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Abstract 

Neuroimaging text mining extracts knowledge from neuroimaging texts and has received widespread attention. 
Topic learning is an important research focus of neuroimaging text mining. However, current neuroimaging topic 
learning researches mainly used traditional probability topic models to extract topics from literature and cannot 
obtain high-quality neuroimaging topics. The existing topic learning methods also cannot meet the requirements of 
topic learning oriented to full-text neuroimaging literature. In this paper, three types of neuroimaging research topic 
events are defined to describe the process and result of neuroimaging researches. An event based topic learning 
pipeline, called neuroimaging Event-BTM, is proposed to realize topic learning from full-text neuroimaging litera-
ture. The experimental results on the PLoS One data set show that the accuracy and completeness of the proposed 
method are significantly better than the existing main topic learning methods.
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1 Introduction
Neuroimaging text mining is to extract knowledge from 
neuroimaging texts [1] and has received widespread 
attention. Shardlow et  al. [2] combined active learning 
and deep learning to recognize various neuroscience 
entities for curating research information in computa-
tional neuroscience. Riedel et  al. [3] recognized vari-
ous entities related to cognitive experiments based on 
multiple corpus features and classifiers. Sheng et  al. [4] 
designed the brand new neuroimaging named entity rec-
ognition task based on BI provenances and developed 
the deep learning-based method to recognize these enti-
ties for research sharing. However, these studies can only 
extract valuable information from neuroimaging litera-
ture and cannot locate the research focus in literature.

Topic learning can learn the meaningful expression of 
the text from the document set [5], and obtain informa-
tion representing document focuses, i.e., topics. Typical 

topic learning methods are various probabilistic topic 
models, in which latent Dirichlet assignment (LDA) [6] 
is the most widely used one. LDA mines the co-occur-
rence pattern of words to detect the global semantic 
topic structure and gives document topics in the form 
of probability distribution. It transforms text informa-
tion into digital information by using the bag of words. 
However, this kind of method ignores the word order 
and the textual structure, and cannot effectively model 
documents [6]. Various improved LDA models have been 
developed in order to use the word order and the text 
structure more effectively for improving topic complete-
ness. Balikas et al. [7] proposed sentence LDA (senLDA) 
which integrated information of the textual structure and 
the word dependency into the process of topic modeling. 
Nguyen et al. [8] proposed LF-LDA and LF-DMM which 
integrated latent feature models with LDA and DMM 
by using word embedding. The abilities of topic extrac-
tion and classification were greatly improved. The prob-
lems of long tail words and low-frequency words were 
solved effectively. In recent years, many researches began 
to focus on the combination of deep learning and tradi-
tional probability topic models. By using deep neural net-
works to capture deep semantic information of textual 
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sequences, various shortcomings of traditional proba-
bilistic topic models, which are caused by the shallow 
feature structure and the probabilistic generation mode, 
can be overcome to obtain topics with rich and coherent 
semantics [9]. Dieng et al. [10] proposed the TopicRNN 
model, which captured the local dependencies between 
words by using recurrent neural network (RNN) and 
generated reasonable topics based on global semantic 
information among potential topics. Yang et al. [11] used 
candidate topics obtained by LDA to construct feature 
inputs of the deep neural network and obtained more 
accurate topics by calculating keywords and the correla-
tion between each pair of feature words.

However, there are still some problems in the above-
mentioned topic models, especially poor interpretability 
and incoherence of topics. Therefore, how to improve 
topic accuracy is another core issue in current topic 
learning researches. The above methods combined with 
deep neural networks can improve semantic coherence 
of topics by capturing deep semantic representation [12]. 
Besides this kind of methods, integrating domain knowl-
edge into topic modeling is another important opti-
mization direction of topic modeling [9]. Yao et  al. [13] 
combined LDA with the large-scale probabilistic knowl-
edge base to fuse high-quality prior knowledge in the 
process of topic modeling. The semantic understanding 
ability of the model was enhanced to obtain the higher 
consistency and accuracy of topics. Amplayo et  al. [9] 
proposed a micro-semantic model (MicroASM) that 
introduced external seed dictionaries into topic modeling 
for obtaining topics with rich semantics.

Topic learning is also a core research issue of neuroim-
aging text mining. Neurosynth [14] recognized domain 
terms based on frequency. Poldrack et  al. used LDA to 
learning topics of neuroscience literature [15]. Alhazmi 
et al. extracted topic words based on frequency and con-
structed relations between semantic spaces of topics and 
brain-activated regions by using correspondence analy-
sis and hierarchical clustering [16]. However, existing 
researches on neuroimaging topic learning only directly 
used traditional probability topic models, such as LDA, 
to extract topics from literature and cannot obtain high-
quality neuroimaging topics. Neurosynth topic words 
include many general words (e.g., using, repeat, asked) 
and domain general words (e.g., magnetic resonance, 
brains) [17]. Poldrack et al. had to use concepts in Cogni-
tive Atlas [18] to filter general words without relation to 
the domain.

Based on the above observations, this paper proposes a 
topic learning pipeline called neuroimaging Event-BTM, 

to learn topics from neuroimaging literature. An event-
based topic learning task is designed to obtain neuroim-
aging research topics with rich semantics. Following the 
trend of fusing deep learning, domain knowledge and 
probabilistic topic models, a new topic learning method 
combining deep learning with the biterm topic model 
(BTM) is proposed. Details are described in the following 
sections.

2  Methods
In this section, we will introduce a new topic learning 
method oriented to full-text neuroimaging literature, 
including the definition of neuroimaging research events 
and the proposed neuroimaging Event-BTM.

2.1  Neuroimaging research events
In the definition of ACE [19], “event” is described as the 
occurrence of an action or the change of state. Because 
of rich semantic information, it is naturally more suit-
able to describe neuroimaging researches than isolated 
topic words. In order to support event-based topic learn-
ing, this paper defines a group of neuroimaging research 
events by analyzing the process and the result of neuro-
imaging researches, as well as related information avail-
ability in neuroimaging literature. Table  1 gives their 
definitions.

As shown in Table 1, neuroimaging research events can 
be divided into three topic events “Cognitive response”, 
“Experiment” and “Analysis”, which are used to describe 
the result, the experimental process and the analytical 
process of neuroimaging researches, respectively. Each 
topic event includes several meta-events for the task 
design of event extraction. According to the definition of 
ACE, event is composed of an event trigger and several 
arguments. The event trigger is a word that can trigger 
the occurrence of an event. It is the most important fea-
ture word that determines the event category or subcat-
egory. The argument refers to the participant of an event, 
which is used to describe the event. By analyzing event 
mentions in neuroimaging literature, 9 trigger categories 
and 9 argument categories are identified. All categories 
are shown in Tables 2 and  3.

2.2  Event representation
Topic events can be constructed by using meta-events. 
Therefore, this paper mainly focuses on the extraction 
and representation of meta-events. These meta-events 
are usually expressed as a trigger + argument structure 
[20]. For example, the “deduce result” meta-event can be 
expressed as follows:
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It means that a “deduce result” event consists of a trig-
ger, zero or one argument 1, and zero or one argument 
2. Various verbs, such as “evoke”, “indicate”, and “reveal”, 
are possible triggers. Argument 1 belongs to one of three 

(1)

Eventdeduce-results

=
[

trigger,< argument1, role1 >?,< argument2, role2 >?
]

=
[

{evoke, indicate, reveal...},< {EXPERIMENT TASK,

COGNITIVE FUNCTION, MEDICAL PROBLEM},

research object > +,

< {FEATURES OF PHYSIOLOGY AND PSYCHOLOGY},

biological mechanism > +
]

argument categories “experimental task”, “cognitive func-
tion” and “medical problem”, and plays the role “research 
object” during the process of deducing results. Argument 
2 belongs to the argument category “signal features of 

Table 1 Event categories

Topic event Meta-event Definition

1. Cognitive response Activate The “activate” event happens when the execution of a cognitive task brings about active states in some 
specific brain regions

Deactivate The “deactivate” event happens when the execution of a cognitive task brings about inactive states in 
some specific brain regions

Affect The “affect” event happens when the execution of a cognitive task brings about state changes in some 
specific brain regions, but whether it is activated or inactivated is unknown

Co-occur The “co-occur” event happens when one of the following situations occurs: (1) two brain regions or 
networks are activated at the same time. (2) Two cognitive tasks are performed at the same time

Include The “include” event happens when one of the following situations occurs: (1) an activated brain regions 
or networks contains another one. (2) A performed cognitive task contains another one

2. Experiment Design cognitive task The “design cognitive task” event happens when researchers create a group of cognitive tasks by using 
design softwares or tools

Perform cognitive task The “perform cognitive task” event happens when a subject does a group of experiment tasks during 
the brain cognitive research

Acquire data The “acquire data” event happens when a neuroimaging device records a subject’s physiological and 
psychological signals during he/she performs cognitive tasks

3. Analysis Analyze data The “analyze data” event happens when a researcher adopts some tools or methods to mine neuroim-
aging data

Deduce result The “deduce result” event happens when researchers give a conclusion

Table 2 Trigger categories

Category Definition Example

Activate A trigger indicates that the “activate” event occurs Activation, activity, hyperactivity

Deactivate A trigger indicates that the “deactivate” event occurs Deactivation

Include A trigger indicates that the “include” event occurs Include, part of, consist of

Affect A trigger indicates that the “affect” event occurs Influence, effect, affect

Design cognitive task A trigger indicates that the “design cognitive task” event occurs Design, present, record

Perform cognitive task A trigger indicates that the “perform cognitive task” event occurs Complete, implement, perform

Acquire data A trigger indicates that the “acquire data” event occurs Detectable, examine, assess

Analyze data A trigger indicates that the “analyze data” event occurs Performed, use, implement

Deduce result A trigger indicates that the “deduce result” event occurs Discuss, analyze, distinguish
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physiology and psychology” and plays the role “biological 
mechanism”, which is revealed by result deduction. Fig-
ure  1 gives an example of “deduce result” event. In this 
event, there are a trigger “reveals” and two arguments. 
The argument 1 “task difficulty” is an experimental task 
and the argument 2 “BOLD responses” is a kind of fea-
tures of physiology and psychology. Using the distributed 
vector-based event representation [18], this event can be 
represented as follows:

where VE , Vtrigger and Vargument are the vector representa-
tion of event, trigger and argument, and “ · ” is the point 
multiplication operation.

2.3  The neuroimaging Event-BTM pipeline
Based on the definition of events in the previous section, 
we design a topic learning pipeline, called neuroimaging 
Event-BTM, which combines heterogeneous deep neural 
networks with BTM. Figure  2 shows the framework of 

(2)VE = Vtrigger · Vargument 1 · Vargument 2,

this pipeline. The whole process can be divided into three 
steps: event recognition, event extraction and event-
based topic learning.

2.3.1  Event recognition
Event recognition includes trigger recognition, argument 
recognition and trigger-type recognition. This paper uses 
BiLSTM-CNN [21] to model textual features for event 
recognition. As shown in Fig.  2, the whole model con-
sists of two layers: text vectorization and event element 
recognition.

Text vectorization The text vectorization layer encodes 
each sentence of literature as a textual vector for event 
element recognition. For each word in the sentence, the 
following four types of vectors are constructed:

• Word vector: it is to map words into real number 
vectors to obtain as much semantic and grammatical 
information as possible [22]. This paper adopts the 
Glove word vector model which was trained on 6 bil-

Table 3 Argument categories

Category Definition Example

Gross brain anatomy The gross brain anatomy is an anatomical region of the cerebral cortex and used to mark the 
occurrence location of brain response in the brain cognitive research

Auditory cortex

Cognitive function The cognitive function refers to people’s ability to collect and process information, such as 
attention, language

Visual perception

Subject The subject is a participant in the brain cognitive research and recorded for behavioral or 
brain physiological data

Patient

Medical problem The medical problem refers to the disease and is used to denote the subject’s abnormal 
symptom in the brain cognitive research

Hypertension

Sensory stimuli or response The sensory stimuli or response is used to denote the sensory channel of stimulus presenta-
tion in the brain cognitive research

Auditory sense

Experimental task The experimental task is a task (e.g., questions, games, etc.) which is performed by subjects in 
the brain cognitive research

Delayed memory task

Experimental measurement The experimental measurement is a kind of brain testing equipment used in the brain cogni-
tive research

Functional magnetic 
resonance imaging

Analytical tool and method The analytical tool and method is a mining algorithm or tool which is used to analyze experi-
mental data in the brain cognitive research

Multivariate analysis

Brain network The brain network is a kind of brain response which is mined from experimental data in the 
brain cognitive research

Executive control network

Fig. 1 An example of “deduce result” event
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lion words of Wikipedia and web texts [23]. In order 
to obtain a rich semantic information of words, this 
paper retains the stem and affix of each word.

• Case vector: the ten categories of neuroimaging 
research meta-events and their corresponding argu-

ments involve a large number of domain terms with 
the capital abbreviation format, such as fMRI (func-
tional magnetic resonance imaging), DMN (default 
mode network). In order to identify these impor-
tant upper- and lower-case features, this paper con-

Fig. 2 The framework of neuroimaging Event-BTM pipeline
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structs the one-hot case vector which has six dimen-
sions: “numeric”, “allLower”, “allUpper”, “initialUpper”, 
“mainly_numeric”, “contains_digit” and “other”.

• Terminology dictionary vector: previous study shows 
that the term dictionary encoding plays an important 
role in multi-class named entity recognition [23]. 
Therefore, this paper collects 9 term dictionaries for 
the 9 argument categories. The one-dimensional ter-
minology dictionary vector is constructed based on 
these term dictionaries. For each word, the value 
of its terminology dictionary vector is just the label 
index of corresponding term in the dictionary.

• Character vector: CNN is used to construct the char-
acter vector. Its input is the 25-dimensional charac-
ter embedding which is generated by looking up the 
character random table. In this paper, the character 
random table is initialized with values drawn from an 
uniform distribution with range [− 0.5, 0.5].

Based on these four types of vectors, a combined word 
vector can be constructed as follows:

where Vw , Vc , Vt and Vchar are the corresponding word 
vector, case vector, terminology dictionary vector, and 
character vector.

Event element recognition The event element recognition 
is to decode text vectors for recognizing triggers and argu-
ments. The correct recognition of named entities in sen-
tences depends on the context of the word [24], so it is very 
important to obtain the context information of the past and 
future. This paper adopts bidirectional LSTM (BiLSTM) to 
capture this bidirectional relationship between words. For 

(3)Vword = [Vw ,Vc,Vt ,Vchar],

a sentence, S = [word1, word2, . . . , wordn] , the process of 
feature modeling based on BiLSTM is described as follows:

where vword is the combination vector of wordi in the sen-
tence. Based on the output of BiLSTM, log-softmax [25] 
is used to obtain the log-probability of each trigger or 
argument type. And then all triggers and arguments are 
annotated with corresponding category labels.

2.3.2  Events extraction
The event extraction is to identify argument roles based 
on the outputs of event recognition. The lexical-level and 
sentence-level features are combined to construct the role 
feature vectors.

The lexical-level role feature is involved with word 
embedding, annotated triggers or arguments, and the con-
text structure of event mentions. For each role, its lexical-
level feature vector is defined as follows:

where E1t is the word vector of the trigger, E2t is the word 
vector of the argument, E1tf  is the word vector of the pre-
vious word of the trigger, E1tb is the word vector of the 
latter word of the trigger, E2tf  is the word vector of the 
previous word of the argument, E2tb is the word vector of 
the latter word of the argument, and r is the index of the 
role type in the event-role table.

Figure  3 gives an example. For the role “research 
object”, its E1t is the word vector of “reveals”, E2t is the 
word vector of “Task difficulty”, E1tb is the word vec-
tor of “the”, and r is the index of the role type “research 

(4)hi = [
−−−→
LSTM(vwordi),

←−−−
LSTM(vwordi)], i = [1, n],

(5)Vlf = [E1t ,E2t ,E1tf ,E1tb,E2tf ,E2tb, r],

Fig. 3 The position embedding
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object” in the event-role table. Because the argument 
“Task difficulty” and the trigger “reveals” are next to 
each other, both E1tf  and E2tb are the word vector of 
NULL whose dimensional values are all zero. E2tf  is 
also the word vector of NULL, because the argument 
“Task difficulty” is the first word in the sentence.

The sentence-level features are obtained by using 
CNN [26]. Its input is a group of word representations 
corresponding to the sentence. For each word, its word 
representation is as follows:

where vwf is the word vector of the current word, dpft is 
the distance vector between the current word and the 
trigger, and dpfa is the distance vector between the cur-
rent word and the argument. For example, aiming at the 
role “research object” shown in Fig. 3, vwf of “frontal and 
parietal cortices” is its word embedding. Its dpft is 5 and 
dpfa is 7. Based on these word representations, CNN can 
extract sentence-level global features for predicting the 
role. The process can be described as follows:

(6)vwp = [vwf, dpft, dpfa],

(7)
n = max(M1vwp),

Vsf = tanh(W2n),

where W is the linear transformation matrix of the hid-
den layer and tanh is the activation function.

Linking the lexical-level and sentence-level feature 
vectors, the role feature vector v = [Vlf,Vsf] can be con-
structed. Based on this role feature vector, the probability 
of the argument role can be obtained by using the soft-
max classifier.

2.3.3  Event‑BTM
Event-BTM is to learn literature topics from neuroimag-
ing research events which are constructed by integrat-
ing the results of event recognition and event extraction. 
Traditional BTM is to learn all the disordered word pairs 
in the whole corpus, while Event-BTM directly models 
all structured event pairs with rich semantics to learn the 
literature topics. Figure 4 shows the graphical model rep-
resentation of the model, where the explicit variable B is 
the set of event co-occurrence pairs extracted from the 
full text of literatures, which is an explicit variable, the 
topic variable Z represents all event biterms, the implicit 
variables ϕ and θ are the topic event distribution param-
eter and the topic distribution parameter, respectively. 
Referring to [20], Table 4 gives the basic symbols used in 
Event-BTM and their corresponding explanations. The 
generative process is outlined as follows:

• for each topic k: draw a topic-event distribution: 
ϕ ∼ Dir(β)

• sample get topic distribution of the set B : θ ∼ Dir(α)

• for each event biterm b in the event biterm set B:

• draw a topic assignment: z ∼ Multi(θ)

• draw two events: b(ei, ej) ∼ Multi(ϕ).

The joint probability of an event biterm b(ei, ej) can be 
written as (the process can be described as follows):

Then, the likelihood of the set B is:

The conditional probability of the event biterm b is calcu-
lated by (8), so the topic distribution and topic-event dis-
tribution of the set B can be obtained by Gibbs sampling. 
Then the literature-topic distribution is (for details, refer 
to the literature [27]):

(8)P(b) =
∑

z

p(z)p(ei|z)p(ej|z) =
∑

z

θzϕi|zϕj|z .

(9)P(B) =
∏

(i,j)

∑

z

θzϕi|zϕj|z .

Fig. 4 The Event-BTM model

Table 4 Symbols and explanations

Symbols Explanations

B The set of event co-occurrence pairs in all literatures

b An event pair in the set B

e Event

α Prior parameters of B topic distribution (hyper-parameters)

β Prior parameters of event topic distribution (hyper-
parameters)

θ The topic distribution of B (implicit variable)

ϕ Event topic distribution (implicit variable)

z Assignment of the current topic

M Total number of literatures
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3  Experiments
3.1  Baseline methods
In this paper, LDA, LF-LDA, LF-DMM and MicroASM 
are selected as baseline methods to verify the effective-
ness of the proposed method.

3.1.1  The LDA‑based method
Traditional LDA is the most classical probability topic 
model. In this paper, LDA was performed on both 
the full text and the abstract to learn literature topics, 
respectively.

3.1.2  The LF‑LDA‑based method and LF‑DMM‑based method
LF-LDA and LF-DMM integrate context information by 
using the word vector to improve the word-topic map-
ping learnt. In this paper, LF-LDA and LF-DMM were 
performed on both full texts and abstracts for comparing 
with the proposed neuroimaging Event-BTM.

3.1.3  The MicroASM‑based method
MicroASM improves the topic quality by using exter-
nal domain knowledge. In this paper, external domain 
knowledge of MicroASM, i.e., the seed topic word pairs, 
was constructed based on the term dictionary “Cognitive 
Function”. This baseline method was also performed on 
both full texts and abstracts, respectively.

(10)P(z|d) =
∑

b

p(z|b)p(b|d). 3.2  Experimental settings
3.2.1  Data sources
Original data The experimental data set is composed of 
126 full texts of literature from the journal PLoS One, 
which contain any one of “fMRI”, “functional magnetic 
resonance imaging” and “functional MRI” in abstracts 
and were published from January 2018 to July 2019. The 
data set was divided into the training set and the test set 
according to the ratio of 9:1, and the two sets were fur-
ther divided into the full-text set and the abstract set.

Term dictionary Neuroimaging Event-BTM integrates 
domain knowledge with probability topic models. Exist-
ing various domain terms are used to annotate arguments 
in train data sets by the distant supervision approach. 
The proportion distribution of 3081 terms is shown in 
Fig. 5. Their origins are outlined as follows:

• Gross brain anatomy (GRO): 519 brain region terms 
were collected from the whole brain atlas1. They 
included brain anatomy terms such as “frontal gyri”, 
“basic ganglia”, “limbic”, and other brain region terms 
such as Brodmann region.

• Cognitive function (COG): 839 cognitive function 
terms, such as “attention”, “activation”, “cognitive dis-
sonance”, were collected from “Concepts” terms on 
cognitive atlas.2

• Subject (SUB): 100 crowd-related terms, involved 
with age, gender, identity, occupation, etc., were col-
lected from the Web.

Fig. 5 Term distribution

1 http://www.med.harva rd.edu/aanli b/
2 http://www.cogni tivea tlas.org/

http://www.med.harvard.edu/aanlib/
http://www.cognitiveatlas.org/
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• Medical problem (MDI): 602 medical problem terms 
were collected from “diseases”3 and “types of cancer” 
terms on Wikipedia4 and Health on the Net.5

• Sensory stimuli or response (SEN): 53 perception-
related terms, such as “visual”, “auditory” and “emo-
tional”, were collected from the Web.

• Experimental task (TSK): 763 task terms, such as 
“abstract/concrete task”, “audit diagnostic observa-
tion schedule”, were collected from “Tasks” terms on 
cognitive atlas.6

• Experimental measurement (MEA): 21 neuroimaging 
devices-related terms, such as “MEG (magnetoen-
cephalography)”, “MRI (magnetic resonance imag-
ing)”, “DOI (diffusion optical imaging)”, were col-
lected from the Web.

• Analytical tools and methods (TOL): 140 terms 
about data-mining algorithms and tools were col-
lected from Baidu Encyclopedia.7

• Analytical results (RLT): 31 brain networks-related 
terms8, such as “visual network”, “sensory motor net-
work”, “auditory network”, “cerebellar network”.

3.2.2  Experimental annotation
Event element annotation In this study, the “BIO” tagging 
system [28] was used to annotate triggers and arguments. 

The tagging scheme consists of “–” and the category 
abbreviation of triggers or arguments. As shown in Fig. 6, 
“Task difficulty” is an argument belonging to the category 
“Experimental task”, “BOLD responses” belongs to the 
category “Gross brain anatomy”, which is a kind of fea-
tures of physiology and psychology.

Role annotation The role annotation consists of five 
parts: role type, the beginning position of the trigger, the 
ending position of the trigger, the beginning position of 
the argument and the ending position of the argument. 
As shown in Fig. 7 (we just introduce the first sentence), 
the first “4” represents the relationship between the first 
entity and the second entity in the sentence, and “2” rep-
resents the first entity “Task difficulty”, the second “3” 
indicates the end position of the first entity, the second 
“4” indicates the starting position of the second entity 
“BOLD responses”, and the third “4” indicates the end 
position of the second entity (because the second entity 
is a single entity, the start position and end position are 
the same).

3.2.3  Parameter settings
Experimental parameters In the experiment, the dimen-
sion size of the word vector was set at 100. The epoch was 
set at 50, the convolution width at 3, the CNN output size 

Fig. 6 An example of event element annotation

Fig. 7 An example of role annotation

3 https ://en.wikip edia.org/wiki/Lists ofdis eases /
4 https ://en.wikip edia.org/wiki/List of cance r types /
5 http://www.hon.ch/HONse lect/RareD iseas es/index .html/
6 http://www.cogni tivea tlas.org/tasks /a/
7 https ://baike .baidu .com/
8 http://www.mamic ode.com/info-detai l-22249 48.htm

https://en.wikipedia.org/wiki/Listsofdiseases/
https://en.wikipedia.org/wiki/List of cancer types/
http://www.hon.ch/HONselect/RareDiseases/index.html/
http://www.cognitiveatlas.org/tasks/a/
https://baike.baidu.com/
http://www.mamicode.com/info-detail-2224948.htm
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at 30, the dimensional number of LSTM hidden layer at 
200. We set the number of topics k = 2 for all the meth-
ods, and set 2 topic words for each topic.

Evaluation parameters As stated above, topic accu-
racy and completeness are two important indexes of 
topic learning. The former means that the obtained 
topics should express the document as accurately as 
possible. The latter means that the obtained topics 
should summarize the document as comprehensively 
as possible. This paper chose topic coherence and KL 
divergence [29, 30] to evaluate the topic model from 
the two aspects of topic accuracy and completeness, 
respectively.

Topic coherence is to measure the semantic similarity 
of topic words in a topic for topic evaluation [29]. It can 
be calculated as follows:

where V is the set of words in a topic, ε is the smooth-
ing factor (usually taken directly as 1), D(vi, vj) is a func-
tion which calculates the number of literature containing 
words vi and vj , and D(vj) is to calculate the number of 
literature containing vj . Based on the above formulas, the 
score of topic coherence is the sum of the distributional 

(11)

coherence(V ) = score(vi, vj , ε) = log
D(vi, vj)+ ε

D(vj)
,

Fig. 8 The topic results of baseline methods
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similarities of topic words in a topic. The higher score of 
topic coherence indicates the higher topic quality, i.e., 
better topic accuracy. In this experiment, we calculated 
topic coherence based on the topic words. This is helpful 
to explain topics.

KL divergence is the asymmetry measurement of the 
difference between the probability distributions P and Q. 
For topic evaluation, the average KL divergence of topic 
pairs can be used to measure the difference of topics, i.e., 
the difference of topic words distribution among different 
topics. It can be calculated as follows:

where p is a topic distribution, p(x) is a topic word in p, 
and q is another topic distribution, q(x) is a topic word in 
q. The higher score of KL divergence indicates the higher 
topic discrimination, i.e., better topic completeness.

3.3  Experimental results
In the experiment, the proposed neuroimaging Event-
BTM and LDA were trained based on the training set, 
and then four baseline methods were performed on both 
the abstract test set and full-text test set. The neuroimag-
ing Event-BTM was only performed on the full-text test 
set because the abstract lacks enough information about 
neuroimaging research events.

3.3.1  Examples of results
The result of word-based topic learning Traditional topic 
learning is based on words. Figure  8 presents the topics 
extracted from the paper entitled “Effect of task difficulty 
on blood-oxygen-level-dependent signal: A functional 
magnetic resonance imaging study in a motion discrimi-
nation task” [31], by using the four baseline methods. As 
shown in this figure, the topic words obtained by LDA, 
LF-LDA, LF-DMM and MicroASM are scattered and 
their interpretability is very poor. The reason is that more 

(12)KL(p||q) =
∑

x

p(x) log
p(x)

q(x)
,

ambiguous information is brought after semantic associa-
tion information is segmented. For example, phrases are 
segmented into multiple words, resulting in unnecessary 
repetition of words [20]. Therefore, it is necessary to con-
nect several related words to make clear the semantics of 
the topic. For example, the topic words extracted by LDA 
include “brain”, “cortex” and “ROI”. Only depending on 
these isolated domain terms, the research content of lit-
erature cannot be understood. Furthermore, the obtained 
topics often contain polysemic words, such as “study”, 
“region”, “network”, which are difficult to be understood 
alone.

The result of neuroimaging Event-BTM different from 
the baseline methods, neuroimaging Event-BTM adopts 
event-based topic learning. Figure  9 shows the part of 
events extracted from the paper “Effect of task difficulty 
on blood-oxygen-level-dependent signal: A functional 
magnetic resonance imaging study in a motion discrimi-
nation task” [31]. The red words are trigger words, which 
can trigger the occurrence of an event, the green words 
are arguments, which is used to describe the event’s 
occurrence. All events can be organized into Fig. 10. As 
shown in this figure, event-based topic representation has 
better interpretability. The extracted events are involved 
with the whole research process of the paper, including 
the experimental task, data collection, parameter analy-
sis, and analysis and result deduction. Finally, topics 
extracted by Event-BTM, shown in the bottom of the fig-
ure, can clearly describe the research focus of this paper. 
This paper uses the functional magnetic resonance imag-
ing (fMRI) technology to study the affecting of the visual 
cortex under the different level of difficulty of tasks.

Evaluation of results The average topic coherence and 
average KL divergence of topics that we obtained were 
calculated. The results are shown in Table 5.

For topic coherence, traditional LDA is better than 
LF-LDA. This shows that LF-LDA can extract more 
diversified topic words because it integrates contextual 

Fig. 9 An example of event extraction by using neuroimaging Event-BTM
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information by using word embedding. DMM assumes 
that each document is generated by a single topic, but 
this experiment sets the number of topics k = 2 . There-
fore, topic coherence of LF-DMM is the lowest. Topic 
coherence of MicroASM is lower than LDA. The reason 
is that “Cognitive Function” is a core topic and closely 
related to different categories of topic words in neuroim-
aging researches. Even if this experiment set “Cognitive 
Function” as seed topic words, it also cannot effectively 
constrain the category of co-occurrence topic words for 
achieving high topic coherence. The proposed neuroim-
aging Event-BTM achieves the highest topic coherence, 

which indicates that event-based topic learning can effec-
tively improve topic coherence than traditional word-
based topic learning methods, especially under the topic 
learning task oriented to full texts.

For KL divergence, LF-LDA is better than traditional 
LDA. This once again confirms that LF-LDA can extract 
more diversified topic words. The proposed neuroimag-
ing Event-BTM achieves the highest score. This paper 
introduces domain knowledge into topic learning. 
Expert knowledge was formalized as three types of neu-
roimaging research topic events. Formal domain knowl-
edge, i.e., term ontologies or dictionaries, was used to 

Fig. 10 An example of topic learning by using neuroimaging Event-BTM
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annotate training data by using the distance supervision 
method. Guiding by domain knowledge, the extracted 
neuroimaging research events cover the results and pro-
cessed of neuroimaging researches. Therefore, the top-
ics learned from neuroimaging research events have a 
higher KL divergence, i.e., topic completeness, and can 
give more comprehensive literature descriptions than 
traditional word-based topic learning methods. Micro-
ASM integrates terms belonging to “Cognitive Function” 
as domain knowledge for topic modeling. Its topic com-
pleteness is also improved and achieves the second high-
est KL divergence.

Furthermore, Table  5 shows that four baseline meth-
ods achieve better results on abstracts than on full texts. 
In recent years, most of international competitions on 
biomedical text mining, such as BioNLP-ST, have added 
a large number of full-text corpora to replace the tradi-
tional abstract corpora for realizing knowledge learn-
ing oriented to the construction of knowledge database. 
The results in Table 5 show that the full-text mining task 
bring new challenges. It is difficult to meet the needs only 
by using the existing technologies on the full texts. The 
neuroimaging Event-BTM achieved the best results on 
the full-text topic learning. This effectively reflects the 
value of our method.

4  Conclusion
Currently, neuroimaging topic learning researches 
mainly adopt typical probability topic models, such as 
LDA, to extract topics from literature and cannot obtain 
high-quality neuroimaging topics. Oriented to the full-
text topic learning task, existing topic learning methods 
also cannot effectively meet the requirements of topic 
learning from full-text neuroimaging literature. For solv-
ing this problem, this paper proposes a neuroimaging 
topic learning pipeline, called neuroimaging Event-BTM, 
which takes events as the basic unit and extracts topics 

from neuroimaging full-text literature by combining the 
deep learning neural network with the topic probability 
model. These are the following three main contributions:

• By analyzing the process of neuroimaging research 
and the information availability of neuroimaging lit-
erature, three types of neuroimaging research topic 
events were identified. Based on them, an event-
based topic learning task is designed to obtain rich 
semantic neuroimaging research topics for improv-
ing the interpretability and accuracy of topics.

• By fusing deep learning and domain knowledge 
with probability topic models, a new topic learn-
ing method is proposed to realize event-based topic 
learning oriented to full-text neuroimaging literature.

• Aiming at the two core indexes of topic learning, 
topic coherence and KL divergence were chosen as 
evaluation parameters. A group of experiments are 
completed based on actual data to compare the pro-
posed method with four main topic learning meth-
ods.

Experimental results on actual data sets show that neu-
roimaging Event-BTM can significantly improve topic 
accuracy and completeness for neuroimaging literature 
mining.
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Table 5 Experimental results

Model Abstract Full text

Mean topic coherence LDA 0.87294 0.59431

LF-DMM 0.07305 0.77734

LF-LDA 0.33284 0.10402

MicroASM 0.18297 0.01507

Neuroimaging Event-BTM 1.55107

Mean KL divergence LDA 0.00524 0.00022

LF-DMM 0.00008 -0.00109

LF-LDA 0.10402 0.04325

MicroASM 0.01507 0.01450

Neuroimaging Event-BTM 1.89345
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