue ACE activity, alongside an increased percentage of 69 
slow-twitch (type I) muscle fibres; whilst the D allele has been associated with higher circulating and 70 
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tissue ACE activity, alongside greater strength and muscle volume and an increased percentage of type 71 
II muscle fibres 21–23. In the context of sport, the I allele has been frequently associated with elite 72 
endurance performance. Specifically, higher I allele frequencies have been reported in middle- and 73 
long-distance rowers, swimmers, road-cyclists, runners, mountaineers, cross-country skiers, and tri-74 
athletes across a range of diverse cohorts (e.g., British, Australian, Croatian, Russian, Spanish, Italian, 75 
Turkish, Polish, Japanese, Indian) 24–33. Indeed, during the meta-analysis of Ma and colleagues 16, the 76 
authors also assessed the influence of the ACE I/D polymorphism on endurance athletes over 25 studies, 77 
reporting that the II genotype was significantly associated with endurance athletes. However, the 78 
authors found no association between the ACE I/D polymorphism and power athletes. This may have 79 
been due to the large heterogeneity observed between studies (I2 = >75%), most likely a result of not 80 
analysing the power athletes independently based upon ethnicity. Indeed, a more recent meta-analysis 81 
did conduct an ethnic specific analysis of power athletes and reported significant associations with the 82 
ACE D allele 34.  83 

The collective results on the associations of the ACTN3 R577X and ACE I/D polymorphisms, 84 
with athletic performance, complicate the implications for sports which require both power and 85 
endurance related traits, such as football. Football is an intermittent sport which requires optimal 86 
utilisation of both the aerobic and anaerobic systems 35,36,37,38; and as such, predicting whether a power 87 
or endurance-orientated allelic variant may be preferable is not straightforward. Therefore, genetic 88 
association studies began to investigate whether a power or endurance-orientated genotype was more 89 
important in football by analysing polymorphisms such as ACTN3 R577X and ACE I/D 39–41. Moreover, 90 
studies began to assess if there was a difference between football players of various competitive playing 91 
levels (i.e., elite, non-elite; professional [PRO], non-professional [NP]) and controls (CON), in order to 92 
determine if ACTN3 R577X or ACE I/D were associated with athlete status 42–44. Currently, there is no 93 
general consensus on the importance of ACTN3 or ACE in footballers, with studies reporting positive, 94 
negative, and contrasting allelic associations 39–44. This is most likely because each gene or genotype 95 
has a small contribution to sporting performance and is dependent on numerous inter-individual 96 
variations (e.g., ethnicity and competitive playing level) 45,46. As a result, studies require large 97 
homogenous sample sizes in order to have sufficient statistical power and demonstrate significant 98 
associations and replications 45,47. However, studies within football genomics have notoriously small 99 
sample sizes and many are heterogenic multi-sport studies; mainly due to the unique population and 100 
limited access available 48. Therefore, to overcome the limitation of sample sizes and heterogeneity, a 101 
meta-analysis can be used to pool the results of single homogenous studies together 47. As such, the aim 102 
of this study was to assess if the ACTN3 R577X and/or ACE I/D polymorphism are associated with 103 
athlete status in football by conducting a systematic review and meta-analysis. 104 

2 Methodology 105 
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2.1 Search Strategy and Inclusion/Exclusion Criteria 106 

In accordance to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) 107 
guidelines 49, the following search strategy was implemented. A comprehensive search of the Pubmed, 108 
SPORTDiscus, and MEDLINE databases was conducted on March 3rd 2020. For ACTN3 the following 109 
Boolean search was used: ((football) OR (soccer)) AND (actn3) OR (alpha-actinin-3) OR (actinin-110 
alpha-3) OR (R577X) OR (rs1815739)). For ACE the following Boolean search was used: ((football) 111 
OR (soccer)) AND (ace) OR (angiotensin I converting enzyme) OR (rs1799752) OR (rs13447447) OR 112 
(rs4341) OR (rs4646994)). Additionally, Google Scholar was searched using word combinations of the 113 
aforementioned Boolean searches, with no year restriction placed on any search. Furthermore, reference 114 
lists of the identified articles were searched for additional relevant studies. At the initial screening stage 115 
studies were included if they: (1) were primary cohort or case-control investigations; (2) presented 116 
ACTN3 R577X or ACE I/D genotype frequencies of footballers in isolation; and (3) were published in 117 
the English language. Therefore, studies were excluded if they: (1) were reviews; (2) presented ACTN3 118 
R577X or ACE I/D genotype frequencies of footballers combined with other sports; and (3) were 119 
published in a language other than in English.  120 

2.2 Data Extraction and Analysis 121 

We extracted the following data from all studies: first author’s name and year of publication; number 122 
of footballers and CON; nationality and ethnicity; gender; age range; competitive playing level; type of 123 
study (cohort or case-control); and distribution of genotype frequencies in footballers and CON. 124 
Extracted data was then analysed in the following order: 1) pooled genotype frequencies of case-control 125 
studies in isolation; 2) pooled genotype frequencies of case-control studies combined with cohort 126 
studies (with an ethnically matched independent CON population added); and 3) sub-group analysis of 127 
ethnicity, gender, and level of competition. Independent CONs were added to cohort studies from the 128 
1000 genomes database (https://www.internationalgenome.org) or an independent non-included study. 129 
Each cohort study was assigned a CON which was not used by any other study in the analysis to bolster 130 
the number of unique individuals and decrease selection bias. All of the included CON were also 131 
subjected to risk of bias before being included.  132 

2.3 Risk of Bias 133 

After initial primary inclusion, all studies were subjected to Hardy–Weinberg equilibrium (HWE) via 134 
chi-square (significance level P<0.05); culminating in the removal of all studies violating this 135 
significance threshold, as deviations from HWE in a CON group can indicate potential genotyping 136 
errors, selection bias and stratification 50. Furthermore, as each study is tested for HWE, Benjamini-137 
Hochberg false discovery rate (FDR) is used to correct p-values 51. Additionally, as this review only 138 
uses published studies, publication bias could be a limiting factor. Therefore, Egger’s test 52 in 139 
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combination with funnel plots 53 were used to identify if publication bias was present and potentially 140 
skewing results (significance level P<0.05).  141 

2.4 Statistical Analysis  142 

To measure the strength of the association between the ACTN3 R577X and ACE I/D polymorphisms 143 
and football players, odds ratios (OR), 95% confidence intervals (CI), and forest plots were used via 144 
either a fixed-effects model or random-effects model to identify the individual and pooled effects of the 145 
studies. Determining which model was appropriate for each analysis was based on the level of 146 
heterogeneity revealed via the I2 (<50% = fixed-effects model; >50% = random-effects model) and 147 
Cochran’s Q 54 statistical test (significance level at P<0.05). Four genetic models were used to assess 148 
genotype and allele differences between football players and CONs: (a) allele contrast; (b) recessive; 149 
(c) dominant; and, (d) over-dominant. Additionally, pair-wise comparisons were also conducted. 150 
Finally, a sensitivity analysis was conducted via a leave-one-out approach in order to test the robustness 151 
of results 55. All analyses were conducted using the MetaGenyo online Statistical Analysis System 152 
software (http://bioinfo.genyo.es/metagenyo/) 56.   153 

3 Results 154 

3.1 Search Process 155 

The systematic search processes initially identified 588 studies (ACTN3, n = 290; ACE, n = 298). 156 
Following the removal of duplicates and the screening of titles and abstracts, full-text assessment 157 
commenced; culminating in 17 ACTN3 and 19 ACE studies being judged as adequately meeting the 158 
predetermined inclusion criteria and subsequently being included in the final analysis (see Figure 1 for 159 
full systematic search process). 160 

****Insert Figure 1. near here**** 161 

3.2 Study Characteristics  162 

The 17 ACTN3 studies consisted of nine case-control and eight cohort studies respectively. There were 163 
a total of 1759 football players included across all studies (aged 10-37 years), with sample sizes ranging 164 
from 25-353. The most frequently studied nationality was Brazilian (n = 850), whilst the most 165 
frequently studied ethnicity was Caucasian (n = 587). Eleven studies included PRO players (n = 713; 166 
aged 17-37 years); four studies included NP players (n = 447; aged 14-30 years); and, two included 167 
both PRO and NP players (n = 599; aged 10-27 years). The 19 ACE studies consisted of 15 case-control 168 
and four cohort studies. There were a total of 1925 football players included across all studies (aged 10-169 
27 years), with sample sizes ranging from 25-353. The most frequently studied nationality was Brazilian 170 
(n = 709), whilst the most frequently studied ethnicity was Caucasian (n = 802). Ten studies included 171 
PRO players (n = 674; aged 17-26 years); seven studies included NP players (n = 652; aged 15-21 172 
years); and, two included both PRO and NP players (n = 599; aged 10-27 years).  173 
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3.3 Risk of Bias   174 

Fifteen of the originally included 17 ACTN3 studies remained after risk of bias assessment. The studies 175 
excluded, with reasons for exclusion, were as follows: (1) Massidda et al. 57 failed HWE assessment; 176 
and, (2) La Montagna et al. 58 failed to provide the specific nationality and ethnicity of the footballers, 177 
thus an ethnically-matched CON could not be added. Seventeen of the originally included 19 ACE 178 
studies remained after risk of bias assessment. The following studies were excluded due to failing HWE 179 
assessment: Gineviciene et al. 59 and Galeandro et al. 41. In addition, the Bulgarian sub-cohort of 180 
Andreeva et al. 60 was excluded from analysis due to also failing HWE assessment. In all genetic 181 
comparison models that identified a significant association with ACTN3 and ACE, funnel plots did not 182 
reveal any signs of asymmetry and Egger’s test did not detect a significant indication of publication 183 
bias. 184 

3.4 Main Analysis 185 

Several significant associations were observed between the ACTN3 R577X polymorphism and genetic 186 
comparison models with case-control studies in isolation: (1) allele contrast; (2) recessive; (3) 187 
dominant; (4) RR vs. XX; and, (5) RR vs. RX. In addition, similar associations with the same genetic 188 
models were also observed in case-control studies combined with cohort studies; with the only 189 
exception being the additional significant association of RX vs. XX. The strongest association observed 190 
in both case-controls in isolation and combined with cohorts was RR vs. XX (see Table 1 for ORs and 191 
CIs of each ACTN3 comparison). Sensitivity analysis assessed the robustness of the results and revealed 192 
that no study significantly altered pooled ORs. Conversely, no significant associations were observed 193 
between the ACE I/D polymorphism with case-controls in isolation or combined with cohorts using any 194 
genetic comparison model (see Table 2 for ORs and CIs of each ACE comparison). 195 

3.4.1 Sub Analyses 196 

The first sub-analysis assessed the independent associations of PRO players and NP players vs. controls 197 
(CON). Several significant associations were observed between the ACTN3 R577X polymorphism and 198 
genetic comparison models in PROs: (1) allele contrast; (2) recessive; (3) dominant; (4) RR vs. XX; 199 
and, (5) RR vs. RX. The strongest association observed was RR vs. XX. No significant associations 200 
were observed between the ACTN3 R577X polymorphism and genetic comparison models in NPs vs. 201 
CON. Conversely, no significant associations were observed between the ACE I/D polymorphism and 202 
PRO players. However, several significant associations were observed between the ACE I/D 203 
polymorphism and NP players: (1) allele contrast; (2) dominant; and, (3) ID vs. DD.  204 

The second sub-analysis assessed the independent influence of ethnicity and nationality on 205 
associations. Due to the variance in geographical ancestry, Caucasian and Brazilian were the only 206 
ethnicity and nationality eligible for analysis. Several significant associations were observed between 207 
the ACTN3 R577X polymorphism and genetic comparison models in Caucasians: (1) allele contrast; 208 
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(2) recessive; (3) dominant; and, (4) RR vs. XX. Likewise, several significant associations were also 209 
observed between the ACTN3 R577X polymorphism and genetic comparison models in Brazilians: (1) 210 
allele contrast; (2) dominant; (3) RR vs. XX; and, (4) RX vs. XX. The strongest association observed 211 
in both Caucasians and Brazilians was RR vs. XX. Conversely, no significant associations were 212 
observed between the ACE I/D polymorphism and Caucasians or Brazilians. 213 

****Insert Table 1. near here**** 214 

****Insert Table 2. near here**** 215 

4 Discussion 216 

The aim of this study was to assess if the ACTN3 R577X and/or ACE I/D polymorphism were associated 217 
with athlete status in football; and if so, determine which allele and/or genotypes are most likely to 218 
influence this phenotype via a meta-analysis. To the author’s knowledge this is the first review to do 219 
this within football; and moreover, it is the first meta-analysis in a homogenous team-sport cohort.  220 

4.1 Main Analysis 221 

Following meta-analysis, this review identified several associations between the ACTN3 222 
R577X polymorphism and all football players (PRO & NP combined) vs. CON. In summary, the main 223 
associations were observed in football players possessing the R allele, with the strongest association 224 
being the RR vs. XX genotype. These associations were observed in case-control studies in isolation 225 
and remained similar with the addition of cohort studies. Although, with the significant increase in 226 
sample size from cohort studies the CI was reduced, possibly indicating a more accurate estimation. 227 
The only notable difference between genetic comparison models was that the RX vs. XX pair-wise 228 
comparison was statistically significant with cohorts added vs. non-significant in case-controls in 229 
isolation. Therefore, only the over-dominant model remained non-significant in both case-control 230 
studies in isolation and with the addition of cohort studies; most likely due to the strength of the 231 
association of the RR genotype. As such, the results of this analysis showcase that in football players, 232 
similar to power athletes, there is an overrepresentation of the ACTN3 RR genotype. For instance, this 233 
can be illustrated by the similar recessive model and dominant model findings of the present study and 234 
Ma and colleagues 16, respectively. This can likely be explained by the combination of several factors: 235 
(1) the number and frequency of powerful actions performed in a game (i.e., 1000-1400 acyclical bursts 236 
of activity, including; jumps, tackles, shots at goal, changes of direction, and, sprints), with a high-237 
intensity sprint occurring every ~70s 61,62; (2) the contribution of the ability to repeat higher intensity 238 
actions to success in football (i.e., league position, goals scored, goals prevented, duel success) 63,64; 239 
and, (3) the association of the RR genotype with power-orientated phenotypes (i.e., vertical jumping 240 
and 10-30m sprints) 65,66. However, it is important to recognise that there are many other genetic 241 
polymorphisms, with each likely influencing performance to a limited extent 45,46. Therefore, football 242 
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players, power athletes, and indeed other team-sports, may possess contrasting allele and genotype 243 
frequencies in other polymorphisms. Hence, the results of this review only indicate a difference between 244 
football players and non-athletic CONs. However, this difference appears to be greatly mediated by 245 
competitive playing level, which may have contributed to the heterogeneity present between ACE 246 
studies; and as a result, the non-significant associations between ACE and PRO & NP players combined. 247 
Indeed, the results of the subsequent sub-analysis on competitive playing level revealed that ACE may 248 
play an important role in determining athlete status earlier in athlete development. Therefore, although 249 
ACE was not associated with athlete status in the main analysis, it is still an important genetic variant 250 
in football, depending on specific competitive playing levels. 251 

4.2 Sub-Analyses 252 

The importance of the competitive playing level of footballers in this review was assessed via 253 
separating PRO players and NP players. PRO players were classified as players that studies specifically 254 
described as playing at a professional level, whereas NP players were classified as players playing at a 255 
semi-professional, amateur, or youth level. This particular method of categorisation was chosen, as 256 
opposed to elite vs. non-elite, to circumvent the problematic classification issue of ‘eliteness’ (i.e., what 257 
constitutes elite status and how do we define it?) 67,68. For example, players may be internationals who 258 
represent their country (normally classed as elite), however what if their country is near the bottom of 259 
the international rankings? Furthermore, players may play for a European club positioned 1st in their 260 
country’s highest league (normally classed as elite), but what if the country and club both have a low 261 
UEFA coefficient ranking? Moreover, how do we define the highest performing youth players? Given 262 
that no irrefutable solution has been provided and no general consensus has been agreed, the term ‘elite’ 263 
is still inconsistently utilised in the literature to describe varying standards of performance 67,68. 264 
Therefore, to reduce between-study-heterogeneity, the authors chose to compare PROs and NPs 265 
(limitations of this approach are discussed in section 4.3). 266 

Firstly, the results of this analysis revealed that the ACTN3 R577X polymorphism was 267 
associated with PRO players vs. CON. However, no statistically significant difference was observed 268 
between NP players and CON. Moreover, the strength of the association between the R allele, and 269 
specifically the RR genotype, was even stronger in PRO players when separated from NP players. As 270 
such, these results indicate that the R allele is a likely (albeit small) contributing factor towards attaining 271 
PRO status in football. Secondly, whilst the ACE I/D polymorphism was not associated with PRO 272 
players vs. CON, it was associated with NP players vs. CON. To be specific, NP players were more 273 
likely to possess a D allele or DD genotype. This is perhaps more easily demonstrated via inverse 274 
statistical analysis: (1) D vs. I (OR = 1.18, 95% CI: 1.01-1.38); (2) DD vs. DI+II (OR = 1.29, CI: 1.02-275 
1.63); and, (3) DD vs. DI (OR = 1.32, CI: 1.03-1.69). Interestingly, the NP players consisted solely of 276 
youth players in the ACE I/D studies (n = 652; aged 15-21 years) showcasing that the D allele is only 277 
overrepresented specifically in youth football. Furthermore, the differences between PROs and NPs 278 
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may have increased further given that Egorova and colleagues 42 was not included in this analysis, due 279 
to not displaying the individual genotype frequencies of PRO and NP players in their study. However, 280 
the authors did report that when separated by competitive playing level, only elite players displayed a 281 
significantly higher frequency of the ACTN3 R allele compared to CON (81.1%, P < 0.001); whilst 282 
conversely, only youth players displayed a significantly higher frequency of the ACE D allele compared 283 
to CON (78.8%, P < 0.001). As such, the observed cumulative evidence suggests that whilst possessing 284 
the ACE D allele is potentially more beneficial to young players, the ACTN3 R allele is the only allele 285 
which likely has a (minor) role in attaining PRO status (see Figure 2). However, it is important to note 286 
the use of terms such as “albeit small” and “minor” when interpreting these findings. Polymorphisms 287 
account for very little of the inter-individual variance in complex traits such as athlete status 45. Indeed, 288 
even a combination of 97 polymorphisms (at P = 5×10-8 or better) could only account for 2.7% of body 289 
mass index variance between individuals69. Therefore, as evidenced by the relatively small odds ratios 290 
in this study, ACTN3 and ACE similarly play a minor role in determining athlete status in football. 291 

****Insert Figure 2. near here**** 292 

The explanation for the observed associations between the ACE D allele and ACTN3 R allele 293 
with youth and PRO players respectively is challenging. Both alleles have been previously associated 294 
with strength/power orientated sports and general strength/power characteristics (i.e., increased 295 
percentage of type II muscle fibres; strength; and, muscle mass) 13,23. More specifically, in football 296 
cohorts both alleles have been positively associated with greater countermovement and squat jump 297 
performance, and faster 10m, 20m, and 30m sprint times 65,66. As such, both alleles appear to be 298 
associated with the same side of the endurance-power continuum in football. Therefore, it is interesting 299 
that each allele is independently associated with different competitive playing levels. However, perhaps 300 
the categorisation method employed to distinguish competitive playing levels in this review could 301 
possibly be responsible. For example, whilst heterogeneity between studies in the PRO vs. NP analysis 302 
was mostly small, the age of NPs in ACTN3 ranged from 14-30 years; whereas the age of NP players 303 
in ACE ranged from 15-21 years. As such, it is possible that the NP ACE players had greater 304 
performance levels than the NP ACTN3 players, as the NP ACE players may play at the highest youth 305 
level in their respective age groups; whilst the ACTN3 players may not. Indeed, several previous studies 306 
have demonstrated that ‘elite’ youth players, aged 14-17 years, have outperformed non-elite players in 307 
acceleration, speed and jumping assessments 70,71. Although, it could be argued that grouping young 308 
players (14-17 years) as elite and non-elite is not appropriate as factors such as maturation status may 309 
influence performance more than ACTN3 or ACE genotype. However, in truth, numerous potential 310 
explanations exist, including: (1) differences in competitive performance levels; (2) variations in 311 
geographical ancestry; (3) disparities in the distributions of players relative to their on-field position 312 
within samples; (4) distinct methods of genotyping; (5) individual gene-gene interactions; and, (6) 313 
separate gene-environment interactions. Moreover, it is also important to note that the ACE gene is part 314 
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of a very complex pathway, with serval interactions that can influence it’s activity; whilst ACTN3 315 
represents the presence/absence of a structural protein 18,19. As such, the specific cause of the distinction 316 
between the ACTN3 R577X and ACE I/D polymorphisms with PRO and NP players requires further 317 
research to elucidate these findings.  318 

In addition to competitive playing level, sub-analysis also assessed the influence of ethnicity 319 
and geographical ancestry on observed associations. Therefore, studies, and samples within studies, 320 
were separated based upon their reported ethnic heritage and nationality. After separation, Caucasians 321 
and Brazilians collectively represented 81% and 79% of ACTN3 and ACE studies respectively. 322 
Therefore, only these could be assessed via comparison analysis. Firstly, in relation to the ACE I/D 323 
polymorphism, no significant associations were observed in either Caucasians or Brazilians. However, 324 
in relation to the ACTN3 R577X polymorphism, several significant associations were observed in both 325 
Caucasians and Brazilians between the R allele and football players vs. CON. However, in models with 326 
significant associations in both Caucasians and Brazilians (allele contrast, dominant, RR vs. XX), 327 
Caucasians displayed higher ORs. This suggests the R allele, and more significantly the RR genotype, 328 
appear to be of greater importance to footballers of Caucasian heritage. This suggestion is bolstered by 329 
the significant associations observed solely between Caucasians and a recessive model, and between 330 
Brazilians and the pair-wise comparison of the RX vs. XX genotypes. This reveals that the RX genotype 331 
may be more associated with footballing status in Brazilians, whilst the RR genotype may be more 332 
associated with footballing status in Caucasians.   333 

The possible cause of the disparities in ORs between the R allele in Brazilians and Caucasians 334 
may be related to the ethnic diversity of the Brazilian population; and more specifically, the proportion 335 
of individuals with African ancestry. Individuals of African ancestry have greater frequencies of the 336 
RR genotype (~78%) and significantly lesser frequencies of the XX genotype (~1%), irrespective of 337 
athlete status, compared to the estimated frequencies of the world population (RR ~40%; XX ~18%) 72–338 
74. As such, the ACTN3 R577X polymorphism does not differentiate elite athletes from CON of African 339 
ethnicity in either power or endurance-orientated sports 72,73. Using ancestry informative markers, 340 
previous studies have reported that the Brazilian population are formed of ~65% European SNPs, ~22% 341 
African SNPs, and ~13% Amerindian SNPs 75. Furthermore, these proportions vary in each independent 342 
region of Brazil. For example, it is estimated that the population of Rio de Janeiro is formed of ~55% 343 
European SNPs, ~31% African SNPs, and ~14% Amerindian SNPs 76. As such, given the genetic 344 
similarity of the Brazilian population with the genetic profile of African ethnicities, this potentially 345 
explains why the RR genotype may contribute to footballing status in Brazil to a lesser extent. 346 

4.3 Strengths and Limitations 347 

This study’s findings are reinforced due to the small-moderate heterogeneity identified between 348 
studies. Only two of the 28 total measurements regarding ACTN3 displayed an I2 value over 50% and 349 
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violated Cochran’s Q statistical threshold (P<0.05); although neither of these two measurements 350 
displayed a statistically significant result. Likewise, neither of the three associations identified between 351 
the ACE I/D polymorphism and NP players displayed significant heterogeneity. Furthermore, no 352 
suggestion of publication bias was identified regarding the observed significant associations, through 353 
analysis of funnel plots or Egger’s test (P<0.05).   354 

 This review is not without limitations and each must be duly considered when interpreting the 355 
findings. Firstly, this review attempted to include both male and female football players, but 356 
unfortunately the authors could only locate one study involving female players 60 which met the pre-357 
defined inclusion criteria. Therefore, the results from this review mainly apply to male football players. 358 
Secondly, the ethnic and geographic implications of this review mainly concern Brazilians and 359 
Caucasians, due to both representing the majority of the football players included in this review (ACTN3 360 
= 48% & 33% respectively; ACE = 37% & 42% respectively). Thus, research is still required on players 361 
of diverse geographical ancestry. Thirdly, the division of players into PRO and NP categories was 362 
chosen to circumvent the well-known issues surrounding what constitutes ‘eliteness’ in sport; however, 363 
the PRO level still encompasses substantial disparities in standards of play (e.g., English Premier 364 
League vs. English Football League Two). As such, this makes it difficult to objectively quantify player 365 
ability and consequently associate the findings with specific levels of performance. Finally, the on-field 366 
positions of footballers were rarely reported in the included studies. This is important considering the 367 
previously reported inter-positional associations between the ACTN3 R577X and ACE I/D 368 
polymorphism and football players, such as forwards and goalkeepers possessing significantly higher 369 
frequencies of the ACTN3 R allele and ACE D allele, respectively 42. Therefore, it is unknown whether 370 
the associations in this review were influenced by the number of players included in each study relative 371 
to their on-field positions.  372 

4.4 Practical Applications  373 

Limited evidence exists supporting the practical application of genetic information with athlete 374 
development. For example, it has been reported that individuals possessing the ACTN3 RR and ACE 375 
DD genotypes may have an improved adaptive response in strength and power with heavy resistance 376 
training 77,78. As such, Kikuchi and Nakazato 79 suggested that individuals possessing power-orientated 377 
genetic variants, such as ACTN3 RR, may benefit more from resistance training consisting of high 378 
weights with low-repetitions for strength and power. Jones and colleagues 80 investigated this theory 379 
and reported that in 39 football players the ACE DD and ACTN3 RR genotypes demonstrated a greater 380 
improvement in countermovement jump performance in response to high-weight low-repetition 381 
resistance training; whereas, the ACE II and ACTN3 XX genotypes demonstrated a greater improvement 382 
with low-load high-repetition resistance training. However, this study comprised a small sample size, 383 
which consequently increases the likelihood of type 1 error occurrence 81. Furthermore, to the author’s 384 
knowledge, the results presented by Jones and colleagues 80 have yet to be replicated in an independent 385 
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cohort. Therefore, further intervention studies are required in order to establish a strong evidence base, 386 
before practical recommendations can be proposed regarding the results of this review. However, once 387 
a strong evidence base has been established which supports genetic-based programme design, this 388 
review can be used alongside a number of other extensively evidenced/researched genotypes to form 389 
the basis of genetic-based training. Indeed, studies have also showcased that differences in biomarkers 390 
of muscle damage, hormones, and inflammatory responses, may be influenced by genotype variation 391 
82,83. Therefore, the utilisation of genetic information in the future may not only aid in optimising 392 
training adaptation, but also the planning of athlete workloads and recovery. 393 

5 Conclusion 394 

The results of this review provide further evidence that individual genetic variation likely contributes 395 
towards athlete status. Our findings suggest that genetic variation can differentiate athletes of different 396 
competitive playing statuses in a homogenous team-sport cohort. Specifically, this review has 397 
showcased that the R allele and RR genotype of the ACTN3 R577X polymorphism are overrepresented 398 
in PRO football players; whereas the D allele and DD genotype of the ACE I/D polymorphism are 399 
overrepresented in youth players. These overrepresentations may be explained by the association of the 400 
ACTN3 RR genotype and ACE DD genotype with power-orientated phenotypes and the relative 401 
contribution of these power-orientated phenotypes to success in football. As such, the ACTN3 R577X 402 
and ACE I/D polymorphisms are likely (albeit relatively minor) contributing factors which influence 403 
athlete status in football.  404 
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Table 1. Statistical analysis of all studies investigating the ACTN3 R577X polymorphism (n = 15)  
Case-Control 

Model 
Association test Heterogeneity Bias 

OR 95% CI P P I2 Egger's 
Allele contrast  1.30 1.15-1.46 <0.001 0.68 0.00 0.88 

Recessive  1.42 1.20-1.68 <0.001 0.22 0.24 0.87 
Dominant  1.35 1.06-1.72   0.016 0.33 0.13 0.97 

Over-dominant 0.84 0.66-1.07 0.16 0.05 0.45 0.93 
RR vs. XX 1.67 1.28-2.17 <0.001 0.63 0.00 0.98 
RR vs. RX 1.38 1.07-1.78   0.013 0.08 0.41 0.76 
RX vs. XX 1.17 0.90-1.51 0.23 0.11 0.38 0.92 

Case-Control & Cohort 
Allele contrast  1.26 1.15-1.38 <0.001 0.72 0.00 0.48 

Recessive  1.31 1.15-1.50 <0.001 0.23 0.18 0.89 
Dominant  1.40 1.17-1.69 <0.001 0.49 0.00 0.64 

Over-dominant  0.93 0.78-1.12 0.45 0.05 0.38 0.75 
RR vs. XX 1.60 1.31-1.96 <0.001 0.72 0.00 0.62 
RR vs. RX 1.23 1.02-1.49   0.029 0.08 0.34 0.83 
RX vs. XX 1.29 1.06-1.57   0.010 0.18 0.24 0.69 

PRO vs. NP 

Allele contrast 
PRO 1.35 1.18-1.53 <0.001 0.77 0.00 0.34 
NP 1.07 0.90-1.27 0.44 0.90 0.00 0.30 

Recessive 
PRO 1.48 1.23-1.77 <0.001 0.30 0.14 0.70 
NP 1.00 0.78-1.29 0.97 0.74 0.00 0.46 

Dominant 
PRO 1.40 1.09-1.81   0.010 0.16 0.30 0.83 
NP 1.27 0.91-1.76 0.16 1.00 0.00 0.34 

Over-dominant 
PRO 0.84 0.63-1.12 0.24   0.020 0.51 0.89 
NP 1.13 0.89-1.43 0.33 0.79 0.00 0.66 

RR vs. XX 
PRO 1.77 1.34-2.34 <0.001 0.57 0.00 0.61 
NP 1.22 0.84-1.76 0.29 0.95 0.00 0.21 

RR vs. RX 
PRO 1.41 1.07-1.86   0.014 0.07 0.40 0.98 
NP 0.94 0.72-1.23 0.68 0.72 0.00 0.52 

RX vs. XX 
PRO 1.22 0.79-1.87 0.36   0.028 0.50 0.91 
NP 1.30 0.92-1.84 0.14 0.99 0.00 1.00 

Caucasian & Brazilian 

Allele contrast 
Caucasian 1.32 1.14-1.53 <0.001 0.39 0.05 0.73 
Brazilian 1.23 1.07-1.41   0.003 0.45 0.00 0.47 

Recessive 
Caucasian 1.41 1.14-1.74   0.001 0.11 0.42 0.67 
Brazilian 1.19 0.98-1.44 0.07 0.64 0.00 0.69 

Dominant 
Caucasian 1.49 1.11-2.00   0.008 0.79 0.00 0.82 
Brazilian 1.52 1.15-1.99   0.003 0.17 0.35 0.92 

Over-dominant 
Caucasian 0.91 0.75-1.12 0.38 0.11 0.42 0.69 
Brazilian 1.07 0.89-1.29 0.48 0.59 0.00 0.45 

RR vs. XX 
Caucasian 1.71 1.24-2.36   0.001 0.60 0.00 0.60 
Brazilian 1.61 1.19-2.16   0.002 0.23 0.27 0.94 

RR vs. RX 
Caucasian 1.36 0.96-1.92 0.08 0.08 0.47 0.61 
Brazilian 1.08 0.88-1.32 0.46 0.66 0.00 0.85 

RX vs. XX 
Caucasian 1.34 0.98-1.83 0.06 0.61 0.00 0.97 
Brazilian 1.48 1.10-1.98   0.009 0.17 0.35 0.98 

Note. Allele contrast (R vs. X); Recessive (RR vs. RX+XX); Dominant (RR+RX vs. XX); Over-dominant (RX 

vs. RR+XX); OR = Odds Ratio; CI = Confidence Interval; PRO = Professional; NP = Non-Professional. 
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Table 2. Statistical analysis of all studies investigating the ACE I/D polymorphism (n = 17) 
Case-Control 

Model 
Association test Heterogeneity Bias 

OR 95% CI P P I2 Egger's 
Allele contrast  0.88 0.73-1.07 0.21   0.001 0.61 0.16 

Recessive  0.84 0.69-1.03 0.09 0.44 0.01 0.72 
Dominant  0.84 0.62-1.15 0.28 <0.001 0.66 0.09 

Over-dominant 0.93 0.74-1.16 0.51   0.040 0.44 0.04 
II vs. DD 0.82 0.58-1.17 0.27   0.025 0.47 0.19 
II vs. ID 0.98 0.79-1.21 0.82 0.65 0.00 0.27 

ID vs. DD 0.84 0.62-1.14 0.26   0.002 0.60 0.08 
Case-Control & Cohort 

Allele contrast  0.87 0.75-1.02 0.09   0.004 0.53 0.10 
Recessive  0.86 0.72-1.03 0.10 0.69 0.00 0.69 
Dominant  0.82 0.63-1.07 0.14 <0.001 0.62 0.05 

Over-dominant  0.90 0.73-1.10 0.31   0.019 0.45 0.03 
II vs. DD 0.79 0.60-1.05 0.10 0.08 0.34 0.12 
II vs. ID 1.00 0.83-1.22 0.97 0.75 0.00 0.21 

ID vs. DD 0.81 0.62-1.06 
 

0.13   0.001 0.58 0.05 
PRO vs. NP 

Allele contrast 
PRO 1.01 0.86-1.19 0.88 0.96 0.00 0.67 
NP 0.85 0.73-0.99   0.044 0.15 0.35 0.45 

Recessive 
PRO 0.97 0.72-1.29 0.82 0.99 0.00 0.99 
NP 0.88 0.65-1.18 0.39 0.20 0.29 0.38 

Dominant 
PRO 1.05 0.82-1.34 0.71 0.86 0.00 0.73 
NP 0.78 0.61-0.98   0.032 0.25 0.22 0.44 

Over-dominant 
PRO 1.07 0.85-1.34 0.57 0.81 0.00 0.62 
NP 0.86 0.69-1.07 0.18 0.22 0.27 0.95 

II vs. DD 
PRO 1.05 0.74-1.49 0.77 0.99 0.00 0.95 
NP 0.77 0.55-1.08 0.14 0.22 0.26 0.26 

II vs. ID 
PRO 0.94 0.69-1.27 0.69 0.98 0.00 0.85 
NP 0.97 0.71-1.33 0.85 0.20 0.28 0.51 

ID vs. DD 
PRO 1.05 0.80-1.36 0.73 0.80 0.00 0.55 
NP 0.76 0.59-0.97   0.030 0.38 0.07 0.56 

Caucasian & Brazilian 

Allele contrast 
Caucasian 0.81 0.57-1.14 0.23   0.004 0.74 0.04 
Brazilian 0.85 0.70-1.03 0.09 0.37 0.07 0.63 

Recessive 
Caucasian 0.75 0.57-1.00 0.05 0.61 0.00 0.50 
Brazilian 0.83 0.60-1.14 0.25 0.25 0.26 0.07 

Dominant 
Caucasian 0.75 0.42-1.34 0.34 <0.001 0.82 0.03 
Brazilian 0.77 0.55-1.06 0.11 0.17 0.38 0.73 

Over-dominant 
Caucasian 0.83 0.53-1.29 0.40   0.009 0.70 0.08 
Brazilian 1.05 0.64-1.71 0.85   0.018 0.67 0.29 

II vs. DD 
Caucasian 0.65 0.38-1.10 0.11 0.08 0.52 0.08 
Brazilian 0.80 0.52-1.22 0.29 0.31 0.17 0.58 

II vs. ID 
Caucasian 1.05 0.77-1.44 0.75 0.59 0.00 0.28 
Brazilian 0.88 0.63-1.23 0.45 0.10 0.48 0.19 

ID vs. DD 
Caucasian 0.76 0.41-1.42 0.39 <0.001 0.82 0.07 
Brazilian 0.82 0.47-1.42 0.48 0.09 0.51 0.57 

Note. Allele contrast (I vs. D); Recessive (II vs. ID+DD); Dominant (II+ID vs. DD); Over-dominant (ID vs. 

II+DD); OR = Odds Ratio; CI = Confidence Interval; PRO = Professional; NP = Non-Professional. 
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Figure 2. Forest plots of significant PRO and NP comparison models. (A) ACTN3 R vs. X 
allele in PROs; (B) ACTN3 RR vs. RX+XX in PROs; (C) ACE D vs. I allele in NPs; (D) ACE 
DD vs. DI+II in NPs. 


