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Abstract 25 

The Siberian hamster (Phodopus sungorus) is a seasonal mammal, exhibiting a suite of 26 

physiologically and behaviourally distinct traits dependent on the time of year and governed by 27 

changes in perceived day length (photoperiod). These attributes include significant weight loss, 28 

reduced food intake, gonadal atrophy, and pelage change with short day photoperiod as in winter. 29 

The central mechanisms driving seasonal phenotype change during winter are mediated by a 30 

reduced availability of hypothalamic tri-iodothyronine (T3), but downstream mechanisms 31 

responsible for physiological and behavioural changes are yet to be fully elucidated. With access 32 

to a running wheel (RW) in short photoperiod, Siberian hamsters which have undergone 33 

photoperiod mediated weight loss override photoperiod-drive for reduced body weight and regain 34 

weight similar to a hamster held in long days. These changes occur despite retaining the majority 35 

of hypothalamic gene expression profiles appropriate for short day hamsters. Utilising the 36 

somatostatin agonist pasireotide, we have recently provided evidence for an involvement of the 37 

growth hormone axis (GH axis) in the seasonal regulation of bodyweight. In the present study we 38 

employed pasireotide to test for the possible involvement of the GH axis in running wheel induced 39 

body weight regulation. Pasireotide successfully inhibited exercise stimulated growth in short day 40 

hamsters and this was accompanied by altered hypothalamic gene expression of key GH axis 41 

components. Our data provides support for an involvement of the GH axis in the RW response in 42 

Siberian hamsters.   43 



Introduction 44 

Many species that have evolved for life in a seasonally variable environment have developed 45 

physiological strategies to optimise survival. The Siberian hamster is well described for its ability 46 

to reduce energy expenditure in winter or short day photoperiod (SD), with a suite of physiological 47 

adaptations that include reduced body mass and food intake, cessation of reproduction, altered 48 

pelage and the ability to employ a controlled hypometabolic state in the form of daily torpor (1). 49 

These responses which occur naturally in the wild, can be induced in the laboratory by providing 50 

a shortened photoperiod length (2), allowing for the convenient investigation of underlying 51 

mechanisms driving these altered physiological processes. This seasonal phenotypic plasticity is 52 

underpinned by an alteration of hypothalamic gene expression primarily of deiodinase enzymes 53 

which regulate local thyroid hormone (T3) availability (3). In the Siberian hamster, approximately 54 

50% of SD weight loss comes from fat mass; the remaining is composed of lean, or fat-free mass 55 

(4, 5), and in male hamsters fat is mainly lost from abdominal depots (6).  This physiological 56 

response occurs in a variety of small mammals and was first observed in the seasonal common 57 

shrew by Dehnel and later termed Dehnel’s phenomenon (7, 8).   58 

In the Siberian hamster, Dehnel’s phenomenon is reversed by wheel running activity (4, 9-11), a 59 

phenomenon that has also been observed in the Syrian hamster (Mesocricetus auratus) (12-15) 60 

and gerbils (Meriones unguiculatus) (16). With  access to a running wheel (RW) the Siberian 61 

hamster will run for long durations during the normal active phase, and in response will increase 62 

food intake and gain weight (4, 10). This response occurs to a lesser extent in hamsters adapted to 63 

long day photoperiod (LD; 16:8 h light:dark), but is particularly apparent in hamsters adapted to 64 

SD (8:16 h light:dark) (10, 17).  SD hamsters undertaking RW exercise maintain photoperiod 65 

appropriate pelage while torpor is prevented and testicular atrophy is partially reversed, and at the 66 

same time will gain body mass so that over a period of weeks they increase to a size more 67 

appropriate for an LD hamster (4, 9, 11). This increase in body mass is composed of both lean and 68 

fat tissue (4, 11), accompanied by increased overall body length, bone length and mineral content 69 

(10, 11) and is thus indicative of somatic growth. Despite attaining LD metabolic physiology, SD 70 

exercised hamsters largely retain hypothalamic gene expression profiles of SD sedentary hamsters, 71 

with only evidence of a partial reversal of the photoperiod mediated reduction in Pomc gene 72 

expression and a slower temporal increase in arcuate nucleus (ARC), somatostatin (Srif) mRNA 73 

(8).  74 

Somatostatin is an inhibitory hormone that is expressed widely in the central nervous system and 75 

is an integral component of the growth hormone (GH) axis. The majority of SRIF projections from 76 

the hypothalamus to the median eminence are from neurons in the periventricular nucleus (PeVN), 77 



which play the main role in the regulation of pituitary GH secretion (18, 19). To positively regulate 78 

GH secretion, growth hormone-releasing hormone (GHRH) is produced in the ventromedial 79 

hypothalamus and ARC, with the latter being those neurons primarily projecting to the median 80 

eminence in order to reach the somatotrophs of the anterior pituitary via the hypophyseal portal 81 

system (20). 82 

 83 

Pasireotide (also called SOM230) is a somatostatin analogue that was developed to treat GH 84 

secreting pituitary tumours in acromegaly (21). Pasireotide acts with high affinity at 4 of the 5 85 

known somatostatin G-protein coupled receptor subtypes (SSTR1,2,3,5), with particularly high 86 

affinity for SSTR5 (22, 23). Pasireotide mimics the action of somatostatin, inhibiting the secretion 87 

of pituitary GH in human and rodent tissue in vitro (24), and GH and IGF-1 secretion in vivo, 88 

which is in turn accompanied by impaired body mass gain in rodents (25, 26). We have previously 89 

shown that following 7 weeks of administration to LD hamsters, pasireotide led to significant 90 

weight loss, accompanied by a decrease in circulating IGF-1. However, SD hamsters administered 91 

with pasireotide did not lose further weight, but when subsequently switched back to LD, 92 

pasireotide significantly inhibited weight re-gain stimulated by LD photoperiod. In addition, 93 

pasireotide altered hypothalamic expression of GH axis genes including Srif in the PeVN, Ghrh in 94 

the ARC and supressed a rise in circulating IGF-1, suggesting a key role for the GH axis in the 95 

regulation of seasonal body mass (27). In the Syrian hamster, reversal of photoperiod induced 96 

physiology by exercise is accompanied by growth and an increase in pulsatile secretion of several 97 

pituitary hormones including GH (28). Together with the aforementioned study, we hypothesised 98 

that the GH axis may also be involved in the RW stimulated weight gain demonstrated in the 99 

Siberian hamster. Therefore, we established an experiment to mirror our previous study, with 100 

pasireotide administered in a long acting release form (LAR – 28 day) to SD acclimated hamsters, 101 

given access to a RW instead of manipulating the photoperiod.  102 

 103 

Methods 104 

Animals and tissue collection 105 

All animal experiments and general husbandry were in accordance with the German Animal 106 

Welfare Act, and approved by the Lower Saxony State Office for Consumer Protection and Food 107 

Safety (license no. 12/1023). All experiments were performed using adult male Siberian hamsters 108 

from a colony maintained at the University of Veterinary Medicine, Hannover. Hamsters were 109 

bred under natural photoperiod at a latitude of 52°N under ambient temperatures, before transferral 110 



to artificial LD (16:8 h light:dark) after weaning. Food (hamster breeding diet, Altromin 7014, 111 

Lage, Germany) and water were available ad libitum throughout, supplemented by a weekly slice 112 

of apple, and during experiments the hamsters were singly housed. Overhead lighting was provided 113 

by fluorescent tubes (Lumilux LF11, Osram, Germany) resulting in a light intensity of ca. 200–114 

350 Lux at cage level. During the dark phase, illumination was limited to dim red light of <5 Lux 115 

(Osram, Darkroom red, 15 W). For hamsters provided with a running wheel (RW; 14.5cm inner 116 

diameter), wheel revolutions were registered and stored at 6 min intervals. For comparison, mean 117 

daily distance run per hamster, calculated over the 49 day experiment was compared. In the 118 

pasireotide experiment, further sub-analyses were carried out, with daily running distance 119 

compared over the course of the experiment, and to assess if the behavioural pattern differed over 120 

the course of the dark (active) phase, wheel revolutions in 2 h bins were compared, taking the 121 

mean wheel revolutions during each bin for each hamster over the 49 day experiment.  At the end 122 

of the experiments, in order to determine any acute effects of exercise, non-fasted hamsters were 123 

sacrificed by CO2 overdose followed by cervical dislocation in the dark (active) phase between 124 

zeitgeber time (ZT) 12 and 13, where ZT 0 and ZT8 corresponds to time of lights on and off 125 

respectively. This timing was chosen so that we could take into account potential changes in 126 

circulating hormone levels due to RW activity. The brain, and trunk blood (from which serum was 127 

prepared), were collected and stored at -70˚C before use. Testes and liver were dissected and 128 

immediately weighed. In the pasireotide experiment these were returned to carcasses, which were 129 

stored at -70˚C and later thawed for body composition analysis.  130 

 131 

Pasireotide RW experiment 132 

Thirty adult male Siberian hamsters were initially acclimated to SD (8:16 h light:dark) for 10 133 

weeks (69-72 days) before they received a subcutaneous dose of pasireotide LAR (Novartis, Basel 134 

Switzerland;160mg/kg based on weight on day of administration) or vehicle only. On the day of 135 

administration, hamsters were further split into running wheel and sedentary groups, of which one 136 

vehicle and one pasireotide group received a RW (RW-Vehicle, RW-Pasireotide both n=7) and 137 

the remaining two groups did not (Sedentary-Vehicle, Sedentary-Pasireotide, both n=8). 138 

Pasireotide and vehicle treatment was repeated 28 days following the first administration. Body 139 

mass was measured from day 2 onwards following pasireotide or vehicle treatment at 4-day 140 

intervals, and the change in body mass from the start of pasireotide or vehicle administration was 141 

calculated and compared. The initial ambient temperature of 22 ± 1°C was lowered to 20 ± 1°C 142 

on day 20 to better facilitate the expression of torpor, which has been reported elsewhere (29). 143 



Hamsters were sacrificed as described above, after 49 days (7 weeks) of treatment and/or running 144 

wheel access.  145 

Body composition of dissected hamsters (with brain removed) was determined by nuclear 146 

magnetic resonance imaging (MRI; Echo MRI™ Whole Body Composition Analyser, Echo 147 

Medical Systems, Houston, Texas). Previously frozen decapitated bodies were doubly sealed in 148 

plastic bags, sealed bags then disinfected and warmed to 37°C in a water bath before measurement. 149 

Three measurements per carcass were taken, and the mean of these measurements accepted. Data 150 

are compared directly and as a ratio of lean:fat mass. Serum glucose was determined by ACCU-151 

CHEK AVIVA glucose monitor and test strips. ELISAs were performed on thawed serum 152 

according to manufacturers’ instructions. Serum insulin concentration was measured using a rat 153 

insulin ELISA kit (Mercodia, Uppsala, Sweden; cat. no. 10-1250-01), with intra assay CVs of 154 

6.93% and 6.35%, and an inter assay CV of 6.65%. One RW-Vehicle sample was excluded due to 155 

a very high %CV between technical replicates, reducing this group to an n=6. 156 

 157 

12 week RW experiment 158 

Food intake and hypothalamic Ghrh mRNA expression was investigated in a 12-week RW 159 

experiment (4). Briefly, 48 adult male Siberian hamsters were acclimated to either LD or SD, as 160 

described above, for 2 weeks before given access to a RW (LD-RW, SD-RW; both n=10) or not 161 

(LD-C, n=10; SD-C, n=8). The hamsters were sacrificed as described above, after 84 days (12 162 

weeks) following RW introduction as described above. Body mass and RW revolutions were 163 

measured during the course of the experiment and terminal organ mass (liver and testes) were 164 

recorded. Due to the loss of one LD-RW slide during preparation, the Ghrh in situ experiment was 165 

reduced to n=9 for this group. Because of excessive crumbling of the food, food intake data was 166 

excluded for several hamsters, reducing sample sizes; SD-RW: n=4, SD-Sedentary: n=5, LD-RW: 167 

n=10, LD-Sedentary, n=9.  168 

 169 

Open flow Respirometry Experiments 170 

Sedentary hamsters were monitored for a period of 2 or 3 days between days 13-20 of the 171 

experiment, by open flow respirometry, carried out in their home cages with dimensions 24.5cm 172 

x 15cm x 15cm and a volume approximately 5.5L. VO2 and VCO2 were measured with a 173 

FOXBOX field gas analyser (Sable systems, NV, USA) at a flow rate of 35-40 L/hour. 174 

Measurements were taken every 1 in 6 minutes, for 5 hamsters per session, and were adjusted 175 



according to an air reference channel. The body mass specific metabolic rate and respiratory 176 

quotient (RQ) were calculated, taking the bodyweight as the mean from the two closest weigh 177 

dates (4 days apart).  178 

 179 

Riboprobe synthesis 180 

Riboprobes complementary to DNA sequence fragments were generated from Siberian hamster, 181 

mouse or rat brain cDNA by RT-PCR as previously described (3, 27, 30-32). Templates were 182 

generated by PCR amplification of the insert from plasmid DNA with M13 forward and reverse 183 

primers located 5’ upstream to polymerase transcription sites in host vectors. Approximately 184 

100ng of PCR product were used in an in vitro transcription reaction with T7, T3 or SP6 185 

polymerases as appropriate in the presence of 35S-uridine 5-triphosphate (Perkin-Elmer, Bucks, 186 

UK) for radioactive in situ hybridisation.   187 

 188 

In situ hybridisation 189 

Coronal hypothalamic sections were cryosectioned at 14µm and mounted on poly-L-lysine coated 190 

slides (ThermoScientific, Rockford, IL, USA). Radiolabelled in situ hybridisation was carried out 191 

as previously described (33).  Briefly, slides were fixed in 4% PFA-0.1 M PB, acetylated in 0.25 192 

% acetic anhydride-0.1 M triethanolamine, pH 8. Radioactive probes (approx. 106 counts per 193 

minute per slide) were applied to the slides in 70 μl hybridisation buffer containing 0.3 M NaCl, 194 

10 mM Tris-HCl (pH 8), 1 mM EDTA, 0.05% tRNA, 10 mM DTT, 0.02 % Ficoll, 0.02 % 195 

polyvinylpyrrolidone, 0.02 % BSA and 10 % dextran sulphate. Hybridisation was performed 196 

overnight (approx. 16 h) at 58˚C. The following day, slides were washed in 4 x SSC (1 x SSC is 197 

0.15 M NaCl, 15 mM sodium citrate), treated with Ribonuclease A (20 μg/μl) at 37°C and washed 198 

in SSC to a stringency of 0.1 x at 60˚C. Dehydrated slides were exposed to Biomax MR film 199 

(Kodak, Rochester, NY, USA) for 16 h – 14 days as appropriate. 200 

 201 

Image analysis 202 

Autoradiographic films were scanned at 600 d.p.i. to a computer running Image Pro Plus v. 6.8 or 203 

v. 7.0 (Media Cybernetics, Marlow, UK). Integrated optical density of mRNA expression was 204 

obtained in reference to a 14C microscale and measured in 2-5 sections per slide for each probe as 205 

appropriate, and the accumulated count (arbitrary units) was compared. For presentation purposes, 206 



integrated optical density is expressed relative to the sedentary-vehicle or LD-C group, whose 207 

value is defined as 1. 208 

Statistical Analysis 209 

Data are expressed as mean ± SEM and analysis was carried out using Minitab v. 15.0 (Minitab, 210 

PA, USA) or GraphPad Prism v. 7.0 (Graphpad, CA, USA). Statistical tests used were 2-way 211 

ANOVA (general linear model) with Tukey post hoc tests, or two sample t-tests unless stated. P-212 

values less than 0.05 were considered statistically significant. Where data did not conform to 213 

assumptions of an ANOVA, it was transformed by log10 or square root, and statistics were 214 

performed on transformed data (log10: serum glucose and insulin data; square root: Ghrh in situ 215 

data). When data could not be transformed to fit assumptions of the parametric test, Kruskall-216 

Wallis (KW) and/or Mann-Whitney (MW) tests were performed, these instances are indicated in 217 

the text as appropriate. RW time course data were compared by 2-way RM-ANOVA followed by 218 

Sidak’s multiple comparison tests for differences between pasireotide and vehicle data. 219 

Correlations between distance travelled and change in body mass were investigated by linear 220 

regression. For the change in body mass data, 2-way ANOVAs were carried out at each time point, 221 

with pasireotide and RW access as factors. 222 

 223 

Results 224 

Effect of pasireotide on RW activity stimulated weight gain, body composition and organ mass 225 

Representative actograms are shown in figure 1A, here the RW activity is double plotted by 226 

aligning two consecutive days horizontally and each 24h is plotted twice (34), with the full 49 days 227 

shown. Pasireotide treatment did not significantly alter the daily distance run by RW hamsters, 228 

(Vehicle: 24,458 ± 3945 revolutions, 11.14 ± 1.80 km; pasireotide: 32,947 ± 4520 revolutions, 229 

15.01 ± 1.93 km. p=0.185, figure 1B). RW hamsters can be expected to decrease daily wheel 230 

running activity over time (10), and despite a brief drop in activity following the 2nd injection for 231 

vehicle hamsters, pasireotide did not alter daily wheel running activity over the course of the 232 

experiment, with only an overall effect of time (F(48, 624)=2.038, p<0.001); however there were 233 

no significant effects in post hoc analyses (figure 1C). In order to detect if pasireotide altered the 234 

pattern of wheel running behaviour, mean revolutions per 2 h of the dark phase from the 49 235 

experimental days were compared. There was a significant time effect (F(7, 91)=30.31, p<0.001),  236 

with the greater amount of wheel running occurring in the first 10 h of the dark phase, but no 237 

overall significant pasireotide effect was detected. And despite a significant interaction (F(7, 238 

91)=2.722, p=0.013) at no individual 2 h time-point did vehicle and pasireotide RW activity 239 



significantly differ (figure 1D). Very little wheel running activity occurred during the light phase, 240 

and this did not differ with pasireotide (RW-Vehicle: 1.93±0.56 revolutions, RW-Pasireotide: 241 

1.56±0.65 revolutions).  242 

As expected, RW activity caused weight gain (figure 2A; day 49: F(1,26)=72.38, p<0.001), and 243 

the increase in body mass for RW-Vehicle hamsters reached significance compared to all others 244 

after only 10 days. Pasireotide attenuated RW induced weight gain (day 49: F(1,26)=13.58, 245 

p=0.001), with RW-pasireotide hamsters reaching significant weight gain compared to sedentary 246 

counterparts by day 34, and differing from all other groups by day 46. The RW stimulated weight 247 

gain was attenuated by pasireotide, demonstrated by a significant interaction between these factors 248 

(day 49: F(1,26)=6.05, p=0.021). No correlation was found between the cumulative distance run 249 

over the course of the experiment and change in body mass for either pasireotide or vehicle treated 250 

hamsters (figure 2B r2=0.004, p=0.894; r2=0.182, p=0.292 respectively). Furthermore, we 251 

determined whether pasireotide might directly alter energy expenditure using open flow 252 

respirometry. In sedentary animals, metabolic rate and respiratory quotient did not differ in 253 

pasireotide compared with vehicle treated animals, measured overall, or in either the light or dark 254 

phase (supplementary table 1 and supplementary figure 1). 255 

 256 

Overall, lean mass of dissected carcasses was significantly increased by RW activity 257 

(F(1,26)=35.78, p<0.001), and this was suppressed by pasireotide treatment (F(1,26)=13.94, 258 

p=0.001). There was a significant interaction between factors (F(1,26)=15.43, p=0.001); with the 259 

RW-vehicle hamsters having a greater lean mass than all other treatment combinations (p<0.001 260 

all comparisons; figure 2C). Fat mass was only raised by RW activity (F(1,26)=7.25, p=0.012; 261 

figure 2D). Since body composition is a relative measure, and that the final body mass overall 262 

differed dramatically between groups, the ratio of lean-to-fat mass in dissected carcasses was 263 

compared, and RW hamsters were found to have a small but significantly greater proportion of fat 264 

mass overall (sedentary-vehicle: 0.905:0.095 ± 0.017, sedentary-pasireotide: 0.872:0.128 ± 0.020, 265 

RW-vehicle: 0.861:0.139 ± 0.024, RW-pasireotide: 0.836:0.164 ± 0.012 lean:fat mass; 266 

F(1,26)=4.37, p=0.047; figure 2E).  267 

Paired testes mass was significantly increased by RW activity (KW; p<0.001) but not altered by 268 

pasireotide (KW; p=0.852) and within RW and sedentary groups there were no significant effects 269 

of pasireotide (figure 2F). Liver mass was used as an indicator of internal organ mass and was 270 

significantly increased by RW activity (figure 2G; F(1,26)=23.74, p<0.001), and the effect of 271 

pasireotide and interaction between treatments both approaching significance (F(1,26)=2.94, 272 

p=0.098 and F(1,26)=3.32, p=0.080 respectively; figure 2G). In post hoc analyses, RW-Vehicle 273 



hamsters had significantly greater liver mass than sedentary counterparts (p<0.001) but compared 274 

with RW-Pasireotide, this difference did not reach significance (p=0.098). Interestingly, when 275 

liver mass was compared as a proportion of body mass, the trend for a pasireotide effect was 276 

abolished and only the RW effect remained (F(1,26)=7.18, p=0.013; Sedentary-Vehicle: 277 

48.13±1.64mg/g; Sedentary-Pasireotide: 47.38±1.23mg/g; RW-Vehicle: 53.78±2.40mg/g; RW-278 

Pasireotide: 51.67±1.62mg/g). 279 

 280 

Effects of RW activity on serum glucose and insulin concentrations 281 

Terminal (non-fasted) glucose concentrations did not differ between any of the treatment groups 282 

(Figure 3A), however serum insulin was significantly raised in RW hamsters (F(1,25)=4.42, 283 

p=0.046) and this was independent of pasireotide treatment (figure 3B). 284 

 285 

Effect of RW activity and pasireotide hypothalamic mRNA expression 286 

Two key genes in the regulation of photoperiod regulated seasonal phenotype change are those 287 

encoding for deiodinase enzymes types II and III (Dio2 and Dio3) which regulate central 288 

availability of active thyroid hormone.  In accordance with previous work (4, 27), when measured 289 

by in situ hybridization, expression of neither Dio2 nor Dio3 differed with RW activity or 290 

pasireotide treatment (figures 4A and 4B respectively). Since RW stimulated weight gain in the 291 

Siberian hamster is accompanied by increased food intake (4), expression of two appetite 292 

regulating peptides Pomc and Npy were measured in the ARC. Pomc expression was raised by 293 

RW activity independent of pasireotide (F(1,26)=13.05, p=0.001, figure 4C) and this was also the 294 

case for Npy  expression (F(1,26)=5.40, p=0.029; figure 4D).  295 

In order to determine whether the observed growth effects may be mediated by an alteration of the 296 

central growth hormone axis or by systemic feedback to this axis, hypothalamic expression of Srif 297 

in the ARC and PeVN as well as Ghrh and Gh-r in the ARC were measured. Arcuate nucleus Srif 298 

expression was not altered by RW activity or pasireotide, although a decrease with RW activity 299 

approached significance (F(1,26)=3.54, p=0.071; figure 4E). Srif expression in the PeVN was 300 

significantly increased with RW activity (F(1,26)=14.93, p=0.001) and decreased by pasireotide 301 

(F(1,26)=8.63 p=0.007; figure 4F). Expression of Ghrh in the ARC was increased only by RW 302 

activity (F(1,26)=5.44 p=0.028, figure 4G). Similarly, Gh-r expression in the ARC was unaltered 303 

by pasireotide and significantly increased overall in RW hamsters (F(1,26)=9.33, p=0.005; figure 304 

4H).  305 



 306 

Effect of RW on Ghrh expression and food intake in LD and SD hamsters  307 

In a second RW experiment, hamsters exposed to LD or SD for a period of two weeks before 12 308 

weeks of RW access, body weight was significantly decreased for the SD-Sedentary hamsters 309 

compared to all others by day 35 (p≤0.05). At the end of the experiment there were significant 310 

effects on body mass, with both photoperiod and RW activity, with interaction (Photoperiod: 311 

F(1,34)=16.46, p<0.001; RW Activity: F(1,34)=33.23, p<0.001; Interaction: F(1,34)=5.263, 312 

p=0.028 figure 5A). For the RW hamsters, photoperiod did not affect the mean distance run 313 

(figures 5B, C). As previously described (4), food intake increased for RW hamsters and with LD 314 

photoperiod, (Photoperiod: F(1,24)=5.15, p=0.033; RW Activity: F(1,24)=50.71, p<0.001; 315 

Interaction: F(1,24)=0.09, p=0.764, supplementary figure 2). As expected, paired testes mass was 316 

significantly reduced in SD hamsters with no overall effect of RW activity (KW; Photoperiod: 317 

H=27.08, p<0.001; RW Activity: p=0.279). However, in pairwise comparisons both SD-Sedentary 318 

and SD-RW hamsters had significantly different paired testes mass compared to all other groups 319 

(MW; p<0.001, all comparisons), with the SD-RW hamsters having a mid-range mass compared 320 

to the SD-Sedentary and LD hamsters (figure 5D). RW access significantly increased liver mass, 321 

with interaction between RW access and photoperiod (Photoperiod: F(1,34)=2.19, p=0.148; RW 322 

Activity: F(1,34)=22.82, p<0.001; Interaction: F(1,34)=6.10, p=0.019), with SD-C having a lower 323 

liver mass than all other groups (vs. LD-C p=0.049; vs. SD-RW, p<0.001; vs. LD-RW p<0.001; 324 

figure E). Liver mass as a function of body mass did not significantly differ between groups (LD-325 

RW: 46.29 ± 1.50mg/g; LD-C 45.74 ± 1.65mg/g; SD-RW: 49.83 ± 3.01mg/g; SD-C: 44.53 ± 326 

0.63mg/g). 327 

Expression of ARC Ghrh was significantly raised by RW overall and with a trend for an effect of 328 

photoperiod (RW Activity: F(1,33)=8.18, p=0.007; Photoperiod: F(1,33)=3.32, p=0.078; 329 

Interaction: F(1,33)=0.85,  P=0.362, figure 5F). 330 

 331 

Discussion 332 

The present study aimed to provide evidence to support the hypothesis that the GH axis is involved 333 

in the exercise induced growth response of the Siberian hamster by disrupting the hypothesised 334 

stimulation of this axis with the somatostatin analogue, pasireotide and by measuring the 335 

expression of key GH axis components in the hypothalamus.  336 



Pasireotide treatment significantly retarded the body weight increase caused by access to a RW. 337 

Further, access to RW increased expression of Srif in the PeVN indicative of increased feedback 338 

to the inhibitory arm of the GH axis, and increased Ghrh expression in the ARC, indicative of 339 

increased stimulatory drive to the GH axis. Furthermore, pasireotide reduced the RW-induced Srif 340 

expression in the PeVN indicative of a reduction in GH feedback to the hypothalamus. Since 341 

pasireotide is not expected to cross the blood brain barrier, and reduces circulating IGF-1 (25-27), 342 

the most likely explanations for pasireotide retardation of RW induced growth are inhibition of 343 

GH secretion from the pituitary or inhibition of IGF-1 secretion from the liver, although as 344 

discussed below, other mechanisms may be involved. 345 

The RW response phenomenon may have evolved in this species in order to take advantage of 346 

favourable conditions such as a mild winter or an early spring to reproduce early and maximise 347 

offspring number and survival. Wheel running is not a natural behaviour but can represent a natural 348 

drive to be active. Indeed, running wheels placed in the wild are taken advantage of by a surprising 349 

variety of species (35) and it may be a self-rewarding behaviour. The hamsters of the present study 350 

ran for comparable distances to that previously reported (11) and any trend for reduced mean daily 351 

distance run in vehicle hamsters did not reach significance.  A temporary and non-significant 352 

decline in daily distance run by vehicle hamsters following the second administration may account 353 

for this apparent trend. As expected for animals housed in SD (36), further sub-analysis of daily 354 

RW activity over the dark period showed the peak of activity in the first of half of the night for all 355 

RW hamsters, independent of pasireotide. Therefore, we conclude that RW behaviour was largely 356 

unaltered by administration of the drug.  357 

In exercising SD hamsters, weight gain was retarded by pasireotide, with overall lean mass being 358 

similar to sedentary counterparts in contrast to the vehicle treated RW hamsters. Weight gain was 359 

however, not completely inhibited by pasireotide. A contribution to weight gain comes from fat 360 

mass which increased with RW activity and did not differ between vehicle and pasireotide 361 

treatments. Although we found no direct effect of pasireotide on metabolic energy expenditure in 362 

sedentary hamsters, it might be argued that a trend for increase in RW activity lead to increased 363 

energy expenditure and therefore the diversion of energy from growth. However, this explanation 364 

is unlikely since change in body mass did not correlate with the total distance run. Furthermore, 365 

fat mass would be the first source of additional energy mobilised for an increased energy 366 

expenditure (37), but this was similar in all RW hamsters.  367 

In the absence of altered energy expenditure, the retarded growth of RW-Pasireotide hamsters 368 

might be explained by a reduction in energy intake. One key component of the weight gain 369 

experienced by exercising hamsters is increased food intake (4, 10, 11). We did not measure food 370 



intake in the present pasireotide experiment, but clearly caloric intake was sufficient to sustain a 371 

similar increase in fat mass in vehicle and pasireotide treated hamsters. A lower food intake in 372 

pasireotide treated hamsters would likely occur because of a lower basal metabolic rate due to less 373 

lean tissue and less energy required to sustain RW induced muscle accretion and organ growth 374 

(38). This would also be consistent with a reduced orexigenic drive from the GH axis in the brain 375 

where GH has been shown to stimulate NPY neurons, and increase both Npy and Agrp expression 376 

(39-41).  377 

Food intake can be stimulated and suppressed by appetite regulating neuropeptides expressed in 378 

the hypothalamus, and POMC and NPY are both implicated in appetite control (42). In our 379 

previous study RW activity was accompanied by an increase in Pomc but no alteration of Npy 380 

expression (4). In the present study, in addition to an increase in Pomc, an increase in Npy 381 

expression was also observed. Increased Pomc expression may not necessarily equate to an 382 

increased anorexigenic drive as this may depend on the impact of RW activity on downstream 383 

processing enzymes which are photoperiodically regulated in a manner to increase anorexic α-384 

MSH production from POMC precursor peptide in SD (43). However, the discrepancy between 385 

these two findings for Npy may lie in the time of sampling, since hamsters in the present study 386 

were sacrificed during the dark RW active phase when an energy deficit due to activity will be 387 

greater in comparison with our previous study when hamsters were killed during the early light 388 

phase when hamsters were not exercising (4). 389 

Testicular atrophy was partially retarded in RW hamsters, with no significant effect of pasireotide 390 

treatment, suggesting RW activity had a broad stimulation of neuroendocrine axes. This is similar 391 

to a stimulatory effect of RW activity in Syrian hamsters where exercise has been shown to inhibit 392 

or reverse photoperiod induced reduction in prolactin, follicle-stimulating hormone, lueteinzing 393 

hormone and testosterone, and reverse reproductive quiescence (44, 45). Notably, RW stimulated 394 

growth was first observed in the Siberian hamster in castrated male animals (9), and so growth is 395 

unlikely to be driven by testosterone produced by the partially recrudesced testes of RW hamsters. 396 

Additionally, exercise induced growth has been demonstrated in both male and female Syrian 397 

hamsters (45) and Siberian hamsters (11).  398 

In line with previous work (4), insulin concentration was increased in serum of RW hamsters, 399 

although serum glucose levels did not differ. Any subtle differences in serum glucose might have 400 

been masked by the non-fasted state of the hamsters at sacrifice. Although the photoperiodic 401 

difference in circulating insulin in male Siberian hamsters is well established (4, 32), 402 

intraperitoneal glucose tolerance tests have revealed no photoperiod differences in glucose 403 

clearance for Siberian hamsters (46). A chronic difference in circulating insulin can be considered 404 



indicative of a more obese and generally insulin resistant state, as has been described for LD 405 

hamsters with regard to central insulin signalling (47). Insulin has a lipogenic activity in Siberian 406 

hamster adipocytes (48); therefore a greater concentration of insulin in the serum of RW hamsters 407 

may provide a mechanism for the increase and maintenance of fat deposition similar to a LD 408 

hamster, in addition to any insulin driven increase in lean mass (49). The lack of pasireotide effect 409 

on circulating insulin concentrations supports this interpretation, since fat mass was also 410 

unaffected.  411 

Alterations in the balance of the central thyroid hormone system are essential for driving seasonal 412 

phenotype change in the Siberian hamster (3, 50). However, as previously reported for RW (4) 413 

and pasireotide treated hamsters (27), there were no measurable effects on Dio2 and Dio3 414 

expression, indicating action downstream of the integration of the photoperiodic cue.  415 

Gh-r expression remained unaltered in the ARC by pasireotide, however there was a stimulatory 416 

effect of wheel running on expression of this receptor mRNA. This may have allowed for increased 417 

sensitivity to circulating GH, and suggests that tachyphylaxis of this receptor was not a problem 418 

with the hypothesised increase in circulating GH. Unfortunately, there was not enough remaining 419 

tissue to compare photoperiodic expression of GH-R and so it remains to be seen whether there is 420 

photoperiodic regulation of this receptor.  421 

In the present study, the effect of wheel running to stimulate increased ARC Ghrh expression was 422 

evident in both experiments, and in both LD and SD hamsters. Whereas we previously found that 423 

pasireotide significantly increased Ghrh expression in sedentary hamsters independent of 424 

photoperiod, the effect of pasireotide on Ghrh expression did not appear to be additive to the RW 425 

effect. Wheel running activity has been shown to suppress the SD stimulated increase in ARC Srif 426 

expression, an effect that appears to depend on the length of time that the hamsters had access to 427 

a RW and/or the length of time in SD photoperiod (4). Although not quite achieving significance, 428 

the present data demonstrated a trend to suppression by RW activity consistent with the previous 429 

study, but pasireotide did not alter ARC Srif expression. This indicates that pasireotide does not 430 

affect the photoperiodic drive on ARC Srif expression.  431 

As previously described (27) expression of Srif in the PeVN was suppressed by pasireotide. 432 

Together with increased Ghrh expression in the ARC by RW activity, the findings are consistent 433 

with altered feedback of the GH axis to these neurons. Although we cannot definitively conclude 434 

the primary driver of growth caused by RW activity is GH, the following support the notion GH 435 

underpins this mechanism; 1) robust increase in pulsatile circulating GH in Syrian hamsters caused 436 

by RW activity (28, 51); 2) the persistence of RW induced growth in castrated hamsters (9), 3) the 437 

known stimulatory effect of GH and suppressive effect of pasireotide on circulating IGF-1 levels 438 



in the Siberian hamster (27) and 4) suppressive effect of pasireotide on RW and LD photoperiod 439 

induced growth. However, due to insufficient serum we were unable to provide the definitive 440 

confirmation from measurement of circulating IGF-1 measurements. Thus any additional 441 

mechanism of inducing somatic growth may still be possible such as a contribution from increased 442 

circulating insulin (49), although evidence from Syrian hamsters suggests insulin is less likely to 443 

contribute to RW induced somatic growth (52). 444 

The seasonally adaptive physiology of the Siberian hamster has traditionally been studied as a tool 445 

to understand mechanisms for the regulation of appetite, body mass and metabolism. The exercise 446 

response that occurs in this species may be counterintuitive when considering that in general, 447 

exercise is known to have health promoting effects in human physiology across several different 448 

parameters. However even in human physiology, on an individual level there can be substantial 449 

variability in beneficial effects, or even detrimental effects of exercise on specific health 450 

parameters (53-56) that may be tied to compensatory eating (57). Considering the current level of 451 

reported obesity and overweight worldwide, with the main treatments being to reduce caloric 452 

intake and increase energy expenditure, it is important to understand how in certain individuals, 453 

specific exercise regimes or treatments might be beneficial to counteract poor exercise response. 454 

We propose that the Siberian hamster exercise response can be considered a model for poor 455 

exercise response in humans, typified by the increased serum insulin concentration, weight gain 456 

and no reduction in fat mass. Therefore, understanding what drives these physiological changes in 457 

the hamster could inform human medicine.  458 

 459 
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Figures 645 

Figure 1: Pasireotide does not alter distance run in SD acclimated Siberian hamsters with RW 646 

access. Representative double plotted actograms for a RW-vehicle and a RW-pasireotide hamster 647 

(A). Mean distance run / day / hamster over 49 d for hamsters treated with vehicle or pasireotide 648 

and access to a RW (B). Daily RW distance for pasireotide and vehicle hamsters (C), and mean 649 

wheel revolutions in 2 h bins during the dark phase over the course of the experiment (D).  n.s.: 650 

no significant differences. Both groups n = 7. Data are expressed as mean ± SEM. 651 

Figure 2: Pasireotide inhibits RW stimulated weight gain in SD acclimated Siberian hamsters. 652 

Body mass change (A) of hamsters acclimated to SD for 69-72 d before given access to a RW or 653 

not, and treated with pasireotide or vehicle for 49 d. (B) No correlation was found between distance 654 

travelled in 49 days and change in body mass in RW hamsters.  Carcass lean (C) and fat (D) tissue 655 

mass, measured by MRI, and relative lean and fat mass (E). Paired testes mass (F), and liver mass 656 

(G) at time of sacrifice are also shown. *p < 0.05, **p < 0.01, ***p<0.001, vs all other groups or 657 

as indicated; #: p<0.05 vs sedentary-pasireotide. †: p<0.001 vs RW-vehicle RW groups both n = 658 

7, sedentary groups both n = 8. Data are expressed as mean ± SEM. 659 

Figure 3: Pasireotide did not alter glucose homeostasis in SD acclimated Siberian hamsters. 660 

Terminal serum glucose (A) and insulin (B). *p < 0.05. RW-vehicle, n = 6; RW-pasireotide, n = 661 

7; sedentary groups, both n = 8. Data are expressed as mean ± SEM. 662 

Figure 4: RW stimulated increased gene expression of appetite regulating peptides and GH axis 663 

components, while pasireotide only altered expression of PeVN Srif. Relative mRNA expression 664 

of Dio2 (A), Dio3 (B), Pomc (C), Npy (D) and Srif (E) in the arcuate nucleus (ARC), Srif in the 665 

periventricular nucleus (PeVN; F), and Ghrh (G) and Gh-r (H) in the ARC. *p < 0.05, **p < 0.01, 666 

***p<0.001, n.s.: no significant differences. RW groups both n = 7, sedentary groups both n = 8. 667 

Data are expressed as mean ± SEM. 668 

Figure 5: RW access stimulates hypothalamic Ghrh expression in LD and SD hamsters. Siberian 669 

hamsters were acclimated to SD for 14 d or remained in LD before given access to a RW or not 670 

for a further 84 d. RW access caused a positive change in body mass (A), representative actograms 671 

for LD-RW and SD-RW hamsters for the full course of the experiment (B), and distance run / 672 

hamster / day (C). Terminal organ mass of paired testes (D) and liver (E), and relative Ghrh mRNA 673 

expression in the arcuate nucleus (F). *p < 0.05, ***p<0.001, vs all other groups, **p < 0.01 as 674 

indicated; #: p < 0.05 LD vs SD; †: p < 0.05 RW vs Sedentary. A-C, E, F: SD-sedentary, n = 8; all 675 

other groups n = 10. D: SD-RW: n=4, SD-Sedentary: n=5, LD-RW: n=10, LD-Sedentary, n=9. G: 676 



SD-sedentary n = 8, LD-RW n = 9, SD-RW and LD-sedentary both n = 10. Data are expressed as 677 

mean ± SEM. 678 
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Supplementary Material  

Somatostatin agonist pasireotide inhibits exercise stimulated growth in the male Siberian hamster 

(Phodopus sungorus) 

 

Open flow Respirometry Experiments 

Sedentary hamsters were monitored for a period of 2 or 3 days between days 13-20 of the experiment, by open 
flow respirometry, carried out in their home cages with dimensions 24.5cm x 15cm x 15cm and a volume 
approximately 5.5L. VO2 and VCO2 were measured with a FOXBOX field gas analyser (Sable systems, NV, USA) at 
a flow rate of 35-40 L/hour. Measurements were taken every 1 in 6 minutes, for 5 hamsters per session, and 
were adjusted according to an air reference channel. The body mass specific metabolic rate and respiratory 
quotient (RQ) were calculated, taking the bodyweight as the mean from the two closest weigh dates (4 days 
apart). Supplementary table 1 illustrate mean RQ over the measurement period, and supplementary figure 1 
demonstrates an example for vehicle and pasireotide treated sedentary hamsters over the course of a 2-day 
measurement period.  

Supplemental table 1: Respiratory quotient (RQ) is unchanged by pasireotide in sedentary hamsters.  

 Light Phase RQ Dark Phase RQ Overall RQ 

Pasireotide 0.846 ± 0.015 0.824 ± 0.012 0.831 ± 0.013 

Vehicle 0.821 ± 0.017 0.810 ± 0.012 0.813 ± 0.013 

 

Supplementary figure 1. 

 

Representative example metabolic rate and respiratory quotient (RQ) traces for a sedentary-vehicle and a 
sedentary-pasireotide hamster over 48h in the 3rd week of experiment. Grey bars indicate the dark phase, and 
a torpor bout is indicated for the sedentary-pasireotide hamster during the light phase on the 2nd measurement 
day. The effects of pasireotide on torpor in these hamsters has previously been discussed (1). 

 

 



Supplementary Figure 2: LD/SD experiment food intake data 

 

Food intake was measured on a weekly basis by weighing the difference in food weight in the cage hoppers, and 
plotted as cumulative food intake. Because of excessive crumbling of the food, food intake data was excluded 
for several hamsters, reducing sample sizes; SD-RW: n=4, SD-Sedentary: n=5, LD-RW: n=10, LD-Sedentary, n=9. 
As previously described (2), food intake increased for RW hamsters and with LD photoperiod, (Photoperiod: 
F(1,24)=5.15, p=0.033; RW Activity: F(1,24)=50.71, p<0.001; Interaction: F(1,24)=0.09, p=0.764, figure). #: p < 
0.05 LD vs SD; †: p < 0.05 RW vs Sedentary. 
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