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Abstract

Despite a number of attempts over the past two decades, research
into reliable, controlled induction of long term evoked responses, mim-
icking low level learning and memory in dissociated cell cultures re-
mains challenging. In addition, a full understanding of the stimulus-
response relationships that underlie synaptic plasticity has not yet
been achieved, and many of the underlying principles remain largely
unknown. Plasticity studies have been predominantly limited to low
density Multi/Micro Electrode Arrays (MEAs). With the advent
of complementary metal-oxide-semiconductor (CMOS) based High-
Density (HD) MEAs, unprecedented spatial and temporal resolution
is now possible. In this thesis, an attempt to bridge the gap between
studies of neural plasticity and the use of CMOS based HD-MEAs
with thousands of electrodes, is reported. Additionally, since such
HD-MEAs generate a large volume of data and require advanced an-
alytics to efficiently process and analyse recordings, computational
tools and novel algorithms to infer connectivity during plasticity have
been developed.

The study showed that the responsiveness, stability and initial firing
rate of neuronal cultures are the deciding factors to reliably induce
evoked responses. With multi-site stimulation, sustained long term
potentiation was achieved, which was validated both by evoked re-
sponse plots and overall firing rates measured at five different time
points - before and after repeated stimulation, and at a three day
time points. In contrast, while depression responses were observed, it
was found that the effects were not sustained over many days. The
findings of the study suggest that appropriate selection of neuronal
cultures is crucial for inducing desired evoked responses and criteria
for this have been developed. Furthermore, it is concluded that the
initial responses to test stimuli can be used to determine whether
potentiated or depressed responses are to be expected.

To analyse the recordings, pipeline of computational tools was devel-
oped. Firstly, neuronal synchrony metrics were adapted for the first



time for large HD-MEA recordings and shown to correspond effec-
tively to the firing dynamics. To analyse functional connectivity, an
information theoretic approach, Transfer Entropy(TE), was utilised.
The method showed accurate estimation of functional connectivity
with mid 80th percentile accuracy on simulated data. A superim-
position method was proposed to enhance confidence in the connec-
tivity estimation. To statistically evaluate connectivity estimation,
a new surrogate method, based on ISI distribution approach, was
proposed and validated with a simulated Izhikevich network. The
method achieved improved accuracy, compared to the existing ISI
shuffling method. This newly developed method was later utilised to
infer connectivity and refine connections during the learning process
of real neuronal cultures over many days of stimulation. The con-
nectivity inference corresponded accurately to both the spontaneous
and stimulated networks during evoked responses and the proposed
method permitted observation of the evolution of connections for the
potentiated network.
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Chapter 1

Introduction

1.1 Introduction

The human brain is an intricate and highly interconnected network of neurons.

Higher level brain functions, such as learning and memory, are emergent behav-

ioral concepts, dependent on the development and modification of neural inter-

connections during life experiences.

The ability of the nervous system to adapt and change to a new functional

and structural state in response to intrinsic or extrinsic factors can be broadly

defined as ‘Neural Plasticity ’. The physiological mechanisms underlying synap-

togenesis and neural plasticity involved in learning and memory are often studied

in in-vitro neuronal cultures. Coupled with Multi Electrode Array(MEA) , these

have been established as very useful experimental paradigms [1]. Such models

offer unique ability to simultaneously stimulate and record extracellular activ-

ity in a non-invasive way [2, 3]. With the advent of technological advancements,

thousands of sensing electrodes are now possible in MEAs, allowing an unprece-

dented spatial and temporal resolution. In particular, long term plasticity studies

have benefited immensely from the ability to stimulate neuronal networks whilst

recording simultaneously and keeping the culture healthy and functioning for a

prolonged period of time.

Over the last two decades of studies in neural plasticity in neuronal cultures

coupled with MEAs, different researchers have tried different protocols and have
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1. Introduction

successfully induced plasticity to some degree [4–11]. A protocol that can reliably

induce plasticity in multiple different scenarios currently doesn’t exist. It is still

unclear what would be the nature of an underlying common protocol that could

consistently lead to a guaranteed induction of plasticity in a controlled man-

ner. The problem is exacerbated due to the occurrence of network bursts where

the network activity is concentrated, which could cancel out transient plasticity,

making it much harder to induce long term plasticity.

In a neural circuit, the activity of a neuron is not only due to its intrinsic prop-

erties but also due to direct or indirect interactions with other neurons. Accurate

connectivity characterisation of such direct and indirect interactions in neuronal

circuits is very useful in understanding neuronal dynamics, neural pathways and

neural information processing. During neural plasticity, new functional connec-

tions are formed and modified, as a direct result of external input to the neuronal

network. Inferring and understanding the neural wiring that underlies high level

representation in the brain is crucial in explaining how such representations are

produced and developed [12, 13]. The ability to infer neural connectivity dur-

ing the learning process characterised by synaptic plasticity, provides invaluable

insights into development of neural pathways. However, accurate inference of

neural connectivity from HD-MEA electrophysiological recordings is a challeng-

ing problem in computational neuroscience.

Neuronal cultures are complex, non-stationary systems which makes the mod-

eling of such dynamical systems difficult for connectivity inference. Hence, a

model-free approach, Transfer Entropy(TE) , has gained much popularity [14–17].

The TE method has outperformed many other popular methods such as cross-

correlation(CC) [18], joint entropy(JE) [19], mutual information(MI) [14,15] to

identify connectivity from simulated networks. However, the problem of how to

differentiate true connections from spurious connections, from real experimental

data, where ground truth information is not present, still persists. Due to the

dynamical and non-stationary nature of neuronal cultures, trial based statisti-

cal testing is not feasible as cultures may attain a different dynamical state at

each trial, especially for stimulated experiments to induce plasticity. To mitigate

this problem, a surrogate method is a commonly chosen approach where surro-

gate trial data are generated under some null hypothesis that is to be tested.
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Surprisingly, there are only a handful of methods that are applicable to discrete

neuronal spiking events from MEAs. Improving such surrogate methods to gen-

erate a richer set of surrogates is an important step that supplements TE or any

connectivity estimation. Also, as more HD-MEA data are available, develop-

ments in the analysis of such big data recordings becomes more important than

ever in utilising such information to reveal many neurological processes.

1.2 Objectives of the thesis

The limitations briefly presented in Section 1.1 highlighted the challenges in plas-

ticity studies when attempting to induce long lasting network responses and in the

inference of connectivity from experimental recordings in the absence of ground

truth information. The research presented in this thesis seeks to continue to

progress in these aspects. In particular, it aims to utilise state-of-the-art comple-

mentary metal-oxide-semiconductor (CMOS) based MEAs, focused on controlled

induction of plasticity and the study of network connectivity, to enhance the un-

derstanding of neuronal dynamics. To achieve this goal, several objectives are

established.

• Development of methods to successfully grow and maintain dissociated neu-

ronal cultures, grown on the state-of-the-art high density CMOS based

MEAs, for a prolonged period of time(up to 4 weeks at least).

• Characterisation of electrophysiological properties of spontaneous activity

and design criteria to select cultures that are responsive to stimulation and

could potentially exhibit plasticity.

• Development of stimulation protocols to demonstrate a long term network

response change, symptomatic of network plasticity, and study network

dynamics before and after the stimulation.

• Quantification of network connectivity using an information theoretic ap-

proach and the development of a novel non-parametric surrogate test to

identify statistically significant connections from the experimental record-

ings.
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1.3 Thesis contribution and outline

The work presented in this thesis encompasses a substantial body of work in

multi disciplinary research across bioscience, computing and electronics, to study

neural plasticity on neuronal cultures grown on HD-MEAs and to develop com-

putational tools to analyse HD-MEA recordings. Specifically, the development of

experimental protocols and a systematic approach to induce long term network

responses in dissociated neuronal cultures grown on the state-of-the-art CMOS

based MEAs, are presented. Furthermore, HD-MEAs produce huge datasets even

for short recordings, necessitating developments of analytics techniques to gain

an understanding of the neuronal dynamics. Hence, the development of compu-

tational tools and techniques to facilitate the analysis of neuronal dynamics is

also presented.

The main contributions of this thesis can be summarised briefly into two

categories.

Computational contribution

1. Adaptation of neuronal synchrony metrics (ISI distance and SPIKE-distance)

for large HD-MEA recordings and demonstration of effective identification

of synchronous patterns.

2. Development of a new firing density superimposition method as an alter-

native to ground truth information for better confidence in the TE based

connectivity inference.

3. Development of a new ISI distribution based surrogate method to compen-

sate lack of ground truth information and provide statistical classification

of inferred connections.

Experimental contribution

1. Development and optimisation of methods for cell culture growth on sensi-

tive CMOS based MEAs, so as to successfully grow and maintain dissociated

neuronal cultures for prolonged periods (up to 4 weeks).
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2. Establishment of neuronal cultures for plasticity studies and design of cri-

teria to select potential cultures for plasticity based on responsiveness, sta-

bility and firing rate.

3. Stimulation protocol selection to induce wide range of evoked network re-

sponses.

4. Application of developed ISI distribution surrogate data to study neural

connectivity during long term responses.

The contributions are discussed in detail in chapters 5, 6 and 7. A brief outline

of the thesis structure is presented below.

Chapter 2: This chapter introduces essential terminologies and concepts that

lay the foundational background knowledge covering bioscience, computing and

electronics for the review of the related works and the research presented in this

thesis.

Chapter 3: This chapter focuses on an extensive literature review of related

research and describes the rationale behind the work presented in this thesis,

discussing current limitations. The aims and objectives of the thesis are further

elaborated at the end of this chapter so as to set context for upcoming chapters.

Chapter 4: In this chapter, the materials and methodology undertaken through-

out the research are described. Details of cleaning of MEAs, cell culture on MEAs,

experimental setup and basic data analytics used are presented.

Chapter 5: This chapter presents the first computational contribution of adapt-

ing synchrony metrics for HD-MEA recordings. Two mathematical metrics to

quantify neuronal synchrony, namely - ISI-distance and SPIKE-distance, are

adapted and validated with synthetic data before applying on experimental HD-

MEA data.
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Chapter 6: Transfer entropy based connectivity inference is utilised in this

chapter. The chapter is divided into two sections, each discussing a contribution.

The first section proposes superimposition method as an alternative to ground

truth information and the second section takes this further by introducing new

ISI distribution based surrogate method.

Chapter 7: This chapter discusses the effects of repeated stimulation on neu-

ronal cultures on HD-MEAs, reflecting on long term network responses, germane

to neural plasticity, connectivity and development during plasticity. The later

half of the chapter applies the connectivity estimation tools previously developed

in chapter 6.

Chapter 8: This chapter summarises the overall research contribution ,and

discusses the potential for further research and future directions.
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Chapter 2

Scientific Background

2.1 Introduction

This chapter aims to introduce essential terminologies and concepts that lay foun-

dational background for the review of the related works and the research of this

thesis.

In this chapter, some basic background on neurons, their dynamics and how

they communicate with each other (Section 2.2) are presented. Different types

of in vitro neuronal preparations (Section 2.3) are also reported briefly. Further-

more, an overview on electrophysiological techniques for in vitro settings (Section

2.4) is discussed. Finally, a brief discussion on the history on Micro Electrode

Arrays(MEAs) from the early MEAs to the current state-of-the-art MEAs with

thousands of electrodes along with MEAs application in neuroscience studies (Sec-

tion 2.5) is presented. The data data analysis challenges for such high volume

recordings are also considered.
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2. Scientific Background

2.2 Neurons and synapses

The brain is composed of a large number of highly specialised information pro-

cessing cells, namely, neurons - that constitute the building blocks of the central

nervous system. Neurons communicate among each other via short burst of elec-

trical pulses called action potentials or spikes. Cell-cell interactions among single

neurons or a group of related neurons form the basis of neurological processes.

The capability of nervous system to produce a range of responses to many com-

plex sensory inputs depend on the way neurons are interconnected with each

other; rather than the dynamics of individual neurons [20,21].

Figure 2.1: Illustration of a neuron [22]

Even though there are thousands of different types of neurons, they all share

the same common morphology. A neuron is composed of four main distinct

morphological parts - soma, axon, dendrites and presynaptic terminals or axon

terminals as shown in the Figure 2.1. The soma is the main cell body which

contains the nucleus and the cytoplasmic organelles. Dendrites are branch like

projections which emanate and ramify from the cell body, forming the main signal

receiving structures from other nerve cells and function as an input unit. The

axon is the main outgoing signal conducting structure that extends away from
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the neuron, in most cases, much farther away from the soma, and acts as an

output unit of the neuron. In vertebrates, most axons are coated with a layer

of fatty insulating material, namely, myelin sheath which promotes rapid signal

conduction [23]. Neuronal physiology is supported by cells known as neuroglia or

glial cells that maintain homeostasis and protection to neuronal cells [24] .

The membrane potential results from the difference in ionic content between

the inside and outside of the membrane of neurons and neuronal processes 1. The

difference in the distribution of ions, specifically Na+ and K+, on either side of

the membrane due to the permeability of the membrane, primarily contributes

to the change in membrane potential. At resting state, K+ is concentrated in-

side the cell and Na+ outside the cell, giving rise to a steady resting membrane

potential, which in a typical neuron is -70mV relative to that of the surround-

ing environment. The opening of faster Na+ channels allows for the rapid flow

of Na+ into the cell increasing the membrane potential and this phenomenon is

called Depolarisation. Depolarisation is followed by a slower inactivation of Na+

channels and activation of K+ channels resulting in the flow of K+ out of the

cell which decreases the membrane potential, a phenomenon called Repolarisa-

tion. Input current from a presynaptic cell invokes a voltage response in the cell

membrane and if the input current crosses a threshold voltage, a positive feed-

back is initiated causing the membrane potential to depolarise suddenly giving

rise to a short burst of electrical signal called an action potential or a spike. The

membrane potential decays rapidly after the action potential generation due to

the activation of the faster K+ channels. The membrane potential hyperpolarises

below the resting potential before coming back to the original equilibrium resting

potential. During this decay period, additional input won’t have any effect on

the membrane potential to evoke another action potential - this period is called

a refractory period and can last up to tens of milliseconds after the spike. Figure

2.2 illustrates the action potential generation.

The key insight into the mechanism of action potential generation came from

Hodgkin and Katz in 1949, [25]. They discovered the role of Na+ and K+ ions in

the generation of action potentials. The presence of voltage-gated ion channels in

the cell membrane which can modify its membrane permeability to specific ions

1Any projections from the neuronal cell body, also termed as neurites
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Figure 2.2: Illustration of an action potential generation

results in the generation of the spike. Evoked spikes are then propagated along

the axon and transmitted to connected neurites at the axon terminals. Since the

spikes can propagate over large distances, such signals are particularly of great

importance.

Neurons transmit information among each other via a specialised location

called a synapse, and synaptic transmission of signals among a network of neurons

is fundamental in neural functionality and high level cognitive behaviours such as

perception, learning, memory etc. [26]. There are two different types of synapses -

chemical and electrical. Electrical synapses are synapses where voltage gated ion

channels in the presynaptic membrane depolarises the postsynaptic membrane

potential directly. Gap junctions are electrical synapses. In chemical synapses,

presynaptic action potential releases neurotransmitters at the synaptic junctions

which in turn open or close postsynaptic voltage gated ion channels resulting in

membrane potential change. Synaptic transmission via action potential through

the axon is a chemical synapse.

Presynaptic terminals are terminal structures of an axon where electrical sig-

nals (i.e. action potentials) travelling down the axon from the cell body are

converted into chemical signals (i.e. neurotransmitters). Neurotransmitters re-

10



2. Scientific Background

leased from the presynaptic neuron are bonded with the specific postsynaptic

receptors present in dendrites of the postsynaptic neuron. This causes the ion

channels in the postsynaptic neuron to open or close allowing for the flow of ions.

This ionic flow through the membrane results in a change in membrane potential

depending on the type of neurotransmitter i.e. excitatory(depolarising eg. L-

glutamate) or inhibitory(hyperpolarizing eg. γ-aminobutyric acid(GABA) - thus

completing the synaptic transmission [27]. A detailed illustration of the synaptic

transmission at a chemical synapse is shown in Figure 2.3.

Figure 2.3: Synaptic transmission at chemical synapse [28]. A. An Action poten-
tial arriving at the presynaptic terminal causes the voltage-gated Ca++ to open.
B. The Ca++ channel opening causes the vesicles containing neurotransmitter
shown in blue dots, to fuse with the membrane and release their contents into the
synaptic cleft. C. The released neurotransmitter molecules then diffuse across
the synaptic cleft and binds with the corresponding receptors at the postsynaptic
membrane. These receptors cause ion channels to open and close, thus changing
the membrane potential of the postsynaptic neuron.

2.3 In-Vitro neuronal culture

In-vitro research refers to studies conducted using some components of the living

organism, but outside the organism and in a controlled environment. The capa-

bility of in-vitro neuronal culture has been fundamental in the advancement of

understanding of brain functions. In vivo on the other hand refers to studies per-

formed on whole living organisms. The landmark work by [29,30] demonstrated -
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for the first time - the successful growth of nerve fibres of embryonic tissue outside

the body. His studies not only answered fundamental questions about the growth

and development of nerve cells to nerve fibres, but transformed biological science

to a new direction in development studies in neuroscience.

Over the past century, a diverse plethora of techniques have been developed

for in-vitro neuronal culture. Figure 2.4 shows the emergence timeline over the

last 100+ years of different neuronal culture techniques. A detailed review of

different techniques is reported in [31].

Fundamentally, there are two main approaches for an in-vitro neuronal culture

- Acute or Organotypic Slice [32] and Dissociated culture. The dissociated culture

method has been a preferred method to study individual neurons or group of

neurons for decades due to the ease of dissociating neurons and maintaining the

culture. Even though all the experiments for the work in this thesis utilise the

dissociated culture technique, a brief overview of slice culture is presented for

completeness.

Figure 2.4: Emergence of cell culture methods. The timeline shows introduction
of new neuronal culture methods over the past century. [31]

2.3.1 Brain slice culture

Slice culture utilises thinly sliced (100 − 500µm thick) sections of the brain in a

controlled in-vivo like environment. The complex neural circuitry and the spatial

distribution of the neurons established during the development stage are rela-

tively undisturbed along with tissue functions in a tissue slice under favourable

in vitro conditions [33]. The main advantage of such brain slices is the partial

preservation of functional and structural properties of the original intact brain.
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Such brain slices are used for a diverse range of studies - from intrinsic devel-

opmental studies, network dynamics to synaptic plasticity. In many cases, brain

slices are the preferred choice for many neuroscientists due to the structural and

functional integrity of the slice culture. With the development of Micro(also

referred as Multi) Electrode Arrays(MEAs), brain slices may be coupled with

MEAs to record electrophysiological activities [34, 35]. It is straightforward to

record data from slices when coupled with MEAs, in comparison to the dissoci-

ated cultured networks which can take many weeks for the culture to mature to

start measurements. An example of a rat brain (hippocampus) slice coupled with

CMOS based MEAs is shown in Figure 2.5.

Figure 2.5: Rat hippocampal slice recorded by high density Multi Electrode Ar-
rays(4096 electrodes). Screenshot from [36]

Although the main advantage of the slice culture is its partial morphological

and functional integrity, the same feature becomes undesirable when the study

focuses on the dynamical evolution of the neuronal network from an unstruc-

tured initial condition under some external stimulation. Slice cultures are not

ideal in studies that focus on inducing specific network response or how the net-

work connectivity evolves with time when started from a random unstructured

distribution of neuronal cells. Dissociated cultures on the other hand provides

the desired flexibility and control to study a plethora of research topics.
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2.3.2 Dissociated culture

Demonstration of growth and maturation of tissues not just inside the organism

(in-vivo) but also outside of the body (in-vitro) has opened new and innovative

opportunities for neuroscientists [37] to study nervous system and neuronal dy-

namics that underlie the foundation of higher level behaviours such as cognition,

memory, learning and more.

Among neuroscientists, the dissociated neuronal culture is a common method

to study neurobiology due to the relative ease with which the brain tissues can be

dissociated to isolate neurons, maintain and measure physiological phenomenon.

Such dissociated cultures can be kept healthy for a long period (up to months)

making them an ideal experimental setup to study a variety of brain functions.

Dissociated neuronal cultures grown on planar MEAs provide non invasive ex-

tracellular electrophysiological recordings (further discussed in Section 2.4) of

the neurons at different time points under different desired pharmacological or

electrical stimulation conditions.

Neurons grown in dissociated cultures form seemingly random synaptic inter-

connections without maintaining the in-vivo like network. However, neurons tend

to retain the morphological and physiological properties that correspond closely

to the in-vivo properties [38]. Hence, such dissociated cultures can be seen as

a reasonably simplified biological model of areas of the brain. Such a model is

an appealing experimental setup to study a wide range of brain functions due to

the fact that despite its simplicity, such a simple model exhibits rich neuronal

dynamics [39].

Cultured neurons provide a “close to ideal“ substrate to study brain functions

since the cultured neurons can be grown healthily for months. This allows for

a controlled experimental setup to start a biological network without any pre-

configured interconnections, and investigate and alter these connections to study

overall network dynamics in response to different stages in network change or

controlled external perturbations. Neuronal mechanisms such as long-term po-

tentiation (LTP) or long-term depression (LTD) are particularly interesting to

study because these mechanisms are synaptically analogous to learning. Neu-

ronal culture models to study network dynamics will be discussed further in the
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next chapter.

2.4 Electrophysiology

Electrophysiology is the study of the electrical properties of living neurons or tis-

sues and investigates the underlying cellular processes that control such signaling.

It is a “gold standard“ technique to study neural signals. Since the discovery of

the intrinsic relationship between the nervous system and its electrical proper-

ties by Galvani more than 200 years ago, an immense technological advancement

in the instrumentation has resulted in highly sensitive electrophysiological tools

with high temporal resolution. Electrical recording of neuronal activity has been

commonly used to analyse a wide range of dynamics of single cell to network level

neuronal systems [7, 40–46].

With different electrophysiological techniques it is possible to measure and

evoke electrophysiological activities at different spatial scales. Intracellular meth-

ods allow for membrane potential measurement from across the cell membrane

by physically probing the cell. This requires two electrodes - one inside the mem-

brane and one outside the membrane. The patch-clamp technique has been a

gold standard technique for intracellular electrophysiology [47](and the references

within). Though this technique provides an accurate measurement of the electri-

cal activity, the technique is invasive and the viability of patched neurons lasts

only up to a few hours. In addition, intracellular techniques require intricate skills

to perform and it becomes impractical to analyse network wide activity. These

limitations make the patch-clamp technique unscalable to study large network of

neurons [48].

In contrast to intracellular recording techniques, extracellular recordings are

performed by placing an electrode close to the cell membrane and a reference

electrode placed far away in extracellular fluid. Due to the non-invasive nature

of the technique, it has been widely used to study population wide activity for

a prolonged period of time. When there is an action potential or a spike, both

intracellular and extracellular ionic contents are changed due to opening and

closing of ionic channels on the membrane as described in Section 2.2. This change

in ionic concentration is registered by the extracellular electrode placed near the
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Figure 2.6: Band-pass filtered extracellular and intracellular recordings. Left:
Illustration of cells across cortical layers with extracellular and patch clamp elec-
trophysiology. Right: A. Simultaneous extracellular recording and intracellular
whole cell patch clamp recordings. B. Averaged extracellular and intracellular
waveforms from the same neuron. [49]

membrane as a drop in resistance between the recording and reference electrode.

Figure 2.6 shows an illustration of extracellular and intracellular recordings and

simultaneous intra and extracellular spike waveforms.

The intracellular and extracellular recordings are different not just in the range

of amplitude - the extracellular signals’ magnitude are lower than intracellular,

but also in the shape of the waveform as shown in the Figure 2.6(B). Extracellular

recording is not a direct measurement, but a measurement of the corresponding

changes on the extracellular fluid near the cell. Hence, the extracellular spike

waveform shape is a complementary, negative spike, to the direct intracellular

spike. Intracellular recording records the voltage difference between the inside
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and outside of the cell membrane. Extracellular recording records relative voltage

change outside of the membrane which corresponds to the true voltage changes

inside the cell membrane. So, it is conventional in extracellular data analysis to

use the complementary inverted signals as shown in 2.6(A).

To map high resolution network-wide neuronal activity, a tightly spaced array

of electrodes can be utilised. In an in vivo setting, an array of electrodes such

as tetrodes can be placed on the brain region of interest to record extracellular

activity. For an in vitro neuronal culture setting - which is the setting used for this

thesis work, substrate based MEAs have become a standard electrophysiological

device to study various neuronal properties.

2.5 MEA technology

Over the years the term “MEAs” has become an umbrella term that encompasses

a wide variety of different forms of recording device. These may be differentiated

based on the type of transducers (multi-transistor array, capacitive-coupled ar-

ray, micro-electrode array), substrates (active array, passive array, silicon array,

CMOS array), shape of the device (tetrodes, needle, polytrodes) or the applica-

tion (in vivo - implantable, in vitro - non implantable). Hence, it is important to

briefly set the context for the terminologies used with regards to MEAs in this

chapter and the whole thesis in general.

The generic term MEA covers both implantable neural probes (see Figure 2.7)

and electrode-integrated planar substrates (see Figure 2.8). Implantable neural

probes can be placed directly on the region of interest in a living organism to

record extracellular neural activity. Electrode-integrated substrate MEAs are

not implantable and generally used for in vitro neuronal cultures. Such MEAs

have a cell culture dish or a chamber to hold the culture medium (see Figure 2.8).

The term array refers to the spatial layout of the array of electrodes, though the

MEAs refers to the whole device. For the context of this thesis work, MEAs refers

to substrate based MEAs and not the implantable neural probes.

The work of [51] describing a planar Micro-Electrode Arrays (MEA), also

referred as Multi-Electrode Arrays - and a successful demonstration of recording

and stimulation of network of neuronal culture by [52], were important milestones
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Figure 2.7: Fifty-four site polytrodes. The polytrodes have electrodes or recording
sites in 2 or 3 columns spaced at 43− 75µm [50]

in in-vitro electrophysiology. These landmark works opened up new avenues in

the area of in-vitro electrophysiology to study a wide variety of neural functions.

MEAs are essentially an array of multiple low impedance electrodes laid out on

a planar substrate which are sensitive enough to detect slight changes in the

membrane potential of contacted cells.

In the early 1990s, Fromhertz et al [53] mounted a cell on the surface of a

Field-Effect Transistor(FET) on Silicon(Si) allowing for direct coupling of neu-

rons and Si without the use of interfering metal electrodes. Since then with the

development in CMOS (Complementary Metal Oxide Semiconductor) technology,

it is possible to record and stimulate simultaneously from an integrated circuit

packed with thousands of electrodes which is especially beneficial to study neural

plasticity and neural dynamics.

In the current technology, with the few exception of high density MEAs, MEAs

are usually composed of a few hundred electrodes with an electrode pitch of 100-

500 µm embedded on a glass substrate as shown in Figure 2.8. The electrodes are

typically made of Gold (Au), Indium-tin Oxide (ITO), Titanium Nitride (TiN) or

platinum(Pt) which are bio-compatible and have low impedance (less than 500Ω

at 1kHz).

The limited number of electrodes and large electrode pitch distance pose a
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(a) 60 electrodes MEA with electrode layout (b) 256 electrodes MEA with electrode layout

Figure 2.8: MEA devices with electrode layout

limitation in terms of substantial spatial under-sampling of the neuronal network.

This is not enough to unlock the full capability of MEAs; specifically studying

electrophysiological activity to study correlation/synchrony at both cellular and

network level. MEA electrodes with size and distance approximating that of

neuronal cells dimensions can provide a much better spatial resolution and help

provide a much better insight into the neuronal activity [54].

Active pixel sensor (APS) CMOS based MEAs allow for a higher density of

electrodes with reduced electrode size and electrode pitch distance. APS devices

consider each electrode as a pixel which can register changes in electrophysiolog-

ical activity.

The experimental setup for this work is based on a CMOS MEA (3Brain AG,

Switzerland). This MEA has 4096 electrodes laid out in a 64 x 64 grid. The

dimension and spatial layout is designed to capture as much detail as possible

from the neuronal culture. The system comes with a recording device, BioCam,

with BrainWaveX software to visualise, record and do preliminary data analysis.

The device can record at up to 18kHz sampling frequency. Figure 2.9(A) shows

a CMOS based MEAs (3Brain AG) with a zoomed in section of the active area

(B) where 4096 electrodes are laid out in a 64 x 64 grid, along with neuronal

responses recorded with the BrainWaveX software (C).

Each pixel of the biochip embeds on-chip amplification and filter stages di-
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Figure 2.9: A. High density CMOS-based MEA B. Zoomed in section of the
active area of the MEA chip C. Electrical activity recorded by 4096 electrodes of
the APS device.

rectly at the point where the biological signals are measured. Due to multiplexing,

multiple channels can be read from a single wire which results in minimisation of

the number of physical wires and an increase in the density of the electrodes.

The MEAs used are of three different types with different area size and elec-

trode layout.

• HD-MEA Prime: Prime is an electrode array of 4096 electrodes laid out in

an area of 2.67 mmx 2.67 mm Figure 2.10(A). The electrode size 21µmx21µm

with pitch distance of 42µm.

• HD-MEA Arena: Arena has the same recording array as the Prime, but it

offers a larger surrounding flat area(6mmx6mm) Figure 2.10(B). This can

be useful for placing a larger tissue slice on the chip for optimum coupling.

• HD-MEA Stimulo: The Stimulo, as the name suggests, incorporates in

addition stimulating electrodes laid out in a 4x4 uniform grid. The Stimulo
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has a large sensing area of 5.12mmx5.12mm with electrode pitch distance

of 81µm Figure 2.10(C).

Figure 2.10: (A). HD-MEA Prime (B). HD-MEA Arena. (C). HD-MEA Stimulo

2.6 Spike detection and sorting

As discussed earlier, recent progress in CMOS technology has provided the tech-

nological capability to simultaneously record from increasing neuron density at

a high sampling frequency. Typically, raw voltage extracellular recordings from

HD-MEAs are very large in volume, which complicates the processing of raw

voltage recordings into discernible spikes. The problem is exacerbated by closely

spaced electrodes which results in recording from multiple neuronal sources as a

composite signal. Hence, processing raw voltage signals to a series of spike trains

becomes crucial since further analysis depends on this stage. Spike trains are rep-

resentation of neural activity obtained by detecting extracellular action potentials

or spikes, but only preserving the time of the event [55, 56]. Keeping only the

time of the event, provides an abstraction of the neurophysiological recordings in

the form of a simple sequence of ordered spike trains.

Earlier studies assumed that information is encoded in the rate of the spikes

[57–59], a process also known as rate coding. However, it later became evident

that rate coding cannot explain encoded information for complex behaviours and

timing of the spikes plays a key role in encoding information [60–62].
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Figure 2.11: Processing of raw voltage traces into different statistical and spike
sorting analysis

HD-MEA recordings generate a large volume of data, mainly due to ever in-

creasing number of electrodes and the recording sampling frequency. For instance,

a 3Brain BioChip with 4096 electrodes generates uncompressed data at approx-

imately 7 GB/min when recorded at 18 kHz sampling frequency. This poses a

number of challenges.

• Processing speed

• Noise interference

• Accurate detection of spiking events

• Feature extraction for spike sorting

Figure 2.11 shows a simplified illustration of the process flow from raw voltage

traces into putative signals from each electrode or spike train analysis after spike

detection on the channel signals.
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The neuronal response signals recorded are subject to noise and interference

from neighbouring electrodes. Recorded signals need to be accurately associated

with spiking events to reduce the voltage readings into point process (spike trains).

These spike trains are prerequisites for spike train analysis. Due to the typical

large volume of data, a spike detection algorithm has to be highly efficient and

fast to process and detect true spiking events successfully [63].

In HD-MEA recordings, the signals are most likely to be recorded by multiple

channels due to closely spaced electrodes which causes signal overlapping and

waveform assignment problems. However, this redundancy can be exploited to

improve the signal to noise (SNR) ratio and hence spike detection [64,65].

Conventional thresholding-based event detection on high density recording

does not provide sufficient information to reliably detect true spikes. An inter-

polation spike detection method optimised for HD-MEA data, to detect events

from closely electrodes successfully discarding most of the background noise and

false activities, which was developed by Muthmann et al [63] is implemented for

spike detection in this work.

The interpolation method uses voltage traces from five neighboring channels

which are weighted with a relatively stronger weight for the central channel than

the four surrounding channels. These weights are then averaged and assigned to

the central channel as a new signal as shown in Figure 2.11. Threshold value for

spike detection can be adjusted to capture most of the possible events and reduce

probability of false negatives.

Though many works have been done to bring together many different spike

detection and sorting algorithms, there seems to be a significant disagreement

between different methods. Without the availability of ground truth information

about where each neuron is located with respect to the electrodes, spike sorting

becomes particularly difficult for HD-MEA recordings.

2.7 Conclusions

This chapter introduced the relevant topics and terminologies necessary to set

the context for the review of the related literature and state of the art which

will be presented in the next chapter and for the overall research presented in
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this thesis. The chapter has covered a basic background introduction to neurons,

their dynamics, and a summary of approaches to study the neuronal properties.

Electrophysiological studies are also discussed along with different technological

advancements in MEAs. The chapter also covers the choice of MEAs for the

thesis work. Finally, the challenges of data analysis are discussed.
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Chapter 3

Literature Review

3.1 Introduction

In the last chapter, generic concepts in neuroscience/computational neuroscience

were introduced to set the context for the reader. This chapter focuses on a

review of related research and describes the rationale behind the work presented

in this thesis, discussing current limitations in the research literature.

In this chapter, the concept of synaptic plasticity and Hebbian based learning

and how it evolved as a convincing phenomenon in the study of higher level cogni-

tive tasks such as learning and memory (see Section 3.2) is presented. Following

that, early developmental studies into neuronal dynamics and synaptic plasticity

in in vitro dissociated neuronal cultures and the advantages of such models (see

Section 3.3) are discussed. The past 20 years of plasticity studies in MEAs based

neuronal cultures are outlined, highlighting the landmark studies and new find-

ings that helped shape this area of research (see Section 3.3.3). A critical analysis

of the difficulties and limitations of an in vitro experimental model for plasticity

studies is presented. Finally, the concept that high density MEAs with thousands

of electrodes for extensive plasticity study may help to provide a better under-

standing of such neural plasticity phenomena and neuronal dynamics in general,

is also discussed, justifying the use of HD-MEAs as the chosen electrophysiology

approach for the study. Following that, different types of network connectivity

and methods to infer connectivity are presented (see Section 3.4). Finally, prob-
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lems in network connectivity are highlighted together with a summary of the

current knowledge gap in connectivity inference methods (see Section 3.5.3).
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3.2 Activity-dependent synaptic plasticity

The ability of the nervous system to adapt and change to a new functional and

structural state in response to intrinsic or extrinsic factors can be broadly de-

fined as ‘Neural Plasticity’. Neural plasticity is manifested from the micro scale

at the level of neurons and synaptic modifications to a macroscale as changes in

spatiotemporal patterns at different brain regions. The concept of neural plas-

ticity is not a new idea. The early conceptualisation of neural plasticity can be

traced back to 1913 to Ramon y Cajal, who put forward the idea that changes

in synaptic connections could be the foundation for memory [66].

Activity-dependent plasticity is a form of neural plasticity, both functional and

structural, as a result of personal experiences and cognitive functions [67] and is

believed to constitute the cellular basis of learning and memory [68]. Activity

dependent modifications of neural connections provide a powerful mechanism to

describe development and shaping of neural responses to neural inputs. Co-

ordinated development and shaping of neural responses at network level can give

arise to interesting stimulus-specific responses, which at a higher level may be

manifested as higher level cognitive activity such as learning and memory.

The seminal idea on neural plasticity, proposed by Donald Hebb [69], which

later was became known as Hebb’s rule, attempted to relate neural activity with

synaptic plasticity. Hebb boldly postulated:

“When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change takes

place in one or both cells such that A’s efficiency, as one of the cells firing B, is

increased”(p.62) [69]

Essentially Hebb proposed that repetitive correlated activation of pre- and

postsynaptic neural activity gives rise to longer lasting changes in or between

these neurons involved, which can be simplified as,“when one neuron drives an-

other neuron to fire repeatedly, the connection between the two is potentiated’

or ’Neurons that fire together wire together’ [69]. Although Hebb’s formulation

wasn’t well received when first formulated, subsequent advances in neurophysi-

ological technology allowed for accumulating neurophysiological data that con-

firms Hebb’s postulate. The instances of Hebb’s synapse was later reported in
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an induced long term potentiation experiment by Bliss and Tomo in 1973, which

showed evidence of synaptic change based on pre- and post-synaptic neuron’s ac-

tivity [70], and kindling [71]. Theoretical studies have indicated that along with

Hebbian like potentiation, depression between two neurons that are not active,

is also equally necessary [72,73]. Depression is necessary to prevent saturation of

all the synapses to maximum output which affects the stimulus selectivity prop-

erties, and to prevent a runway positive feedback loop between network activity

and synaptic weights [74].

In 1973, a study of the neural pathway in rabbit hippocampus by Bliss and

Tomo [70] discovered that rapidly and repeatedly activating the synapses resulted

in a long lasting increment in the synaptic strength, which is defined as long term

potentiation; a reverse phenomenon, first observed in rabbit cerebellar cortex in

1982 [75], also exists in which the synaptic strengths weaken with repeated acti-

vation of synapses. This is called, long term depression. Long-term potentiation

(LTP) and long-term depression(LTD) are important phenomenon in the study

of neural plasticity. Both LTP and LTD have long been regarded as potential

mechanisms for memory and learning. Induction of LTP includes depolarisation

of the postsynaptic neuron and activation of N -methyl-D-aspartate (NMDA) re-

ceptors by release of glutamate, which causes an increase in intracellular Ca++,

which in turn increases the amount of functional α amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors in the membrane, increasing the ex-

citability of the postsynaptic cell [20].

3.2.1 From Hebbian rule to spike-timing dependent plas-

ticity

The Hebbian learning framework has been refined into a temporally asymmetric

learning rule induced by temporal correlation between spikes of pre- and post-

synaptic neurons. One such form of Hebbian learning is called Spike-timing

Dependent Plasticity (STDP) , and is relevant to neuronal network dynamics.

STDP can be considered as a spike-based adaptation of the Hebbian learning

rule where repeated arrival of a presynaptic spike just a few milliseconds before

the postsynaptic spike leads to strongly potentiated synaptic weights (LTP) and
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Figure 3.1: STDP function schematic that shows the change of synaptic weight
change as a function of the relative timing of pre- and post-synaptic spikes. [76]

arrival of a presynaptic spike a few milliseconds after the postsynaptic spike lead

to strongly depressed synaptic weights (LTD). The repeated controlled firing of

pre- and post-synaptic neurons induces a change in the amplitude of a single ex-

citatory post-synaptic potential (EPSP) . Figure 3.1 shows synaptic potentiation

and depression plotted against the spike time difference ∆t = tpost− tpre. The de-

gree of synaptic change to the relative timing of spikes suggests that information

transfer may be encoded as temporal coding in the range of milliseconds.

The early experiments with precisely timed pre- and post-synaptic spikes at

milliseconds resolution was conducted by [77,78]. Even earlier investigations can

be traced back to 1983 by Levy and Stuart, although Levy and Stuart’s ex-

periments used lower temporal resolution and bursts of spike rather than single

spikes [79]. Further works by [80–82], paved a path as a precursor for model

STDP investigations. Bi and Poo [82] demonstrated that in cultures of rat hip-
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pocampal neurons, correlated spiking of pre- and postsynaptic neurons induces

persistent potentiation and depression of glutamatergic synapses. The strength of

potentiation and depression was dependent on the timing of postsynaptic spike

before or after presynaptic firing, demonstrating dependence on spike timing.

Mathematically, a basic STDP model can be expressed with a small number of

simple expressions as follows.

Consider two neurons, a presynaptic neuron j and postsynaptic neuron i.

The synaptic weight change ∆wij from presynaptic neuron j is dependent on the

relative spike timing between presynaptic spike arrival and the postsynaptic spike

generated. Let’s describe the presynaptic spike arrival times at synapse j by tfj
where f = 1, 2, 3, ..., which is the spike count. Similarly, tni with n = 1, 2, 3, ...

indicates the firing times of the postsynaptic neuron. According to [83], the total

synaptic weight change induced by stimulation can be expressed as,

∆wij =
N∑

f=1

N∑
n=1

W (tni − t
f
j ) (3.1)

where W (x) denotes the learning window function illustrated in Figure 3.1

which can be further expressed as,

W (x) = A+ exp(−x/τ+) for x > 0 (3.2)

W (x) = −A− exp(x/τ−) for x < 0 (3.3)

The parameters A+ and A− may depend on the current values of the synaptic

weight wij; τ+ and τ− are time constants which are of the order of 10ms. x >

0 indicates postsynaptic spike after presynaptic spike, leading to potentiation

and x < 0 indicates postsynaptic spiking before presynaptic spiking, leading to

depression. These STDP models have been used to fit experimental data [81] and

also on simulation models [84].
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3.3 Dynamics and plasticity in neuronal net-

works

To study the general characteristics of long-term network dynamics, independent

of cell type, it is useful and important to have (1) a generic model without any

predefined anatomical structures, (2) a stable system that allows for long-term

neuronal activity and (3) a highly controllable system.

In this section, a brief overview of a neuronal culture model is presented,

highlighting the advantages of such models interfaced with MEAs to study long

term network dynamics. Furthermore, critical reviews on the previous works on

induced plasticity with electrical stimulation on neuronal cultures coupled with

MEAs are discussed. The aims of this section are to provide a critical review

of related research, and set a context for the thesis work. It also discusses the

challenges in reliably inducing network connectivity changes.

3.3.1 Neuronal culture model to study network dynamics

As described in Chapter 2.3.2, neuronal cultures are simple, yet effective biolog-

ical models and have long been considered a more suitable experimental setup

than the native tissue to study neuronal dynamics [85,86], biochemistry, pharma-

cological properties, molecular biology and neuroimaging. This idea of extracting

brain cells and culturing them in the lab in a controlled environment started as

early as half a century ago in 1950s [87].

As with any type of adherent cells, neuronal culture preparation requires a

plating surface to undergo some form of treatment to promote cell attachment.

Pre-coating the surface with a thin layer of Extra Cellular Matrix(ECM) polymers

such as collagen has been proven to be an effective treatment [88]. Similarly, sim-

ple polymers such as poly-L-lysine(PLL) with positively charged amino residues,

are reported to be just as effective for cell adherence and cell growth promo-

tion [89]. Due to the simplicity of the coating procedure, PLL coating has now

become a standard in neuronal culture. The procedure constitutes incubating

the plating surface with coating factors for several hours before proceeding with

seeding the cells on the plates. Similarly, there are other coating factors such as

31



3. Literature Review

polyethylene-immine(PEI) , Laminin, poly-d-lysine (PDL) etc which work just

as well.

Figure 3.2: Primary cell cultures procedure; dissociated and slice [90]. After
extracting specific brain tissue, the tissue can be cultured as fully intact slices or
enzymatically and mechanically dissociated into single cells (neurons, glial cells)
to obtain a dissociated culture.

To study long-term neural dynamics and neural processes in a controlled envi-

ronment, it is important that the experimental system satisfies optimum growth

conditions(usually an incubation at 37◦C, 5% CO2 and 65% humidity ), that are

crucial to study different phenomenon.

3.3.1.1 Generic model

Dissociated neuronal cultures are usually prepared from brain tissues at an em-

bryonic stage. For rat and mice, brain tissue from a 15-18 day embryonic stage are

usually used for successful preparation. At this stage, the cells are at a very early

stage without a defined network morphology and appear to be undifferentiated

- differentiated neuronal cells are neuronal cells which already exhibit morpho-

logical structures of a neuron and differentiated cells do not yet exhibit neuronal

structures; though neurons from different brain regions maintain initial inherent

morphological, molecular and physiological properties. This allows for tweaking

initial culture conditions to drive the cell culture to produce different cellular
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compositions i.e. neurons to astrocytes combinations [91]. Hence, sometimes the

cells from such cultures are referred to as progenitor cells [92].

As illustrated in Figure 3.2, after extracting specific brain tissue, the tissue can

be cultured as fully intact slices or enzymatically and mechanically dissociated

into single cells (neurons, glial cells) to obtain a dissociated culture. The dissoci-

ated primary culture contains both excitatory and inhibitory neurons as observed

in fully formed intact tissues - the ratio being ≈ 10% inhibitory [93]. Studies con-

ducted to compare the distributions of types of neurons(by immunohistochem-

istry) between an in vivo and in vitro networks show a similar distribution. Simi-

lar to an in vivo network, the majority of the neurons have been found to be gluta-

matergic excitatory neurons with 10-25% GABAergic inhibitory neurons [94,95].

Such cultures also show demonstrate classical excitability properties with typical

voltage gated membrane currents and synaptic connections(eg.AMPA, NMDA,

glutamate gated channels) [88, 96], along with general physiological processes.

Cultured networks also exhibit rich spontaneous activity dynamics [1, 8] charac-

terised by synchronised network bursts followed by low firing phases.

In addition to the developmental changes, homogeneously distributed neurons

self assemble into many clusters of neurons interconnected by fasciculated neu-

rites [97,98] . The availability of many different such processes has made the cul-

ture model an appealing choice to study connectivity relationship between struc-

tural and functional properties during neuronal development [99, 100]. Whether

sporadic or synchronised bursts, the network activity is correlated with the de-

velopment of synaptic connections. Studies have shown that an increase in the

network bursts may be correlated with the number of synapses [101, 102]. Due

to the flexibility of culture models with similar network properties and dynamics

to the in vivo counterpart, such models are generic models that can be easily

adapted for many different types of experiments to study a wide range of neu-

ronal dynamics. The main advantages of such neuronal cultures are flexibility

and adaptability ; ability to respond to a wide range of novel stimuli and adapt to

changing external stimuli.

Long term stability: It is crucial to maintain the stability of the neuronal

network system especially if one wishes to study long-term response dynamics.

Evoked electrophysiological responses of a network after electrical stimulation can
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be obtained by culturing neuronal cells on substrates integrated with hundreds to

thousands of micro electrodes in multi electrode arrays (MEAs). The electrodes

measure the extracellular potential in a non-invasive manner, which makes it

possible to do measurements over a long period of time. Neuronal activity char-

acterisation is further discussed in the Section 3.3.2. Recent studies have shown

that it is possible to maintain such dissociated cultures coupled with high density

MEAs for up to 3 months with successful stimulation and recording [103].

Controllability: Reliable maintenance of a steady, consistent environment

to support neuronal culture development can be achieved by ensuring control of

the temperature, CO2, oxygen level, humidity and timely exchange of the culture

medium [99,100,104]. Pharmacological treatments can be applied to block specific

synaptic receptors or channel types. Network activity can be manipulated by

pharmacological or mechanical intervention by having patterned structures on the

substrate upon which neurons grow [100]. Depending on the type of experiment

and study under consideration, the environment can be easily manipulated to

mimic different environments to study neurophysiological properties.

3.3.2 Spiking activity characterisation in neuronal culture

Early recordings of electrical activities in neuronal cultures relied mostly on the

insertion of electrodes directly into the cell membrane to measure the intracel-

lular potentials. Though such techniques provide a direct measurement with

relatively higher signal-to-noise ratio(SNR) compared to extracellular recordings

(with voltage in the mV range), this is a physically invasive process that requires

manual intervention with a significant limitation in the number of simultaneous

multi-site recordings, making this impractical for monitoring multiple cells for

long term experiments.

In 1957, Hubel [105] reported detection of sharp potential fluctuations in ex-

tracellular space in synchrony with action potentials from nearby cells when he

inserted thin metallic wires in cat’s spinal cord. Such extracellular potential

fluctuations were later termed as ‘spikes’. The process of spike generation is

commonly referred as firing. These extracellular(EC) spikes are thought to be

produced due to transient ionic flow in the extracellular vicinity during intracel-
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lular potentiation. Hence, the shape of the extracellular spike is complementary

to intracellular spikes as already discussed in Chapter 2.4. Since these extra-

cellular currents are free to propagate, the amplitude scales with the inverse of

the distance r between the source and the recording site [106]. Due to this, to

measure EC spikes, the electrode has to be placed in close proximity to neurons

and the spikes generally have much lower amplitude, usually in the µV range, as

compared to intracellular spikes which are in the mV range. Despite these short-

comings, the EC potential allows for non-invasive recording, making it possible

for multi-site long term recordings to study neurodynamics, plasticity and many

other neurophysiological properties.

In the case of a dissociated neuronal culture, electrodes are embedded into

a planar culture substrate. Neurons are dissociated and seeded on these MEA

surfaces where neurons attach, grow and interface with the electrodes [3,8,39,52,

53]. Since the neurons are seeded directly on top of the electrodes, the electrodes

are in close proximity to the neurons to detect EC voltage fluctuations without

any invasive contact with the actual cells.

Many of the in vitro neuronal culture studies with MEAs require characteri-

sation of the spiking activity of the culture at some stage. In fact, a significant

amount of work has been dedicated to the study and characterisation of spiking

activity for many different objectives - neurodynamics [107,108], plasticity [4,109],

learning in-vitro [7, 104], pharmacological testing [40] etc.

Neuronal cultures self-organise into highly interconnected networks that pro-

mote the generation of spontaneous, correlated neural activity even after a few

days in in vitro [8, 110, 111]. The culture typically reaches maturity at about

3 weeks in vitro exhibiting high firing density and plateaus after that [8, 112],

eventually declining in health after about 5 weeks in vitro. The network activity

change is representative of the development time course of excitatory synapses

[113]. Inhibitory synapses appear at a later stage with more prevalent GABAergic

synaptic structures after 3-4 weeks [114]. This delayed prevalence of inhibitory

synapses is manifested in the network activity of neuronal cultures after 3-4 weeks,

where the network bursting activity becomes shorter in duration [115].

The network activity is typically organised into spontaneous network bursts

that last for 100-200ms. Bursting can be defined as periods of high-frequency fir-
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ing of a neuron followed by a period of silence. Bursting events can be studied for

both synchronised network wide activity or single cell bursts. Both are common

for MEA recordings from a cultures of dissociated neurons [8,116]. At single cell

level, the bursting consists of brief periods of high frequency firing separated by

a quiescence period, as shown in Figure 3.3.

Figure 3.3: Intracellular voltage trace from a rhythmically bursting neuron,
recorded from cat visual cortex in vivo [117]

Although bursting events are believed to play an important role in transfer of

information in the brain, the precise mechanism of the burst generation and their

purpose are only partially understood [118]. Neural synapses have been shown

to display low probabilities of neurotransmitter release in response to a single

presynaptic spike, making the transfer of information through single spikes unre-

liable and ineffective [119, 120]. The rapid bursts of spikes can cause build-up of

intracellular Ca++, due to not enough time between the spikes to allow a return

back to the baseline level. This increased level of Ca++ in turn increases the

probability of neurotransmitter release and the generation of post synaptic po-

tential with each burst [121,122], increasing the reliability of information transfer

at the synapses. Bursting mechanisms have also been involved in LTP and LTD.

Experimentally, in the hippocampus, temporally spaced postsynaptic bursting at

relevant intervals have been shown to be sufficient to cause long term synaptic

changes [123, 124] and also induced LTP and LTD implicated by bursting has

been observed in other brain regions [125].

3.3.3 Plasticity studies in MEA based neuronal cultures

After the discovery of LTP in rabbit hippocampus in 1973 [70] and the subsequent

discovery of LTD observed in the cerebellar cortex in 1982 [75], several long
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term plasticity studies have been conducted over recent decades. In particular,

the processes of synaptic plasticity have long been studied in simple nervous

system of invertebrates interfaced with MEA. Invertebrate neurons have a large

cell body which promotes better neuron to transducer interfaces, allowing for

electrophysiological measurements with higher Signal-to-Noise Ratio (SNR) [126].

Neural plasticity processes observed in simple nervous systems such as Aplysia

[127, 128], Drosophila [44], Helix [129, 130], Lymnaea [131], and Helisoma [132,

133] are also common and observed in mammalian nervous systems along with

many molecular mechanism underlying simple to complex forms of learning and

memory.

A dissociated neuronal culture grown on MEAs is an appealing experimen-

tal setup as a biological model to study a wide range of brain functions and

neuronal network dynamics due to the fact that despite its simplicity, such a

simple model exhibits rich dynamics similar to in-vivo conditions [2, 3]. There

have been vast amount of research done over the past few decades with MEA

based neuronal cultures, and it has become a gold standard method in neuro-

science investigations. Such experimental setup has been utilised to characterise

and study dynamics from several biological preparations; from invertebrates to

different mammalian brain regions such as cortex [116] and hippocampus [134],

by studying network development and applying electrical [11, 41, 46, 135] and

chemical stimulation [42,136] to induce synaptic plasticity at the network level.

However, the MEA method has also been the subject of criticism related to

the fidelity of comparable neural activity, gene expression, morphology etc., in

comparison to the in vivo scenarios, mostly due to brain being a 3D structure

and planar MEAs being a 2D substrate. It is difficult to assess the degree of

compromise presented by such in vitro cultures since the principles of neural

computation in the real brain are not yet fully understood. Furthermore, the

criticism may be viewed not so much a comment on the MEA approach but rather

a criticism of all investigations on 2D substrates such as well plates. In terms of

practicality and ethical perspectives, such in vitro cultures are the most relevant

to investigate fundamental properties in a controlled setting over a prolonged

period of time.

In the following section, a critical review of landmark research performed over
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the past 20 years, to induce synaptic plasticity with electrical stimulation on

neuronal cultures coupled with MEAs is presented. A discussion on the funda-

mental challenges with such models in reliably inducing plasticity, primarily due

to variability in such dynamical systems, is also presented.

3.3.3.1 Searching for controlled plasticity through stimulation

Randomness is only a measure of our ignorance of the different causes involved

in the production of events [137]

Mammalian neuronal cultures exhibit spontaneous activity, mainly charac-

terised by mixture of discrete spiking events and network wide bursts. Such

dynamics evolve with the development stages of the cultures. Though rich spon-

taneous and in vivo like physiological properties have been reported for in vitro

neuronal cultures, in vitro neuronal systems are also very much subject to unex-

plained variability under similar conditions. Such variability have been observed

at all levels of brain-behaviour organisations from spontaneous activity to trial-to-

trial network responses with the application of repeated identical stimulus [138].

Several attempts to understand and modulate such variability in network dy-

namics by application of electrical and/or chemical stimulation can be found

in the literature. Studies have shown that in general, low-frequency stimula-

tion locks the phase of periodic bursts to the applied stimuli [107, 126]. Higher

amplitude and frequency of electrical stimulation have been shown to induce a

transition from synchronised bursting to more sparse spiking activity, similar to

the dynamics of awake cortex in vivo [41]. Tailored electrical stimulation pat-

terns can be applied to induce modifications of the network dynamics in terms of

firing rates and bursting rate. During tetanic stimulation process, the strongest

connections relative to other synaptic connections get stronger. Such mechanisms

show selectivity properties by preserving connections that are more informative

and relevant in the network dynamics under the stimulation.

Plasticity studies on neuronal cultures coupled with MEAs started in the 1990s

and in particular this area of neuroscience was pioneered by Maeda and his team

in 1998, by demonstrating functional plasticity in cultured mammalian networks

on MEAs [4, 107]. They studied the effect of tetanic slow, periodic site focus
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Table 3.1: Summary of the electrical stimulation protocols used in mammalian
neuronal cultures - layout taken from [8,126]

Reference Year Plasticity Protocol

Maeda et al., 1998 [4] 1998 20 bursts at 0.2 Hz, each with 11 pulses at
an intraburst frequency of 20 Hz delivered
from 5 electrodes

Jimbo et al., 1998 [5] 1998 11 bursts at 0.2 Hz, each with 11 pulses at
an intraburst frequency of 20 Hz

Tateno and Jimbo,1999 [6] 1999 10 bursts at 0.2Hz, each with 11 pulses to
to the tetanised electrodes

Shahaf and Marom, 2001 [7] 2001 Repeated stimulation at low frequency (0.3-
1Hz) until a desired responses

Ruaro et al., 2005 [139] 2005 L shape simultaneous stimulation to several
electrodes. Bursts of 100 pulses delivered at
250Hz

Wagenaar et al., 2006 [8] 2006 Bursts completely suppressed by 50Hz
background stimulation distributed over
20-40 electrodes, except during tetanisation

Chiappalone et al., 2008 [9] 2008 Jimbo protocol with additional trains of
pulses at 0.2Hz falling in the middle of the
tetanic burst

Brewer et al., 2009 [134] 2009 Chronic stimulation for either 0,1 or 3h/day
between 7 and 22 days

Le Feber et al., 2010 [10] 2010 Biphasic stimulation at low frequency(0.2-
0.33Hz)

Pimashkin et al., 2016 [46] 2016 Biphasic pulses of 400-8–mV with 600 µs
Multi site stimulation.

Nieus et al., 2018 [11] 2018 Biphasic pulses (600µs in duration, ampli-
tude tuned between 200− 600µA)delivered
at 0.2Hz from 8 spatially distributed sites
in randomised sequences

stimulation on neuronal cultures. They reported that tetanic stimulation on one

or more electrodes was able to evoke bursting responses that were time-locked to

the stimuli [107] and their work reported that spontaneous bursting was modified

after strong tetanic stimulation [4]. Soon after, Jimbo et al. reported a modified

rate of spontaneous activity after application of tetanic stimulation [5]. These

experimental results paired with technological advancement in MEAs promoted
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several attempts to determine features/parameters of the electrical stimulation

such as frequency, number of electrodes, amplitude and duration of the stim-

ulation that contributes maximally to induce synaptic changes and long term

changes in dynamics. Table 3.1 summarises the most significant plasticity stud-

ies and protocols so far since the pioneering work by Maeda et al.

Crucially despite many attempts over the past two decades, it is still unclear

and not yet established whether neuronal cultures can be trained to learn specific

stimulus-response relationships reliably. This is primarily due to the fact that

neural information processing is still an active area of research, and that basic

principles are not yet fully established. In addition, the main difficulties can be

divided into two aspects:

• Experimental design and consistency: Designing a network stimu-

lation protocol to induce desired network responses reliably is a difficult

task; partly due to the non stationary nature of such a dynamical system.

Each neuronal culture is different in terms of structural configuration and

variations during the development stage, leading to difficulties in reliable

repetition of results, making this problem even more difficult due to the

inevitable variability.

• Electrophysiological endpoint: There is a lack of “electrophysiological

endpoint” that reliably correlates with the induced plasticity [126]. [140]

proposed the hypothesis that in long-term plasticity experiments, not only

synaptic potentials but also overall change in firing patterns should be taken

into account to better understand the effects of plasticity.

In 2006, Wagenaar et al [8] published an interesting negative result where

they discussed the difficulty in inducing plasticity in neuronal cultures on high

density MEAs. They did rigorous experiments over many cultures to reproduce

previously reported plasticity effects but failed to reproduce the results reliably.

Earlier they hypothesised [41] that spontaneous bursts interfere with plasticity.

Following this hypothesis, they applied distributed electrical stimulation to si-

lence spontaneous bursting and then applied stimulation from paired electrodes

in tandem with an inter-stimulus gap of 10ms. This resulted in successful induced
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plasticity in terms of significant changes in network activity. They concluded

that controlling burst interference is crucial in inducing plasticity. The success-

ful outcome of plasticity with such a protocol could be attractive in confirming

that the effect is due to STDP, since the protocol applies tandem stimulations

which, in theory, can control pre- and post-neuron firings. From the failed ex-

periments they concluded that plasticity induction by extracellular stimulation

of dense dissociated neuronal cultures on MEAs is not a straightforward process

and just delivering stimulation in presence of the spontaneous burstings cannot

induce plasticity significantly and reliably. In contrast, further works from differ-

ent groups determined that the complete suppression of the spontaneous bursting

is not a prerequisite for inducing plasticity [9, 10,126].

One of the key conditions that needs to be addressed for plasticity induction

experiments is the stability and responsiveness of the system. Both cortical and

hippocampal dissociated cultures have a degree of variability in the spontaneous

activity from culture to culture. To address this issue, Chiappalone et al [9],

developed a procedure to quantify and evaluate variability in the spontaneous

activity and responsiveness in terms of evoked responses to stimulus. They se-

lected the potential cultures based on the initial activity(pre-stimulation) and

how they respond to low frequency stimulation and set out a very systematic

way of assessing the quality of a culture for plasticity studies so that all the cul-

tures for the study passed certain initial requirements for consistency. Firstly,

they checked for a stable firing rate before the stimulation and that the firing

rate is above a threshold. For stimulus-evoked responses, they only selected the

electrodes that could evoke a global response in at least 50% of the recording

electrodes. Based on these factors, they set a threshold and only selected cul-

tures that met these requirements (as shown in Figure 3.4) as potential cultures

for plasticity studies. The mean firing rates(MFR) measured before and after the

stimulation were plotted on a logarithmic scale. The blue squares in the Figure

3.4 represents cultures that fall into the sub-threshold region and are discarded.

The red circles represents cultures that exhibit strong enough network activity

and responsiveness to stimulus, so these are considered for plasticity studies. This

approach was utilised in the research reported in Chapter 7 of this thesis.
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Figure 3.4: Bilogarithmic plot of the mean spontaneous firing at the
beginning(MFRpre) and after the test stimulus session(MFRpost). Curved line
denote confidence intervals. Red circles represents the potential cultures for plas-
ticity studies, blue square are the cultures with not enough responsiveness to the
test stimulus, hence not suitable for plasticity studies. [9]

3.3.3.2 Stimulation protocols

The stimulation protocols to induce plasticity can be broadly classified into slow

and fast stimulation. Although high frequency stimulation (20-100Hz) patterns

are extremely efficient in inducing network response changes, both in in vitro

and in vivo, such stimulation patterns are not common in nature [141], and often

such stronger stimulation quite drastically affects the natural spontaneous dynam-

ics. Earlier plasticity studies made use of high frequency tetanic1 stimulation in

cortical networks coupled with MEAs [4, 5] which resulted in induced plasticity

1High frequency (eg.20Hz) electrical stimulation used to induce functional plasticity
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characterised by increased evoked and spontaneous activity. Experiments by [5]

discovered similar results with a weaker tetanic stimulation. [109] later reported

that repeatedly applying stimulus to one electrode resulted in response changes on

other electrodes when the stimulus is applied to those electrodes. More recently,

there have been attempts to study plasticity in dissociated cultured networks by

analysing spontaneous activity pre- and post-tetanic stimulation and by investi-

gating plasticity properties of the network in terms of evoked responses [8, 142].

Figure 3.5: Network response pre- and post-tetanic stimulation paired with 0.2Hz
slow stimuli. This associative protocol produces a larger ,distributed and more
reliable potentiation.(A) Histogram of PSTH area difference (B) Scatter plot of
the PSTH area pre- and post-tetanus, linear fitting of the two clusters [9]

Chiappalone et al., 2008 [9] conducted a systematic study of the effects of com-

bining fast and slow stimulation on in vitro cortical networks based on previous

works [143, 144]. They developed a set of experimental protocols by pairing fast

tetanic bursts (20 Hz) with low-frequency stimuli (≤ 1Hz) delivered through two

separate channels(i.e. associative tetanic stimulation). The results demonstrated

induction of long term potentiation was greatly increased, up to twenty-four hours

after tetanisation when the tetanic stimulation was paired with slow stimulation;

though only tetanic stimulation can also induce changes in network response as

shown in other studies as listed in Table 3.1. The authors summarised their
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findings into three main takeaway points; (i) low-frequency stimuli produce no

discernible changes to the network responses, (ii) associative tetanic stimulation

is able to induce plasticity demonstrated by measurements of evoked responses

and (iii) the degree of change is dependent on the stimulation features. The

essence of the work of [9] is that the single tetanic stimulation is not effective in

inducing reliable responses; pairing such tetanic stimulation with a slow stimuli

can greatly increase the degree of network responses as indicated in Figure 3.5

which shows comparison between pre- and post-stimulation network responses

when the pairing method is used.

Le Feber et al., 2010 [10] conducted experiments with slow stimulation only.

The stimulation used was a biphasic pulse at frequency between 0.2-0.33Hz. They

made use of functional connectivity modifications induced by stimulation and

hypothesised that low frequency stimulation is not necessarily less effective or

intense than tetanic stimulation. They concluded that, for effective plasticity

induction, the stimulation has to trigger network bursts regardless of the stim-

ulation frequency. If the stimulation can excite the network to burst, which

could be different stimulation frequencies for different culture model or site of the

stimulation, then the stimulation could potentially induce plasticity. They used

adaptive stimulation protocols where they first randomly stimulated all electrodes

and evaluated the responses to select only the most response-inducing electrodes.

The stimulation process itself was adaptive in automatically stopping the stim-

ulation when a certain threshold response was reached. The authors made the

assumption that the adaptive stimulation may force the network to a new balance

leading to large connectivity change. The authors finally state, ”We hypothesise

that networks develop an equilibrium between connectivity and activity. Induced

connectivity changes depend on the combination of applied stimulus and initial

connectivity. Plain stimuli may drive networks to the nearest equilibrium that

accommodates this input, whereas adaptive stimulation may direct the space for

exploration and force networks to a new balance, at a larger distance from the

initial state.” [10]

In contrast to [10] and [9], there are groups who are also working with more

“classical” tetanic based stimulation protocols to induce plasticity in vitro. A

more recent study by [46], used biphasic pulses with 600 µs duration such that
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the inter-stimulus interval for each dissociated hippocampal culture was set to

match the mean inter-burst interval to maximise the probability of evoking a

burst response. The stimulation site was chosen casewise so that the site evokes

population bursts 80% of the time the stimuli is delivered. The study itself

was focused on selectivity properties of the stimulus induced responses. They

found that the response properties of the network bursts can be used to retrieve

information about the source location of the stimulus.

In conclusion, different researchers have tried different protocols and have

successfully induced plasticity with different protocols. However, to date there

is no common agreement on a protocol that can reliably induce plasticity under

different conditions for different cultures or enable prediction of the response and

no systematic, reliable protocol that will guarantee specific and measurable plas-

ticity changes. It is still unclear what are the underlying factors that encourage

or hinder reliable plasticity induction in a controlled manner.

3.3.3.3 Closed-loop systems

So far only stimulation protocols in an open loop setting have been discussed.

Another interesting approach for inducing changes in a neuronal culture is the

idea of training the culture with some sort of reward signal by closing the loop

between the output and input signals. In traditional stimulation experiments,

the stimulation is delivered without adapting input signals based on the output

during or shortly after the stimulation stage. A closed-loop system takes the

output signals into consideration to alter the input signals at the next timestamp;

essentially the input signal at time t is a function of an output signal at time t−1.

Closed-loop experiments in in vitro neuronal cultures started as an investigation

on whether the culture can perform some sort of learning task characterised by

a desired output signal.

In 2001, Shahaf and Marom [7] conducted a relatively simple activity-dependent

stimulation protocol such that the stimulation was stopped once the network ac-

tivity reached a predefined threshold. With such an adaptive stimulation pro-

tocol, the neuronal culture can be trained to respond in a specific manner to

test pulses after the training, by repeated stimulation until a desired response is
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achieved. During the training, reduction of the driving stimulus constitutes the

reward which strengthens specific stimulus-response association and prevents new

associations from forming. The general stimulus regulation based on the output

forms the basis for such experimental approaches.

More recently, [10] and [145] also reported similar closed-loop experiments by

analysing the strength of connectivity between any pair of electrodes in real time

to modulate and drive the input stimulation adaptively. The advantage of such a

setup is the fact that a closed-loop setting may be useful to induce specific or de-

sired network changes without much a priori knowledge of network architecture.

Utilising such concepts, studies have been conducted to interface such a closed-

loop system with an artificial animal or a robot, which are completely controlled

by responses from the neuronal cultures. Potter’s lab in 2008 [146] reported ex-

periments where they were able to demonstrate training of neuronal cultures to

provoke a change in the “animat’s” (i.e. an artificial animal) behaviour. They

highlighted that the stimulation patterns that induced plasticity in a closed-loop

setting did not cause plasticity in an open-loop setting. Since then many hybrid

neurorobotic systems have been introduced [64, 147–149]. Such closed-loop sys-

tems in the neurorobotic domain aim to mimic the physiological sensory-motor

loop where the sensory information from the robot sensor are encoded as electri-

cal stimuli and the network responses are decoded and used to drive the robot

safely.

3.4 Network connectivity

High dimensional neural data from a network of neurons (or neural circuit) allows

us to infer representational information in the brain based on correlated activ-

ity between sensory and motor signals. Inferring and understanding the neural

wiring that underlies such representations in the brain is crucial in explaining

how such representations are produced, and how the network would behave in

a novel situation [12, 13]. In a neural circuit, activity of a neuron is not only

due to its intrinsic properties but also due to direct or indirect interactions with

other neurons. Characterisation of the connectivity of such direct and indirect

interactions in neuronal circuits is essential in understanding neuronal dynamics,
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neural connectivity and neural information processing. A network of neural cir-

cuits can be analysed at different spatial scales - macro, meso and microscopic

scales [150]. At the macroscopic scale, large sections of the brain with more

than a hundred anatomical regions and connectivity across those areas provide

an overall understanding of the brain information processing. Mesoscopic scale

includes interconnections among a population of neurons at a localised area, to

understand mechanisms of neural information processing. The connectivity study

of network of dissociated neuronal cultures is an example of a mesoscopic level.

Microscopic scale incorporates study of a single (or very small number of) neu-

ron and its axonal and dendritic arbours, to understand fundamental operational

mechanism of a single neuron. The network connectivity in this thesis refers to

connectivity at a mesoscopic level from a culture of neurons grown on MEAs.

The network connectivity used to describe the neuronal interactions in a pop-

ulation of neurons can be furthermore categorised as: structural, functional and

effective [151].

3.4.1 Structural connectivity

Structural connectivity refers to the physical (anatomical) interaction due to elec-

trical or chemical synapses between neural units (neurons) in a network at a

given time [13]. The structural connections are morphological direct interactions

among neural units and can be observed at both microscale at local microcircuit

and long-range interaction among different sub-networks. Fluorescence imaging

techniques can be applied, which can further be analysed to identify structural

connectivity. However, for a large highly interconnected networks, it may not

always be effective to correctly identify all the structural interconnections.

3.4.2 Functional connectivity

Functional connection corresponds to a correlated interaction between two neural

units. It measures the statistical dependence between two neural units or spike

trains (in this context) without any implication of causal effects. Such connections

are time-dependent and “model-free”. Model-free connectivity refers to connec-

tions where no assumptions on the underlying mechanisms are made. Functional
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connections may or may not mean a presence of a physical connection. So, two

neural units can be functionally linked even though there is no physical link. For

an example, neuron A might be connected to neuron B which in turn is connected

to neuron C. Even though there is no physical connection between neuron A and

neuron C directly, neuron A is functionally linked with neuron C.

3.4.3 Effective connectivity

Effective connectivity refers to the relationship between two neural units where

the activity of one unit directly affects the activity of another unit, indicating

a causal relationship [15]. Due to the causal nature, effective connectivity is

directional, meaning, connectivity from neuron A to neuron B in a network is not

the same as connectivity from neuron B to neuron A at the given time.

3.5 Connectivity inference methods

Mathematically, connectivity analysis can be described as model-based or model-

free. Model-based approaches are approaches where the connectivity is estimated

by explicitly modeling the data generation process. Neuronal cultures are complex

and non-stationary systems which makes the modeling of such dynamical systems

difficult. Hence, model-free approaches are usually used to infer the functional

and effective connectivity. Some of the most popular model-free connectivity

inference methods applied to in vitro neuronal cultures coupled with MEAs, can

further be divided as: descriptive statistics and information theoretic methods.

3.5.1 Descriptive statistics

This method utilises statistical features to infer connectivity between two neurons

from a population of neurons. Some of the most commonly used descriptive

statistics methods are described below.
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3.5.1.1 Cross-correlation(CC)

Cross-correlation measures the correlation between two point processes (such as

a spike train). It indicates the degree of delayed linear relationship between two

processes, one “target” and one “reference”, and measures the frequency at which

the “target” cell fires in relation to the “reference” process [18]. Mathematically,

CC has been described by [152] as “the probability of observing a spike in one

train xj at time t + τ given there is a spike at time t in a second train xi”. τ

is the time lag or time shift. The strength of the connection is evaluated based

on the peak value of the CC function. Despite extensive literature, there is no

standard definition of CC, but many different variations depending on the scenar-

ios. Regardless, based on the peak value of the CC function, an nxn connectivity

matrix can be defined for n number of neurons. This connectivity matrix can

then be used to plot a connectivity map showing neural interconnections.CC is

also a causal indicator meaning information of the direction of connection can be

inferred.

3.5.1.2 Cross-covariance(CCov)

The cross-covariance (CCov) method shares all the properties described for CC.

Unlike CC, CCov is applied to time series data. The CCov can be defined as

the probability of observing a spike in X at time s and a spike in Y at the same

time. Due to the fact that CCov is applied to time series data, the method can

be applied not only to data from an in vitro model but also to other brain signals

such as electroencephalography (EEG) , magnetoencephalography (MEG) , and

functional magnetic resonance imaging (fMRI) [153]. For extracellular recordings

from in vitro neuronal cultures, the data are pre-processed into discrete “spikes”,

hence CCov is not an appropriate method since discrete spikes are not continuous

time series.

3.5.2 Information theoretic methods

Information theory is a branch of mathematics founded by Claude Shannon to

formalise the fundamental limits on signal processing covering the topics of quan-
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tification of information, information transmission and compression [154]. Infor-

mation theory has since found its application in various other areas such as neu-

roscience [155], statistics [156], thermal physics [157], quantum computing [158]

etc. In neuroscience, information theory has been used to quantify the flow of

information in neural circuits. Some of the most popular information theoretic

approaches are briefly described for such scenarios.

3.5.2.1 Mutual information(MI)

Given two stochastic processes, mutual information(MI) measures the statistical

dependencies between these two. MI quantifies the “amount of information” in

one random process given the observation on another random process. Mathe-

matically, the MI of two activities of two neurons xi and xj can be defined as:

MIi,j =
∑
ij

P (xi, xj) log
P (xi, xj)

P (xi)P (xj)
(3.4)

MI is symmetric; hence this approach cannot identify directionality informa-

tion. In comparative studies performed by Garofalo et.al [14], it was found that

MI was less effective in identifying connections in comparison to Joint Entropy

and Transfer Entropy.

3.5.2.2 Joint entropy(JI)

Joint entropy(JE) is a bi-variate causal measurement between two spike trains;

more specifically, it is an entropic measure of the cross inter spike interval(cISI)

[14, 159]. Given two spike trains xi and xj corresponding to neurons i and j

respectively, the cISI is computed as cISI = txi
- txj

, where txi
and txj

are the

time of successive spikes of neuron i and j, respectively. Mathematically, JE is

defined as:

JEi→j = −
∑
k

P (cISIk) log2 P (cISIk) (3.5)

where P (cISIk) is the probability of cISI of size k bins. For high JE values,

there is a high probability that one spike train is firing as a consequence of firing
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from another spike train.

3.5.2.3 Transfer entropy(TE)

Transfer entropy(TE) is an information theoretic based non-parametric measure

of the flow of directed information between two random processes - proposed

by Schreiber [160]. Transfer entropy is based on transitional probabilities of

spiking events, is asymmetric and incorporates both directionality and dynamic

information. TE has gained popularity in computational neuroscience [14–17] as

it may be used to infer a causal relationship between two neurons based on the

spike timings.

The original expression for TE [160] between two random processes, I and J

(neurons in this scenario) is given as,

TJ→I =
∑

p(it+1, i
(k)
t , j

(l)
t ) log2

p(it+1|i(k)
t , j

(l)
t )

p(jt+1|i(l)t )
(3.6)

where it and jt are status of the neurons I and J at time t respectively, which

could be 1 or 0 for spike or no spike. it+1 is the status of the neuron I at time,

t+1. p is the probability of the status denoted in the parenthesis. The parameters

k and l denote the order of the TE, the number of time bins to include from the

past. The logarithm with base 2 is used so that the units are bits.

Due to axonal delays and physical separation, the causal effect of one neuron

may not be apparent in another neuron in the next time step, but might take mul-

tiple time steps. Considering this limitation with the traditional TE method, Ito

et al [15] extended the single delayed TE method with multiple delays to account

for these delayed causal interactions, which leads to a modified TE expression as.

TJ→I =
∑

p(it+1, i
(k)
t , j

(l)
t+1−d) log2

p(it+1|i(k)
t , j

(l)
t+1−d)

p(jt+1|i(l)t )
(3.7)

where d is the delay or number of previous time steps to include. The rest of

the parameters remain as described in equation 3.6.

In a recent survey paper [14], the author concluded that the TE method has

outperformed many other popular methods such as cross-correlation(CC),joint

entropy, mutual information [14, 15, 161] to identify connectivity from simulated
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networks.

3.5.3 Network connectivity challenges in neuronal cultures

Several previous studies on the inference on functional connectivity in neuronal

cultures [162,163] have been conducted. However, the methods used have suffered

from temporal resolution. The temporal pattern of neural interaction is of fun-

damental importance in understanding communication in mesoscopic neuronal

networks [164]. Neuronal communication is known to take place at chemical and

electrical synapses, which could have delays in milliseconds and sub-milliseconds

due to signal propagation over space. To accurately infer the connectivity, these

delays need to be taken into account. At macroscopic level, the system is better

understood via synchronised brain rhythms over large temporal scales. For meso-

scopic system such as in vitro neuronal cultures, the temporal scale is critical. Ito

et.al. [15] showed an improved performance in recognising the true connections

with the delayed TE method which performed better than the general TE method

and other popular methods. Shimono and Beggs, 2015 [165] further improved the

reconstruction performance by identifying the delay parameter. These methods

were validated with a realistic simulated model encompassing axonal delay and

biologically plausible STDP rules. Real neuronal networks, however, are complex

dynamical systems with unexplained variability and assessing the performance of

the inferred connectivity is still a challenging problem.

One of the main challenges in connectivity estimation from a biological neu-

ronal culture is the fact that extracellular recordings do not provide direct evi-

dence of how neurons are synaptically or electrically connected. Thus there are

no ‘ground truth’ connections against which the connectivity methods can be

evaluated. The problem is further exacerbated due to the dynamical and non-

stationary nature of the neuronal cultures. Due to these characteristics, there are

no multiple trials which can be used to extract statistical features for each neuron

or channel to measure the significance of the connections inferred. Additionally,

during inference between two processes, statistical noises, biases and coincidental

firings may imply a positive causal relationship even though there is none. To

statistically determine the degree of potential causal relationship that should be
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large enough to have significance, the inferred value must be compared against

the values which could be expected under some null hypothesis(hypothesis that

there is no causal relationship). Upon exceeding the value, the alternative hy-

pothesis that there exists a causal relationship, can then be accepted. To address

this issue, it is possible to use a surrogate method as a thresholding parameter,

to determine whether the inferred connection is plausible, given the statistical

significance of the connection.

The surrogate method has been an effective method of generating statisti-

cally relevant surrogate data to measure statistical significance of parallel spike

trains [166]. The idea is to generate surrogate data such a way that all the statis-

tical features of the original data are retained, except the temporal information

because the timing of spikes is thought to be a key contributing factor for network

interaction. The rationale is to generate surrogates that only differs in the tempo-

ral pattern, since connectivity is essentially dependent on causal firing patterns.

There exists a few popular methods such as jittering [167], trial shuffling [168] and

shuffling or inter-spike-interval(ISIs) [169]. These methods are used for record-

ings from a small number of electrodes. For recordings from HD-MEAs with

thousands of electrodes, it is even more important to retain as many statistical

features as possible for surrogate data due to the fact that statistical errors in the

estimator are exacerbated with large dense recordings. The performance of the

connectivity inference heavily relies on the method of surrogate data generation.

However, the existing small number of methods rely on direct manipulation of

the spike times. There exists a knowledge gap between the advancements made

in connectivity inference, which are tested against simulated data, and the surro-

gate methods for single trial neuronal recordings. One objective of the thesis is to

use and extend these methods on real experimental data - both on spontaneous

network responses and connectivity changes during plasticity. For example, util-

ising the ISI distribution information of the network could allow for efficient and

more relevant surrogate data.
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3.6 Conclusions and PhD objectives

The ability of MEAs to non-invasively record from multiple sites simultaneously

has opened new research avenues in the area of neuroscience. Developments in

MEA technology and high electrode densities have introduced new perspectives

and investigative platforms in the study of neuronal dynamics and analysis of

neuronal networks, both at single cell and network level at an unprecedented

spatial and temporal resolution. In particular, plasticity studies have benefited

immensely from the ability to stimulate neuronal networks whilst recording si-

multaneously and keeping the culture healthy and functioning for a prolonged

period of time.

Over the last two decades of studies in neural plasticity in neuronal cultures

coupled with MEAs, different researchers have tried different protocols and have

successfully induced plasticity to some degree. It is evident from the literature

that inducing plasticity in a neuronal culture by extracellular stimulation is not

as straightforward as in brain slices [170]. A protocol that can reliably induce

plasticity in multiple different scenarios currently doesn’t exist. Almost all the

studies conducted to induce long term plasticity have different protocols designed

specifically for that particular scenario. It is still unclear what would be the nature

of an underlying common protocol that could consistently lead to a guaranteed

induction of plasticity in a controlled manner. The problem is exacerbated due

to the occurrence of network bursts where the network activity is concentrated,

which could cancel out transient plasticity, making it much harder to induce long

term plasticity.

An initial challenge lies in the successful growth of primary neuronal cultures

coupled with CMOS based MEAs. Primary neurons are very sensitive to even

slight changes in the growth conditions, and the fact that these cultures need to

be kept for at least 2-3 weeks and under healthy conditions before any experi-

mental work can occur makes the process even more challenging. CMOS based

MEAs are not glass based substrates and require very careful treatment of the

surface to facilitate cell attachment and equally careful maintenance henceforth.

Secondly, to date, plasticity studies have been performed with low density MEAs

with only a few hundred channels. The availability of high-density MEAs with
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thousands of electrodes can provide a high spatial and temporal resolution, en-

abling deeper observational ability during plasticity. Clearly, this is still an active

area of research and there is a knowledge gap between the plasticity studies of

neural dynamics and the use of HD-MEAs. Due to the high spatial and tem-

poral resolution ability of such HD-MEAs, pre-processing and analysis of the

recording is a major challenge. Closely spaced electrodes on HD-MEAs intro-

duce over-lapping signals and the same signal may be detected from multiple

electrodes. The challenge lies in pre-processing such raw voltage trace recordings

into reliable spiking events for further analysis, for example analysis that under-

pins plasticity, network synchrony and connectivity. Hence, it is critical that the

data are processed correctly to avoid misleading results down the data analysis

pipeline. Thirdly, accurate inference of network connectivity of an evolving neu-

ronal culture enables visualisation of the evolution of network interaction during

controlled plasticity studies. The connectivity inference of a dynamical system

such as a dissociated neuronal culture has to rely on surrogate methods due to

the ever changing nature of such a system, where multiple trials are not always

possible. A small number of surrogate methods exist for generating statistically

relevant data that could enable accurate measurement of statistical significance

of the inferred connectivity.

The work presented in this thesis aims to utilise state-of-the-art CMOS based

MEAs to study neuronal dynamics, focused on plasticity and network connectiv-

ity. To achieve the goal, several objectives are established.

• Development of methods to successfully maintain dissociated neuronal cul-

tures, grown on the state-of-the-art CMOS based MEAs, for a prolonged

period of time(upto 4 weeks at least).

• Characterisation of electrophysiological properties of spontaneous activity

and design criteria to select cultures that are responsive to stimulation that

could potentially induce plasticity.

• Development of stimulation protocols to demonstrate a long term network

response change, symptomatic of network plasticity, and study network

dynamics before and after the stimulation.
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• Quantification of network connectivity using an information theoretic ap-

proach and the development of a novel non-parametric surrogate test to

identify statistically significant connections from the experimental record-

ings.
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Chapter 4

Materials and Methods

4.1 Introduction

In this chapter, details of the cell culture methods on MEAs from cell dissociation

to cell culture maintenance, along with a thorough discussion on preparation of

the MEA chips for cell culture, are presented(see Section 4.2). Details on the

equipment used and reagents required are listed as well. The experimental setup

for electrophysiological measurements and electrical stimulation parameters to

evoke network responses are also presented (see Section 4.3.1). The later half of

the chapter discusses basic computational tools used to process the raw electro-

physiological recordings into discernible spike trains. New tools and algorithms

developed during the thesis period are covered in subsequent chapters.
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4.2 Cell culture

4.2.1 Cell preparation

Cell cultures were prepared following the methods based on [171]. Hippocampal

tissues were obtained from BrainBits UK (now BrainBits USA), from rat embryos

at 18 days of gestation(E18) from Sprague Dawley rat. BrainBits dissected the

rat brain to extract a pair of intact hippocampal tissues which were delivered

within 1-2 days at 4◦C. The tissues were delivered in 2 ml of Hibernate EB(HEB;

Hibernate E/B27/GlutaMAX; BrainBits HEB 500 ml).

After receiving the tissues, they were dissociated in a cell dissociation solution.

The cell dissociation solution was prepared by dissolving 6 mg of sterile papain

(BrainBits PAP 6mg) in 3 ml of Hibernate E-Ca(HE-Ca) without B27 for a final

working concentration of 2 mg/ml papain. The solution was incubated for 10

minutes in a 30◦C water bath to dissolve and mix completely. The solution was

then cooled down for 10 mins in an ice bath. A fire polished 9” silanised pasteur

pipette with an opening of ≈0.5 mm was used to disperse the tissues. With

a pasteur pipette, the tissues were transferred with minimal HEB into the cell

dissociation solution vial. The solution was then incubated for 10 min at 30◦C.

The vial was gently swirled halfway through the incubation period to allow for

thorough cell dissociation. The tissues were again transferred back to the HEB

medium with the pasteur pipette from the cell dissociation solution. After this,

the tissues were triturated with a silanised pasteur pipette for about 1 min (90%

tissue dispersal) avoiding air bubbles. The remaining undispersed tissue pieces

were left to settle for about 1 min. The supernatant containing dispersed cells

were transferred to a 15 ml tube leaving ≈ 50 µl of HEB solution containing

debris. The dispersed cell solution was then spun at 1100 rpm(200xG) for 1 min.

During centrifugation, cells are pushed to the bottom of the tube forming a pellet

of cells. The supernatant was discarded leaving the pellet with ≈ 50 µl of the

solution. The pellet was dispersed with a flick at the bottom of the tube and re-

suspended in 1 ml growth medium. To measure the cell concentration, the cells

were counted using an automated haemocytometer which calculates cells/ml. For

counting cells, 20 µl of cell solution was mixed with 20 µl of Trypan Blue. From a
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pair of hippocampal tissues the cell extracted were within the range of 1-2 million

cells per ml. The cells were diluted to the desired concentration for seeding on

different substrates. All steps were performed inside a sterile laminar flow hood.

4.2.2 Cleaning of MEAs

3Brain MEAs, also referred to as BioChips, are not glass substrates but CMOS

based substrates. In order to preserve the functionality and integrity of the

BioChips, it is paramount that the MEAs are cleaned thoroughly in a manner

that does not damage either the electrodes or underlying circuitry. Intensive

care is practiced while handling the chips because the MEA area can be very

easily damaged. Touching the active area of the BioChips with a finger or any

object such as metal can easily damage the electrodes. Latex gloves were worn

at all times while handling the chips. To mechanically clean debris from the

electrodes, a soft paintbrush was used to gently wash the chip with sterile water.

The BioChip has different sections which require different procedures to clean

and sterilise. The cleaning procedure of the MEA chips is summarised below:

• Firstly, the chip area needs to be in a pristine condition without any debris

or damage before sterilising and coating. The active area of the chip can be

inspected with an upright microscope before proceeding with sterilisation.

Chips that were stored in dry conditions for a long time were re-hydrated

for 1-2 hours by filling the chambers with Double Distilled Water (DDW) .

• After re-hydration and after making sure the chip area was in pristine con-

dition, sterilisation was done. Autoclaving and UV-lights sterilisation were

not recommended as these steps could cause the glue in the chips to deterio-

rate, decreasing the lifetime of the chip. Ethanol sterilisation was performed

by completely filling the well chamber of the chips with 70% ethanol for 20

minutes. A longer or higher concentration of ethanol was avoided as these

could affect the functionality of the chips. To ensure a higher level of sterili-

sation, the outside of the chamber well was wiped with tissue soaked in pure

ethanol. After 20 minutes, the chamber was abundantly rinsed with sterile

DDW and dried under laminar flow hood in a sterile petri dish. Coating

was performed after the well had dried completely.
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Figure 4.1: General cleaning steps of 3Brain MEAs. The active area of the chip
can be cleaned with a soft paint brush and rinsed with DDW.

• After the experiments, it is very important to clean the chips immediately

since the cell debris can harden and become difficult to get rid of, or worse,

damage the chips. The chips can be rinsed with DDW to get rid of most

of the cell debris. For strongly attached debris, the chamber was filled with

strongly diluted enzyme active powered detergent, Alconox Tergazyme, for

2 minutes. The solution was then rinsed with DDW. The chips were visually

inspected to check for debris. For mechanical cleaning of further debris, the

active area of the chip was gently cleaned with a soft brush and rinsed

abundantly with DDW. The process was repeated as necessary until the

chip area was pristine. The chips were then dried under the laminar hood

and stored in a sealed package in dry conditions. The general steps of the

cleaning process are illustrated in Figure 4.1.
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Figure 4.2: Hydrophobicity and hydrophilicity effect on cell culture substrate.
Hydrophobic surface has high contact angle(θ) resulting in poor wettabil-
ity,adhesiveness and cell viability. Hydrophilic surface on the other hand has
better wettability, adhesiveness and cell viability

4.2.3 MEA surface coating

Before proceeding with the coating factors, the chip’s chamber was filled with

sterile growth medium, NbActive 4 (BrainBits), which is composed of Neu-

robasal/B27 along with additional supplements - creatine, estrogen and choles-

terol, used to grow the neurons and incubated for 48 hours. On the following day,

the medium was aspirated and dried completely without any rinsing with sterile

DDW. Incubating the medium on the chips before coating has been shown to

increase hydrophilicity of the MEAs and hence better wettability, cell adhesion

and better cell viability. Also, medium incubation preconditions the chip for cell

culture. As shown in Figure 4.2, a droplet covers more substrate area on a hy-

drophilic surface and better wettability allows for cells to adhere better on these

surfaces in comparison to a hydrophobic surface.

Two different types of coating factors were used as recommended by 3Brain

- a single layer of poly-d-lysine(PDL) and double layer coating with PDL and

laminin. For a single layer of PDL, the active area of the MEA chip was coated

with a drop(≈ 100µl) of poly-d-lysine (Sigma P-6407) at 0.1 mg/ml dissolved in

sterile DDW and incubated (37◦C,65% humidity,5%CO2) overnight. For double

layered coating, the active area of the chip was coated with a drop(≈ 100µl) of

laminin (Sigma L-2020) at 0.1 mg/ml dissolved in sterile DDW for 3-5 hours.

The drop was then removed without rinsing and the surface was coated again a

drop of PDL and incubated overnight.
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On the following day, regardless of the coating used, the active area was gently

rinsed three times with sterile DDW and dried under a sterile laminar flow hood.

Once dry, the cells were seeded immediately on the treated surface.

4.2.4 Seeding and maintenance of neuronal cultures

After the cells were dissociated following the steps in Section 4.2.1, the cell con-

centration was diluted to about 1000 cells/µl. 80,000 cells were seeded onto the

3Brain Stimulo MEA chip which was precoated with coating factors, with an

80µl droplet. This was left to settle for 1-2 hours in the incubator. The chips

were placed inside a sterile petridish. Due to fast evaporation rate and the small

volume of the medium, the pH level of the medium may change quite drastically

and quickly. It is important that the excess evaporation is brought under control

so that the initial seeding can have enough time for the cells to settle and attach

on the surface without dying. A custom made humidity chamber (see section

4.2.5) was used for the petridish. This allowed for the culture to settle down

well without a drastic change in pH level due to evaporation. After 1-2 hours of

initial settling, 1.5 ml of complete growth media(NbActive4) was added gently

without disturbing the cells. 25 µM glutamate was added to the medium for

the first 4 days to promote cell survival after the seeding and was omitted after

that. The culture was incubated at 37◦C, 5% CO2 and 65% humidity. Half of the

medium was changed every 4 days. The humidity chamber was used all through-

out the culture period to maintain a steady pH level and controlled evaporation.

After 2-3 weeks, the culture becomes mature enough to exhibit electrophysio-

logical activities. The electrophysiological activities were recorded from day 21

onward. Similarly, the cells were also seeded onto 24 well plates for comparison

and monitoring.

4.2.5 Custom humidity chamber

A custom made additional humidity chamber was used to control excess evap-

oration. It was found that the cultures were not stable without the humidity

chamber and were at risk of excess evaporation and subsequent low cell viabil-

ity. After using the humidity chamber, the evaporation rate was consistent and
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Figure 4.3: Custom made humidity chamber for cell cultures on MEAs.

resulted in more stable cultures without unexplained overnight cell deaths.

A 1ml pipette tip box was used as a humidity chamber. The box was first

emptied and sterilised in the autoclave. During autoclaving, the box was placed

inside a sealable bag to avoid contamination after sterilisation. After autoclaving,

the box was taken from the sealed bag inside the sterile hood and wiped through-

out with pure ethanol. 5ml of 70% ethanol was filled inside the box and left for

20 minutes for further sterilisation. The humidity chamber was then rinsed with

sterile DDW for 3-5 times and left to dry. The chamber was then filled with

5ml of sterile DDW with 5% CuSO4 to avoid fungal contamination. Figure 4.3

shows MEA chips in the petridish which then goes into the humidity chamber

for incubation. The lid of the humidity chamber is not airtight which allows for

the flow of gases necessary for the neuronal culture. The humidity box serves as

a humidity chamber inside the incubator which also has controlled humidity to

avoid any chances of excess evaporation. During early seeding of the cells before

adding complete growth medium, evaporation rate was found to be critical as

any slight changes in pH was enough to kill cells.
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4.2.6 Cell viability assay

Lactate dehydrogenase (LDH) is a cytosolic enzyme that is released into the

cell culture medium upon cell damage to the plasma membrane. LDH release

assay is a cell cytotoxicity assay to asses the level of cell damage in culture.

The cell deaths are directly manifested as increased level of LDH release. Since

culture supernatant is used to take measurements, the assay allows to measure

cytotoxicity at various time points without affecting the culture .

The LDH assay was performed at required time points (every2-4 days) ac-

cording to manufacturer’s protocols (Thermofisher Scientific). 50µl of culture

supernatant was transferred to a 96 well plate. 50µl of LDH reaction mix was

added to 50µl aliquots and incubated for 30 minutes. 50µl of blocking solution

was then added to stop the reaction. After that, BMG Labtech Clariostar plate

reader at 490nm was used to measure absorbance.

Biochips, on average, showed higher cell deaths but due to the unfavourable

growth surface on MEAs in comparison to treated plastic well plates, slightly

higher cell deaths was anticipated. Since two thirds of growth medium was re-

placed with fresh growth medium at every medium change, the LDH release in

the supernatant was brought down at every medium change due to removal of old

medium. Figure 4.4 shows absorbance values displayed as Optical Density(OD)
1) for three biochips and well plates along with a control culture without any

cells. The biochips and the well plates showed similar cell deaths trackable over

days.

Cultures with significantly higher cell deaths during this stage were visually

inspected and monitored. If the cell deaths kept increasing, the samples were

discarded due to unexpected cell deaths and hence the reliability issues. After 2

weeks, neurite extensions start to mature and start to become visible under the

microscope with an external light. After week 2-3, electrical characterisations

was performed as the culture matured to exhibit strong enough electrical signals.

1 In spectroscopy, OD is the measure of absorbance, defined as the ratio of light intensity
falling on a material and the intensity transmitted.
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Figure 4.4: LDH release from different samples measured as absorption at 490nm
expressed in OD(optical density)

4.2.7 Immunofluorescence staining and imaging

For glass based transparent substrate MEAs, imaging is no different than imaging

a well plate or a tissue culture flask. However, the 3Brain MEAs are CMOS

based and opaque in nature which makes it much more challenging to image

the cultures. Only upright microscopes with a light source coming from the top

are able to image the growth on such MEAs. An Olympus BX51 was used to

image the fluorescence images of neuronal cultures on MEAs as shown in Figure

4.5. For neuronal cultures on well plates, brightfield images were taken via an

inverted microscope and the fluorescence images were taken with a Leica TCS

SP5 confocal microscope.

Immunofluorescence staining of neuronal cultures for both MEA cultures and

well plates were performed in a similar manner. The staining process was done

at the end point of the experiment because the process itself requires killing and

fixing the cells before staining. The immunofluorescence staining of the cultures

was performed following the protocol listed below:

1. Fixing

65



4. Materials and methods

Figure 4.5: Upright Olympus BX51 fluorescent microscope used for imaging neu-
ronal cultures grown on 3Brain MEAs.

After the culture was ready for imaging, a cell monolayer was fixed for

10 min at room temperature in formalin (4% w/v paraformaldehyde in

phosphate buffer saline(PBS) )

After this, the fixative was removed and the monolayer was rinsed 3 times

for 2 mins with Tris buffered saline(TBS) or PBS at room temp.

2. Staining

(a) Remaining lipids from the cells were extracted by incubating the wells

(both well plates and MEAs) in 2ml Tween-20/TBS (0.05%v/v) for

10 min.

(b) Non-specific binding sites were blocked by incubating the monolayer

with 2ml of 3%(w/v) BSA in TBS for 1hr at room temperature.

(c) Fixed cell monolayer was incubated in primary antibody (anti-MAP2)
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. 0.5 ml of primary antibody(1:100) diluted in 3%(w/v) BSA in TBS

was added into the well and incubated overnight at 4◦C.

(d) The following day the well was washed 3 times for 2 min in TBS.

(for null primary, primary antibody was skipped by skipping the previ-

ous step. Also the blocking solution need not be washed with PBS)

(e) The monolayer was incubated in 1 ml fluorescently labelled secondary

antibody (eg. Alexa Fluor Plus 488 anti Goat Ig) for 1.5-2 h at room

temp in dark.

(f) The well was washed 3 times for 2 mins in TBS.

(g) To avoid fading of the fluorescent dyes, the well was covered with a

drop of antifade mountant with DAPI (4’,6-diamidino-2-phenylindole)

which stains the nucleus of the cells.

3. Imaging

The stained samples were then imaged by either upright fluorescence micro-

scope (MEA chips) or confocal microscope (well plates). For MEA chips,

appropriate fluorescence light was selected from the microscope to shine

on the samples, and reflected light from the stained neurite structures was

imaged to obtain a fluorescence image. Due to the opaque nature of the

samples, reflected light signals are rather weak. Further image processing

was performed in ImageJ.

Figure 4.6(A)(B) shows a brightfield image of a neuronal culture on a plastic

well plate 3 hours after seeding and at day 7 respectively. Within a week, the

culture has self assembled into a highly interconnected network. Figure 4.6(C)

shows a fluorescence image of the neuronal culture on 3Brain MEAs stained

with antibody to MAP2. MAP2 isoforms are expressed only in neuronal cells,

especially in cell body and neuronal dendrites. The branch like structures are

dendrites - indicating an evenly distributed and highly interconnected network.

The black squares in the background are the actual recording electrodes of the

MEAs.

The cell culture reagents/chemicals used for the experiments are listed in

Table 4.1.
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Figure 4.6: (A) Brightfield image of hippocampal culture on a well plate after 3
hours of seeding. (B) Brightfield image of hippocampal culture on well plate at
day 7 showing highly interconnected network. (C) MAP2 (Microtubule-associated
protein 2) stained fluorescence image of hippocampal culture on CMOS MEAs
at day 25. The black squares in the background are the recording electrodes of
the MEAs.

4.3 Electrophysiology

It is particularly difficult to find exact stimulation parameters that guarantee

specific network responses in neuronal cultures, since, as well as being a dynami-

cal system, each culture is different and always evolving. Experiments were con-

ducted with different stimulation frequencies and repetition that is strong enough

to induce some network responses but not too strong to cause network saturation

and excitotoxicity - a pathological process by which neurons are damaged due to

overactivations of the receptors for the excitatory neurotransmitters.

After 2-3 weeks, the culture becomes mature enough to exhibit discernible

electrical signals. Hence, recordings were done after week 3. Since it is typical

of a hippocampal culture to exhibit spontaneously firing behaviour, spontaneous

firing was firstly recorded as a base recording before evaluating changes arising

from stimulation. All the recordings were done inside a sterile laminar hood.
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Table 4.1: List of cell culture materials

Materials Company Catalog num-
ber

NbActive4 BrainBits LLC Nb4-500

Laminin Sigma L2020-1MG

Poly-d-lysine Sigma P6407 5MG

Peirce LDH kit Life Technologies 88953

Boric Acid Sigma B6768-500G

Sodium Tetraborate Sigma 221732-100G

Trypsin Fisher Scientific 25050-014

Glultamax-I Fisher Scientific 35050038

Terg-A-Zyme Sigma Z273287-1EA

HBSS Fisher Scientific 15266355

PBS Sigma D8537-1L

3Brain MEAs 3Brain AG -

BioCam acquisition system 3Brain AG -

The 3Brain BioCamX device was sterilised by wiping with tissue soaked in 70%

ethanol before proceeding with the recording. The reference electrode was wiped

with pure ethanol and let to dry. The MEA chips were closed with a 3D printed

chip cover to avoid interference from light in the activity of the neurons. Figure

4.7 illustrates the setup of the electrophysiological recording where the whole

BioCamX device is placed inside the laminar hood for sterility. The chips are

outside the incubator so a prolonged duration of recording is damaging to the

culture. Hence, the recordings were only performed for 5 minutes at each time.

4.3.1 Electrical stimulation

As a starting point, stimulation parameters described by [11] were selected. This

is a biphasic stimulation - 600µs in duration, amplitude tuned between 200− 600

µA. Afterwards, for the experimental culture stimulation parameters were fine

tuned as a biphasic signal with 500µs in duration, amplitude of 500µA with

interphase delay of 100µS, as shown in Figure 4.8.

The other parameters of importance are the stimulation frequency and repe-

tition. The spontaneous firing of the culture is recorded at different time points
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Figure 4.7: Electrophysiological setup with 3Brain MEA.

- before and after applying stimulation, as shown in Table 4.2.

The general idea was to record spontaneous firing before any stimulation, and

then apply repeated stimulation to the culture and record post stimulation spon-

taneous firing at different time points as shown in Table 4.2, i.e. immediately

after stimulation, after 30mins of stimulation, after 1hr/2hr/3hrs of stimulation

consequently. The process was repeated again the next day as well. This en-

abled observation of network dynamics immediately after stimulation and how it

changes with time. The stimulation methodology is further discussed in detail in

Chapter 7.4

After recording at different time points, spikes were detected from raw voltage

traces and burst detection was conducted to identify bursting events. Bursting are

defined as period of high frequency firing of a neuron separated by silent periods.

Bursting behaviour has been associated with a range of neuronal processes, such
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Figure 4.8: Biphasic stimulation with interphase delay

as efficient information processing and formation of functional networks [172].

Hence, the bursting rate was also considered rather than just the mean firing

rate.

4.4 Data analytics

Earlier studies assumed that information is encoded in the rate of the spikes

[57–59], a process also known as rate coding. However, it later became evident

that rate coding cannot explain encoded information for complex behaviours and

timing of the spikes plays a key role in encoding information [60–62]. Hence,

temporal analysis of the spike train is a valuable process that helps to provide
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Table 4.2: Stimulation and recording protocols.

Stimulation experiments and recording time points
Spontaneous Stimulation Post stimulation Poststim after

30mins/1hr/2hr/3hr
5 minutes 2Hz/5Hz, 10 repeti-

tion every 10/20 secs
for 5 mins / single or
multi channel stimula-
tion

5 minutes spont 5 minutes spont

greater insight into the neural code and allows for improved understanding of

brain information processing.

Figure 4.9 shows a simplified illustration of the pipeline from raw voltage

traces from MEA chips into single spike signals from each electrode after spike

detection on the channel signals.

4.4.1 Spike detection

Neuronal responses are recorded by electrodes placed on the region of interest for

both in vivo and in vitro experiments as a time series of voltage fluctuations. The

recorded signals are subject to noise and interference from neighboring electrodes.

Recorded signals need to be accurately identified with spiking events to reduce

the voltage readings into appropriately sequenced point processes which are es-

sentially spike trains. These spike trains are prerequisites for further analysis and

inference. Due to the typical large volume of data, a spike detection algorithm

has to be highly efficient and fast to process such large datasets and detect true

spiking events successfully [63].

In HD-MEA recordings, the signals are most likely to be recorded by multiple

channels due to the closely spaced electrodes which causes signal overlapping and

waveform assignment problems. However, this redundancy can be exploited to

improve the signal to noise (SNR) ratio and hence spike detection [64,65].

Conventional thresholding-based event detection on high density recording

does not provide sufficient information to reliably detect true spikes; furthermore
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Figure 4.9: Processing of raw voltage traces into different statistical and spike
sorting analysis

single unit identification and isolation is not possible for dense recordings. Ac-

cordingly, an interpolation spike detection method optimised for HD-MEA data

to detect events in close electrodes successfully discarding most of the background

noise and false activities, which was developed by Muthmann et al [63] was im-

plemented for spike detection in this thesis.

The interpolation method uses voltage traces from five neighboring channels

which are weighted with a relatively stronger weight for the central channel than

the four surrounding channels. These weighted signals were then averaged and

assigned to the central channel as a new signal, as shown in Figure 4.10. A

lower threshold was employed to capture all the possible events and reduce the

probability of false negatives. Upon successful spike detection, the spike times

were stored for each channel which were then processed using custom scripts

written in Python3 to generate spike trains and conduct further analysis.
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Figure 4.10: Five channel interpolation illustration adapted from [63]

4.4.2 Raster plot

A raster plot is the simplest analysis which basically shows all the spiking activity

from selected channels against time. Each dot in a raster plot is a spiking event

and the Y-axis shows channels (Figure 4.11).

Custom Python scripts were written to process spike trains generated after

the spike detection. The spike trains were recorded into a *.txt file with only

the spike times, as shown in Figure 4.12 where each number is a timestamp in

milliseconds. The time represents spiking events at that point in time.

The raster plot itself provides a good visual indication into how the population

of neurons are firing over time. For example, the general overview may indicate

pulsating behaviour of the neuronal population. However, upon closer inspection

into a smaller time window, for this example, as shown in Fig. 4.11(B)(C), the

firing is more sparse in nature without clear intuitive or numerically quantified

indications of the extent of the synchronisation. This is the extent of neural infor-

mation one can infer from the raster plot. Hence, quantifiable and mathematically

sound metrics are required to further analyse the spike data such as neural syn-

chrony metrics and quantifiable causal interactions, which will be discussed in

the coming chapters.
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Figure 4.11: Spontaneous synchronous bursting of dissociated neuronal hip-
pocampal culture at 32 DIV. (A) Raster plot of all 4096 electrodes/channels over
a 5 second period (B) Zoomed section from 500 − 700 ms (C) Zoomed section
from 3900− 4100 ms

Figure 4.12: Spikes stored as spike times in text a text file where each row is
a different spike train with numbers representing each spike event time for that
spike train.
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Figure 4.13: Illustration of interspike interval of a spike train.

4.4.3 First order statistics

In addition to the raster plot, statistical analysis helps to provide better insights

into the dynamics of the neuronal population. Some of the most popular spike

train statistics are the interspike interval histogram (ISIH) and the peri/post

stimulus time histogram (PSTH) which provide a general overview of the dy-

namics of the population of the neuronal culture. The timestamps obtained from

after spike detection were further processed with custom algorithms to perform

first order statistical analysis such as firing rate, ISIH and PSTH.

4.4.3.1 InterSpike interval histogram

An interspike interval is the time interval between two consecutive spikes as il-

lustrated in Figure 4.13. These distances are measured for all the consecutive

spikes of all the spike trains from all the channels, and the distances are collated

to get a histogram. The density estimation shows a specific kind of distribution

which is similar to a γ distribution (Figure 4.14). The distribution reveals infor-

mation about the firing dynamics of the neural population. Due to the refractory

period of a neuron, neurons cannot repetitively fire instantly - there exists a rest-

ing period of 5-10 ms. Hence, the peak of the density estimation is expected to

be around 10-100 ms. This helps to validate the spike detection algorithm in a

broader sense. Since most of the firing happens within a window of 10-100 ms, as

hypothesised by Donald Hebb [69], neurons firing within 40 ms of the last spike

are more likely to have contributed to that firing, hence leading to strengthening

of the synapses leading to long term potentiation. With that logic, it may be

observed that most of the neuron responses are highly correlated, as most of the
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Figure 4.14: ISI Histogram with density estimation

Figure 4.15: PSTH with bin size of 50 ms

subsequent spikes are within a 10-100ms window.

4.4.3.2 Peri/Post stimulus time histogram

PSTH is a histogram of neuron firing at a given time bin. A time bin is a small

time interval in the time line. PSTH helps to monitor firing rate changes at

different moments in time(Figure 4.15), before or after the onset of stimulation.

During experiments involved with inducing a desired response with electrical

stimuli, the PSTH shows how the firing rate is changing with stimulation and

whether the changes are retained after the stimulation - which provides a bird’s

eye view of the network level dynamics.
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4.4.4 Neural synchrony

Spike train synchrony estimation of neuronal cultures provides valuable insights

into firing patterns of neurons in terms of degree of similarity or dissimilarity.

These estimations have proven to be a useful tool in neuroscience since syn-

chrony in neuronal networks is thought to be related to cognitive processes, sen-

sory awareness, learning and neurological disorders. Many mathematical metrics

have been developed to quantify spike train synchrony in terms of similarity or

dissimilarity between spike trains [173–178]. The Victor-Pupura metric [173] is

one of the most widely used metrics to measure spike train distances. This metric

calculates the cost for transformation of one spike train to another with three ba-

sic operations; spike insertion, spike deletion and spike shifting. Another metric

which measures the euclidean distance between two given spikes was proposed by

van Rossum [174], while Schreiber et al [176] suggested utilising cross correlation

of spike trains after filtering. All these methods require one cost parameter and

are time-dependent. A parameter free and time-scale independent metric called

Interspike Interval Distance (ISI-Distance) which is based on the relative length

of ISIs was proposed in [177]. The ISI-distance quantifies spike train similarities

in terms of firing rate profiles but fails to keep track of synchrony caused by tim-

ing of the spikes or coincident spikes. Hence, another metric was proposed [178]

which inherits the parameter free and time-scale independent properties of the

ISI-distance but gives special attention to the timing of the spikes to measure

synchrony. These metrics are very useful when raster plots become difficult to in-

terpret visually, or when greater insight into the overall dynamics among different

groups of spike trains is needed.

4.4.5 System and software used

The analyses were performed using an Intel Xeon(R) CPU E5-2640 v3 @ 2.60GHz

x 16 running Ubuntu 18.04.3 LTS. Computationally heavy tasks were run re-

motely on the research group’s small cluster, an Intel(R) Xeon(R) Gold 6140

CPU @ 2.30GHz x 72, utilising all 72 cores in parallel. The majority of the spike

analysis such as pre-processing, spike detection, spike sorting, burst analysis, con-

nectivity visualisation etc were done with PYTHON version 3.x. HDF5 (Hierar-
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chical Data Format) was used to store the raw voltage recordings. The HDF file

system is a file format designed for the management of extremely large and com-

plex data collections. Transfer entropy calculations and ROC analysis were done

using MATLAB R2018b. Statistical analysis were done using PYTHON SciPy li-

brary and with SPSS. ImageJ was used for image processing and the open-source

package Libre Draw was used to draw illustrations. LATEXwith Texmaker editor

was used for writing up all documents.

4.5 Conclusion

This chapter described the general methodology and analyses used for the the-

sis work. Many of these methods were utilised to achieve the results presented

in subsequent chapters. Chapters focused on computational contributions (see

Chapters 5,6) also have a dedicated methods section which are elaborated on the

methodology for that particular chapter. Similarly, further specific details on the

stimulation protocols are discussed in Chapter 7.
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Chapter 5

Network Synchrony Analysis

In this chapter, mathematical metrics to quantify neuronal synchrony, which are

based on the temporal interactions between groups of neurons, are discussed.

The chapter discusses the main contribution of demonstrating methods to utilise

synchrony metrics to evaluate synchrony changes in experimental data, such as

HD-MEA recordings, which is the subject of this thesis. A thorough validation of

the method utilising synthetic data is first presented (Section 5.3.1) followed by

application onto real experimental data (Section 5.3.2). It is demonstrated that,

despite the significant size of the datasets, the approaches are effective in iden-

tifying and quantifying interesting bursting or change in spike train behaviours

which are not always obvious from the raster plot.

The materials presented in this chapter has been previously presented at the

2018 IEEE IJCNN conference and subsequently published in the IEEE proceed-

ings.
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5.1 Introduction

Understanding the mechanics of information processing in the brain is one of the

most interesting and challenging problems in the field of neuroscience. At cellular

level, neurons communicate via short pulses of current, known as ‘action poten-

tials’ or ‘spikes’ [55, 179]. Earlier studies assumed that information is encoded

in the rate of the spikes [57–59], a process also known as rate coding. However,

it later became evident that rate coding cannot explain encoded information for

complex behaviours, and timing of the spikes plays a key role in encoding infor-

mation [60–62]. Hence, temporal analysis of the spike train is a valuable process

that helps to provide greater insight into the neural code and allows for improved

understanding of brain information processing.

With advances in High Density Multi Electrode Arrays (HD-MEAs), more and

more multi-neuronal experimental datasets are available with multiple simulta-

neous spike trains, which are sequences of action potentials [180, 181]. Temporal

analysis of spike trains between neurons is very useful to enable quantification

of similarity or dissimilarity among two or more neurons, which corresponds to

how they correlate with each other at finer timescale. This degree of estimation

is also called spike train synchrony. A measure of similarity or dissimilarity and

temporal correlation of spike trains provides great insights into neuronal response

pattern to different stimulus and the assessment of neural populations in neural

coding [182]. Neuronal synchrony is thought to be related to cognitive processes,

learning, sensory awareness and neurological disorders [183,184].

Many mathematical metrics have been developed to quantify spike train syn-

chrony in terms of similarity or dissimilarity between spike trains characterised

by spike train distances [173–178]. The Victor-Pupura metric [173] is one of the

most widely used metrics to measure spike train distances. This metric calculates

the cost for transformation of one spike train to another with three basic oper-

ations; spike insertion, spike deletion and spike shifting. Another metric which

measures the euclidean distance between two given spikes was proposed by van

Rossum [174], while Schreiber et al [176] suggested utilising cross correlation of

spike trains after filtering. All these methods require one cost parameter and

are time-dependent. A parameter free and time-scale independent metric called
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Interspike Interval Distance (ISI-Distance) which is based on the relative length

of ISIs was proposed in [177]. The ISI-distance quantifies spike train similarities

in terms of firing rate profiles but fails to keep track of synchrony caused by tim-

ing of the spikes or coincident spikes. Hence, another metric was proposed [178]

which inherits the parameter free and time-scale independent properties of the

ISI-distance but gives special attention on the timing of the spikes to measure

synchrony. These metrics are very useful when raster plots become difficult to in-

terpret visually, or when greater insight into the overall dynamics among different

groups of spike trains is needed.

Despite the established importance of spike train synchrony in the under-

standing of neural coding and overall firing relationships among different subsets

of spike trains, spike train synchrony metrics have not been extensively explored

for larger datasets with thousands of spike trains such as typically recorded from

HD-MEA. These metrics are very useful to quantify spike train (dis)similarity

when raster plots from large number of spike trains become difficult to intuitively

infer this information or determine overall dynamics among different groups of

spike trains.

This chapter applies Inter Spike Interval (ISI) and SPIKE-distance analysis

proposed by [177,178] on two different experimental HD-MEA datasets recorded

using the 3Brain MEA acquisition system with 4096 electrodes to characterize and

quantify bursting and oscillating behaviors and to demonstrate how such analysis

is effective in identifying and quantifying various neuronal spiking patterns in

large datasets.

5.2 Methods

5.2.1 Synchrony metrics

This section presents a short description of the metrics to quantify bivariate

(dis)similarity profiles of two spike trains which can then be extended to multi-

variate profiles of multiple spike trains. Let S1 and S2 be two spike trains. The

distance measure is normalised to limit the distance within the range from 0 to
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1.

Distance : S1, S2 → [0, 1] (5.1)

5.2.1.1 ISI-distance

ISI-distance is based on the instantaneous interspike-interval of each spike train.

This metric was derived by Kreuz et al. [177].

Consider two spikes in a spike train, namely a previous spike and a following

spike. For a bivariate ISI-distance, for each spike train n = {x, y} where x is the

first spike train and y is the second spike train. At time t, let the time of the

previous spike be tnP (t),

tnP (t) = max(tnP |tnP ≤ t), (5.2)

and the time of the following spike be tnF (t),

tnF (t) = min(tnF |tnF > t) (5.3)

Figure 5.1 shows sample spike timings and ISI for each spike train. The

interspike-interval is hence given by,

νnISI(t) = tnF (t)− tnP (t) (5.4)

Based on the ISI obtained, the ISI-distance profile I(t) [177] can be calculated

as the instantaneous ratio between νxISI and νyISI ,

I(t) =


νxISI(t)

νyISI(t)
− 1 if νxISI(t) ≤ νyISI(t)

−(
νyISI(t)

νxISI(t)
− 1) otherwise.

(5.5)

With identical ISIs, the ISI-distance value becomes zero. With a faster initial

spike train, the ISI-distance approaches -1 and with a slower initial spike train

the ISI-distance approaches 1, as determined from equation (5.5). Hence, the

similarity or synchrony is represented with a positive value.
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The time averaged ISI-distance computation of any pair of spike trains from

time T0 to time T is,

DI =

∫ T

T0

I(t)dt (5.6)

For multivariate spike trains, the ISI distance(DI) is the average over all pairs

of spike trains < i, j > given by,

DIm =
2

N(N − 1)

∑
<i,j>

I i,jdt, (5.7)

where I i,j is a bivariate ISI-distance between spike train i and j and N is the

total number of spike trains.

This term can be integrated over the desired period to obtain the average

ISI-distance over that period.

Figure 5.1: Illustration of bivariate ISI-distance and SPIKE-distance calculation
with instantaneous time t. The figure shows how the distances are measured
between two spike trains adapted from [185]

5.2.1.2 SPIKE-distance

The ISI-distance is well designed to quantify firing profiles but is not the best

choice to capture the subtlety of synchrony caused by spike timing, specifically
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the occurrence of coinciding spikes among spike trains [178]. This limitation

was addressed in [178] with the inception of a new metric, SPIKE-distance, that

inherits the parameter free, time-scale independence properties of ISI-distance

with special focus on the timing of the spikes. It was further improved in [186].

SPIKE-distance essentially quantifies the dissimilarity profile S(t).

The time difference between the previous and follower spikes is,

∆tP (t) = txP (t)− tyP (t), (5.8)

∆tF (t) = txF (t)− tyF (t), (5.9)

as shown in Figure 5.1. A SPIKE-distance profile computation, S(t), relies

on two preceding spikes, a spike from a first spike train t
(1)
P (t) and a spike from a

second spike train t
(2)
P (t), and two following spikes, a spike from a first spike train

t
(1)
F (t) and a spike from a second spike train t

(2)
F (t). For each spike, the distance

to the nearest spike in the other spike train can be computed as,

∆t
(1)
P (t) = min

i
(|t(1)

P (t)− t(2)
i |), (5.10)

and analogously for ∆t
(2)
P (t), ∆t

(1)
F (t) and ∆t

(2)
F (t).

A local weighting factor, which is the time separation of the spikes from the

current time t, is applied to each time difference from equation (5.8) and equation

(5.9). These weighting factors are expressed as,

X
(n)
P (t) = t− t(n)

P (t), (5.11)

X
(n)
F (t) = t− t(n)

F (t) (5.12)

From Figure 5.1, it is evident that ∆t
(1)
P (t) + ∆t

(2)
P (t) = ν(1)(t), which is the

ISI distance for spike train 1, S1.

Hence, the weighted SPIKE-distance for the first spike train is,

S1(t) =
∆t

(1)
P X

(1)
F (t) + ∆t

(1)
F X

(1)
P (t)

ν(1)(t)
, (5.13)
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and similarly S2(t) gives the expression for the second spike train.

These local spike distances are then weighted with the ISI distances and nor-

malized to get the expression below,

S(t) =
S1(t)ν(2)(t) + S2(t)ν(1)(t)

2 〈ν(n)(t)〉2n
(5.14)

In the spike profile obtained from equation (5.12), the value is bound between

the limits 0 ≤ S(t) ≤ 1. SPIKE-distance becomes 0 for identical spike trains

and approaches 1 for dissimilar spike trains resulting in a positive value for more

asynchronous spike trains.

For multiple spike trains i.e. N ≥ 2, bivariate SPIKE-distances are averaged

over all pairs i.e.,

S(t) =
2

N(N − 1)

∑
<i,j>

Si,j(t), (5.15)

and averaged over a full period, T, of the spike train .

DS =

∫ T

T0

S(t)dt (5.16)

5.2.2 Spike detection

Conventional thresholding-based event detection on high density recording does

not provide sufficient information to reliably detect true spikes; furthermore single

unit identification and isolation is not possible for dense recordings [63]. The

spikes are detected with the interpolation methods described in the Chapter 4.4.1.

5.3 Results

5.3.1 Synthetic data

Synthetic datasets are ideal for initial validation of the methods used. 40 spike

trains of 4000 ms duration corresponding to 40 neurons were artificially generated

[187]. The spike trains vary with time and synchrony, as is evident from the raster
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plot in Figure 5.2. This dataset has highly synchronised neurons for the first 1500

ms followed by asynchronous firings and then a similar repetition.

Figure 5.2: Raster plot of the synthetic data

The ISI-distance and SPIKE-distance metrics were used to analyse spike train

synchrony of these spike trains. The Python based PySpike library was utilised for

numerical calculations of ISI-distance and SPIKE-distance [187]. PySpike utilises

cython implementation which improves computation performance in factors of

100-200 over just Python implementation. In addition, a Python multiprocessing

package is utilised to run multiple calculations concurrently for faster processing.

The multivariate ISI-distance and SPIKE-distance were averaged over all pairs

of spike trains, as given by equation (5.7) and equation (5.15) respectively.

5.3.1.1 Distance Profile

Figure 5.3 shows the multivariate, i.e. averaged over more than two spike train

pairs, ISI-distance and SPIKE-distance profile of the first 10 spike trains from the

group of 40 spike trains shown in Figure 5.2 over time. The first 10 spike trains

are selected arbitrarily. Any group of spike trains that fires in synchrony could

be selected but for this illustration, 10 spike trains are selected for more intuitive

validation.

Considering spike trains from 1 − 10 for the first set of spikes at around 50
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ms, there is a perfect synchronous firing as a single group as evident from the

raster plot in Figure 5.2. These periods of synchrony are reflected by very low

SPIKE-distance values. The ISI-distance also remains low since ISI-distance lacks

sensitivity for coincident events [186] as shown in Figure 5.3. However, this set of

spike trains then fires highly synchronously, but not in perfect unison, as shown

by relatively lower values of SPIKE-distance and the sudden rise and fall in ISI-

distance until about 1500 ms in Figure 5.3. At around 1500 ms the spike trains

fire more randomly without synchrony. This is successfully characterised by a

sudden jump in SPIKE-distance value during the asynchronous firing period and

a complementary drop in ISI-distance. Note that the approach provide numerical

values assigned to the synchrony at each timestamp.

Figure 5.3: Multivariate ISI-distance and SPIKE-distance profile for the the first
10 spike trains.

The values calculated for all spike trains over the full period are shown in

Table 5.1,

Apart from the average profile over time, another useful visualisation method

is to show the pair wise distance between any two spike trains averaged over a

certain period. This shows not just the average dynamics of the population but

also synchrony between any two neurons or spike trains in a given period. Each

spike train pair is represented as an element in an adjacency matrix with the size

equal to the number of spike trains i.e. for N spike trains the matrix is of N ×N
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Table 5.1:
MULTIVARIATE ISI-DISTANCE AND SPIKE-DISTANCE

Metric Max Distance Min Distance Average Distance
ISI-distance 0.3493 0.01422 0.1705

SPIKE-distance 0.2976 0.1491 0.2076

(a) Adjacency matrix showing averaged
ISI-distance over the whole period

(b) Adjacency matrix showing averaged
SPIKE-distance over the whole period

Figure 5.4: Temporally averaged metrics over the whole period[X and Y axis
represent individual spike trains]

size. Figure 5.4 shows the pairwise distance metrics averaged through the whole

period where temporally averaged distances indicates four distinct groups which

are more visible with the SPIKE-distance. A smaller, more focused time window

can reveal synchronous firing during that period hence providing better insights

at any given moment in time or time period.

5.3.1.2 Interesting intervals

The time interval from 0 − 1000 ms and 1500 − 2500 ms are interesting regions

since each reflects high and low synchrony respectively. The ISI-distance and

SPIKE-distance metrics are validated by analysing the whole datasets at these

intervals.

Figure 5.5 shows the change in pairwise synchrony between two different the

time intervals from 0 − 1000 ms and 1500 − 2500 ms. Figure 5.5(b) clearly
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(a) ISI-distance matrix temporally av-
eraged over 0− 1000ms

(b) SPIKE-distance matrix temporally
averaged over 0− 1000ms

(c) ISI-distance matrix temporally av-
eraged over 1500− 2500ms

(d) SPIKE-distance matrix temporally
averaged over 1500− 2500ms

Figure 5.5: ISI-distance and SPIKE-distance matrix at different intervals

shows four different clusters indicated with similar colour. During the interval of

1500 − 2500 ms when the neurons are firing rather asynchronously, there is no

visible clustering among pairs of neurons which is quantified with sparse distance

matrices as visible in Figure 5.5(c)(d). The distance matrices in this interval

show many tiny clusters which represent asynchronous firing.

Similarly, the same time interval is used to calculate ISI-distance shown in Fig-

ure 5.5(a)(c). The subtlety of synchrony caused by spike timing and occurrence

of coincident spikes is demonstrated here. Comparing Figure 5.5(a) and Figure

5.5(b), it is clear that the SPIKE-distance metric represents the high synchrony

among neurons more clearly than the ISI-distance metric. For the 1500 − 2500
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ms time window where neurons fire more randomly, the synchrony does not show

any visible clusters indicating highly asynchronous firing patterns.

5.3.2 Experimental data

Extracellular neuronal recordings from dissociated rat hippocampal at 32 DIV

were provided by Luca Berdondini, NETS3 lab at the Istituto Italiano di Tech-

nologia, and used as the experimental dataset. The recording was performed with

a BioCam platform (3Brain GmbH) using BrainwaveX software at a sampling rate

of 7702 Hz. The raw dataset consists of 5 seconds of spontaneous bursting firing

patterns resulting in 38510 frames.

Spike train synchrony metrics, namely ISI-distance and SPIKE-distance, were

utilised to quantify synchrony and characterize spontaneous bursting behavior of

the experimental recording. The raw dataset was processed using the method

developed by Muthamann et al. [63] for spike detection as mentioned in section

4.4.1. The details from the spike detection are summarised in Table 5.2. Upon

successful detection, the time at which spikes occurred were registered and then

processed to generate complete spike trains from all the recording channels. The

raster plot in Figure 5.6(A) shows spontaneous firing activity from all 4096 chan-

nels organised in synchronous bursts. A corresponding plot of instantaneous mean

firing rate with 50 ms time bin is also shown in Figure 5.7a. The ISI distribution

in Figure 5.7b shows that most of the consecutive spikes take place in the first

100− 200ms.

Table 5.2:
SPIKE DETECTION DETAILS

Channels Frames Samplin Rate Threshold Spikes Detected
4096 38510 7702 600 15759

The raster plot itself provides good insights into how the population of neurons

are firing over time. The general overview indicates pulsating behavior of the

neuronal population at time periods. However, upon closer inspection into a

smaller time window as shown in Figure 5.6(B)(C), the firing is more sparse in

nature without clear intuitive or numerically quantified indications of the extent of
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Figure 5.6: Spontaneous synchronous bursting of dissociated neuronal hippocam-
pal culture at 32 DIV. (A) Raster plot of all 4096 electrodes/channels over 5
seconds period (B) Zoomed section from 500− 700 ms (C) Zoomed section from
3900− 4100 ms

synchronisation. Having a quantifiable metric to measure such synchrony among

all the neurons at any given time can be very useful to characterize and compare

synchronous behaviours of a neuronal culture.

In addition, Figure 5.8 shows bursting behaviour with spatial information

where 4096 electrodes are presented in a 64X64 matrix. This shows the actual

spatial layout of the neuronal culture. The figure shows an inactive period at

around 100 ms followed by bursting firing at around 550 ms; this is also visible

to some extent from the corresponding raster plot in Figure 5.6(A) and Figure

5.7a.

A more detailed analysis to follow is sub divided into three main sections.(1)

Firstly, a multivariate examination i.e. averaged over spike trains, reveals the

overall dynamics of the whole population of neurons. (2) Bivariate distances in-

vestigate each pair of spike trains and quantifies the degree of synchrony between

the two. (3) Finally, a different dataset, seemingly random, is utilised to demon-
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(a) Instantaneous mean firing rate (b) ISI distribution

Figure 5.7: Instantaneous mean firing rate and ISI distribution

Figure 5.8: Voltage reading mapped as heatmap during data acquisition obtained
from BrainWaveX software. Resting or inactive period at 100 ms followed with
bursting firing at 550 ms.

strate how these metrics can reveal interesting information about a neuronal

population from a seemingly random and visually unintuitive raster plot.

5.3.2.1 Multivariate distance profile

At each instance in time(t) the multivariate ISI-distance and SPIKE-distance are

calculated to obtain a multivariate distance profile. Such measures provide an

averaged distance value at each timestamp. Instantaneous measures are then

temporally averaged over the whole time period to get average ISI-distance and

SPIKE-distance measures as shown in Table 5.3.

Figure 5.9 shows the instantaneous ISI-distance and SPIKE-distance profile

averaged over all the spike trains. A corresponding raster plot is also placed

on top of the profiles for comparison. Clearly, the profiles give a much more
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Table 5.3:
Multivariate ISI-distance and SPIKE-distance

Metric Average Distance Max Distance Min Distance
ISI-distance 0.51587 0.66303 0.31061

SPIKE-distance 0.29381 0.31061 0.248148

informative assessment about the synchrony levels of the population compared

to the raster plot. The maxima and minima points are circled in red for the

ISI-distance and the SPIKE-distance respectively. The first 500 ms shows very

little activity resulting in low values for ISI-distance where it reaches its minimum

value. Similarly, SPIKE-distance shows an inverted parabola shape registering

the change in synchrony from the small number of spiking events in this time

interval. Right before the first set of synchronous bursting at 550 ms, the SPIKE-

distance goes to its minimum point since there is no spiking activity. At 550 ms,

there is a burst of spiking events shown by the sudden surge in values of ISI-

distance and also of SPIKE-distance. The ISI-distance decays quickly because as

Figure 5.6(B) shows there are lots of asynchronous firing upon closer observation.

With a quantifiable metric that reports on these synchronous behaviours, one can

make objective evaluation of the neuronal population dynamics.

The following 1500 ms period between (500−2000 ms) shows fluctuating pro-

files. The oscillating firing shows sudden bursts of firing followed by period of

silence and repeat firing. The sample section highlighted in a red rectangle in

Figure 5.9 shows the oscillating behavior of the neuronal culture. This fluctuation

is present throughout the profiles to different degrees. Bursting firing and oscil-

lating behavior is typical behavior for a rat hippocampal in vitro sample [188]. At

around 4000 ms, similar behavior is observed after a long period of silence. The

dynamics look similar to those around 550 ms indicating repetition of a similar

pattern.

An examination of interesting intervals or time points preliminary indicated

from raster plots reveals more localised spike train synchrony at any given moment

in time. Here, the interesting intervals are areas of low activity, high activity and

sparsely firing areas.
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Figure 5.9: Instantaneous multivariate ISI-distance profile and SPIKE-distance
profile

For the purpose of comparing distance metrics at different time periods, t =

{100, 550, 1000, 2000, 3000, 4025} ms are chosen arbitrarily. The multivariate ISI-

distance and SPIKE-distance are calculated at each of these time points and

listed in Table 5.4. The ISI-distance is lowest at 100 ms when there are very few

spiking activities. At 550 ms, the averaged synchrony levels goes to a maximum

with high ISI-distance value: complementary to this, the SPIKE-distance is at

its minimum (disregarding the 100 ms when very little spikes are present).

5.3.2.2 Bivariate distance matrix

In addition to an averaged distance profile, synchrony among any two spike trains

can also be analysed. For larger datasets, the bivariate distance matrix is difficult

to analyse due to the large number of spike trains. However, a subset of the
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Table 5.4: Distance metrics at different times

Time(ms) ISI-distance SPIKE-distance
100 0.47758 0.2775
550 0.65517 0.28083
1000 0.51323 0.30381
2000 0.51258 0.29895
3000 0.53267 0.29403
4025 0.59748 0.28937

dataset can be analysed to inspect the bivariate synchrony level at any given

period of time.

Here, 10 such spike trains are arbitrarily extracted from channels 45 − 54

from 4096 spike trains for bivariate analysis. Bivariate ISI-distance and SPIKE-

distance from all the spike train pairs are calculated and are represented by a

10x10 heatmap matrix. Two time intervals, 540− 560ms and 2000− 2500ms are

selected, which are the regions of high and low synchrony respectively.

In the 540 − 560 ms interval, there are lots of coincident activity. Figure

5.10(b)(c) shows the pair wise synchrony among all the pairs of spike trains. A

similar colour between two or more pairs represents the same level of synchrony.

Figure 5.10 (b) shows a high level of synchrony with higher values of ISI-distance.

However, visible clusters are not apparent from the matrix. There are lots of

coincident events which the ISI-distance metric fails to capture. The SPIKE-

distance is more suitable for identification of coincident spikes and Figure 5.10 (c)

clearly shows one big cluster indicated in the dark blue area. This cluster indicates

that there are 8 spike trains firing with high synchrony. The two yellow regions

were not firing in this interval. Similarly for the next time interval (2000− 2500

ms), many small clusters with different degree of synchrony are observed as shown

in Figure 5.10(d)(e). Similar coloured groups are evidence of synchronous spike

trains. The red highlighted area shows relatively higher degrees of synchrony.

Also, it is evident that the last two spike trains are not active in this interval and

hence show very low degree of synchrony.

Even with very large datasets one can examine such smaller subsets for deeper

pairwise analysis of spike synchrony. However, the selection of the subset depends
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(a) Raster plot of 10 spike trains from channel 45− 54

(b) ISI-distance matrix temporally av-
eraged over 540− 560ms

(c) SPIKE-distance matrix temporally
averaged over 540− 560ms

(d) ISI-distance matrix temporally av-
eraged over 2000− 2500ms

(e) SPIKE-distance matrix temporally
averaged over 2000− 2500ms

Figure 5.10: ISI-distance and SPIKE-distance matrix at different intervals

on the nature of the experiment e.g. stimulus driven experiments.
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5.3.2.3 Randomly firing neural population - Retina Dataset

Not all extracellular HD-MEA recording exhibit oscillatory bursting behavior.

Some recordings are sparse, which makes it very difficult to get any clear infor-

mation about the network dynamics visually from the raster plot.

Extending the analysis, this section briefly shows how quantifiable metrics

make it easier to visualize network synchrony from seemingly random and sparse

firing patterns. An extracellular recording from an acute retinal ganglion cells

recorded from BioCam(3Brain GmbH) with BrainwaveX software obtained from

3Brain provided by the Institute of Neuroscience(ION), Newcastle University, is

used here following the same spike detection methods described in section 5.2.2.

The raster plot of the retina dataset shown in Figure 5.11 shows instanta-

neous firing of 4096 channels over the period of 5000 ms. The raster plot itself

appears to show random behaviour without any visible bursting patterns, as ob-

served with hippocampal cultures. However, upon calculation of ISI-distance and

SPIKE-distance more information on the the dynamics becomes apparent. This

is evident from Figure 5.11(B)(C), where for a time period of 5000 ms, a clear

pattern in synchrony is observable, indicating oscillating behavior similar to the

hippocampal culture. Also, it is much more intuitive to visually track the network

synchrony over time with distance metrics.

5.4 Summary and conclusion

Despite the importance of spike train synchrony in understanding of neural code

being well established, the analysis metrics have not been explored for large high

density datasets with thousands of electrodes. In this paper, the ISI-distance and

SPIKE-distance metrics for spike train synchrony analysis have been applied to

HD-MEA datasets making use of parallel processing and informative selection

of the subset of the dataset to illustrate how these may be used to quantify and

characterize bursting behaviors in large datasets. The metrics used were first vali-

dated with a smaller synthetic dataset that had deliberately incorporated varying

degrees of synchrony. Both bivariate and multivariate analysis were performed.

The analysis on the synthetic data showed a correct number of clusters. The
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5. Network synchrony analysis

Figure 5.11: Instantaneous raster plot of a retinal ganglion cells with ISI-distance
profile and SPIKE-distance profile subsequently.

bivariate distance matrix illustrated these clusters for a high synchrony period

and showed much more smaller cluster during random firing as expected.

Secondly, for the hippocampal experimental dataset, ISI-distance and SPIKE-

distance profile for the whole time period revealed synchrony levels among all

channels over time. High and low synchrony periods were identified, and oscil-

lating patterns with fluctuating synchrony levels revealed.

A bivariate distance matrix for such a large number of channels is not very

insightful. Exploring a small subset of channels instead is useful when looking

at pairwise synchrony. For demonstration purpose, a subset of spike trains from
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5. Network synchrony analysis

channel 45−54 were selected for bivariate analysis. The first interval of 540−560

ms illustrated many coincident spikes which are recorded by the SPIKE-distance

matrix as a big single cluster with high synchrony. In contrast, the ISI-distance

metric fails to capture such coincident spikes resulting in less obvious clustering.

Finally HD-MEA data from a retinal ganglion cells was also utilized to show

how information not observable from the raster plot may be obtained. Upon

calculation of spike train synchrony, the dynamics in terms of averaged spike train

synchrony are more discernible and what seemed like random firings in the raster

plot are identified as fluctuating synchrony. The ability to utilise such metrics

even on large scale experimental biological dataset such as HD-MEA recordings

is invaluable in studying various neuronal properties.
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Chapter 6

Information Theory Based

Connectivity Analysis

6.1 Introduction

In this chapter, an information theory based approach to infer connectivity from

neuronal recordings is presented. The chapter discusses two main contributions

in connectivity inference from neuronal recordings. The first half of the chapter

(Section 6.2) introduces the Transfer Entropy (TE) method for inferring connec-

tivity. The method is validated with a simulated Izhikevich’s network (Section

6.2.3.1) and is then applied to an experimental recording. Due to the lack of

ground truth information, a new method of utilising firing density plot and su-

perimposing it onto the connectivity map is introduced as an alternative to the

ground truth information. The superimposition method shows a good fit between

the density plot and the inferred connectivity (Section 6.2.3.3). The findings of

this section have been published in the 2019 IJCNN conference proceedings [189].

The second half of the chapter (Section 6.3) tackles the issue of lack of ground

truth for real neuronal cultures, by the addition of surrogate data. A new method

of utilising the Inter-Spike Interval (ISI) distribution is presented. Surrogate data

are generated as control data under some null hypothesis to measure the statistical

significance of the connection inferred in the absence of ground truth informa-

tion. The proposed method generates enhanced surrogate data due to variations
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6. Information theory based connectivity

introduced during the sampling process. Section 6.3.3 demonstrates that the

proposed method is able to successfully identify significant connections and also

detect varying degrees of connection strength. Furthermore, ROC analysis shows

a superior performance in comparison to an existing ISI shuffling method.

6.2 Transfer entropy based connectivity

6.2.1 Introduction

Connectivity characterisation of direct and indirect interactions in neuronal cir-

cuits is very useful in understanding neuronal dynamics, connectivity and neural

information processing. The neuronal interactions are typically classified as phys-

ical, functional and effective connectivity [151]. Physical connections are synapses

and gap junctions, correlated interactions between two neurons would represent

a functional connectivity and a causal relationship between two neurons where

firing of one neuron can be predicted based on the firings of another represents

an effective connectivity [15].

The information flow in neuronal assemblies is typically distributed and infer-

ence from physical interconnections limits the understanding of information flow

and the way information could flow. Hence, exploration of effective connectiv-

ity may reveal better insights into information flow and processing. With High

Density (HD)-MEAs, it is now possible to record electrophysiological activities

(action potentials or spikes) from thousands of tightly spaced electrodes at high

temporal resolution. Electrophysiological recordings analysis in combination with

graph theoretic approach and statistical physics have allowed for the inference of

such functional and effective interconnections in neuronal cultures based on the

correlated spiking behaviours [190,191].

To infer a causal relationship between two neurons based on the spike tim-

ings, an information theory based model-free method called ‘Transfer Entropy’

has gained popularity in computational neuroscience [14–17]. Transfer entropy

(TE) is an information theoretic based non-parametric measure of the flow of di-

rected information between two random processes - proposed by Schreiber [160].

Transfer entropy is based on transitional probabilities of spiking events, is asym-
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metric and incorporates both directionality and dynamic information. The TE

method has outperformed many other popular methods such as cross-correlation

(CC) [18], joint entropy [19], mutual information [14,15] to identify connectivity

from simulated networks. However, due to the lack of ground truth connectivity

in real experimental living cultures, it is a challenging problem to differentiate

true connections from spurious connections - even when inferred with a superior

method such as TE. Delayed TE, which incorporates many previous time steps in

the algorithm to take in account axonal delays present in real biological networks,

proposed by Ito [15] has outperformed single delay TE approaches. Hence, the

delayed TE approach was utilised to infer connectivity for this work.

In this section of this chapter, a method of utilising the spatial firing density

plot of HD-MEAs (based on extracellular electrophysiological recordings) on the

original spatial layout as an indicator of the physical connectivity, is presented as

an alternative to the physical ground truth. It is demonstrated that by superim-

posing inferred connectivity based on a graph theoretic approach, one can test if

the connectivity matches the density plot. The rationale for this approach is the

fact that highly interconnected neurons tend to exhibit more firing behaviours

due to more active interactions.

Firstly, a biologically realistic simulation of cortical network that incorpo-

rates biologically plausible axonal delays, synapses and dynamics, to test the

algorithm’s performance, was performed. The connectivity matrix based on the

synaptic weights matrix provides an objective way to compare the performance

of the TE method. Then, the method was applied to real experimental dataset

of spontaneously firing hippocampal culture. The connectivity matrix computed

was based on the delayed TE method and uses the superimposed firing density

plot as a reference.

6.2.2 Materials and methods

6.2.2.1 Transfer Entropy

Transfer Entropy was introduced briefly in Chapter 3 (Section 3.5.2.2), where it

was shown that the original expression for TE [160] between two random pro-
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cesses, I and J (neurons in this scenario) is given as,

TJ→I =
∑

it+1,i
(k)
t ,j

(l)
t

p(it+1, i
(k)
t , j

(l)
t ) log2

p(it+1|i(k)
t , j

(l)
t )

p(jt+1|i(l)t )
(6.1)

p(it+1|it, jt) =
p(it+1, it, jt)

p(it, jt)
(6.2)

p(it+1|it) =
p(it+1, it)

p(it)
(6.3)

where it and jt represent the status of the neurons I and J at time t respec-

tively, which could be 1 or 0 for spike or no spike. it+1 is the the status of the

neuron I at time, t + 1. p is the probability of the status denoted in the paren-

thesis. The parameters k and l denotes the order of the TE; number of time bins

to include from the past. The logarithm with base 2 is used so that the units are

bits.

The conditional probabilities in equation 6.1 can be decomposed into joint

and marginal probabilities as shown in equation 6.2 and equation 6.3.

Due to axonal delays and physical separation, the causal effect of one neuron

may not be apparent in another neuron in the next time step, but might take mul-

tiple time steps. Considering this limitation with the traditional TE method, Ito

et al [15] extended the single delayed TE method with multiple delays to account

for these delayed causal interactions, which leads to a modified TE expression as.

TJ→I =
∑

it+1,i
(k)
t ,j

(l)
t+1−d

p(it+1, i
(k)
t , j

(l)
t+1−d) log2

p(it+1|i(k)
t , j

(l)
t+1−d)

p(jt+1|i(l)t )
(6.4)

where d is the delay or number of previous time steps to include. The rest

of the parameters remain as described in equation 6.1. The algorithm can be

visualised as shown in Figure 6.1 using binned time series of neuron i and j. The

time series of neuron i′ is a back-shifted copy of neuron i by one time bin which

is stacked on top of the other two time series. Each red pixel represents a spiking

event and white pixel represents a silent event. For a given time window of T , for

a delay of one time bin, the algorithm calculates the repetition of three different
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Figure 6.1: Illustration of first-order transfer entropy with a delay of 1 time bin.

patterns from the time series for neurons i′, i, j. A time series represented by

neuron i’ takes into account the past events of neurons i. This delay can be

easily extended with any desirable delay.

Figure 6.2: Illustration of computing the joint and marginal probabilities for TE.
I,J and i’ are neuron i,j and neuron i at time t-1 respectively. 0s are no spike
events and 1s are the spiking events.

To further simplify the illustration of the algorithm, Figure 6.2 shows an

example of how different probabilities can be computed. Once the conditional

probabilities are expanded into joint and marginal probabilities, these joint and

marginal probabilities can be computed as shown in the Figure 6.2 given a certain

time window by counting the patterns for different combination and subsequently

the probability of the occurrence within the given time window.
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6.2.2.2 Simulation model

Before applying the TE method on experimental data, the method was validated

with simulated data, because such simulated data has an empirical ground truth

against which a comparison can be made to assess the accuracy of the inferred

connectivity. The simulation model utilised to test the TE connectivity is based

on Izhikevich’s cortical network model [192] which incorporates biologically real-

istic synapses, delays and dynamics. Due to its biologically plausible properties,

it is an appropriate model on which to test the TE algorithm before moving to

experimental recordings.

The simulated model consists of N=1000 neurons, of which Ne=800 are reg-

ular excitatory spiking neurons and Ni=200 are inhibitory fast spiking neurons.

Full details of the network can found in Appendix A from [192]. The network sim-

ulation configuration is adapted from Ito [15]. The simulation is run on MATLAB

2018b.

Spiking neurons Izhikevich’s neuron model [193] is used to define the intrinsic

neural dynamics which are represented by the following differential equations.

v′ = 0.04v2 + 5v + 140− u+ I (6.5)

u′ = a(bv − u) (6.6)

with auxiliary after-spike resetting

ifv ≥ +30mV, then

{
v ← c

u← u+ d
(6.7)

Here, v and v′ represent the membrane potential and time derivative of the

membrane potential respectively, u is the recovery variable, u′ is the time deriva-

tive of the recovery variable and I represents the total synaptic input into the neu-

ron. Parameters a, b, c, d are adjustable parameters to adjust the firing behaviour

of the neuron, which can exhibit regular spiking (RS), intrinsically bursting (IB)

and fast spiking (FS).
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RS cells were modelled with (a, b, c, d) = (0.02, 0.2,−65, 8) and FS cells were

modelled with (a, b, c, d) = (0.1, 0.2,−65, 2).

After the membrane potential reaches its apex at +30 mV, the membrane

voltage and the recovery variables are reset according to equation (6.7).

Spike-Timing-Dependent Plasticity The synaptic connections are based on

the spike-timing-dependent plasticity (STDP) rule [84]. As per the STDP rule, if

a spike from an excitatory presynaptic neuron arrives at the postsynaptic neuron

and causes it to fire, then the synaptic weight is strengthened and the synaptic

weight is weakened if postsynaptic firing precedes presynaptic firing. STDP has

previously been described in Chapter 3 (Section 3.2.1)

Network Connectivity and Simulation In the simulated network, each neu-

ron has delayed synapses to 100 random other neurons. Excitatory neurons can

be connected to any other neurons while inhibitory are only connected to ex-

citatory neurons. Synaptic connections from excitatory neurons have delays in

the range from 1ms to 20ms whereas connections from inhibitory neurons have

a fixed delay of 1ms. The excitatory synapse weights are in the range from 0

to 10mV and inhibitory synapse weights are set to -5mV. These parameters are

model parameters for mammalian cortical network and were set in Izhikevich’s

network [192].

The simulation was run for 2 hours (simulation time) following Ito’s method-

ology [15]. Spiking neurons were evaluated each millisecond. The spike raster plot

shown in Figure 6.3 shows the spiking behaviour of the network evaluated over

a 1000ms range. STDP was turned off after the first hour and spiking neurons

were recorded for the last 30 minutes sampled, to allow the network to stabilise

after synaptic weights were fixed. The synapse matrix generated after stopping

the STDP was used to generate a connectivity matrix which served as the ground

truth to compare with the connectivity inferred with TE method. 100 random

neurons (80 from 800 excitatory; 20 from 200 inhibitory) were subsampled from

the 1000 neurons for the connectivity analysis.
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Figure 6.3: Raster plot showing rhythmic spiking activities of 1000 Izhikevich
neurons with 800 excitatory neurons and 200 inhibitory neurons. The neurons
are modelled with parameters as discussed in Section 6.2.2.2. As synaptic weights
are evolved due to STDP rules, the rhythmic activities change from slower to
faster rhythms.

6.2.2.3 Cell culture

In addition to the simulated data, a real experimental dataset of a neuronal

culture was used with the TE method to estimate the connectivity.

Hippocampal tissue from E18 Sprague Dawley rat (BrainBits UK, now Brain-

Bits USA) were dissociated to yield approximately 1.5 million viable cells. The

neurons were plated on the CMOS based HD-MEA, BioChip HD-MEA Stimulo,

from 3Brain AG which consists of 4096 recording channels (in a 64 x 64 grid; 21

x 21 µm2, 81µm pitch) and 16 stimulating channels (in 4 x 4 grid; 21 x 21 µm2,

1246µm pitch). BioChips were sterilized in 70% ethanol for 20 min and rinsed

thoroughly with Sterilized Distilled Water (SDW) , then left to air dry under

a laminar hood. The chips were then preconditioned with full culture medium,

NbActive 4 BrainBits), which is composed of Neurobasal/B27 along with addi-

tional supplements - creatine, estrogen and cholesterol. The chips were incubated

for 48 hours. After that, the medium was aspirated and the chips were again left

to air dry under the laminar hood. BioChips were then pre-coated with a double
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coating of laminin for 3 hrs followed by poly-D-lysine (both at 100µg/ml), and

left overnight incubated at 37◦C. After the cells were dissociated, the cell concen-

tration was diluted to about 1000 cells/µl. 80,000 cells were seeded onto the MEA

chips with a 80µl droplet. This was left to settle for 2 3 hours before adding 1.5ml

of complete growth media. The culture was incubated at 37◦C, 5% CO2 and 65%

humidity. Due to the fast evaporation rate, the chips placed inside the petridish

were kept in a sterilized custom plastic box with a loose lid filled with 20 ml of

SDW. This allows for the culture to settle down well without a drastic change

in pH level due to evaporation. 25 µM glutamate was added to the medium

for the first 4 days to promote cell survival after the seeding and was omitted

after that. Half of the medium was changed every 4 days. After 2-3 weeks, the

culture becomes mature enough to exhibit electrophysiological activities. The

electrophysiological activities were recorded at day 25. The raw voltage traces

were recorded at 17.85 kHz sampling frequency and spike events were detected

using the methods as described by this author [39], adapted from [63].

6.2.3 Results and discussions

6.2.3.1 Validation with simulated data

Spike data from the network described in the above Section 6.2.2.2 were recorded

every millisecond from the simulation model performed in MATLAB 2018b and

exported as a CSV(Comma Separated Values) file. The average firing rate was

stable over the whole duration of the simulated network as shown in Figure 6.4.

Gamma oscillations (30Hz) were present as reported in [192]. Due to the STDP

rule for synapse weight updates, synaptic weights tended to converge either to

the maximum i.e. 10mV or the minimum i.e. 0mV over a longer period (typically

after tens of minutes) of simulation.

The spike times extracted for the last 30 minutes of simulation were used

to compute pair wise TE values for all the 100 subsampled neurons. TE values

were computed for three different delays - 10, 20 and 30 time bins, which is the

parameter d in equation 6.2. Peak values of the TE (TEPk) were considered to

infer connectivity. Ito’s method [15] was used to compute the delayed TE values.

To investigate the general trend of TEPk values inferred against the ground
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Figure 6.4: Firing rate for the first 1 hr of simulation activity. Red lines represent
the mean firing rate averaged at 50 ms time bins.

truth synaptic weight, the TEPk values computed were plotted for each pair

against the synaptic weights. Figure 6.5 shows the TEPk value and correspond-

ing ground truth synaptic weight for each pair of neurons in a linear scale. As

evident from Figure 6.5, the TEPk values increase with the synaptic weights in

an exponential manner for the subsampled neurons. The log scale shows a linear

relationship. Only the synaptic weights between 0mV and 10mV are included in

the plot for better visualisation. Most of the connections converge either to the

maximum or minimum - including those weights result in large clutter towards

both ends.

A higher synaptic weight between two neurons represents a higher probability

of effective connectivity which could potentially cause the post synaptic neuron

to fire. TEPk values corresponding with synaptic weights from the same pair

indicate that the inferred connectivity is actually the connection that is present

in the simulation model. However, the plot only shows a general trend and

not an empirical metric to measure the accuracy of the method. Receiver Op-

erating Characteristic (ROC) analysis was performed to calculate the accuracy

performance of the algorithm. Essentially, the problem becomes a classification

problem to classify true connections from spurious connections. ROC analysis
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Figure 6.5: Relationship between in-
ferred connectivity strength with the
synaptic weights. X-axis represents the
synaptic weights and Y-axis shows the
TEPk values.

Figure 6.6: Performance comparison
of effective connectivity estimation
with the transfer entropy. TPR is
plotted against FPR for 10,20 and 30
time bins delay.

provides an objective approach to quantify performance of a binary classifier al-

gorithm [194–196].

After computation of TEPk, the task is to distinguish “True Positive(TP)”

from “True Negative(TN)” and similarly also to identify “False Positives(FP)”

and “False Negatives(FN)” . TP is the case when the algorithm identifies a

connectivity between two neurons, which in fact exists in the model as well. TN

is the case when the algorithm identifies no connection between two neurons,

and in fact there is no connection in the model as well. FP is the case when the

algorithm identifies a connection but in reality there is no connection in the model

for a particular pair of neurons. Similarly, FN is a scenario when an algorithm

identifies no connection between two neurons but there does exist a connection in

the model. TP+FN actually reports total number of true connections identified

by the algorithm and FP+TN reports the total true unconnected pairs.

ROC space analysis is done by plotting true positive rate(TPR) against false

positive rate(FPR) . TPR and FPR are computed as,

TPR =
TP

TP + FN
(6.8)
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FPR =
FP

FP + TN
(6.9)

To analyse the effect of the delay parameter,TEPk values for three different

delays i.e. 10ms, 20ms and 30ms time bins were computed and corresponding

TPR and FPR for each of these delays were plotted. In the model, the axonal

delay is in the range from 1 to 20 ms. Figure 6.6 clearly shows a significant

improvement in performance from 10 to 20 time bins delay which demonstrates

that the delayed TE method is able to capture delayed interactions effectively.

With a delay of 10 time bins, the algorithm misses a lot of delayed interactions

resulting in poor performance whereas with delay of 20 time bins i.e. 20 ms, most

of the delayed interactions are taken into account resulting in a much improved

accuracy. A delay of 30 time bins improves the performance slightly compared to

the 20 time bins, but not significantly. This is presumably due to the fact that

the model has delays in the range of 1-20ms, which is mostly covered by TE delay

of 20 ms.

To measure the performance, it is important to measure the TPR against FPR

at a very low FPR rate. Accordingly, the TPR was measured at a constant FPR

rate of 0.01 which is a very small percentage of FPR so that the performance is

not compromised. For delays of 20 and 30 time bins, the TPR at FPR=0.01 was

measured to be around 82±2% and 84±2% respectively, showing the effectiveness

of the approach.

The delayed TE based method of inferring connectivity is hence accurate

in the range of mid 80th percentile, even for a biologically realistic model of a

spiking neural network. The experiment on the simulated data thus established

the reliability of the method for a realistic network with delays, STDP synapses

and complex interactions. However, real experimental neuronal cultures are far

more difficult to analyse, with complex interactions but without the ground truth

against which the results can be empirically compared.

6.2.3.2 Experimental recordings and neuronal dynamics

Neural activities were recorded from a CMOS based HD-MEA (3Brain AG) from

a spontaneously firing in-vitro hippocampal culture at day 25 when the culture is
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mature so that synaptogenesis and other developmental stages are complete [8].

The activities were recorded for 10 minutes. The first 20 seconds were used to

analyse the connectivity. Spikes were detected utilising the methods discussed in

Chapter 4.4.1 and explained in [39], to generate a spike train for each channel.

After the spikes were detected for each channel, spike times were extracted and

plotted as a raster plot to visualize overall network dynamics.

A raster plot of the activities over the 20 second period is shown in Figure

6.7(A). The raster plot shows general firing behaviour of the whole network with-

out any spatial information. Each dot represents a spiking activity for a channel

at a particular time. Figure 6.7(B) shows the firing activities as colour mapped

voltage changes in both spatial and temporal resolution, showing rich crescendo

like spontaneous bursting of neural activities. The bursting firing repeats spon-

taneously without any stimulation for the whole 10 minutes recording.

In addition, the neuronal cultures from the recording chip were stained to

fix the morphological and topological representation of the culture. The culture

was stained with the MAP2 (Microtubule Associated Protein 2) antibody which

stains the dendritic arborizations. Figure 6.7(C,D) shows fluorescence images of

clusters of neurons and individual neurons respectively.
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Figure 6.7: (A) Raster plot of the hippocampal culture of subsampled 20 seconds from a 10 minute long recording.
The Y-axis is the number of channels i.e.4096 and X-axis is the time in seconds. (B) Spontaneous activity repre-
sentation with a colour map where each pixel represents an electrode laid out in a 64 x 64 grid. (C,D) Fluorescence
image of the neuron cluster and individual neurons on MEAs, respectively.
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6.2.3.3 Connectivity inference

After the spike detection, delayed TE was applied for each pair of spike trains

obtained from the neural recordings to infer the connectivity matrix based on TE

values calculated with each pair. The delayed TE algorithm resulted in a final

matrix of size 4096x4096 that encompassed all the pairs from 4096 electrodes.

Most of the pairwise values were non-zero even if there were no apparent causal

interactions. However, such non causal values were generally very low and filtered

out at a later stage. For the experimental neuronal culture, the mean of the TE

values was observed as 2.11x10e-5 with standard deviation of 8.67x10e-5 as shown

in Table 6.1.

Table 6.1: TE values statistics

Min Max Mean Std
1.08x10e-8 5.4x10e-3 2.11x10e-5 8.6x10e-5

The TE value obtained were generally quite low due to sparsity of the spiking

data. However, even with the lower values, the causal links can be inferred since

the larger values from such lower values indicate stronger causal interactions.

Every experimental model is different with network dynamics unique to that

model so there are no fixed or expected TE values. Due to the presence of

lots of false positive connections, it is important to filter out such false positive

connectivity. Such false positives are prevalent due to synchronised bursting

events, typical of hippocampal cultures, where most of the neurons firing together

which may lead to show positive causal relation even though there are none.

The delayed TE algorithm with a delay of 30 time steps resulted in 44, 864

connections without filtering out false positive connections. Threshold filter-

ing based on standard deviations from the mean value was applied to eliminate

weaker connections which are most likely to represent a false positive connection.

The algorithm only selected connections that fell in the region beyond 10 stan-

dard deviations from the mean value for thresholding to filter out potential false

positives. The selection criteria covered most of the stronger connections while

discarding weaker connections. After applying thresholding, 6, 091 connections

as shown in Figure 6.8 was obtained. The distribution of connections for each
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Figure 6.8: Total connections identified
by delayed TE method and most promi-
nent connections after filtering.

Figure 6.9: Number of connec-
tions identified for each channel

channel is shown in Figure 6.9, laid out in a 2D grid. The spatial 2D grid of

64 x 64 electrodes can be flattened out as 1,...,4096 electrodes where co-ordinate

(0,0) = 1, (0,1) = 2, .... (1,0) = 65 and so on. Figure 6.9 shows a very close

resemblance to the actual firing density plot shown in Figure 6.10(A) indicating

accurate inference of connectivity.

For visualisation a graph theoretic approach [190, 197] was used to generate

a connectivity map. Each channel was considered a node in the graph laid out

in the 64 x 64 grid replicating the spatial layout of the actual recording MEAs.

The TE values calculated for each pair represents an edge which was colour coded

according to the strength of the connection. The TE values were normalised for a

more prominent colour strength. The Python based NetworkX [198] library was

utilised to generate graphs for this work.

The connections were laid out as a spatial layout of the channels to test if the

inferred connectivity would actually match the spatial regions of the most active

firing activities. Figure 6.10(A) shows the firing density over the period of 20

seconds laid out in a spatial grid that corresponds to the MEA layout on which

neurons were grown. The reasoning for using firing density is that the likelihood

of having more or stronger connections at the higher firing density region is also
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Figure 6.10: Estimated connectivity of the neuronal culture based on delayed
TE method superimposed on the spatially laid out firing density. (A) Firing
density laid out in a spatial configuration (B) Connectivity graph inferred after
filtering the weaker connections. (C) Superimposed inferred connectivity onto
the spatially laid out firing density. A zoomed in section is also shown where
each square represents a channel that shows colour coded firing density and the
matching connectivity inferred from these channels.
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higher because a neurons firing depends mostly on the presynaptic inputs from

other neurons. The firing density plot is taken as representative of structural

layout of the network i.e. how neurons are organised on MEAs based on firing

frequency. Figure 6.10(B), shows most of the connections concentrated in the

middle of the MEAs spatial area, with few connections in the periphery.

Upon superimposition of the inferred connectivity on the firing density plot,

it is noted that the inferred connectivity map fits very well on to the firing density

plot, albeit with some exception of false positives and false negatives which are

inevitable for such an estimation of connectivity. The superimposition is shown

in Figure 6.10(C), and a zoomed in section alongside shows that most of the black

dots which are channels with connections fall on the coloured squares which are

the firing density plots for that particular channel. The connectivity inference

was done separately without any structural prior or firing density information.

Even without any prior information, the superimposition showed a reasonably

good correspondence between firing density and connectivity. This demonstrates

that the delayed TE method was in fact able to estimate the connectivity that

matches the structural layout very well. Exploiting the firing density plot as a

baseline proxy of connectivity can thus be very useful since the inference matches

the firing plot. The connectivity can still be refined further based on the firing

density plot and structural prior.
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Figure 6.11: Relationship between firing count and connectivity count
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Furthermore, 50 random channels were sampled from 4096 channels ranging

from low to high connectivity to test the relationship between connectivity infer-

ence and the number of firing events. Figure 6.11 shows that number of firing

count and connectivity count has a positively correlated relationship. The corre-

lation coefficient was calculated to be 0.6692. The general trend of increment of

connectivity of a recording channel with connectivity shows a linear relationship.

This relationship helped us to exploit the information from the firing density plot

and use it to build confidence on the connectivity estimation.

6.2.4 Summary on Superimposition Method

A superimposition method to estimate connectivity from live in-vitro experimen-

tal recordings to test if the estimated connectivity based on delayed TE corre-

sponds to the firing density plot has been presented. The TE method has been

proven to outperform other popular methods such as joint entropy, mutual in-

formation(MI) and cross-correlation(CC) on simulated data [14, 15]. Due to the

presence of delayed interactions among neurons, a delayed TE method to estimate

effective connectivity is a popular choice. Delayed TE incorporates additional de-

layed interactions, for a better estimation of the connectivity.

Firstly, the delayed TE method was validated with a simulation of a bio-

logically plausible cortical network based on [192], with axonal delays, STDP

synapses and realistic network dynamics. The simulation results showed an ac-

curacy in the mid 80th percentile in correctly identifying true connections. Also,

previous results [15] have shown the delayed TE to have a superior performance in

comparison to a more popular cross-correlation(CC) method. Hence, this method

to estimate effective connectivity from an experimental living neuronal network

was chosen.

Unlike simulated data where the ground truth connectivity is available against

which the estimated connectivity can be compared, experimental data lacks this

information making distinguishing true from spurious connections a difficult prob-

lem. To tackle this problem, a superimposition method was proposed where the

estimated connectivity is superimposed onto the firing density plot to test if the

estimated connectivity would correspond with the firing density plot and to give
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confidence in using the derived connectivity for further analysis. Essentially the

firing density plot was utilised as an alternative to ground truth. Figure 6.11

showed a positively correlated relationship between firing count and number of

connectivity inferred. This information was exploited to establish a ground truth

level prior with firing density. A neuron’s firing depends on the presynaptic inputs

and highly interconnected neuron tend to have more presynaptic inputs resulting

in more frequent firing. Also, a firing density plot is laid out in a spatial man-

ner which represents the structural layout as well to some degree. The method

demonstrated that the connectivity estimated when superimposed onto the firing

density plot shows a good fit.

For augmenting the connectivity estimation, structural information such as

fluorescence images in conjunction with the firing density plot could be a possibil-

ity to better refine the connectivity inference objectively. In essence, such multi

modality could help to better approximate ground truth connectivity. However,

distinguishing true connections from spurious connections based on thresholding

from a neuronal culture where the neurons are sparsely distributed without show-

ing any clear apparent structure remains very difficult. Furthermore, to overcome

the lack of ground truth information from an in-vitro neuronal cultures, statisti-

cal methods need to be utilised to infer statistical significance of the connectivity

inferred.

6.2.5 Limitations in Connectivity Inference from Biologi-

cal Networks

The TE method has outperformed many other popular methods such as cross-

correlation(CC), joint entropy, mutual information [14,15] to identify connectiv-

ity from simulated networks. So far, this method has been applied to HD-MEAs

recordings from primary rat hippocmapal cultures and inferred connectivity based

on the TE method [189] using a proposed superimposition method. However, due

to the lack of ground truth connectivity information in real experimental living

culture, it becomes a challenging problem to differentiate true connections from

spurious connections - even when inferred with a superior method such as the

Delayed TE [15], which incorporates many previous time steps in the algorithm.
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Ideally, multiple trial measurements are conducted under the assumption of the

same condition to compute statistical significance of the measurements and gain

confidence in the inference. However, living dissociated neuronal cultures are

non-stationary and always evolving with time which makes the multiple trial

measurement unfeasible. As the culture matures and evolves it might respond

differently from trial to trial; this problem is exaggerated in stimulation based

experiments. Additionally, while computing TE values between two processes,

statistical noises, biases and coincidental firings may imply a positive causal re-

lationship even though there is none. To statistically determine the degree of

potential causal relationship that should be large enough to have significance,

the inferred value must be compared against the values which could be expected

under some null hypothesis (hypothesis that there is no causal relationship),H0.

Upon exceeding the value, the alternative hypothesis that there exists a causal

relationship, can then be accepted. Clearly, the accuracy of the testing depends

on the quality of the control data generated under the null hypothesis.

The second half of this chapter will focus on the contribution on a new surro-

gate data generation method based on ISI distribution, for statistical testing of

the connectivity inferred using TE method. Firstly, a simulation model of spiking

neuron network is defined, followed with the TE computation presented earlier to

validate the method. A series of thorough investigations on the ability of the pro-

posed method to not only identify the significant connections but demonstrate

the ability to capture connectivity strength as well which correspond with the

actual synaptic weights, is presented. The method is then compared with ISI-

shuffling method. Finally, how this method can also be used to set an objective

threshold for filtering TE values, is demonstrated.

6.3 ISI Distribution Based Surrogate Data

6.3.1 Introduction

The surrogate data generation method is conceptually a simple method of gen-

erating control data to measure the statistical significance between parallel spike

trains [166]. Control data provides trial set of possible data where the spike
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timings are destroyed. The most interesting feature that potentially contributes

towards causal interactions between spike trains is the timing of occurrence of the

spikes or the temporal information of the firing patterns. Hence, surrogate data

is generated such that the most relevant feature for causal interaction, which,

in this case is the fine temporal information, is destroyed whilst retaining all

the other statistical features such as firing rate, duration, time of the first spike,

ISI statistics and number of spikes. Essentially, the data is generated under the

null hypothesis that spike time has no effect on the causal interaction. The null

hypothesis assumes that the spike times are not important,hence only that in-

formation is destroyed for surrogates. Upon rejection of the null hypothesis, the

hypothesis that there must exist some causal relationship dependent on the tim-

ing of the spikes can then be accepted. The temporal information or the timing

of the spikes is governed by the Inter Spike Interval (ISI) distance which is the

temporal distance between two consecutive spikes. The remaining statistical fea-

tures of the spike train such as the firing rate, number of spikes, time of the first

spike and ISI statistics are retained.

Surprisingly, there are only a handful of methods that are applicable to dis-

crete spike trains. Some popular methods that are commonly used are temporal

jittering [167](i.e. independent randomization of the individual spike times within

a defined interval), trial shuffling [168](i.e. trial data of one neuron is randomly

assigned to other neurons thereby destroying potential spike relationship) and

shuffling of inter-spike-interval(ISIs) [169](i.e. random combination of ISI values

from a set of ISIs for each neuron). The existing methods either create poor

surrogates due to weaknesses in retaining ISI information(trial shuffling, tempo-

ral jittering) or create an exact copy of the ISI distances shuffled randomly(ISI

shuffling). The latter retains ISI distance statistics but fails to introduce varia-

tion for a rich set of surrogates. There exists a fine line between retaining the

required statistics and introducing variation to simultaneously enhance the sur-

rogate quality.

In contrast to the existing popular methods, which are direct manipulation

of the spike train to generate surrogate data, a distribution based approach is

proposed, where the distribution of the ISI interval from each spike train is em-

pirically inferred. During surrogate data generation, spike times for the surrogate
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spike trains are sampled from these distributions using the cumulative distribution

such that the firing rate information is not changed. This is achieved by drawing

the same number of samples as the number of spikes in the original spike train

upon which the surrogates are based on. Since the samples are drawn from the

ISI distribution, the sampled surrogate spike trains also share similar statistics of

the original ISI distribution. Sampling from the original distribution is done such

that it retains the firing rate statistics as well as the ISI statistics but introduces

enhanced controlled variation in the surrogate data, which could potentially cover

wider possibilities than the surrogate generated from direct shuffling of the ISIs.

During the sampling process, it is demonstrated that the samples drawn follow

a very close approximation to the original distribution while maintaining some

degree of variation from the original spike train, though the variation is not too

far off from the actual spike train distribution.

The proposed method accurately determine statistically significant connec-

tions from non-significant connections - validated with a realistic simulation

model. In addition, the method was also able to detect the degree of strength of

the connections. The method outperformed the ISI-shuffling method by achiev-

ing 93% accuracy at 0.01 false positive rate. Demonstration of a systematic way

of setting the threshold for TE inferred from biological neuronal network and

identification of connection strength, is also presented.

6.3.2 Methods

6.3.2.1 Transfer Entropy and Simulation Model

The same methods described for the transfer entropy and simulation model in

Section 6.2.2.1 and Section 6.2.2.2 respectively are utilised for the TE computa-

tion and simulation model. The method and the simulation model is exactly the

same as discussed previously.

6.3.2.2 Inverse Transform Sampling Under Null Hypothesis

Inverse transform sampling is used to sample randomly from the observed ISI

distribution. A cumulative distribution function(CDF) given an ISI probability
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distribution, is used to draw samples randomly and independently. The samples

are drawn under some null hypothesis(H0):

• H0 : Temporal patterns of spiking events have no effect on pairwise TE

values

• H1: There must exist some temporal relationship in governing pairwise TE

values

The inverse sampling transform can be expressed as:

Let X be a random variable described by CDF F (x). The aim of the sam-

pling is to generate values of X according to the given distribution. The inverse

sampling algorithm can be explained as follows:

• Generate a random number in the interval [0, 1] from a standard normal

distribution; U˜Unif [0, 1]

• Compute the inverse of the CDF; F−1
X (x)

• Compute X = F−1
X (u). The computed X has a distribution FX(x)

These steps can also be simplified as: given a continuous uniform random

variable U in [0, 1] with the CDF FX , the random variable X = F−1
X (u) has a

distribution FX(x). For detailed proofs, please refer to [199]. Figure 6.12 shows

a smoothed PDF and a CDF of ISIs of one spike train. Due to the smoothening

of PDF for visual aesthetics, the lower bound extends to negative x-axis too,

however, no negative ISIs are actually observed. As shown in Figure 6.12, for this

particular PDF, most of the CDF values result in ISI values from 10ms to 300ms

which matches the actual distribution of the ISI distances illustrated with blue

dotted lines. This guarantees that the randomly sampled samples will end with

a similar PDF of the values and hence preservation of the ISI statistics. During

the sampling process, each sample is drawn independently from the next sample.

After collating N number of samples for a target spike train with N number

of spikes, new surrogate data is generated where the temporal information is

destroyed whilst maintaining the ISI statistics, firing rate and time window.
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Figure 6.12: Smoothed Probability Density Function (PDF) and Cumulative Den-
sity Function (CDF) of ISI distances from a single spike train. Given a value of
a CDF, corresponding ISI values can be mapped with a blue dotted line shown.

6.3.2.3 Surrogate Generation Algorithm

From the computation point of view, given a specific set of ISI distances, gener-

ating surrogates becomes a problem of finding combinations or rearranging ISI

distances in the set to generate the unique set of new spike trains within a given

time window. For a given time window, the sum of combinations of ISIs that

could result in the exact same time window will result in a search space too big

to search effectively for long spike trains duration. To simplify this process, an

algorithm is developed as described in Algorithm 1. This guarantees that the

spike count matches the target spike train, while meeting the duration criteria as

well.

The number of samples that is drawn is the same number of spikes present in

the original spike train. The samples drawn have to add upto the total duration

such that the total samples count does not exceed the total time window. So

each sample is added and stored as ISI sum to check if the samples exceed the

total duration. The process loops until the sum of ISI exceeds the total duration

of spike train which corresponds to step 1− 5 in Algorithm 1. Steps 1− 5 creates
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Algorithm 1 Surrogate data generation algorithm

Require: ISI PDF of a target spike train
Require: # of spikes from each spike train, time of first spike, Duration, # of

surrogates
Ensure: Sample one ISI sample at a time and append

1: while # of samples < # of target spikes do
2: randomSample = InverseTransformSample()
3: if (ISIsum < duration) then
4: ISIsum← ISIsum+ randomSample
5: SurrogateISIs.append(randomSample)
6: else
7: while True do
8: maxCurrentISISample← max(sampledISIs)
9: if (maxCurrentISISample > newRandomSample) then

10: SurrogateISIs.remove(maxCurrentISISample)
11: SurrogateISIs.append(newRandomSample)
12: else
13: randomSample = InverseTransformSample()
14: end if
15: if (len(SurrogateISIs) > #Spikes then
16: break
17: end if
18: end while
19: end if
20: end while

one surrogate data; the steps are parallelised to generate the required number

of surrogates. While the sum of the sampled ISI is less than the total duration,

the process is continued until the total number of ISIs equals to the total spike

count. Once the sum of the ISI exceeds the total duration, then a new sample is

drawn. If the sample is less than the current ISI distance so far, then it is replaced

with the recent new sample. This is to make sure to accommodate new samples

within the given time duration. The whole process is repeated until the required

number of ISI distances are sampled. Finally, the distributions are checked to

see if they match with the original distribution. This enables the generation of

100 surrogates for 4096 spike trains in just under 2 minutes for 20 seconds of

spike train with a 1 ms time bin. The computation time can fluctuate depending
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Figure 6.13: Computation time for generation of 100 surrogates based on different
spike count spike trains.

on the number of spikes on each spike train and scales linearly with the number

of spike times, as shown in Figure 6.13. The computation was performed on an

Intel Xeon(R) CPU E5-2640 v3 @ 2.60GHz with 16 cores running Ubuntu 18.04.3

LTS with Python 3.5. The algorithm utilised multiprocessing making use of the

available 16 cores.

6.3.2.4 Workflow

The concept of surrogate data generation itself is straightforward, however, there

are many stages in the workflow pipeline from target spike train to computing sig-

nificance of the pairwise TE values computed. The complete methodology opted

for the presented surrogate based method is succinctly illustrated in Figure 6.14.

Based on the functionality of different stages, the workflow can be categorised as

below:
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Figure 6.14: Workflow illustrating different stages of surrogate data generation
to identifying significant connections based on surrogate data

Pre-process: The workflow starts with a pre-processed spike train from an ex-

periment. The spike trains are stored as a simple spike times CSV file where each

line corresponds with a neuron in an ascending order such as [Neuron1,Neuron2.....
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Figure 6.15: Screenshot of spiketrains arranged in a CSV file

NeuronN] as shown in the first part of Figure 6.14(A). The actual CSV file is ar-

ranged as shown in Figure 6.15 where line 1 − 10 corresponds to neurons and

numbers in each line is the actual spike times in ms. The goal is to generate n

number of surrogates from each Neuron or each line of the CSV file.

Surrogate Generation: The custom script automatically scans through all N

spike trains(Figure 6.14(B)) and generates n surrogates(Figure 6.14(C)) into a

corresponding folder, with all the surrogates generated as per Algorithm 1.

Replace Target Spike Trains: The next stage is to replace the original spike

train with its surrogates whilst keeping the other spike trains as in the original

CSV file. As shown in Figure 6.14(C), for one target spike train with n surrogates;

the final set of data has n new spike train CSV s, where each surrogate data

replaces the target spike train. The goal is to use these replaced surrogates to

compute pairwise TE values with all other spike trains. Since these surrogates

are sampled under the null hypothesis, the temporal correlations are reflected in

the pairwise TE values.

Compute Pairwise TE: After generating a new set of spike train CSV s with

surrogates, the pairwise TE between surrogates and other spike trains are com-

puted using the methods described in Section 6.2.2.1. The pairwise TEs are then

collated into a list(Figure 6.14(D)). For n surrogates, a list size of n pairwise

TE values is generated. The original target spike train also has a pairwise TE

against which the rest of the pairwise TE are compared statistically. The process

is repeated for each target spike train. For N number of spike trains, N number

of pairwise TE lists are generated.
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PDF inference: The distribution of the pairwise TE values from the surrogates

can be inferred empirically (Figure 6.14(E)) as a PDF . Given this distribution,

the probability of the original pairwise TE between the target neuron’s (spike

train) and the other neurons’ (spike trains) was computed. Due to non normal-

ity of the distribution, a non parametric test, Wilcoxon Signed test is performed

to compute statistical significance,p− value. The empirical cumulative distribu-

tion function(ecdf) was utilised from the Python Statsmodel library to compute

probability(p) of the occurrence of the original TE value(Figure 6.14(F)) given

the PDF of the surrogate TEs. A probability of observation of the original target

TE value from the surrogate distribution less than 0.05 is considered as a sig-

nificant connection. The rational is that, if the target spike train has a causal

relationship with another spike train, then the surrogate TEs sampled under null

hypothesis should be significantly different from the original TE. If the target

falls within the distribution of the surrogate TEs then the target TE is not sig-

nificantly different from the surrogate TEs. This implies that there isn’t any

specific significant difference if the temporal information is destroyed in the tar-

get spike train which indicates no causal interaction and such connections can be

discarded. The degree of the probability can be used to infer degree of strength

in the connectivity as well.

6.3.3 Results

The method is validated with simulated data based on Izhikevich’s network of

100 subsampled neurons from 1000 neurons of 60 seconds recording as in Section

6.2.2.2.

6.3.3.1 Validation of ISI matching

It is crucial that the ISI distribution of the sampled surrogates retains all the

statistical features whilst destroying the spike timing information. Since the

method proposed doesnt use shuffling of the ISIs, the sampled surrogates haves

to follow a similar ISI distribution to the original spike train to have reliable

surrogates. A raster plot of one original spike train and its 100 surrogates is

shown in Figure 6.16, for 60 seconds of the recording from the Izhikevich network.
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Note that the surrogate spike trains appear similarly spread out throughout the

total duration of the original spike train but the temporal patterns are destroyed

with random spike times as the surrogate spike train raster look different to the

original spike train.

Figure 6.16: 100 Surrogate data generated from target original spike train

To demonstrate that the surrogates also follow a similar distribution, the

distribution of the original ISI is plotted overlaid with 10 randomly selected sur-

rogate ISIs from the 100 surrogates generated as shown in Figure 6.17. The figure

clearly shows a very similar distribution of the surrogates and the original target

spike train(black line) with some variations which help to enrich the quality of

the surrogates. The surrogates generated are very close to the original but not

exactly the same, and no two surrogates are exactly the same either. Each spike

train has a distinct ISI distribution which ensures that the surrogate data gen-

erated are unique to that particular distribution. Figure 6.18 shows that the ISI

distribution of the surrogate spike trains are distinct. Only five spike trains are

selected for clarity; the figure shows that each spike train is different from other
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Figure 6.17: Original ISI distribu-
tion(black line) and the ISI distribution
of 10 randomly selected surrogate spike
trains.

Figure 6.18: ISI distribution of five
randomly selected surrogate spike
trains from simulation recordings.
The number is limited to five for
clarity.

spike trains.

Descriptive statistics of the original and a number of the surrogate spike trains

are also shown in Table 6.2, showing a very close similarity to the original spike

train which also corresponds with Figure 6.17. The ISI distances are non-normally

distributed which is clearly evident from Figure 6.17. The original ISI distribu-

tion is positively skewed as reported in Table 6.2, with a positive kurtosis. The

extreme values at the right tail of the distribution are considered as outliers and

discarded after filtering the ISI distances. Considering possible axonal delays and

transmission delays, cutting off the ISI distance after 1000 ms would cover most

of the information based on the distribution.

6.3.3.2 Identification of Significant Connections

After validating the surrogate data generated from the ISI distribution, generating

new sets of spike trains for TE computation and computing all the TE values from

such sets of spike trains, a list of TE values for each surrogate from the different

original neurons (spike trains) is obtained. The next step is to test if the TE values

that are computed show any statistical significance and how they correspond to

the model synaptic weights.
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Table 6.2: Descriptive ISI statistics of the surrogate and the original spike train

SpikeTrain NoOfObs Mean Variance Skewness Kurtosis
Original 313 185.4855 16132.2699 1.5460 2.8916
Surrogate14 313 190.1277 19678.4387 1.5188 1.9797
Surrogate24 313 189.4313 15930.7332 1.5403 2.8784
Surrogate49 313 175.0673 16719.8957 1.5586 2.5429
Surrogate31 313 191.0447 16840.2159 1.2439 1.4084
Surrogate24 313 189.4313 15930.7332 1.5403 2.8784
Surrogate77 313 189.3386 15316.8204 1.4123 2.3219
Surrogate76 313 178.7380 14007.6811 1.5488 2.9157
Surrogate88 313 189.5974 16899.6643 1.3083 1.6207
Surrogate69 313 183.9067 19049.8590 1.4587 2.0795
Surrogate83 313 175.7339 15297.8357 1.4226 2.3554

Figure 6.19: Significant and non-significant connections identified based on p
values based on pairwise TE (A) and corresponding model synaptic weights as
described in Section 6.2.2.2 (B)

For all pairwise connections, the significance of the inferred connection is com-

puted against the TE distribution of the surrogate TE values. If the probability

133



6. Information theory based connectivity

of observing the actual TE values is less than 0.05, the connection is considered

significant. From all the TE connections, the significant and non significant con-

nections were plotted in Figure 6.19(A) as a box plot. Corresponding synaptic

weights for significant and non significant connections are also plotted in Figure

6.19(B). The significant connections identified by the surrogate method show a

clear separation from non-significant TE values. The significant TE values have

a median value of approx. 0.00025 and range from 0.0001 to 0.0007. The corre-

sponding synaptic weights show that most of the identified significant connections

in fact have the highest synaptic weights with some outlier weights from 6 − 9

that were also classified as significant. Similarly, non significant TE connections

had TE values from 0 − 0.00015 with a median of 0.0005 with a narrow range.

The significant and non significant pairwise TE values have a clear distinction

in their range of TE values. Corresponding synaptic weights for identified non

significant connections had weights values ranging from 0− 10 with wide spread

in values. The median value however is observed to be 3 which is a much lower

synaptic value and is considered a non significant value in the model as well. In

the simulation model, most of the significant connections converge to the value

of 10 . A synaptic weight of 10 suggest a definite significant connection and the

connection gets weaker with a decreasing value.

The connections identification based on the surrogate method has found sig-

nificant connections which in fact have a very strong synaptic weight in the model.

This correspondence between the identified connection from the surrogate method

with the actual synaptic weights demonstrates the ability of the method to ac-

curately infer strong connections from the weak ones. In the next section, the

degree of the strength of the connections is also analysed.

6.3.3.3 Detection of Connection Strength

In addition to the identification, the proposed surrogate method is also able to

detect the subtlety of the strength of the connections. In this case, model weights

are used to validate the method, however, for biological recordings the method

can still be applied to set ranges for different degrees of connection strength

and facilitates with a threshold reference point which will be discussed in Section
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6.3.3.4. Any connections with a p value less than 0.05 are considered as significant

connections. To evaluate how the significant connections’ TE values correspond

with the weights, the p values are sub divided into groups i.e.{< 0.05, < 0.04, <

0.03, < 0.02, < 0.01}.
Figure 6.20 shows the distribution of TE values for different p values and

the corresponding synaptic weights in the model. As the p values progress from

< 0.05 to < 0.01, the corresponding synaptic weights distribution were found

to become more concentrated towards synaptic weight value of 10 as shown in

the second column of Figure 6.20. The distribution of the TE values also gets

narrower. Furthermore, the mean value of the TE distribution, represented by

peak of the distribution, gets larger with decreasing p values as shown in Figure

6.20 in the first column. This is an indication that as the significance of the TE

values increases, there is increased probability that the corresponding weights also

get stronger. Due to this correlated effect between the TE connections which are

identified as significant with surrogate data and the corresponding model synaptic

weights, this relationship can be also utilised to infer connectivity strength based

on the statistical significance of the connection.
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Figure 6.20: Distribution of p values and corresponding model synaptic weights
distribution.
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This can be further broken down into different p values and corresponding

synaptic weights as boxplots, as shown in Figure 6.21. A boxplot of different

p values reveals a clear trend of increasing pairwise TE values with decreasing

p values from 0.05 to 0.01(Figure 6.21(A)).The p values of less than 0.04 and

0.05 have a very similar median but this changes after 0.03. For non-significant

connections, pairwise TE values are the lowest which suggest the connection is too

weak to have an effect on the post synaptic connection. Figure 6.21(A) shows that

pairwise TE values for different p values clearly have a different distribution and

the non-significant connections clearly fall into a different, much lower, range of

TE values. p < 0.01 has the largest median TE value and subsequently the value

decreases as the p value increases to 0.05. Figure 6.21(B) shows corresponding

boxplots of the synaptic weights. Since most of the values are already close to

the synaptic weight of 10, it is easy to see the trend from the box plots. However,

the correlated activity of the weights in terms of distribution is shown in Figure

6.20.

6.3.3.4 ROC analysis

To measure the accuracy of the surrogate method, an ROC diagnostic test is

conducted and compared against the ISI shuffling method, which is the closest

comparable method to the proposed method. ROC analysis compares the accu-

racy of a system to compute TPR against FPR, which is also called Sensitivity

and (1 - specificity) respectively. The TPR values were evaluated at different

FPR rates. To keep the false positives to minimum, the accuracy of the system

was evaluated at FPR rate of 0.01.

Based on the ROC analysis, the proposed ISI distribution surrogate method

was able to achieve accuracy of 93% evaluated at 0.01 FPR rate. The ISI shuffling

method was only able to achieve an accuracy of about 80% evaluated at FPR of

0.01 as shown in Figure 6.22. The proposed method also has a larger AUC(Area

Under the Curve) in comparison to the ISI shuffling method as shown by the red

and blue curves in Figure 6.22. This is a significant improvement in the perfor-

mance and the fact that the proposed method is able to capture the subtleties of

the degree of the strength of the connections, makes it a superior method to test
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Figure 6.21: TE values detects connection strengths. (A) Pairwise TE values for
different p values and non significant connections. (B) Synaptic weights for the
pairwise connections

the significance of the inferred pairwise TE connections.

Additionally, TPR and FPR values can be used to objectively set a threshold

value for TE values for biological networks where ground truth information is

not available. This can be applied as a system method of evaluating threshold.

Figure 6.23 shows TPR value and corresponding FPR. Red circles shows TPR

evaluated at FPR of 0.01. Corresponding TE values can be set as the thresh-

olding values. The values above this threshold can be objectively considered as

significant connection in the actual network.

6.3.3.5 Discussion

To tackle the limitations of lack of ground truth information and unfeasibility

of having multiple trials as discussed in Section 6.2.5, a novel surrogate data
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Figure 6.22: Performance comparison of ISI shuffling and ISI distribution sur-
rogate methods to identify true connections from false. TPR is plotted against
FPR and the performance is evaluated at a very low FPR rate of 0.01. The red
vertical dotted line marks the 0.01 FPR. Zoomed in inset on the right for clarity.

generation method was proposed utilising the ISI distribution of the target spike

train. The method has been validated with a realistic biological cortical network

based on Izhikevich’s model [192]. The method utilised surrogate data genera-

tion method to infer connections based on TE methods, and showed correlated

correspondence with the model synaptic weights when compared. Throughout

the process of surrogate and TE computation, no information about the model

weights or parameters were used - only output spike trains. Similarly, in a real

experimental scenario, only spike train data is available. The same steps could

be applied to infer connections and make statistical comparisons on which con-

nections to keep and which to filter out, even in the absence of knowledge of

actual synaptic weights. The method is applied to experimental recordings in the

upcoming chapter.

Some popular methods that are commonly used are temporal jittering [167]

i.e. independent randomization of the individual spike times within a defined

interval, trial shuffling [168] i.e. trial data of one neuron are randomly assigned

139



6. Information theory based connectivity

Figure 6.23: TPR evaluated at 0.01 FPR rate.

to other neurons thereby destroying potential spike relationship, and shuffling

of inter-spike-interval(ISIs) [169] i.e. random combination of ISI values from

a set of ISIs for each neuron). The existing methods temporal jittering [167],

trial shuffling [168] and shuffling of inter-spike-interval (ISIs) either create poor

surrogates due to weakness in retaining ISI information (trial shuffling, temporal

jittering) or create an exact copy of the ISI distances shuffled randomly (ISI

shuffling). The latter retains ISI distance statistics, but fails to introduce variation
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for a rich set of surrogates.

A novel surrogate method based on an ISI distribution has been presented.

Unlike ISI shuffling, which is a randomised shuffling of ISI distances in a list, the

new surrogate method makes use of sampling from an ISI distribution such that

the surrogates follow a similar distribution as the original ISI, while introducing

just enough variations. This feature helps to generate enhanced surrogates. The

method was tested against simulation data from a biologically realistic spiking

neuronal network based on Izhikevich’s network. Comparing the ISI distribution

of the surrogates demonstrated that the surrogates closely follow the distribution

of the original ISI but are not exactly the same. The method was tested firstly

for identification of the connections then for detection of connection strength and

finally the accuracy of the system was measured with an ROC analysis. The con-

nections identified by the use of the surrogate method correlated with the synap-

tic weights in the model network. The significant connections identified shows

very strong synaptic weights in the model, which indicates the ability to identify

the connections(Figure 6.19). In addition, the detected connections were further

analysed to evaluate the relationship between the degree of significance and their

corresponding synaptic weights in the model. For larger significance, the distri-

bution of the weights was focused more towards the strongest possible synaptic

weight and the distribution was wider and spread out for lower significant weight

(Figure 6.21,6.20). This relationship can be exploited to infer the connectivity

strength based on the TE values or significance. Furthermore, an ROC analysis

clearly showed a superior performance of 93% evaluated at 0.01 FPR, in com-

parison to 80% for the ISI shuffling method. An objective approach for setting

up thresholding values for the TE is also identified by selecting a desired TPR

and FPR. This systematic way of using the surrogate data can be exploited for

simulated data as well as real biological networks because no underlying connec-

tion information is utilised to infer connectivity and the surrogate method utilises

statistical testing to identify significant from spurious connections. Due to the

surrogate data and relying on statistical approaches, one can gain much more

confidence in the connectivity inference from a single trial biological network.
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6.4 Summary

This chapter discussed two main contributions related to connectivity inference

from neuronal recordings. The first contribution discussed the superimposition

method, which enables greater confidence for identified connections. The second

half of the chapter extended the work to tackle the limitations of lack of ground

truth information in real cultures by proposing a novel surrogate data generation

method exploiting the ISI distribution. The proposed method showed superior

performance in comparison to the ISI shuffling method and also demonstrated

the ability to extract connectivity strength.

The systematic connectivity inference and surrogate methods developed in this

chapter can be an important contribution to study complex biological network

during plasticity. In the upcoming chapter, these methods will be tested during

controlled stimulation and induction of plasticity in neuronal cultures coupled

with HD-MEAs. The surrogate method will be utilised to infer connectivity

development during plasticity.
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Chapter 7

Induced Network Response: Low

Level Learning

7.1 Introduction

In this chapter, the effects of repeated stimulation on long term network re-

sponses, germane to neural plasticity, and connectivity development during plas-

ticity (evoked responses) are presented.

Three different neuronal dynamic responses were observed and are discussed

- (i) potentiated ,(ii) depressed and (iii) regularised (Section 7.4). Protocols for

successful induction of network wide potentiation are presented and the adap-

tation of the network response to a particular stimulation is validated (Section

7.4.2.2). Furthermore, the network connectivity analysis which was developed

and discussed in Chapter 6, was utilised to infer network connectivity devel-

opment during LTP induction. The connectivity method was able to highlight

the development of new network connections during the potentiated stage after

stimulation (Section 7.5).
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7. Induced Learning in Neuronal Culture

7.2 Development of spontaneous activity in neu-

ronal cultures

In addition to neuronal culture methodology described in Chapter 4(section 4.2),

further spontaneous firing activity characterisation and development of sponta-

neous activity is presented in this section. Due to the sensitive nature of neuronal

cultures on Biochips (as previously discussed), handling and recording were kept

to a minimum for the first two weeks after seeding cells on MEAs to avoid cell

deaths and detachments. Hence, recordings before day 12 were not performed and

the cultures were only disturbed for mandatory media change. Electrophysiolog-

ical activities were recorded on day 12 for the first time for comparison purpose

and only after day 18 for experiments and regular recordings.

It is typical for a rat hippocampal cultures to exhibit spontaneous synchro-

nised burst of activities without external stimuli [3]. As cultures mature, they

exhibit rich synchronised bursting activity [200]. Random and uncorrelated fir-

ing patterns become less frequent, and the activity patterns are dominated by a

network wide bursting patterns during development. This development of syn-

chronous bursting behaviour implies that wider connections are also explored,

possibly as a consequence of the rapid chemical synaptogenesis during the second

week in culture [201].

Figure 7.1 shows two raster plots of a hippocampal culture, recorded at 12 DIV

and 18 DIV. The recordings were performed for 5 minutes. The raster plots make

it easier to observe the electrophysiological activity of the whole network repre-

sented by a dot for each spike. As anticipated, significant random firing appears

on both plots, and the subsequent recordings. However, the firings became more

synchronised with spontaneous bursts of events as the culture matured - indicated

by the presence of highly synchronous bursting patterns at 18 DIV recording as

shown by red vertical rectangles in Figure 7.1 (DIV18) in comparison to DIV12.

Due to the highly interconnected network, synchronous behaviour became more

evident as the cultures matured. Some of the channels were saturated (indicated

in Figure 7.1) which could be due to blocking of channels due to cellular debris

caused by dead cell structures. Such channels showed continuous firing which is

not plausible in reality due to the required refractory period necessary for neu-
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Figure 7.1: Electrophysiological activity of a dissociated hippocampal network
recorded at DIV12 and DIV18 during the development phase. Continuously fir-
ing saturated channels are highlighted with a dotted red horizontal rectangle.
Bursting patterns are indicated by a red vertical rectangles.
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Figure 7.2: (A)Raw voltage fluctuations recorded from a single channel. Each
vertical line underneath the waveform indicates a detected activity as a spiking
event. (B)Snapshot of a real time activity laid out in MEA layout where each
pixel is an electrode.

rons to recover before firing again. The presence of such channels is inevitable in

live cultures and were filtered out in further analysis. Single channel electrophys-

iological activity can also be observed as a series of voltage fluctuations shown

in Figure 7.2(A). Each vertical line underneath the waveform indicates a spik-

ing event as shown in Figure 7.2(A) and the firing pattern resembles the general

firing pattern of the network wide bursting firing (Figure 7.1) where a bursting

firing is followed by a quiescence period. Figure 7.2(B) on the other hand shows

a snapshot of network-wide activity in real time for the culture, represented with

a colour map, where each pixel represents an electrode laid out in a 64 x 64 grid

mimicking the actual MEA layout.

Furthermore, Peristimulus time histogram (PSTH) analysis (Figure 7.3 (A,B))

clearly shows an emergence of firing patterns characterised as highly synchronised

bursting patterns from day 12 to day 18. The PSTH bin size was set to 1000ms,

and shows the firing rate measured at every second of the 5 minute recording.

Figure 7.3(A) at day 12 does show synchronous patterns as oscillating firing

behaviour with some instances of highly synchronous patterns observed at around

130 seconds and 160 seconds (note the ms scale on the plot), but the general

firing was still rather random without discernible network wide bursts. Also, the
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Figure 7.3: Activity characterisation of a spontaneously firing rat hippocampal
network. (A) PSTH plot at day12(DIV12). (B)PSTH plot at day 18(DIV18) (C)
Mean bursting of a spontaneously firing network measured at day 12,18 and 21.
[95% confidence interval ]

firing rate was much lower than at DIV18. This indicates a culture which is

yet to mature. When the culture reached day 18, the culture started to mature

indicated by clearly visible highly synchronous firing patterns, where the firing

147



7. Induced Learning in Neuronal Culture

rate was almost double that observed at day 12 (Figure 7.3(B)). The network

was bursting regularly followed by a period of quiescence. This behaviour was

prevalent all throughout the period of the culture up to week 4. After DIV32,

the culture began to degrade and eventually died few days after. Hence, the

experiments were performed between day 21 to day 32.

To further characterise the spontaneous activity of the network, the mean

bursting rate was computed for the same culture over three stages that corre-

spond to (a) an early stage(DIV12); (b) maturing stage(DIV18); and (c), matured

stage(DIV21), as shown in Figure 7.3(C). Not surprisingly, the development of

bursting activity followed the pattern as anticipated from the PSTH plots (Figure

7.3(A,B)). There was a clear increment in the bursting activity from day 10 to day

18. Even though, the bursting activity increases with maturity, at around day 21

the bursting activity plateaued as reported in the previous studies [8, 200, 202].

From week 3-4, the bursting profiles become increasingly narrow hence shorter

burst - this change is attributed to the development of GABAergic neurotrans-

mission(inhibitory) which was observed to occur after a delay of 1-2 weeks as

compared to the glutamatergic (excitatory) system [114].

7.3 Criteria for selection of cultures for stimu-

lation studies

One of the major challenges with dissociated neuronal cultures when studying

induced plasticity is the variability among different batches of neuronal cultures.

No two cultures are the same, and due to self-organisation and subsequent synap-

togenesis, neuronal cultures achieve different stable homeostasis while continuing

to grow functionally. Regardless of such dynamical nature of the neuronal cul-

tures, it is important that the cultures that are undertaken for plasticity stud-

ies should have common baseline electrophysiological properties that are able to

evoke responses to external stimuli. A systematic selection criteria is presented

for selecting those cultures as candidates considered for a better investigation of

induced network plasticity.

To demonstrate that the cultures were in fact responsive towards external
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stimuli - which is critical to induce any plastic behaviour the spontaneous activity

of each network was measured for 5 minutes at the beginning of the experiment at

DIV21 as Mean Firing Rate(MFRpre) and right after the first set of test stimuli,

the spontaneous activity was measured again (MFRpost) for 5 minutes. MFR rate

is a direct representation of network activity. Both pre- and post-stimulation

spontaneous responses of 20 cultures were plotted as shown in Figure 7.4, where

x-axis corresponds to MFRpre and y-axis to MFRpost. A linear regression line is

also plotted as a solid blue line (Figure 7.4). The mean squared error from this

regression provides a quantitative measure of MFR change after introduction

of external stimulation. Cultures above the regression line represent increased

evoked responses after stimulation, cultures along the regression line represent

evoked responses that were not too far off from pre stimulation spontaneous

responses and cultures that fall below the regression line represent decreased

evoked responses.

The selection criteria for cultures can be categorised as :

7.3.1 Spontaneous mean firing rate

For a systematic selection of neuronal culture, firstly, the spontaneous firing rate

was considered. Those with MFR less than 300 spikes/sec were discarded as

such networks, on biochips with 4096 electrodes, had very little activity to start

with in order to be considered as a reliable experimental model for plasticity

induction. Such low firing rate cultures were also found to have significant cell

deaths within first few days of seeding hippocampal neurons even though the

culture in general survived and continued to mature. Such low firing cultures

showed a sporadic distribution of neurons as clusters with limited interconnections

within small group of clusters. The cause for such early deaths could be initial

growth conditions, state of dissociated tissue, poor coating or poor handling in

general. Even though each culture were handled very carefully, there were a few

cultures which showed a significant cell death early on. Hence, such cultures were

discarded from experiments, as shown in oval region as sub-threshold in Figure

7.4.

149



7. Induced Learning in Neuronal Culture

Figure 7.4: Mean spontaneous firing rates on 20 neuronal cultures. Spontaneous
activity of each culture before and after stimulation indicated as red dots with
a linear fit line. A red circle indicates a sub-threshold region where the firing
activity is not strong enough to take as a reliable culture for experiments. Green
regions indicates the region of interest. Both positive and negative evoked re-
sponses are considered for experiments.

7.3.2 Stability and responsiveness

Stability and responsiveness of neuronal cultures are paramount [9] when select-

ing the culture for plasticity studies. All cultures were monitored for 2-3 days

after DIV18 regularly, before the test stimulation, to check if the spontaneous
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network responses would vary drastically even without any external stimulation.

An unstable network where the firing activity fluctuates drastically even with-

out any external stimulation makes it difficult to assess induced changes in the

presence of an external stimulation. This could lead to misleading biases in the

dataset. To mitigate this bias, only the cultures that showed stable activity after

DIV18 up to DIV21 were selected. By DIV21, neuronal cultures mature with

stable bursting and firing dynamics. From these sets of cultures, to measure net-

work responsiveness to external stimuli, test stimulation of low frequency (1Hz)

biphasic stimulation with 500µA phase and duration of 100µs was applied repeat-

edly at every 20 seconds for 5 minutes as described in Chapter 4.3.1. This test

stimulation is not part of the repeated experimental stimulation and only used

to test the responsiveness of the culture. The scatter plots that are very close to

the linear fit line (Figure 7.4), represent cultures that evoked very little responses

measured as the firing activity before and after the test stimulation since there

is very little difference between MFRpre and MFRpost. Since the responsiveness

feature was not evident from such cultures, indicated as scatter plots that lies

very close to the regression line (Figure 7.4), they were not considered for further

studies. To assure that the stimulation was applied to the region in close prox-

imity to where neurons are distributed on the chip, all cultures were tested with

stimulation from all 16 stimulating electrodes.

Regions shown in green oval (Figure 7.4 - top green oval), represent cultures

that evoked either increased activity or decreased activity (Figure 7.4 - bottom

green oval). Both increased and decreased activity are evoked MFR responses

to the test stimulation and shows network wide potentiation and depression re-

spectively immediately after the first set of test stimuli. Different variation of

responses were observed by changing the stimulation site. The site that evoked

the most prominent and long lasting responses were selected for further repeated

stimulation.

7.3.3 Root Mean Squared Error (RMSE) thresholding

In order to provide a thresholding mechanism to objectively select cultures that

exhibit evoked network responses, root mean squared error of the scatter plot of
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mean firing rate before and after test stimuli (Figure 7.4) was calculated as well

as the root squared error for each culture as a linear error distance of each scatter

point to the predicted regression line as below,

RMSE =

√
1

n
Σn

i=1

(y − predicted
σi

)2

(7.1)

RootSquaredError(RSE) =

√
(y − predicted)2 (7.2)

where n =number of data points, y = actual data point, predicted = regres-

sion best fit line and σ =standard deviation

RSE computes individual error and RMSE is the mean of the errors. In

this context, larger errors indicate larger change in the corresponding evoked

responses as the data points deviate further from the regression line. To select

only the cultures with larger evoked responses, the cultures with RSE larger

than RMSE were selected. Due to squaring of the errors, negative errors from

decreased activity were also incorporated. As mentioned earlier, both increased

and decreased evoked responses are considered for this work.

In this section, a systematic approach to select the best cultures for plasticity

studies based on different criteria: mean firing rate, stability and responsiveness

and objective thresholding based on RMSE , has been described. It was crucial

that all experimental cultures were subjected to all of these selection criteria

before proceeding with further experiments.

Terminologies: To facilitate clarity throughout the rest of the sections, a com-

prehensive list of terminologies used and what they represent is shown in Table

7.1.

7.4 Results: Network response to stimulation

To demonstrate the effect of repeated stimulation on firing dynamics, network

connectivity and achievement of evoked homeostasis of healthy neuronal cultures

that implies a new stable state (learned state), the post stimulation responses of

cultures were categorised as (i) potentiated (ii) depressed and (iii) regularised.
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Table 7.1: Terminologies and what they represent

Term Meaning
preStim/spont Mean firing rate of spontaneous activity before repeated

stimulation
postStim Mean firing rate immediately after repeated stimulation
postStim 1hr Mean firing rate 1 hour after repeated stimulation
postStim 2hr Mean firing rate 2 hours after repeated stimulation
postStim 3hr Mean firing rate 3 hours after repeated stimulation
pre-repeated
stim

Immediate evoked response to single set of test stimu-
lation before repeated stimulation (not to be confused
with PreStim and PostStim MFR)

post-repeated
stim

Immediate evoked response to single set of test stimula-
tion one day after repeated stimulation

Based on these categorised responses, the stimulation protocols were applied as

discussed in Chapter 4.3 with parameters shown for each culture from Table 7.2;

the table shows 10 different cultures selected for experiments with corresponding

stimulation parameters. The stimulation frequency, repetition and location of

stimulation electrode were manually selected based on the initial post stimulation

responses observed at various configuration.

Two different variations of stimulation parameters are used based on frequency

and repetition:

Frequency : Generally, stimulation frequencies of over 10Hz resulted in over-

saturation of electrodes and stimulation of less than 1 Hz didn’t elicit any network

evoked network responses - although higher repetition of such frequency for a

prolonged period was able to. A 10 repetition of 1Hz stimulus results in 10 pulses

that lasts for 10 seconds. Stimulation frequencies of 2Hz and 5Hz were selected as

they represented the lower and upper limits at which evoked network responses

were observed. Frequencies of 5Hz to 10Hz was able to evoke responses but these

were not consistent and showed saturation of electrodes. Due to wide range of

stimulation frequencies that could potentially be explored even within the range

of 2-5Hz, the studies here only takes in account two frequencies of 2Hz and 5Hz.
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Stimulation repetition : To maintain a consistent methodology, repetition

of either 10 or 20 stimulation pulses with a gap of every 10 or 20 seconds were

applied to all cultures for 5 minutes of recording. The time gap of 10 or 20 seconds

between each set of stimulation allowed for the network to regain regular firing

dynamics whilst still maintaining the effect of evoked responses without allowing

the network to revert back the pre-stimulation dynamics. For 5Hz frequency case,

a burst of 20 stimulation pulses was applied with a temporal gap of 20 seconds

to avoid over saturation. When 10 second gap was implemented for the same

case, the culture quickly saturated due to too strong stimulation. In case of 10

repetition of stimulation pulses, either 10 or 20 seconds gap were able to have an

effect without causing saturation. The target is to apply stimulation such that the

network is constantly encouraged to form new connections and modify already

existing connections without falling into the trap of saturation or be damaged.
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Table 7.2: Overview of cultures used

Overview of cultures used
Culture DIV Stimulation

frequency
Repetition Stimulation

Electrode
Network
Effect

Chip1 21 2 Hz 10 pulses
every 20
secs

2,4 and 4,4 Regularising

Chip2 25 5 Hz 10 pulses
every 10
secs

1,4 and 3,2 Long term
potentia-
tion

Chip3 21 2 Hz 10 pulses
every 20
secs

1,4 and 3,1 Short term
depression

Chip4 23 5 Hz 20 pulses
every 20
secs

1,4 and 4,1 Long term
potentia-
tion

Chip5 26 5 Hz 10 pulses
every 20
secs

1,2 and 3,2 Long term
potentia-
tion

Chip6 26 2 Hz 10 pulses
every 20
secs

3,1 and 4,4 Short term
depression

Chip7
(con-
trol)

19 No stim – – –

Chip8 23 5 Hz 10 pulses
every 10
secs

1,4 and 3,2 Long term
potentia-
tion

Chip9 25 5 Hz 10 pulses
every 20
secs

3,1 and 4,4 Long term
potentia-
tion

Chip10 26 5 Hz 20 pulses
every 20
secs

3,1 and 4,4 Regularising

7.4.1 Single channel stimulation

Single channel stimulation was explored where the stimulation site with the most

responses was selected. Recordings for both single channel stimulation and later
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Figure 7.5: Stimulation time line for each day of stimulation. Spontaneous ac-
tivities are first recorded followed by 5 minutes of repeated firing. The culture
is then left to to settle for 2 minutes followed by interval spontaneous recordings
again.

spontaneous spiking were performed, each for 5 minutes. The evoked responses

were measured 2 minutes after the stimulation completed (to allow the network to

stabilise) and spontaneous recording one hour after such stimulation . The next

day, spontaneous activities were recorded again to enable a comparison with the

earlier day’s spontaneous activity. The timeline can be better understood from

the illustration shown in Figure 7.5, which summarises how the recordings are

performed for each day. The recordings start firstly with spontaneous activity

(no external input), followed by repeated stimulation and spontaneous after 2

minutes and 1 hour. The process repeats for the next day. Hence, spontaneous

activity of the next day reveals if the evoked responses due to stimulation still

persisted.

Figure 7.6 presents an example of a culture at 23 DIV that was stimulated

with 2Hz biphasic pulses with a repetition of 10 pulses every 20 seconds for 5

minutes. Immediately after the stimulation, the post stimulation activity was

found to show a significant increase in activity, however, the effect was short

lived. In agreement to what previous studies have mentioned [9, 46], single site

stimulation yielded no significant long lasting responses. Measurement of the

the evoked responses commenced after 2 minutes of stimulation (to allow the
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network to stabilise first). Such measurements then commenced with a recording

of the spontaneous firing, and were repeated after 1 hour (Figure 7.5). The next

day, spontaneous activities were recorded again to compare with the earlier day’s

spontaneous activity. This was repeated over three days to observe any long

lasting changes.

Figure 7.6(A) shows a correlation heat map where the numbers on each square

shows Spearmans correlation coefficient. Post-stimulation activity was highly

correlated with a Spearman’s coefficient of 0.993, as shown in the correlation

heatmap in Figure 7.6(A). The correlation dropped significantly one hour after

stimulation to 0.509 as shown in Figure 7.6(A). This rather short term poten-

tiation represented by correlation was further confirmed from PSTH profiles as

evoked responses as shown in Figure 7.6(B), before and after repeated stimula-

tion.

The plot in Figure 7.6(B) shows PSTH profiles evoked immediately after the

application of a single set of stimulus; the effect of stimulation can be visualised

by each profile over 1000 ms after stimulation. It is important to note that

the evoked responses discussed in this plot are not the same as MFR measured

before and after stimulation. Evoked responses focuses only on the responses in

the presence of just one set of stimulus, before and after repeatedly stimulating.

Such evoked responses indicate adaptation of network response to a particular

stimulation after repeated stimulation.

A similar evoked PSTH profiles indicate that the culture responds in a similar

way to the same stimulation. On the first day before repeatedly stimulating the

culture, the evoked responses were recorded as a PSTH profile immediately after

the onset of the test stimulus - shown in the red trace in the plot (Figure 7.6(B)).

The culture was then subjected to repeated regular stimulation for 5 minutes,

and the next day evoked responses were measured again with a single set of

test stimulus - shown in the blue trace in the plot (Figure 7.6(B)). Both evoked

profiles on two different days show very similar trend without any significant

changes (either increase or decrease) as a result of the stimulation, over two days.

This response profile after the stimulation shows no significant changes over the

next day period. The correlation heatmap in Figure 7.6(A) suggests a short term

potentiation, which dropped rapidly after 1 hour as indicated by a rapidly falling
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Figure 7.6: Short term evoked responses with single channel stimulation (A)
Correlation matrix of pre and post stimulation network activity. (B) Network
wide evoked responses after the onset of single set of stimulation to measure
evoked responses.

correlation index after an hour. Further MFR comparison tests confirm this.

Table 7.3: Test of Normality (Shapiro-Wilk)

W p
preStim - postStim 0.057 < .001
postStim - postStim 1hr 0.043 < .001
preStim - postStim 1hr 0.075 < .001

Note. Significant results suggests a deviation from normality

Table 7.4: Wilcoxon signed rank test

W p
preStim - postStim 11760 < .001
postStim - postStim 1hr 102026 < .001
preStim - postStim 1hr 60601 0.355

To statistically measure the significance of evoked responses after stimulation,

a paired hypothesis test was performed. The Shapiro-Wilk normality test sug-

gested that the MFR at different time points were non-normally distributed(p<0.001 ),
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Figure 7.7: Significance between pre and post stimulation MFR. (A) A significant
network wide potentiation immediately after stimulation. (B) Significant drop in
potentiated activity just 1 hour after stimulation (C) The MFR difference at pre
stimulation stage and after 1 hour of stimulation are insignificant. [Y-axis scales
are different, but shows absolute MFR values]

as shown in Table 7.3. Due to non-normality nature of the data, a non-parametric

paired Wilcoxon signed-rank testing was adopted. The statistical test suggested

that there was a significant increment in MFR after the stimulation (Table 7.4

Wilcoxon signed-rank:p<0.001 ), however, this effect decreased significantly after

just one hour(Table 7.4: Wilcoxon signed:p<0.001 ). There was no significant

change between the initial pre-stimulation dynamics and the dynamics after one

hour of stimulation, suggesting that the culture had reverted back close to the

initial stage before stimulation (Table 7.4: Wilcoxon signed-rank:p>0.005 )).

A comparative MFR at different stages after the stimulation is shown in Fig-

ure 7.7. As suggested by the statistical testing, a significant increment in MFR

can be seen between pre-stimulation state (preStim) and post-stimulation (post-

Stim) (Figure 7.7(A)) which suggests the achievement of network wide potentia-

tion. This change significantly decreased when measured after one hour (Figure

7.7(B)). When the pre-stimulation state was compared with post-stimulation after

one hour(postStim 1hr), it was found to be not significantly different, indicating

return to the original state of firing dynamics. This suggests inability of single

channel stimulation to exhibit long term potentiation . Furthermore, the MFR

measured over three days of stimulation showed short term potentiation which
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Figure 7.8: Mean firing rate before and after stimulation over three days of re-
peated stimulation (5minutes each day)

can only be observed immediately after the stimulation. The firing dynamics

returned back to the initial state after each day of repeated stimulation as shown

in Figure 7.8 which shows a short term increment in MFR after each stimulation,

however, the effect is reverted back the following day. Hence, multi channel ap-

proaches were explored see if long term responses can push effective connectivity

to a new stable state.

7.4.2 Multi-site Stimulation

As demonstrated in earlier sections, single channel stimulation was not enough

to reliably induce evoked responses that underlie synaptic plasticity behaviour.

Multi-site stimulation has been previously shown to induce potentiation at pop-

ulation level [9, 103] - though for low density glass based MEAs. A systematic

methodology to study induced responses on embryonic hippocampal cultures cou-

pled with CMOS based HD-MEAs with thousands of simultaneously recording

and stimulating electrodes as presented in this work has not hitherto been con-

ducted. Due to the high density and culture sensitive nature of the MEA, the
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Figure 7.9: Illustration of stimulating electrodes interleaved onto recording elec-
trodes.

stimulation sites and parameters were chosen for each culture by manually stimu-

lating all stimulation sites based on the cellular distribution from visual inspection

and selecting those that showed the strongest evoked responses.

For this work, depending on the distribution of neurons on the MEAs, the

stimulation site was selected such that they were at least one stimulation electrode

apart to avoid overlapping signals from closely spaced electrodes.If neurons are

homogeneously distributed then the stimulating electrodes could be further apart

and if neurons are clustered in a particular region then the stimulating electrodes

have to be selected such that electrodes are also in the same region to ensure

effective stimulation for inducing responses. Figure 7.9 illustrates the position

of stimulating electrodes interlaced with the recording electrodes. Position(1,1)

is the position of stimulating electrode starting from the top left corner and the

location co-ordinates move from top left to bottom right (Figure 7.9). With

biphasic stimulation as described in the Materials and Methods section (Chapter

4.3.1), two series of pulses of current were injected from the selected stimulating

electrodes in sequence, one after the other without any delay.

An example culture at 23 DIV is discussed henceforth to demonstrate and

validate long lasting evoked responses. The culture was stimulated with a biphasic

stimulation at 5Hz with repetition of 20 pulses every 20 seconds from stimulation

site (1, 4) and (4, 1) as shown in the illustration (Figure 7.11), where biphasic

stimulation pulses were applied with a set gap of 20 seconds after both channels

supplied 20 pulses. Similar to Section 7.4.1, the culture was stimulated and

recorded for the next 3 hours - 5 minutes at every hour.
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Figure 7.10: Raster plot with firing profile.The top red plot shows network firing
rate over 5 minutes and the blue plot on the right indicates each electrodes firing
over the 5 minute duration (A) Pre stimulation spontaneous firing represented
by a network wide raster plot for 5 minutes. (B) Immediate post-stimulation
network wide firing for 5 minutes.
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Figure 7.11: Illustration of stimulating electrodes interlaced onto recording elec-
trodes.

Table 7.5: Test of Normality (Shapiro-Wilk)

W p
preStim - postStim 0.383 < .001
preStim - postStim 1hr 0.114 < .001
preStim - postStim 2hr 0.128 < .001
preStim - postStim 3hr 0.064 < .001
Note. Significant results suggests a deviation from normality

Figure 7.10 shows two raster plots before and after the stimulation pulses

were applied for 5 minutes, respectively. The red plots on the top of each raster

plot indicate the network firing rate trend over 5 minutes for all the electrodes

combined and the blue vertical plots on the right hand side show firing activity

from each of the 4096 electrodes. A visual comparison of the two red traces in

Figure 7.10, suggest that the network wide firing dynamics have changed. How-

ever, using raster plots alone is difficult to objectively tell if changes have indeed

taken place, as they do not convey the complete information of the responsive-

ness and long lasting nature of the responses. Therefore, the hourly comparisons

and statistical significance of the increment are discussed in the next section for

greater clarity and objective assessment.

7.4.2.1 Hour-to-hour recording of cultures

Recordings were performed at various time points to allow for a detailed overview

of network dynamics before and after stimulation. First of all, network responses
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were analysed at every hour for three hours after the stimulation was applied.

Figure 7.12 shows hour by hour MFR(Mean Firing Rate) and MBR(Mean Burst-

ing Rate) data, before and after the stimulation, recorded for 5 minutes every

hour for three consecutive hours over three days. Stimulation was started at

DIV23, at which point (third week) the culture was fully mature, with a good

balance of excitatory and inhibitory synapses [111,112].

Normality tests suggest a non normal distribution as shown in Table 7.5. A

non-parametric test, paired Wilcoxon signed-rank, was hence adopted for statis-

tical testing. After the first set of stimulation, the culture evoked potentiated

responses characterised by a significant increment (p<0.01) in MFR and MBR.

This response was consistent over each day of stimulation and is indicated by

significance in Figure 7.12. The incremental trend was not always evident at the

hourly recording performed after the stimulation. In fact, both firing rate and

bursting rate dropped after the first hour of stimulation which was also consistent

with other cultures (postStim - postStim 1hr plot in Figure 7.12). The potenti-

ated dynamics, however, were retained beyond the first hour of stimulation and

the MFR and the MBR showed potentiated dynamics in comparison to the initial

rate, but not drastically changed at the end of hour 3. The actual cause for this

unexplained initial drop after the first hour not was clear and is yet to be investi-

gated in detail. The probable cause could be over-handling of the chips. Hourly

recordings do allow for much better inspection of dynamics but taking the chips

out of the incubator and recording does add a lot of stress on the cultures as

the incubation environment cannot be maintained during the recording. Due to

the complex circuitry of the 3Brain Chips, incubating BioCam recording device

under cell culture environment (65% humidity) is not recommended.

Furthermore, correlation analysis performed over each time point revealed a

decreasing correlation index pattern after the onset of stimulation consistent over

all cultures. Due to non-normality of the data, pairwise Spearman’s correlation

was performed for all recordings at different time points. The pairwise correlation

matrix is presented as a heatmap in Figure 7.13, which shows corresponding cor-

relations for MFR and MBR over three days, with respect to Figure 7.12, where

each pixel is colour coded for Spearman’s correlation index(ρ). The rows and

columns are indexed from 1-5 as 1 - preStim, 2 - postStim, 3 - postStim 1hr, 4

164



7. Induced Learning in Neuronal Culture

Figure 7.12: Mean firing rate and mean bursting rate dynamics after stimula-
tion recorded over three days at five different time points Spontaneous firing
before stimulation(preStim), immediately after stimulation (postStim), 1 hour
after stimulation (postStim 1hr), 2 hours after stimulation (postStim 2hr) and
3 hours after stimulation (postStim 3hr) . It is seen that stimulation was able
to evoke subsequent network wide potentiation, as seen in both the MFR and
MBR plots, although the hourly record tended to fluctuate. [*p<0.05, **p<0.01,
***p<0.001]
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Figure 7.13: Correlation between pre and post stimulation dynamics. A corre-
sponding correlation heatmap of Figure 7.12 where each pixel represent a Spear-
man’s correlation index(ρ).[Indexing: 1 - preStim, 2 - postStim, 3 - postStim 1hr,
4 - postStim 2hr, 5 - postStim 3hr ]
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Figure 7.14: Scatter plot of pre- and post-stimulation network wide MFR plots
at three different time points after the stimulation. Each dot in the scatter plot
corresponds to an electrode firing before and after stimulation. Linear regression
lines for each time point shows network response trend after the stimulation

- postStim 2hr, 5 - postStim 3hr . Both MFR and MBR showed a high positive

correlation which got weaker with time, however, the correlation doesn’t fall dras-

tically and maintains a correlation index of more than 80% in all cases, even after

3 hours. A comparison to a short term potentiation correlation index discussed

in Figure 7.6(A) shows that the correlation index dropped to 0.5, 1 hour after

stimulation.

As expected, the culture showed a trend where the culture demonstrated a

stronger response initially indicated by a high correlation coefficient, and with

time settled back to some homeostasis as indicated with decreasing correlation

coefficients, whilst maintaining more than 80% correlation index. This decreas-

ing correlation can be supplemented with manifested change in MFR for clarity,

with a comparative response trend over three hours of post stimulation stage as
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shown in Figure 7.12. The general trend line based on the MFR rate is shown in

Figure 7.14 for different time points, represented as different colours with each

corresponding linear fit line in the same colour. Each plot represents an active

electrode that showed firing activity during recording. Figure 7.14 shows that

the evoked responses immediately after the stimulation is much stronger than

responses after 1/2/3 hours of stimulation, as indicated by the top red linear fit

line. The responses measured for the next three hours fluctuate but remain in

close proximity to each other as shown by green, black and blue lines clustered

close to each other in Figure 7.14.

7.4.2.2 Induced potentiation after stimulation

So far, evoked network responses after repeated stimulation were measured and

analysed every hour for three hours, over three days. Correlation analysis and

statistical testing showed that there was in fact a significant change after the onset

of stimulation in both MFR and MBR. In addition, it is critically important to

also measure the responsiveness of the culture to the same stimulus, which over an

extended time period (>hours), to assess whether network wide activity has both

increased and also adapted response to the stimulation. To clarify further, how

the network responds to the same stimulation after being repeatedly stimulated,

shows the adaptation of the network to that stimulation. During post stimulation

recordings so far, the responses were measured at specific time points after the

stimulation i.e. from a few minutes to 1 - 3 hours over three days. In order

to demonstrate successful induction of some level of plasticity behaviour, the

same single instance of stimulus should be able to induce a different response,

measured on different days, after the repeated stimulation. During repeated

stimulation, connections are either formed or changed and new neural pathways

are established, due to the adaptable nature of the brain to external stimulation

- in a way, the network is re-learning or re-organising its connections in response

to the stimulation, hence demonstrating neural plasticity behaviour.

Accordingly, network responses to the first set of stimulation only were mea-

sured over 4 days subsequent to the stimulation. The steps can be better un-

derstood from the illustration (Figure 7.15 ). On the first day, the response to
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Figure 7.15: Evoked and post stimulation response measurement with repeated
stimulation timeline shown over 4 days.

the first set of stimuli was recorded as evoked responses due to single stimulation

(Figure 7.15). After that, repeated stimulation was applied to induce plasticity.

The next day, the original stimulus was applied again to record the response

and subsequently repeated stimulation was applied. This was repeated over four

days. On the last day, only the test stimulus was applied and the experiment was

concluded without further repeated stimulation. Hence, the actual repeated stim-

ulation was performed over three days but the evoked response was also measured

on the day 4 as shown in Figure 7.15.

If a network had indeed adapted to new stimulation, the responses would

be different to the same stimulation as the network “learns” to modulate its

responses. Figure 7.16 shows four different network responses after stimulating

the culture for three days. The time point zero on the x-axis is the time of onset

of stimulation. Pre stim (day1) is the first day of stimulation, where the culture

had never been subjected to any external stimulation. The initial evoked response
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Figure 7.16: Network dynamics after repeated stimulation to induce long term
evoked responses. (A) Evoked responses to only one set of stimulation over four
days of repeated stimulation. (B) MFR increment over three days after repeated
stimulation for 5 minutes on each day.

to the same stimuli is clearly quite different from the other post stimulation days.

On a first look, the responses after the first set of stimuli shown in the red

trace (Figure 7.16(A)) has a much weaker and wider response to the stimulation

peaking at around 60 spikes/bin(binsize=10ms) and stretches up to 200ms after

the stimulation. The response gradually decreases with time as the network comes

back to the initial state of spontaneous firing.

After the first day of stimulation, the culture was presented with the same

single stimulation (24 hours later). The stimulation was applied to the same lo-

cation under the same conditions. 24 hours is a long enough time to allow the

network to revert back to an equilibrium state. This ensures that the subsequent

network responses were not subjected to any other factors such as state of excita-

tion or short term potentiation due to insufficient relaxation time. The responses

after day1 clearly show that the network has in fact changed and consistently

showed stronger responses, peaking at up to 2.6 times the initial response ie.

160 spikes/bin, as evident from the sharper initial peaks of the post stimulation

traces, as shown in Figure 7.16(A). After subsequent days of stimulation, the

traces for day 2,3,4 after stimulation continues to evolve suggested by the fluctu-
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Figure 7.17: MFR and burst count for 20 randomly selected channel before and
after stimulation. (A) MFR comparison before and after stimulation (B) Number
of bursts from each channel before and immediately after stimulation

ating response profile for these days whilst maintaining a much larger response

profile, evident from higher and broader peaks, in comparison to day1 (Figure

7.16(A)). The response profile within 400ms after the onset of stimulation is gen-
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erally considered to monitor and compare evoked responses [9, 126]. To confirm

the fact that an induced responses has been achieved and sustained after the

stimulation, Figure 7.16(B) shows the MFR responses after stimulation on each

day and also a significant increment in MFR after each day of stimulation. Fur-

thermore, Figure 7.17 shows the MFR and number of bursting activities from

20 randomly selected channels within the vicinity of the stimulation site. Both

MFR and bursting activities show an increment in activity from almost all se-

lected channels. This helps to illustrate that the mean activities are not heavily

skewed by a small number of channels, but are well distributed across channels.

A clear pattern of long term potentiation can be identified with the responses to

stimulation and the overall network response.

7.4.2.3 Induced depression after stimulation

In contrast to long term potentiation, 3 out of 10 cultures, exhibited depressed

behaviour in response to repeated stimulation. Predicting which culture would

result in potentiation or depression based on initial dynamics was a difficult task

because the spontaneous dynamics across all cultures initially appeared similar

in terms of dynamics of periodic bursting.

Even though some cultures evoked a network wide depression response, long

term depression lasting many days was not observed. Networks eventually re-

turned back to their earlier stage after 3-4 days, though the depression was very

prominent for a few hours after stimulation. Figure 7.18 shows analysis from one

of the cultures with decreased firing rate after the onset of stimulation. Based on

firing rate traces of the spontaneous and post stimulation stages at different inter-

vals for 5 minutes, as shown in Figure 7.18(A), the firing rate drops significantly

post stimulation over the course of three hours. However, the evoked response

trace measured over four days tells a different story. The red trace in Figure

7.18(B) sets a baseline response recorded at first day after stimulation. After

stimulating the network, the response decreases rapidly shortly after stimulation,

and reaches a plateau at a low level thereafter, as shown in the blue trace. This

inhibition however, slowly recovers over the course of next two days and settles

back to the initial condition as shown by cyan and green traces, which get closer
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Figure 7.18: Evoked depression after stimulation. (A) Network wide response
as firing rate to stimulation measured for 5 minutes after stimulation(B) Evoked
response profile after the onset of single set of stimulus .

to the red trace in Figure 7.18(B). Further studies on depression behaviour is

needed to draw a more reliable conclusion on this behaviour.
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Figure 7.19: Regularisation of unstable network dynamics (A) Highly fluctuating
firing rate profile before stimulation(B) Regularised firing profile into periodic
bursting after stimulation (C) Network response traces after stimulation over
four days which shows mitigation of unstable firing

7.4.2.4 Stimulation effect on unstable network activity

During the course of stimulation and recording, an interesting behaviour was

ob- served with neuronal cultures which exhibited fluctuating firing dynamics, as

opposed to regular burst firing. This was observed in two cultures.
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The stimulation was conducted as normal and it was noted that the post

stimulation firing dynamics were regularised into regular intervals of bursting

patterns. Figure 7.19(A) illustrates an examples of unstable firing dynamics,

where the firing patterns increase and decrease quite drastically, but quickly set-

tled down into regular bursting patterns after the first set of stimulation as shown

in Figure 7.19(B). The stimulation was then continued for the next three days

to monitor the changes and make further analysis on whether the regularisation

was by chance or if the initial unstable firing pattern was by chance and would

have eventually stabilised even without stimulation.

Similar to the previous protocol, over the course of next four days, evoked

network responses to stimuli (5Hz, 20 repetitions, 20seconds gap) were traced

as spike counts per bin after the onset of stimuli for 1 second (Figure 7.19(C)).

The first trace (shown in red) clearly shows a surge in firing at around 500ms

after the stimulation, exhibiting unstable random firing. The next day’s response

trace (blue trace) shows reduced random bursts, and reduced temporal width

of such bursts - however, the random burst was still apparent as indicated in

highlighted black circle and oval (Figure 7.19(C). Subsequent days revealed that

the responses were regularised and no random bursts were apparent as shown

via the cyan and green line traces (Figure 7.19(C)). Also, it is clear that, the

responses are depressed, as seen from the decreasing traces from day1-4 during

stimulation. Even though the finding was interesting, only two samples were able

to show such behaviour and further extensive work is required to draw a definitive

conclusion.

7.5 Transfer entropy based connectivity infer-

ence

During repeated stimulation of neuronal cultures coupled with MEAs, long term

potentiation, short term potentiation, short term depression and even stabilising

effects were observed. Long potentiation experiments showed long lasting evoked

responses for a particular stimulation, with evoked network wide responses ob-

served even after 24 hours post stimulation, which were strengthened by further
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repeated stimulation. Studies have shown that different emergent connectivity

topologies induce different response states [116, 203]. The controlled emergence

of neural connectivity, that allows quantification of neural pathways and neural

interconnections is of great interest to the neuroscientific community This section

utilises novel techniques developed to quantify and visualise the emergence and

development of network connectivity during induced evoked responses.

The Information Theoretic Transfer entropy method, which was adapted for

HD- MEA recordings (as described in Chapter 6.2), was applied to infer func-

tional connectivity of such evoked responses during the emergence of plasticity

behaviour, established by achievement of long term potentiation. Inferred connec-

tions were statistically validated and subsequently false positive connections were

filtered by utilising a novel ISI distribution based surrogate method (described in

Chapter 6.3), developed as part of this work.

7.5.0.1 Filtering based on novel ISI distribution surrogate method

Spike times from the neuronal recordings were used to compute delayed TE. The

TE approach has gained popularity in computational neuroscience and shown

better performance in comparison to popular cross-correlation, mutual informa-

tion and joint entropy, being validated on synthetic data [14–16, 159]. However,

for HD-MEAs with thousands of electrodes, the number of spurious and statisti-

cally insignificant connections identified can be overwhelming, since the number

of possible connections increases exponentially with an increasing number of chan-

nels. In this work, MEAs have 4096 electrodes which is a significant number of

channels in comparison to most reports in the literature which pre-dominantly

utilise 64 or 256 channel MEAs, especially for plasticity studies. Figure 7.20(A,B)

shows colour coded connectivity based on the normalised connection strength su-

perimposed onto the MEA’s 64×64 grid. Figure 7.20(A) shows an overwhelming

number of inferred connections which makes it extremely difficult to see any

structural or functional layout. This is why, especially when dealing with real

recordings, it is critical to apply filtering to separate spurious from statistically

significant connections. Figure 7.20(B) shows the post-filtered out connections

after testing the statistical significance of inferred connections with the aid of
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Figure 7.20: Network connectivity inference and subsequent filtering of insignif-
icant connections. (A) Dense connectivity inferred from TE computation. (B)
Connectivity map after filtering of insignificant connections identified with the
aid of surrogates. (C) Number of functional connections before and after filtering.
[Heatmap colour bar in (A,B) represents normalised strength of connections based
on TE values]

the surrogate data approach discussed in Chapter 6.3. Figure 7.20(C) shows

the number of functional connections before and after filtering, demonstrating a

significant change.
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Due to the dynamical nature of neuronal cultures, getting multiple trials is

not viable as it is extremely challenging to have two cultures with statistically

similar dynamics, let alone have enough trials for statistical comparison. Hence,

surrogate methods are often used to obtain enough trials in such scenarios. A

novel, more effective methodology designed for surrogate method was described

in detail in Chapter 6.3. The method was validated with biologically realistic

synthetic data based on Izhikevich’s model.

Following the same methodology, 100 surrogate spike trains were generated

for each spike train from the 4096 channel recordings. The algorithm described

in Chapter 6.3.2.3, Algorithm I was used to generate surrogates. In order to

demonstrate that the surrogates were similar to the original spike train and did

not deviate from the original spike train, ISI distributions of 10 randomly sampled

surrogates against the original surrogate are plotted in Figure 7.21(A). The ISI

distributions were similar, though not exactly the same. This is a desired prop-

erty which results in variations in the samples resulting in a much richer set of

surrogates. If the distributions are very different, it indicates that the generated

surrogates fail to retain ISI features leading to failure of the requirement that

all except spike time features are destroyed for subsequent hypothesis testing.

Furthermore, to demonstrate that ISI distributions of different spike trains are

indeed different, a separate ISI distribution comparison is made. Figure 7.21(B)

shows ISI distributions of five randomly selected channels. The ISI distributions

are all different. Since, the surrogates generated are based on the ISI distribution

of a particular target or original spike train, different ISIs will have surrogates

that corresponds to their target spike train’s ISI distribution. This ensures that

surrogates generated for different channels are also different and relevant. An

example of generated surrogate spikes can be visualised in a comparative raster

plot of surrogates (in blue vertical dashes) and original (in red vertical dashes)

spike trains in Figure 7.22. Even though the surrogates are very different from

the original spike train, only the spike times are changed whilst following very

similar ISI distribution of the original spike train.

Finally, TE for original recordings were computed and subsequent TE for

each surrogate data was also computed. The statistical test described in Chapter

6.3 was performed to compute p-values. Connections that have p-values less
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Figure 7.21: ISI distribution of surrogate spike trains and real spike trains from
neuronal recordings (A)ISI distribution of 10 randomly selected surrogates vs
original spike train. (B) 5 randomly selected neuronal spike trains and their
corresponding ISI distribution.

than 0.05 were considered significant connections. Anything more was flagged as

insignificant or spurious and discarded.
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Figure 7.22: Raster plot of original spike train and its 100 surrogates

7.5.0.2 Connectivity development during plasticity

In Section 7.4, modulation of emerging neuronal dynamics by electrical stimu-

lation was discussed. The question of whether the underlying functional con-

nectivity is modified or not during long term plasticity, indicated by long term

potentiation, is discussed in this section. Connectivity maps were mainly anal-

ysed for two conditions, (i) control - no stimulation and (ii) stimulated - long

term potentiated networks.

It has been established that without external input in dissociated neuronal cul-

tures, they maintain stable firing patterns, as well as stable connectivity [204,205]

- though a slight drift in the observed activity patterns is present [204]. To ensure

stability of network connectivity inferred for a stable spontaneously firing cultures

that have not been subjected to any external stimulation, four connectivity maps

from the same culture were plotted for each days over four days of spontaneously

firing culture. This particular culture is Chip7 as mentioned in Table 7.2 as the

control chip, meaning no stimulation was applied to this culture. Only spon-

taneous activity was recorded for 5 minutes every day for 4 days. Figure 7.23

shows the functional network connectivity, as discussed in Section 7.5.0.1, where
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Figure 7.23: Connectivity maps of a spontaneously firing culture over 4 days
without any external stimulation

each electrode is laid out in 64 × 64 grid, mimicking the original electrode lay-

out. Each colour coded line is a significant connection with colours representing

a heatmapped indication of normalised connection strength. Even though the in-

ferred connections drift from one day to the next, the overall connectivity pattern

is largely conserved and the pattern looks stable as previously studied [204–206].

The culture is still maturing at this stage and stronger connections become more

prominent as the culture reaches day 21. This helps to establish that the connec-

tivity inference corresponds to the stability of the network.

In comparison, connectivity was inferred for networks during induction of

long term plasticity over many days, which was previously established in Section

7.4.2.2. Figure 7.24 shows the development of functional connectivity identified

with the TE method. The connectivity was inferred from a spontaneously firing
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Figure 7.24: Development of functional connectivity during long term potentia-
tion. A firing density plot is superimposed onto a connectivity map for better
reference, where the most active connections are represented by red and yellow
pixels. Connections are represented with coloured lines linking two channels.
Horizontal colourbar represents normalised strength of connection and vertical
colourbar represents normalised firing density.(A) Connectivity map during the
start of controlled repeated stimulation - DIV23 (B) A day after 5 minutes of
stimulation where the connections get denser with new connections clearly visi-
ble at the bottom left - DIV24 (C) Connectivity development after 3 days (5mins
on each day) of repeated stimulation - DIV25
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network before repeated stimulation on each day. The baseline activities were

mostly focused on the middle of the chip with a rather even distribution of firing

activities, with firing density indicated by pixels corresponding to the vertical

colourbar (Figure 7.24(A), DIV23). Superimposition of the firing density plot

showed that not all highly firing channels necessarily have a connection, and not

all low firing channels necessarily do not have connections. Since TE incorpo-

rates the causal effect between two spike trains, two spike trains may be highly

active but there may be no functional causal effect, which is as observed from

Figure 7.24. However, the probability that highly firing neurons would have more

connections remains, as discussed in Chapter 6.2.3.3.

By visually analysing the connectivity growth alongside the firing density

from DIV23-25, as shown in Figure 7.24(A-C), it can be inferred that as the

potentiated response growth was observed over different days, a similar growth

in density of the connections was also observed. After the first day of stimulation

which resulted in long term potentiation, there were lots of new connections

observed on DIV24 (the bottom left of Figure 7.24(B)) even though the area

was fairly active before the stimulation, as can be seen with density plots on

the bottom left of Figure 7.24(A) at DIV23. The connections at DIV25 (Figure

7.24(C)) get even denser as further stimulation which successfully resulted in a

long term evoked responses, whilst maintaining the general area of the activity

patterns. The physiological explanation of development of connections could

potentially be explained by STDP rule, which states that many action potentials

occurring during repeated stimulation fall in the time window of STDP, leading

to strengthening of synaptic efficacy and hence helps to establish a connection

[77,78,82].

The increments in firing density and corresponding number of connections

were also analysed. Figure 7.25 shows the normalised increment rate for the

firing rate and inferred connections. With a small increment in network wide

firing rate, there was a much larger increment in new connections, observed at

day24 after the stimulation. It appears that the number of new connections

starts to increase rapidly and slows down as the network adapts its responses to

a particular stimulation, even though the network wide firing keeps increasing.

By utilising the TE based connectivity inference method, alongside the novel
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Figure 7.25: Increment rate of firing density and network wide connections over
3 days of long term potentiation

ISI distribution based surrogate method, it was possible to monitor and visualise

the connectivity growth during long term potentiation induced by repeated stim-

ulation. Due to the fact that these data arise from real experimental recordings,

ground truth information cannot be obtained. However, the surrogate method

helps to mitigate the uncertainty with statistical testing to filter out only the

relevant connections. The addition of structural information from fluorescence

images could possibly supplement the surrogate method as well [126,207], but is

beyond the scope of this thesis.
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7.6 Discussion and conclusions

This chapter mainly focused on the induced evoked responses in the presence of

controlled repeated stimulation. A systematic selection criteria was determined

and followed, so as to select only those cultures that were both responsive to

external stimuli and simultaneously stable. These are important aspects to avoid

unwanted biases in the dataset.

After manual optimisation of stimulation protocols, two main types of stimu-

lation were selected based on frequency(2Hz and 5Hz) and number of stimulation

sites(single site, multi-site). Single site stimulation resulted in no significant sus-

tained network response change. The post stimulation evoked responses to the

same stimulation were also not different from pre stimulation responses, indicat-

ing that the culture had not actually responded to the stimulation. However, 5Hz

multi-site stimulation (from two separate sites) was able to successfully induce

long lasting network potentiation (LTP) which was consistently stable over the

next day. The response curve also showed that the network responses to the

same stimulation were indeed changed after the stimulation. Both the response

trace and the overall network potentiation were evidence that the stimulation

had induced network responses as a consequence of that particular stimulation

- “induced plasticity”. Similar potentiation effects were also observed in other

cultures. During optimisation, it was found that the stimulation site and the ini-

tial response during selection play a key role in determining possible responses to

stimulation. The stimulation site was critical because where the stimulation was

applied greatly affected which part of the culture was affected. Neuronal cultures

have mixture of excitatory and inhibitory neurons and both respond differently

to external inputs.

Induced depression effect was also observed. The cultures that initially demon-

strated induced depression exhibited the depression effect throughout the stim-

ulation stage, regardless of stimulation. Unlike LTP, the depression effect was

short lived. The network depressed significantly after the stimulation, but recov-

ered after a few days. The response curve confirmed this observed pattern . The

cellular distribution of excitatory and inhibitory neurons during the initial seed-

ing may be the probable cause that dictates potentiated response or depressed
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response. However, due to an insufficient number of culture samples displaying

this effect, no substantial further analysis was performed.

Additionally, an interesting behaviour of stabilising/regularising effect of stim-

ulation on the cultures that exhibited unstable network dynamics was also ob-

served, whereby firing patterns were stabilised with repeated stimulation. How-

ever, it is problematic to infer cause and effect in this context - i.e. just from

the dynamics of the firing pattern. There could potentially be no effect from the

stimulation, and the culture could already be stabilising on its own - though the

cause for such unstable firing was not clear. The response curve after stimula-

tion, however, showed that the network response before and after stimulation of

such unstable cultures were indeed different, where the response changed from

multi-peaks unstable to gradually decreasing single peak stable responses. Al-

though this is not sufficient evidence, the result is indicative of some effect of the

stimulation in terms of network stabilisation, as shown by the gradual decrease

in unstable evoked response (Figure 7.19(C)).

The ISI distribution based surrogate method developed as part of this thesis

and discussed in Chapter 6 was applied to neuronal recordings to analyse network

connectivity development during plasticity behaviour. The fact that without any

external input, a culture maintains stable firing activity [204, 205], inferred con-

nections were tested firstly to monitor if inferred connections from a control cul-

ture without any external input over 4 days would show consistent connectivity

patterns. The connectivity over 4 days of the control culture was found to be very

similar which indicates that the TE computation and the surrogate based filtering

were consistent over same culture recorded over many days without any external

stimulation. Furthermore, the network analysis of LTP induction after stimula-

tion also showed a good correspondence with the firing density. New connections

were observed after the network achieved “learned” state, due to repeated stim-

ulation. The connections kept getting denser with subsequent strengthening of

LTP. The relationship between the increase in connections and firing density, was

clearly not linear. The number of connections grew much rapidly in comparison

to the firing density increment, which later slowed down as the LTP got stronger.

To summarise, a systematic method of assessing neuronal cultures for induc-

tion of evoked responses persisting for days has been achieved. The network
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dynamics during the stimulation process were analysed and response traces con-

firmed adaptation of stimulation to a different response, which at a low level can

be referred to as “learning”. In addition, a connectivity analysis was performed

and a novel ISI distribution based surrogate method, developed as part of this

work, has been applied to real recordings of hippocampal cultures during induced

network responses.
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Summary and conclusions

The aim of this thesis has been to utilise state-of-the-art CMOS based MEAs

to study neuronal dynamics, focused on induced plasticity behaviour and to de-

velop novel methods for network connectivity analysis. This necessitated the de-

velopment of multidisciplinary expertise across bioscience, computing and elec-

tronics. The establishment of successful growth and maintenance of dissociated

neuronal cultures on CMOS based MEAs was achieved, with cultures remaining

healthy for a prolonged period of time (up to 4 weeks). These cultures then

enabled successful electrophysiological recordings on a 3Brain MEA system. A

systematic selection of neuronal cultures for plasticity studies was found to be

paramount and determined the evoked responses.

High density MEAs produce huge datasets even for short recordings, neces-

sitating developments of analytics techniques to gain an understanding of the

neuronal dynamics. Computational tools and techniques to facilitate the analy-

sis of neuronal dynamics and functional connectivity during induced long term

responses were developed and validated. The investigations in this thesis mainly

covered experimental contributions and algorithmic/computational tool develop-

ment for electrophysiological recordings. In this chapter, a summary of the key

contributions of this thesis are provided followed by a description of potential

future directions.
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8.1 Summary of key contributions

The main contributions of this thesis can be summarised into two categories:

Computational contribution

There are three main computational contributions presented in this thesis.

1. Two mathematical metrics, ISI-distance and SPIKE-distance, to quantify

neuronal synchrony, which are based on the temporal interactions between

groups of neurons, were adapted for large HD-MEA recordings. These were

demonstrated to be effective in identifying and quantifying synchronous pat-

terns. This contribution was also accepted and presented in the 2018 IEEE

IJCNN conference and subsequently published in the IEEE proceedings.

(Chapter 5 )

2. Transfer entropy(TE), an information theory based approach, to infer func-

tional connectivity was applied to HD-MEA neuronal recordings. To sup-

plement TE inference, a novel firing density superimposition method was

proposed as an alternative to ground truth information for better confi-

dence in the inference. The method showed a good fit between the firing

density plot and the inferred connectivity for real experimental recordings.

This contribution was also accepted and presented in the 2019 IEEE IJCNN

conference and subsequently published in the IEEE proceedings (Chapter

6.2)

3. A novel ISI distribution based surrogate method to compensate for the lack

of ground truth information by generating surrogate data was developed.

The proposed method generates enhanced surrogate data due to variations

in- troduced during the sampling process. The method was validated with

a realistic Izhikevichs network of 1000 neurons and ROC analysis showed

a superior performance in comparison to an existing ISI shuffling method.

(Chapter 6.3)

Experimental contribution

There are three main experimental contributions presented in this thesis.
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1. Development and optimisation of cell culture methods for sensitive CMOS

based MEAs so as to successfully grow and maintain dissociated neuronal

cultures for prolonged periods (up to 4 weeks). It is extremely difficult to

grow high quality cell cultures on CMOS based MEAs, which unlike glass

substrates, have surfaces less conducive to healthy cell growth. In Chapter

4.2, a method for optimising MEA chip preparation was presented, along

with general cell culture methods. Humidity and evaporation was found

to be crucial to avoid early cell death during incubation. To mitigate this

issue, a custom made humidity chamber was designed for each chip to allow

enough humidity and reduce rapid evaporation.

2. Establishment of neuronal cultures for plasticity studies and design of cri-

teria to select potential cultures for plasticity based on responsiveness, sta-

bility and firing rate. A systematic selection criteria were utilised based

on (i) firing rate, (ii) firing stability and (iii) responsiveness to stimulation

to ensure that the neuronal cultures met standards for evoked responses to

stimulation. Such selection criteria determine different network responses

to repeated stimulation. (Chapter 7.2, 7.3 and 7.4)

3. Stimulation protocol selection to induce wide range of evoked network re-

sponses. Multi-site and single-site stimulation were explored where only

multi-site stimulation was found to evoke long lasting responses. Further-

more, 2Hz and 5Hz frequencies were explored. Multi-site 5Hz stimulation

was able to induce LTP responses sustained over many days. (Chapter 7.5)

4. Network connectivity development during plasticity based on TE method

supplemented with proposed surrogate method. The developed superim-

position and ISI distribution based surrogate methods were applied to the

LTP responses recorded over many days. The developed methods were able

to identify and track statistically significant network connections developed

over the period of 3 days. (Chapter 7.6)

Further discussion on the contributions are presented.
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8.2 Neuronal synchrony analysis

During the early stage of establishing cell culture methods for stable cell growth,

neural synchrony metrics were adapted and applied to identify synchronous pat-

terns from spontaneously firing neuronal cultures from 3Brain HD-MEAs (Chap-

ter 5). Neural synchrony quantifies temporal correlation between spike trains and

can provide great insights into neuronal response pattern to different stimulus and

the assessment of neural populations in neural coding [182]. The ISI-distance and

SPIKE-distance metrics for spike train synchrony analysis have been applied to

HD-MEA datasets. Theses exploit parallel processing and informative selection

of a subset of the dataset to quantify and characterize bursting behaviours in large

datasets. The metrics used were first validated with a smaller synthetic dataset

that had deliberately incorporated varying degrees of synchrony. Both bivariate

and multivariate analysis were performed. The method was also shown to be

applicable to larger HD-MEA experimental dataset. The ability to utilise such

metrics especially on large scale experimental biological datasets such as those

generated from HD-MEA recordings is invaluable in studying various neuronal

properties that underlie many neurological disorders.

8.3 Transfer entropy connectivity estimation

To infer functional connectivity, an information theory based transfer entropy

approach was utilised in Chapter 6. Firstly, the method was thoroughly val-

idated with a biologically realistic simulated network with the STDP learning

rule, synaptic delays and a mixture of excitatory and inhibitory neurons. The

TE connectivity inference method was then applied to experimental HD-MEA

recordings of spontaneously firing hippocampal cultures. Unlike simulated data

where the ground truth connectivity is available against which the estimated

connectivity can be compared, experimental data lacks this information, making

distinguishing true from spurious connections a difficult problem. To tackle this

problem, a superimposition method was developed, where the estimated con-

nectivity is superimposed onto the firing density plot to test if the estimated

connectivity corresponds with the firing density plot and to give confidence in us-
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ing the derived connectivity for further analysis (Chapter 6.2.3.2). The method

demonstrated that this approach, i.e. the estimations of connectivity when su-

perimposed onto the firing density plots show a good fit. However, the method

itself doesn’t provide any statistical significance testing of inferred connections.

Ideally, multiple trial measurements are conducted under the assumption of

the same condition to compute statistical significance of the measurements and

gain confidence in the inference. However, living dissociated neuronal cultures

are non-stationary and always evolving with time which makes the multiple trial

measurement unfeasible. As the culture matures and evolves it might respond

differently from trial to trial; this problem is exaggerated in stimulation based ex-

periments. To overcome this problem, a novel surrogate method based on the ISI

distribution was proposed to generate multiple trials (Chapter 6.3.2). In contrast

to existing methods [167–169], which are direct manipulation of the spike train

to generate surrogate data, the proposed distribution based approach adopted

sampling from the ISI distribution of each spike train such that the ISI and firing

rate information are not destroyed, but only temporal information in the spike

train is destroyed. The sampling process enables the achievement of surrogates

with the ISI distributions as close approximation to the original ,but not exact

copies. This introduces enhanced controlled variation in the surrogate data, hence

a richer set of surrogates. The proposed method was validated with simulated

data and was able to accurately determine statistically significant connections

from non-significant connections. In addition, the method was also able to detect

the strength of the inferred connections based on p − value. The method was

compared with the closest method, ISI shuffling, which showed an improved accu-

racy of 93% at 0.01 false positive rate from 80% for the ISI shuffling method. To

strengthen the connectivity inference, incorporating structural information from

fluorescence imaging [126,207] may help refine network connectivity.
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8.4 Controlled repeated stimulation to induce

long term plasticity

In Chapter 7, the declared goal of inducing plasticity on neuronal cultures grow-

ing on MEAs, by integrating methodologies and computational tools developed

in the preceding chapters was delivered. In particular, contributions in the ex-

perimental aspect of the project were presented. Building on the cell culture,

electrophysiology and computational tools discussed thus far, stimulation exper-

iments were performed and recordings analysed. Systematic selection criteria

were utilised based on (i) firing rate, (ii) firing stability and(iii) responsiveness

to stimulation (Chapter 7.4) to ensure that the neuronal cultures met the stan-

dard to evoke responses to stimulation. Such selection criteria determine different

network responses to repeated stimulation.

Two different stimulation frequencies were applied, 2Hz and 5Hz. Manual

optimisation of stimulation revealed that stimulation at frequencies greater than

5Hz for multi-site stimulation resulted in saturation of electrodes; while stimu-

lation under 2 Hz led to no discernible evoked responses. It was demonstrated

that single site stimulation was not able to evoke long lasting responses (Chapter

7.5.1). Multi-site stimulation with 5Hz pulses was able to induce LTP, which was

sustained consistently over many days (Chapter 7.5.2). LTP responses became

stronger with repeated stimulation. The response curve also showed that the net-

work responses to the same stimulation was indeed changed after the stimulation.

Both the response trace and the overall network potentiation were in agreement

that the stimulation had induced network responses adapted for that particular

stimulation - “induced plasticity”. However, during optimisation, it was found

that the stimulation site and initial response during selection play a key role in

determining possible responses to stimulation. Such a systematically detailed

method of selecting cultures and inducing LTP for CMOS based HD-MEAs has

not conducted before and is potentially an effective experimental model to study

many neurophysiological disorders.

In addition to LTP, induced depression effect was also observed (Chapter

7.5.2.3). It was found that the cultures that initially demonstrated induced de-

pression exhibited depression responses throughout, regardless of stimulation.
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The induced depression effect, however, was short lived and didn’t show evoked

response son subsequent days. During stimulation, the network depressed signif-

icantly after the stimulation, but recovered after a few days and the stimulation

had limited effect compared to LTP. Hence, LTD effect was not observed with

those cultures. The cellular distribution of excitatory and inhibitory neurons

during the initial seeding may be a probable cause that dictates potentiated re-

sponse or depressed response, but substantially more culture samples are needed

to further study this effect, with extensive biological analysis.

Additionally, an interesting stabilising/regularising effect of stimulation on the

cultures that exhibited unstable network dynamics was also observed (Chapter

7.5.2.4) in two cultures. It is therefore problematic and scientifically unsound

to infer from the dynamics of just two samples. There could potentially be no

effect of the stimulation, and the culture could already be stabilising on its own

- though the cause for such unstable firing was not clear. The response curve,

however, showed that the network response before and after stimulation of such an

unstable culture were indeed different where the response changed from unstable

multi-peaks to gradually decreasing single peak stable responses.

The work presented herein has demonstrated that multi-site stimulation (2

channel) was able to induce LTP; however, the initial conditions of the culture

determine the type of responses evoked with repeated stimulation. For reliable

LTP induction, cultures that exhibit potentiated responsiveness with test stimu-

lus are the best candidates. However, substantially more culture samples would

be needed to establish a set of parameters that could reliably lead to controlled,

programmable plasticity. Further experimentation is required to better under-

stand how depression evoked responses are caused and if the cell composition of

excitatory and inhibitory actually plays a role in determining the type of evoked

responses.

Furthermore, connectivity analyses based on transfer entropy was applied to

neuronal culture recordings during induced plasticity (Chapter 7.6) . The algo-

rithm proposed and developed as part of this thesis work ( Chapter 6) was applied

to real experimental recordings of spontaneously firing cultures over 4 days and

also during evolvement of connectivity during induced plasticity. Neuronal cul-

tures without any external input maintain a stable firing activity [204,205]. The
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developed ISI distribution based surrogate method showed very similar connec-

tivity on spontaneously firing cultures over 4 days of recording(control culture

without stimulation). When applied to LTP recordings over 3 days, the network

analysis of LTP induction after stimulation also showed a good correspondence

with the firing density. New connections were observed after the network achieved

a newly learned state, due to repeated stimulation. The connections kept get-

ting denser with subsequent strengthening of LTP. The increment in connections

and firing density were not however found to have a clear linear relationship.

Connections grew much more rapidly in comparison to the firing density incre-

ment, which later showed slower increment as the LTP got stronger. The TE

method and the proposed surrogate method can be a vital addition in the area of

computational neuroscience and could facilitate robust statistical analysis from

dynamical systems such as neuronal cultures.

8.5 Future work

The work presented in this thesis demonstrated a significant body of work in

induced plasticity behavior and development of novel computational tools. How-

ever, this is a rapidly developing field and major challenges remain. Two main

directions - 3D neuronal cultures and closed-loop systems, are identified to extend

and explore this research.

8.5.1 3D neuronal cultures

The work presented so far established computational tools and experimentation

for studies focused on neural plasticity and connectivity development based on

2D planar substrates. Such 2D in-vitro models utilised in this work are currently

the gold standard models to investigate various neurophysiological mechanisms.

However, they offer a limited representation of the true 3D in-vivo like environ-

ment in terms of cell morphology, cell-to-cell interaction and neurite growth [208].

The logical next step is to extend the approaches in this thesis to 3D multi lay-

ered architectures, where the cell growth is not limited to planar 2D surface but

exhibits growth in the z-direction.

195



8. Summary and Conclusions

An increasing number of studies have shown that cells grown on a planar 2D

substrate do not have the same cell morphology [209], proliferation rates [210],

gene expression [211] in comparison to 3D culture. Also, 3D culture of neuronal

cells have shown longer neurites growth and cell longevity [212, 213] with much

more rounded and bulbous shape of the somata [214]. In addition, 3D neuronal

culture may be more suited for electrophysiological studies. Studies have shown

that Ca++ dynamics are over exaggerated in 2D neuronal culture environments

as compared to the 3D environment [215,216]. Calcium is an important signaling

molecule that regulates a variety of functions such as synthesis and release of

neurotransmitters, neuron excitability and also long term effects such as memory

[217].

Some preliminary works have been attempted towards 3D neuronal cultures

as summarised below.

8.5.1.1 3D structures based on glass microbeads scaffold

Two main approaches have been utilised in attempts to engineer 3D neuronal

culture that mimics cell density and connectivity similar to the in-vivo - polymer

gels and solid porous matrices. The cell viability in 3D neuronal cultures depends

on the cell density. Using polymer gels and solid porous matrices, the cell density

was observed to be around 3750 cells/mm3(500 − 600µm thick cultures) [218]

which is much lower than the in-vivo situation. For example, the cell density

measured in the mouse brain cortex is about 91,000 cells/mm3.

In contrast to these methods, Pautot et.al [219] successfully demonstrated

growth of dissociated neurons on moveable spherical glass beads of nominal di-

ameter of 40±2 µm allowing for mechanical manipulation to form multiple layers,

with the possibility of seeding different types of neurons on each layer (Figure

8.1). The glass beads self assemble into uniform hexagonal arrays. Each bead

is large enough to provide an adhesion surface for neurons to grow upon. By

altering the size of the glass beads, it is possible to obtain cell densities of up to

75,000 cells/mm3 [220] which is close to the real in-vivo cell density.

This method along with further works by Frega et al [3] who demonstrated

successful coupling of such colloid scaffolds with glass based MEAs by stacking
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Figure 8.1: Self assembled 3D neuronal network with glass micro beads. Three
week old culture of 3D neuronal network assembly fixed and stained with the
neuron-specific antibody to alpha tubulin (green) and the glial-specific antibody
to GFAP (red). Five layers, a 450× 450× 388 µm volume of the assembly, were
imaged by confocal microscopy. The images extracted from the z-stack for the
green and red channels (left) are shown with schematic representations of the
corresponding layer position (right). From Pautot et al [219]

layers of glass beads in a constrained structure onto MEA surface has opened up

new ways to perform electrophysiological studies in a 3D neuronal culture.

Reported blow are some preliminary studies on 3D structures utilising glass

beads, performed as part of this research.

8.5.1.2 Neuronal culture on glass microbeads

Glass microbeads of nominal diameter of 40 ± 2 µm (Distrilab-Duke Scientific,

The Netherlands) were sterilized in 70% ethanol in a conical vial for 2 hrs whilst

gently shaking every 30 mins. The beads were rinsed with sterilized water for 3-4

rinses. The vial was further sterilized in a UV chamber for 20 mins and again

rinsed with sterilized water for 2 rinses. Microbeads were coated with adhesion

factors, laminin and poly-D-lysine(PDL) at 50µg/ml and incubated overnight at

37◦C. 95% of the coating factor was aspirated the next day and rinsed once with
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sterilized water. Again, 95% of water was aspirated and the vial was filled with

NbActive 4 growth media. Using a coarse pipette, 200 µl of treated microbeads

were distributed onto a multi well plate with membrane insert with pore diameter

of 0.4µm where glass beads self-assembled into a uniform layer. Figure 8.2(A)

shows an illustration of the process. Each membrane well was filled with 0.5ml

of complete growth media and left in the incubator until the neurons were ready

for seeding.

Due to their smaller diameter, which helps to form a layered network with

fewer glass beads, 96 well plates were used for this part of the experiment. The

well plate was coated with laminin and PDL at 50µg/µl and left overnight at

37◦C in the incubator.

After the cell dissociation, a cell density of about 1000 cells/µl was obtained

and about 150 µl of the suspension was distributed on the surface of the mi-

crobeads, resulting in about 150, 000 cells. The process can be visualized with

the illustration presented in Figure 8.2(B). Meanwhile, 30, 000 cells i.e. 30µl of

the suspension was also seeded on to the well plate to form a bottom layer of neu-

rons. After 6-8 hours, the suspension with glass beads, with neurons attached,

was transferred from the transwell into 96 well plates with about 50µl at each

succession as shown in Figure 8.2(C). This duration allows glass beads to self

assemble into a uniform layer as shown in Figure 8.3. Finally, 300 µl of growth

media was carefully added and incubated at 37◦C in the incubator.

Brightfield images from different regions representing different density of glass

beads were captured to demonstrate neuronal growth. The reason for showing

low beads density regions is to show neuronal growth along side beads. When

there are multiple layers of glass beads, it becomes extremely difficult to visual-

ize neuronal growth with just bright field images. Confocal fluorescence image

characterization helps to characterize cell growth when it is visually difficult to

characterise and is discussed later in Section 8.5.1.3

The top three images of Figure 8.4 show neuronal growth at day 7. Glass

beads and neurite projections are indicated by arrows. Neurons survive for up to

4 weeks. The bottom three images in Figure 8.4 show neurons growing at day 28.

By this point, neurons are mature and also form clusters of neurons to improve

survival. The top right and bottom right images has multi layered glass beads
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Figure 8.2: Illustration of steps to create a multilayered 3D structure with stacked
micro glass beads (A) Glass beads self assembling on transwell membrane insert.
(B) Neurons seeded on the assembled glass beads (C) Transfer of glass micro
beads with neurons attached into 96 well plate with succession with a minute
interval [221]

Figure 8.3: Micro glass beads self assembling into a uniform hexgonal topology.
Hexagonal topology outlined with dotted red lines

indicated by arrows.

8.5.1.3 Fluorescence Image Characterization

Neurons growing on glass micro beads stacked scaffolds were fixed and stained

with neuron specific anti-βIII tubulin antibody. The fluorescence images were

acquired using a Leica confocal microscope. Neurite extensions are marked with

a red colour while the blue colour shows DAPI stained nuclei as shown in Figure

8.5. In the same figure, the black circular voids shown in yellow rectangles and

circle(indicated with arrows) are the glass beads which are not stained resulting
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Figure 8.4: Neuronal growth on and along micro glass beads. The arrows show
glass beads, neurite projections and regions of multi layered stacked beads. Glass
beads density increases from left to right.

in black circular voids. Looking into yellow rectangles, it is clear that the neurons,

indicated by blue dots, are growing around the glass beads. For example, a yellow

circle in Figure 8.5 shows a neuron growing directly on top of the bead indicated

with a DAPI stained blue dot. For a better characterization of 3D scaffolds, z-

stack images of the culture are needed which can be merged offline to produce a

3D image.

So far only 3D growth on well plates was achieved. Methodology optimisation

and viability tests can be seen as future work to move towards a 3D culture that

can be coupled with sensitive CMOS based HD-MEAs to study plasticity and

make comparisons with 2D culture plasticity.

8.5.2 Closed-loop system - Neurorobotic systems

The STDP rule states that if two synaptically connected neurons fire within

tens of milliseconds of each other, the connectivity strength of the synapse gets

potentiated or depressed, depending on the order with which the spiking event

happens [78, 82]. The brain is a feedback system exhibiting a learning process,
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Figure 8.5: Fluorescence images of a neuronal culture on a monolayered glass
beads stained with anti-βIII tubulin and DAPI stained nuclei. Glass beads and
neurites are shown with arrows. A yellow circle shows neuron growing on the
glass beads as indicated with a DAPI stained nuceli (blue dot) on the glass bead.

essentially strengthening or weakening connections. The ability to create a closed

loop circuit between input stimulation and output neural recording would allow

for precise control over stimulation at time t based on the output at time t − 1.

The cultures could be subjected to true learning where cultures learn or adapt to

input stimulation based on the output signals.
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To date, plasticity studies in closed-loop experiments investigate whether such

models may be taught to learn a particular task without the need for a separate

rewarding entity [7, 146, 222–224]. The stimulation is modulated based on the

output to force the culture to produce a specific patterns. Potter’s group [146]

utilised such a neuronal culture to control the movement of an “animat”(i.e.

artificial animal). The training was done by delivering a stabilisation pattern

every time the animat approached the intended location, and conversely delivering

stimulating signals to provoke a change in the animat’s behaviour. The movement

of such an animat is controlled by a biological neuronal culture - hence the name

neurorobotic system.

The ability to take into account the output signals to modulate the responses

to input signals in a. feedback loop is a close approximation of in-vivo like learning

in a closed-loop system. Combining a 3D culture with a closed-loop system could

establish ground breaking experimental models to study, not just learning and

memory, but also various neurological diseases.

Furthermore, such experimental model could potentially be utilised to study

the pharmacological effects of drugs in learning and memory, the understanding

of which is crucial in the study of memory related neurological disorders such as

Dementia and Alzheimer’s.

All recordings are stored as HDF5 data format which is a hierarchical data

format with embedded metadata in a single individual file. All data are stored in

Computational Neuroscience and Cognitive Robotics (CNCR) group’s data server

within Nottingham Trent University and can be made available with Prof Martin

McGinnity’s permission

202



References

[1] Shimon Marom and Goded Shahaf. Development, learning and memory

in large random networks of cortical neurons: Lessons beyond anatomy.

Quarterly Reviews of Biophysics, 35(1):63–87, 2002. 1, 33

[2] Chadwick M Hales, John D Rolston, and Steve M Potter. How to Cul-

ture, Record and Stimulate Neuronal Networks on Micro-electrode Arrays

(MEAs). Journal of Visualized Experiments, (39):39, 2010. 1, 37

[3] Monica Frega, Mariateresa Tedesco, Paolo Massobrio, Mattia Pesce, and

Sergio Martinoia. Network dynamics of 3D engineered neuronal cultures:

A new experimental model for in-vitro electrophysiology. Scientific Reports,

4, 2014. 1, 35, 37, 144, 196

[4] Eisaku Maeda, Yoichiro Kuroda, Hugh P. C. Robinson, and Akio Kawana.

Modification of parallel activity elicited by propagating bursts in develop-

ing networks of rat cortical neurones. European Journal of Neuroscience,

10(2):488–496, 1998. 2, 35, 38, 39, 42

[5] Yasuhiko Jimbo, Hugh P.C. Robinson, and Akio Kawana. Strengthening

of synchronized activity by tetanic stimulation in cortical cultures: Appli-

cation of planar electrode arrays. IEEE Transactions on Biomedical Engi-

neering, 45(11):1297–1304, 1998. 2, 39, 42, 43

[6] Takashi Tateno and Yasuhiko Jimbo. Activity-dependent enhancement in

the reliability of correlated spike timings in cultured cortical neurons. Bio-

logical Cybernetics, 80(1):45–55, 1999. 2, 39

203



REFERENCES

[7] Goded Shahaf and Shimon Marom. Learning in Networks of Cortical Neu-

rons. The Journal of Neuroscience, 21(22):8782–8788, 2001. 2, 15, 35, 39,

45, 202

[8] Daniel A Wagenaar, Jerome Pine, and Steve M Potter. An extremely rich

repertoire of bursting patterns during the development of cortical cultures.

BMC Neuroscience, 7, 2006. 2, 33, 35, 36, 39, 40, 43, 113, 148

[9] Michela Chiappalone, Paolo Massobrio, and Sergio Martinoia. Net-

work plasticity in cortical assemblies. European Journal of Neuroscience,

28(1):221–237, 2008. 2, 39, 41, 42, 43, 44, 150, 156, 160, 172

[10] Joost Le Feber, Jan Stegenga, and Wim L C Rutten. The effect of slow

electrical stimuli to achieve learning in cultured networks of rat cortical

neurons. PLoS ONE, 5(1), 2010. 2, 39, 41, 44, 46

[11] Thierry Nieus, Valeria D’Andrea, Hayder Amin, Stefano Di Marco, Houman

Safaai, Alessandro Maccione, Luca Berdondini, and Stefano Panzeri. State-

dependent representation of stimulus-evoked activity in high-density record-

ings of neural cultures. Scientific Reports, 8(1):5578, 2018. 2, 37, 39, 69

[12] P.S. Churchland and T.J. Sejnoswki. The Computational Brain. MIT Press,

1992. 2, 46

[13] O Sporns, G Tononi, and R Ktter. The Human Connectome:A Structural

Description of the Human Brain. PLoS Comput Biol, (4):e42, 2005. 2, 46,

47

[14] Matteo Garofalo, Thierry Nieus, Paolo Massobrio, and Sergio Martinoia.

Evaluation of the performance of information theory-based methods and

cross-correlation to estimate the functional connectivity in cortical net-

works. PLoS ONE, 4(8), 2009. 2, 50, 51, 102, 103, 119, 120, 176

[15] Shinya Ito, Michael E Hansen, Randy Heiland, Andrew Lumsdaine, Alan M

Litke, and John M Beggs. Extending transfer entropy improves identifica-

tion of effective connectivity in a spiking cortical network model. PLoS

ONE, 6(11), 2011. 2, 48, 51, 52, 102, 103, 104, 106, 107, 109, 119, 120, 176

204



REFERENCES

[16] Olav Stetter, Demian Battaglia, Jordi Soriano, and Theo Geisel. Model-

Free Reconstruction of Excitatory Neuronal Connectivity from Calcium

Imaging Signals. PLoS Computational Biology, 8(8):1002653, 2012. 2, 51,

102, 176

[17] Terry Bossomaier, Lionel Barnett, Michael Harré, and Joseph T Lizier. An
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