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Abstract 1 

 2 

Life in a seasonally variable environment has evolved to interpret the time of year through day 3 

length (photoperiod) which is translated into a neurochemical signal. In mammals, the pars tuberalis 4 

is a key site where seasonal time signal (melatonin) interfaces and relays photoperiodic information 5 

to the hypothalamus via thyrotropin. Recent work has elucidated a potential circannual clock in 6 

‘calendar cells’ of the pars tuberalis. In the hypothalamus, tanycytes are an integral part of the 7 

hypothalamic network. Previous studies show the importance of local synthesis of thyroid hormone 8 

and retinoic acid in tanycytes. Recently novel downstream neuroendocrine signals, e.g. VGF, FGF21 9 

and chemerin, were identified to govern seasonally appropriate phenotype. Additionally, the 10 

hypothalamic-pituitary-growth axis has been implicated in seasonally bodyweight and torpor 11 

regulation. Here, we will focus on the endocrine drivers of photoperiod response and highlight novel 12 

downstream effects on bodyweight and growth focusing on recent findings from seasonal rodent 13 

studies.  14 

 15 
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Abbreviations 19 

DIO2: deiodinase enzyme type 2 20 

DIO3: deiodinase enzyme type 3 21 

EYA 3: eyes absent 3 22 

FGF21: fibroblast growth factor 21 23 

LP: long photoperiod, summer day length (typically 16 h light : 8 h dark in experimental settings) 24 

NMU: neuromedin U 25 

POMC: pro-opiomelanocortin 26 

PT: pars tuberalis 27 

SCN: suprachiasmatic nucleus 28 

SP: short photoperiod, winter day length (typically 8 h light : 16 h dark in experimental settings) 29 

T3: tri-iodothyronine 30 

T4: thyroxine 31 

T2: di-iodothyronine 32 

TSH: thyroid stimulating hormone, thyrotropin 33 

 34 

1. Introduction  35 

Life on earth has evolved for temporally variable environments, and in temperate regions this not 36 

only means the environmental influence of the daily light cycle, but the seasonally variable pressures 37 

that come with this. Consequently, many species have adapted seasonal plasticity in many life 38 

history traits, including energy balance, growth and reproduction. In terms of energy balance, in 39 

times of low food availability, some species gain weight, such as the Golden hamster (Mesocricetus 40 

auratus), or lose weight, such as the Siberian hamster (Phodopus sungorus); and many species time 41 

their reproductive capacity so that offspring are born during plentiful food supply [1]. These 42 

processes are under neuroendocrine regulation and have many upstream pathways in common, and 43 

thus understanding the processes by which seasonal species regulate such pathways (which also 44 

exist in human) will help understand physiology and will help to develop novel interventions for 45 
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human disease. This review will focus on the endocrine drivers of photoperiod response and the 1 

downstream effects on energy balance and growth, in particular focusing on recent insights from 2 

seasonal rodent studies.  3 

 4 

2. Regulators of bodyweight change 5 

2.1 Melatonin is the seasonal cue 6 

As the most consistent indicator of circannual timing, day length (photoperiod) is the seasonal cue, 7 

translated neurochemically by the release of melatonin from the pineal gland during darkness. In 8 

mammals, this is mediated by light input through the eye and via the retinohypothalamic tract to the 9 

suprachiasmatic nucleus (SCN) in the hypothalamus [reviewed extensively in [2, 3]. Briefly, 10 

melatonin acts on the pars tuberalis (PT), a thin sheath of vascularised tissue connecting the base of 11 

the brain with the anterior pituitary, to regulate thyrotropin (thyroid stimulating hormone, TSH) 12 

release to the third ventricle of the hypothalamus. In short photoperiod (SP, winter day length) the 13 

duration of melatonin signal effectively abolishes secretion of TSH from the PT, whereas in long 14 

photoperiod (LP, summer day length) the short duration of melatonin signal is permissive for TSH 15 

release [4-6] (Figure 1). Despite this key role, after a prolonged period of exposure to SP, seasonal 16 

animals begin to recover from their winter state and reverse the SP phenotype, deemed the 17 

photorefractory response [e.g. 7, 8], and indicative of a circannual clock. Work in sheep 18 

demonstrates transcriptional regulation by a D element in the promotor of TSH which is activated by 19 

the circadian transcription factor thyrotroph embryonic factor (TEF) and the rapid induction of eyes 20 

absent 3 (Eya3) in the PT under LP [9]. This circannual regulation has further elucidated thyrotrophic 21 

so-called calendar cells in the PT appearing to be under long-term transcriptional regulation, with a 22 

binary switch in expression of EYA3 [10], together indicating that the PT may be the site of an 23 

endogenous circannual clock [reviewed in 11]. Pinealectomised European hamsters (Cricetus 24 

cricetus) can entrain to photoperiod in the absence of melatonin [12] and recent work demonstrates 25 

that in these hamsters, TSH rhythm and photoperiod appropriate phenotype remains intact; likely 26 

receiving input from the SCN to entrain circannual rhythm in the PT in the absence of melatonin 27 

[13]. Together this demonstrates that although key to signalling time of year, the melatonin-TSH 28 

pathway may have evolved redundancy in order to prepare for return to LP summer conditions.  29 

 30 

2.2. Hypothalamic thyroid hormone is the gatekeeper for photoperiod regulated phenotype 31 

Studies in a variety of seasonal species have demonstrated that TSH regulates availability of thyroid 32 

hormone in the hypothalamus by driving expression of deiodinase enzyme Dio2 in LP, to catalyse 33 

conversion between biologically active (triiodothyronine, T3) and inactive thyroid hormones 34 

(thyroxine, T4) [4, 14-19]. Species-specific differences exist [2], for example in photoperiod-sensitive 35 

F344 rats, TSH not only increases Dio2 expression, but also decreases Dio3 expression, which 36 

converts T4 or T3 to its biologically inactive form T2 (diiodothyronine) [20]. Key loci for Dio2 and 37 

Dio3 expression in the hypothalamus are the tanycytes, specialised glial cells that line the third 38 

ventricle of the hypothalamus and extend into appetite regulating nuclei (Figure 1). Tanycytes have 39 

been characterised as important structural and supporting cell types with their proliferation and 40 

differentiation contributing to long-term regulation of energy balance [21]. Tanycytes are a diet-41 

responsive stem cell niche and we have recently discussed how they might contribute to increased 42 

hypothalamic cell proliferation and neurogenesis in SP, a common response amongst seasonal 43 

species [2].  44 

 45 
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Interestingly, a new study has shown that T3 also suppresses torpor, a controlled hypometabolic 1 

state during the normal rest phase, in Siberian hamsters [22]. It is well established that Siberian 2 

hamsters (among many small mammals) lose bodyweight and exhibit daily torpor to reduce appetite 3 

in anticipation of low food availability in winter [23, 24]. However, the mechanism by which appetite 4 

reduction is mediated is still debated. An exciting new development is the genome sequencing of P. 5 

sungorus [25], and subsequent transcriptomic analysis comparing hamsters adapted to LP and SP 6 

[26]. Many differentially expressed transcripts in the hypothalamus of Siberian hamsters housed in 7 

either LP or SP were found. Of note was pro-opiomelanocortin (Pomc), the precursor for α-8 

melanocyte-stimulating hormone (α-MSH), a key appetite suppressing peptide. Bao and colleagues 9 

identified thyroid-receptor 1b binding motifs in the proximal promotor of Pomc, suggesting that T3 10 

regulates Pomc expression through this thyroid hormone response element. However, in vitro assays 11 

did not show altered transcriptional activation on treatment with T3, suggesting it is only part of the 12 

multiple downstream effects of altered hypothalamic thyroid axis tone.   13 

 14 

2.3. Changes in downstream pathways are required to regulate physiological response to 15 

photoperiod 16 

Amongst these downstream pathways, the retinoic acid signalling pathway is a key intermediate in 17 

the effects of photoperiod with retinoic acid signalling genes localised in tanycytes and adjacent 18 

hypothalamic areas [27-29]. In F344 rats, Golden and Siberian hamster, retinoic acid signalling genes 19 

are upregulated in LP in a melatonin-dependent manner [27, 29]. Retinoic acid signalling is 20 

downstream of thyroid signalling, given that in vivo and ex vivo experiments in rats have shown that 21 

Raldh1, encoding the rate limiting enzyme for retinoic acid synthesis, increases in response to T4 22 

[30]. It is important to note here that a recent RNAseq study in LP, SP and thyroidectomised sheep 23 

failed to detect changes in retinoic acid signalling genes in response to photoperiod [31] thus this 24 

might be a feature exclusive to rodents.  25 

 26 

Other pathways also profoundly respond to photoperiod in the hypothalamus. A microarray analysis 27 

of photoperiod-regulated genes in the hypothalamus of F344 rats provided first evidence of the 28 

complexity of the photoperiodic response in mammals [32]. In F344 rats and Siberian hamsters, the 29 

Wnt/β-Catenin pathway has been identified as part of the photoperiodic response with high levels of 30 

Wnt signalling genes in LP and low levels in SP [27, 33, 34]. However, these changes seem to be 31 

independent of TSH but are regulated by NMU in F344 rats [20]. Recent advances in hypothalamic 32 

Wnt signalling are discussed in detail elsewhere [35]. 33 

 34 

Recent studies have highlighted VGF nerve growth factor as a critical signal downstream of thyroid 35 

hormone signalling. VGF is a neuropeptide precursor involved in energy metabolism and synaptic 36 

plasticity. In non-photoperiodic rats and mice, fasting increases hypothalamic expression of Vgf 37 

mRNA and this effect is blocked by leptin [36]. T3 decreases Vgf expression in vitro and in SP Siberian 38 

hamsters [37] and over expression of VGF in the hypothalamus reduces bodyweight accompanied 39 

with a decrease in energy expenditure [38]. Furthermore, a new study focusing on the VGF-derived 40 

peptide TLQP-21 demonstrates reduced food intake and increased energy expenditure in SP but not 41 

in LP Siberian hamsters after peripheral injections [39]. Whether it has a photoperiodic role in other 42 

species remains to be confirmed, but if substantiated it might provide a novel link to seasonal 43 

regulation of adiposity.  44 

 45 
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A metabolic hormone that has gathered recent interest in the field of seasonal biology is fibroblast 1 

growth factor 21 (FGF21) which is a fasting stimulated hormone produced largely by the liver, 2 

adipose tissue and the pancreas, as well as skeletal muscle and testes to a lesser extent [40, 41]. 3 

FGF21 has been implicated in a PPARα-FGF21 pathway to enhance torpor in mice [42]. There is 4 

evidence that FGF21 can both inhibit and stimulate lipolysis [43], and recent work has implicated 5 

tanycyte FGF21 in the central regulation of whole body lipid homeostasis [44]. In Siberian hamsters, 6 

FGF21 is suppressed in SP, and increased with access to a running wheel [45] and FGF21 treatment 7 

causes weight loss in LP hamsters, likely through increased energy expenditure, while leaner SP 8 

hamsters are protected from excess weight loss [46], and this appears to be due to lowered 9 

adiposity rather than photoperiod effects [47]. 10 

 11 

A promising candidate linking photoperiod-mediated changes in the hypothalamus to energy 12 

balance is the adipokine chemerin, demonstrated in studies in F344 rats. Chemerin is an 13 

inflammatory chemokine, encoded by the gene Rarres2, involved in inflammation, adipogenesis, 14 

angiogenesis and energy metabolism [48]. Administration of retinoic acid to the third ventricle 15 

increases Rarres2 expression in tanycytes [49]. Chemerin is strongly regulated by photoperiod and 16 

importantly, intracerebroventricular administration causes process extension and proliferation of 17 

tanycytes accompanying increased bodyweight and food intake. Current evidence suggests that 18 

tanycytes release chemerin since Rarres2 mRNA is locally expressed in tanycytes [49]. Given that 19 

chemerin is linked with energy homeostasis [48], understanding chemerin signalling will help further 20 

elucidate the role of tanycytes linking photoperiod and metabolic phenotype. This might include 21 

additional inflammatory markers since photoperiod regulation of NFκB, the master regulator of 22 

inflammation, is higher in SP F344 rats [50].  23 

 24 

Taken together recent data indicate that early events in the photoperiodic response in the 25 

hypothalamus involve are range of pathways. Downstream of these events are changes in 26 

inflammatory signals [49, 50] and neurogenesis [2]. However, a gap in our knowledge is how the 27 

changes in these pathways in tanycytes link to the pathways regulating energy balance and growth 28 

in the hypothalamus and how they regulate physiological output such as energy balance and growth.  29 

 30 

3. Implication of the hypothalamic-pituitary-growth axis in seasonally appropriate bodyweight and 31 

torpor regulation 32 

Recent work has implicated the role of the growth axis in regulation of seasonally appropriate 33 

bodyweight and torpor induction in the Siberian hamster [51-53]. Seasonal rhythms of growth 34 

hormone exist in many species [54-56], and in the Golden hamster, growth axis regulation of 35 

photoperiod appropriate bodyweight has been suggested since the 1990s [57-59]. Altered 36 

expression of growth axis components within the hypothalamus has been demonstrated many times 37 

in Siberian hamsters and F344 rats [17, 45, 60, 61]. The release of growth hormone from the 38 

pituitary is regulated by growth hormone-releasing hormone and somatostatin, which are produced 39 

in the hypothalamus and stimulate and inhibit secretion of growth hormone, respectively. Siberian 40 

hamsters housed in SP have reduced fat and lean mass [51, 62, 63], and administration of the 41 

somatostatin antagonist pasireotide causes loss of both lean and fat mass in LP hamsters and 42 

inhibits LP stimulated growth in hamsters previously housed in SP [51]. Pasireotide does not alter 43 

tanycyte expression of Dio2 and Dio3 or photoperiod appropriate pelage, which is regulated at 44 

pituitary lactotrophs by melatonin [64], indicating intact photoperiod perception. This is in keeping 45 
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with the exercise stimulated growth that SP Siberian hamsters demonstrate with free access to a 1 

running wheel [45, 65]. This growth effect is inhibited by pasireotide treatment [52], demonstrating 2 

a key role for the growth axis in regulating exercise stimulated weight gain. In each of these studies, 3 

food intake was not measured, but it is reasonable to speculate an increase to drive weight gain. An 4 

unexpected result of these experiments was the action of pasireotide to enhance likelihood to enter 5 

torpor and torpor bout length [53], and treatment with selective somatostatin agonist octreotide 6 

suggests torpor effects at the SSTR5 receptor which is highly expressed in the pituitary.  7 

 8 

4. Conclusion  9 

Despite considerable progress in the last decade identifying multiple pathways underlying the 10 

neuroendocrine driven changes in seasonal physiology, little is known about how these pathways 11 

drive downstream physiological functions. Novel markers recently identified in seasonal rodents 12 

shine new light on the complexity of photoperiod control of energy balance and growth. Without 13 

doubt, recent advances in gene editing will provide the molecular tools to dissect the pathways 14 

further and decipher their relevance in seasonal physiology. Studies of seasonal animals will provide 15 

new perspectives of the neuroendocrine regulation of energy metabolism and will help to explain 16 

long-term appetite and bodyweight cycling even in humans.  17 

 18 

Figure legend 19 

 20 

Figure 1: Neuroendocrine drivers of photoperiod. In short photoperiod (winter), the long duration of 21 

pineal melatonin signal inhibits the release of thyroid stimulating hormone (TSH) in the pars 22 

tuberalis. In long photoperiod (summer) thyroid stimulating hormone (TSH) is released into the 23 

median eminence (ME), a process which is coordinated by the photoperiod-responsive transcription 24 

factor EYA3. TSH increases the expression of Dio2 in the tanycytes lining the third ventricle to 25 

catalyse the conversion of inactive thyroid hormone T4 to biologically active thyroid hormone T3. 26 

Increased T3 regulates key downstream pathways resulting in appropriate seasonal phenotypes.   27 
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