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Abstract. Symbiotic Organisms Search (SOS) algorithm is an effective new metaheuristic search algorithm, 

which has recently recorded wider application in solving complex optimization problems. SOS mimics the 

symbiotic relationship strategies adopted by organisms in the ecosystem for survival. This paper, presents a 

study on the application of SOS with Simulated Annealing (SA) to solve the well-known traveling salesman 

problems (TSPs).  The TSP is known to be NP-hard, which consist of a set of (𝑛 − 1)!/2 feasible solutions. The 

intent of the proposed hybrid method is to evaluate the convergence behaviour and scalability of the symbiotic 

organism’s search with simulated annealing to solve both small and large-scale travelling salesman problems. 

The implementation of the SA based SOS (SOS-SA) algorithm was done in the MATLAB environment. To 

inspect the performance of the proposed hybrid optimization method, experiments on the solution convergence, 

average execution time, and percentage deviations of both the best and average solutions to the best known 

solution were conducted. Similarly, in order to obtain unbiased and comprehensive comparisons, descriptive 

statistics such as mean, standard deviation, minimum, maximum and range were used to describe each of the 

algorithms, in the analysis section. The oneway ANOVA and Kruskal-Wallis test were further used to compare 

the significant difference in performance between SOS-SA and the other selected state-of-the-art algorithms. 

The performances of SOS-SA and SOS are evaluated on different sets of TSP benchmarks obtained from 

TSPLIB (a library containing samples of TSP instances). The empirical analysis’ results show that the quality of 

the final results as well as the convergence rate of the new algorithm in some cases produced even more superior 

solutions than the best known TSP benchmarked results. 

Keywords: Symbiotic organisms search (SOS); simulated annealing (SA); traveling salesman problem (TSP); 

simulated annealing based symbiotic organisms search (SOS-SA). 

1. Introduction 

The traveling salesman problem (TSP) is an NP-hard problem, which has remained an interesting problem for a 

long time in the field of discrete or combinatorial optimization techniques, which are based on linear and non-

linear programming. The TSP presents the task of finding an optimum path through a set of given locations 

(cities), such that each location is passed through only once, and the salesman returns to the start location 

(Durbin, 1987; Durbin et al., 1989). In operational research, TSPs still remain one of the most challenging 

problems, which cannot be solved easily by using traditional optimization techniques such as enumeration 

methods and mathematical programming (Çunkaş and Özsağlam, 2009). Solving TSP optimally takes huge 

computational time and therefore the need for the development of fast heuristics that gives near optimal solution 

in a reasonable computational effort (Matai et al., 2010). While on small graphs the execution time may not be 

significant, on large datasets containing millions of vertices and edges the limitations (e.g., traceroutes, social 

graphs) of existing approaches become obvious. With the emergence of the Big Data era when we deal with 

huge graphs with different properties (e.g., sparse, power law, dense) there is a crucial need to develop novel 

techniques based on new paradigms and scalable algorithms. Among possible approaches are those inspired 

from metaheuristics which allow for a better exploration of the solution space and faster convergence to 

suboptimal solutions. 

In the past decades, many metaheuristic based algorithmic strategies were proposed in the quest for finding 

near-optimum solutions to the TSPs, among which include Tabu Search (TS) (Knox, 1994), SA (Kirkpatrick et 

al., 1983), Genetic Algorithm (GA) (Johnson and McGeoch, 1997), Ant Colony Optimization (ACO) (Dorigo 

and Gambardella, 1997), Particle Swarm Optimization (PSO) (Shi et al., 2007), Artificial Immune System (AIS) 

(Farmer et al., 1986), Artificial Neural Network (ANN) (Jolai and Ghanbari, 2010), Elastic Net (EN) (Durbin et 

al., 1989), SOS (Cheng and Prayogo, 2014).  
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In this paper we focus on the SOS algorithm for reasons explained next. The algorithm draws inspiration from 

nature through the symbiotic relationships strategies, which exist among organisms in the ecosystem. The SOS 

algorithm was initially proposed to solve continuous engineering optimization problems. Several results (Tran et 

al., 2016; Cheng et al., 2015; Aulady, 2013; Verma et al., 2015), which have used the SOS algorithm as an 

optimization tool to find global optimum solutions, indicate that the algorithm shows a considerable robustness 

in its performance when tested on complex mathematical benchmark problems. Therefore, the potential of SOS 

in finding global solution to the aforementioned optimization problems makes it attractive for further 

investigation. Furthermore, since SOS has not gained wide recognition in solving discrete problems, such as, 

routing and assignment problems, we believe that demonstrating its effectiveness in solving TSP could pave the 

way for wide scale applicability in solving complex discrete problems. 

The TSP optimization problem is considered to be a large-scale optimization problem, which makes it difficult 

to obtain satisfactory results by just using classical metaheuristic optimization algorithms such as SA, TS, GA 

and ACO. Recent researches have shifted focus to employing different hybridization techniques to solve all 

kinds of complex large scale optimization problems. The essence of the hybridization process is mainly to 

utilize the complimentary advantages and value-added information found in several algorithms and insufficient 

in single algorithm based approaches to enhance the efficiency of solving the large-scale problem like the TSP. 

Two recent researches on the application of SOS to solve related discrete optimization problems for instance,  

have shown that the classical version of the SOS algorithm still required some level of improvement for it to 

achieve better solution quality, as evident in the work presented in (Yu et al., 2016; Eki et al., 2015). The 

implementation results from these researches, shows that by combining basic SOS with some other algorithms, 

like the local search methods or solution representation, this significantly improves the computation efficiency 

and quality of the solutions. Another impact of the hybrid features is that it allows the SOS algorithm to easily 

escape from falling into local optimum.  

While the specific objective of this paper is to show that the hybrid SOS is a promising candidate optimization 

solution for the TSP, the result also emphasizes the future applicability of the SOS algorithm augmented with 

SA in efficiently solving a wider range of complex discrete problems. The proposed SOS-SA method was 

implemented in Matlab and tested using TSP data sets (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/) 
against other state-of-the-art algorithms such as Genetic Algorithm Particle Swarm Optimization Ant Colony 

Optimization (GA-PSO-ACO) (Deng et al., 2012), Adaptive Simulated Annealing Algorithm with Greedy 

Search (ASA-GS) (Geng et al., 2011), Multi-agent Simulated Annealing Algorithm with Instance-Based 

Sampling (MSA-IBS) (Wang et al., 2015), List-Based Simulated Annealing (LBSA) (Zhan et al., 2016), and 

Improved Discrete Bat algorithm (IBA)  (Osaba  et al., 2016). These sets of algorithms have been selected 

because of their common similarities in implementation techniques with the SOS-SA algorithm. Results show 

that the hybridized SOS-SA algorithm is able to achieve better results in solving most of the TSP benchmark 

problems with graphs ranging from 42 up to 33,810 cities. 

The technical contributions of this paper are as follows: 

i. Proposal of a new TSP optimization method, called simulated annealing based symbiotic organisms 

search optimization algorithm. 

ii. Implementation of the proposed method using different scale of TSP benchmark instances. 

iii. Performance comparison of the proposed hybrid method with other state-of-the-art algorithms (GA-

PSO-ACO, ASA-GS, MSA-IBS, LBSA, and IBA). 

iv. Descriptive statistical validation of the SOS-SA results against other selected methods using different 

statistical analysis tests. 

The remainder of this paper is organised as follows: Section 2 presents the related work; Section 3 provides a 

short description of the TSP problem; Section 4 presents the proposed SOS-SA method of solving TSP; while 

Section 5 describes and discusses the simulation results carried out on some benchmarked TSP instances; 

finally, conclusions and directions for future research are given in Section 6.  

2. Related works 

The TSP being a hard combinatorial optimization problem with high social interest, has over the past decades 

drawn the attention of the scientific communities, with a record number of optimization algorithms being 

proposed to address the minimization problem (Chen and Chien, 2011;). Interested readers may refer to (Wang 

et al., 2016; Kanda et al., 2016; Sundar and Rathinam, 2016; Cornu et al., 2016; Zhang and Zhou, 2016; 

Delgadillo et al., 2016; Zhang et al., 2016; Barbato et al., 2016; Mohan et al., 2017) for more recent results on 

the TSP cases. In this section we present some of the most representative results. 



The TSP being an NP-hard problem, which in most cases does not admit any constant factor approximation 

(Garey and Johnson, 1979, except in some exceptional cases: Bender and Chekuri, 2000 and Mohan et al., 

2017), has resulted in the proposition of different optimization approaches, which are intended to provide 

solutions to the complex problem. In (Matai et al., 2010) for instance, two approaches of solving TSP were 

identified. The first approach uses the exact methods, of which guaranty of achieving optimal solution is greatly 

disadvantaged by the exponential cost of execution time that scale with the problem dimension. Thus, this 

approach is considered unsuitable for solving large TSPs. Two common examples of this approach are the 

dynamic programming (Bellman, 1962), and branch and bound (Lawler and Wood, 1966; Volgenant and 

Jonker, 1982). The second approach is known as the approximation algorithm. This approach only gives near 

optimal solution, but does not guarantee optimal solution. One main advantage of this approach is that it 

requires minimal computational effort regardless of the problem dimension. The approximation algorithms can 

further be classified into local search and heuristic optimization algorithms. The local search or improvement 

heuristics are usually applied to improve the quality of TSP solution generated. Examples of these heuristics are 

the 2-Opt (Johnson, 1990), and 3-Opt (Lourenço et al., 2003) exchange heuristics.  

In recent years, most of the new proposed methods for solving TSP indicate shift towards improving the 

solution quality of the traditional based heuristics, through the development of hybrid algorithms that overcome 

the disadvantages of the individual algorithms. Recent studies also show that the combined efforts of two or 

more algorithms are usually more effective than the effort of each individual algorithm (Lin et al., 2016; Tsai et 

al., 2004; Katayama et al., 2000; Talbi, 2002). This generally implies that often at times the capabilities of most 

hybrid algorithms are more effective and efficient than that of the individual algorithms.   

Some of the existing hybrid heuristic optimization based approaches used for searching near optimal solution for 

TSPS outside those aforementioned in the previous section include: a hybrid of genetic algorithm particle swarm 

optimization ant colony optimization (GA-PSO-ACO) (Deng et al., 2012), adaptive simulated annealing 

algorithm with greedy search (ASA-GA) (Geng et al., 2011), multi-agent simulated annealing algorithm with 

instance-based sampling (MSA-IBS) (Wang et al., 2015), list-based simulated annealing (LBSA) (Zhan et al., 

2016), invasive weed colony optimization (IWO) (Zhou et al., 2015), mosquito host-seeking algorithm (MHSA) 

(Feng et al., 2009), an improved discrete bat (IBA) algorithm  (Osaba  et al., 2016), Discrete Cuckoo Search 

(DCS) algorithm (Ouaarab et al., 2014), genetic simulated annealing ant colony system with particle swarm 

optimization (Chen and Chien, 2011) and the symbiotic organisms search (SOS) algorithm (Yu et al., 2016; Eki 

et al., 2015). These algorithms are problem independent and have strong global search capability, while the 

hybrid features allows them to easily escape from falling into local optimum. Subsequently, brief reviews of the 

related literature are discussed. 

GA-PSO-ACO (Deng et al., 2012) is an algorithm which combines the evolution ideas of the genetic algorithm, 

particle swarm optimization and ant colony optimization algorithm to solve the travelling salesman problem. 

The implementation entails applying the combination of randomicity, rapidity and wholeness of the genetic 

algorithm and particle swarm optimization methods to achieve a series of sub-optimal solutions. The resulting 

solution is later exploited by the ant colony optimization procedure, by taking the advantage of the parallel, 

positive feedback and high accuracy of solution to implement solving of whole problem. Osaba et al. (2016) 

proposed an improved discrete version of bat algorithm (IBA) for solving both symmetric and asymmetric TSP. 

The algorithm which was tested on 37 TSP instances produced an interesting result, which outperformed the 

other alternative benchmarked algorithms in most of the cases. 

Geng et al. (2011) proposed an adaptive hybrid algorithm that combines the problem solving efforts of 

simulated annealing and greedy search technique (ASA-GS) to solve the TSP. The greed search technique assist 

in speeding up the solution convergence rate, while the hybrid algorithm achieves better trade-off between 

computation time and solution quality. The algorithm evaluation shows that it has good scalability and performs 

better even with large-scale TSP instance. A combination of multi-agent and simulated annealing with instance 

based sampling (MSA-IBS) was proposed by Wang et al. (2015) and used to solve the TSP. The hybrid process 

exploited the learning ability of the instance-based search algorithm to improve the sampling efficiency of the 

simulated annealing, the algorithm competed favourably in terms of solution quality and utilization of system 

resource (like cpu time) as compared to the ASA-GS algorithm. In the work of Zhan et al. (2016), a list-based 

simulated annealing algorithm was proposed also to solve the TSP. The algorithm uses the effectiveness and 

parameter sensitivity of the list-based cooling schedule to control temperature reduction in SA, which is used as 

acceptance criteria for choosing candidate solution. The simulation result of the LBSA shows that it is robust 

and performs fairly well compared to some other state-of-the-art algorithms. 

Similar works that uses simulated annealing can be found in (Chen and Chien, 2011), where the authors 

proposed a new hybrid optimization method for solving the TSP. This paper consists of a hybrid of genetic 

simulated annealing, ant colony system, and particle swarm optimization technique. In the implementation, the 



ant colony system is used to generate the initial solution for the genetic algorithm’s procedure, after which the 

initial solution is fine-tuned with the simulated annealing, which generates better solutions than the previous 

one. The role of the particle swarm optimization technique is to facilitate the exchange of pheromone 

information among the populations in the ant colony system after a predefined number of cycles. The simulation 

results showed that the hybrid algorithm performed better compared to the other algorithms. In (Malek et al., 

1998) parallel and serial version of simulated annealing and tabu search algorithms was implemented and used 

to solve the TSP. In (Fang et al., 2007), particle swarm optimization with simulated annealing was implemented 

to solve TSP. The simulated annealing was applied to slowdown the degeneration of PSO swarm and to also 

increase the swarm’s diversity. In addition, the choice of selecting the benchmarked algorithms that were 

compared with the proposed SOS-SA was made considering two significant characteristics; (i) population based 

algorithm implementations namely, GA-PSO-ACO, IBA and SOS, (ii) SA-based hybrid algorithm 

implementations namely, ASA-GS, MSA-IBS and LBSA. 

Due to the wider interest of this area of study, summarising all the related materials available in the literatures 

can be a daunting task to embark on. Therefore, the interested readers are referred to the following materials for 

further information on TSP and its computational solution (Applegate et al., 2011, Reinelt, 1998; Jünger et al., 

1995). 

In this work we will show that existing algorithms such as GA-PSO-ACO, MSA-IBS, LBSA, SOS, and IBA 

underperform our hybrid algorithm SOS-SA which enables SOS to escape local minimums and improves in 

some cases some of the best results known so far. 

3. Problem Formulation for TSP 

The TSP is a well-known combinatorial optimization problem that has for the past decades attracted the interest 

of research communities. There are different solution approaches proposed in the literatures, which are currently 

being used to solve the three classes of the TSPs namely, the symmetric, asymmetric and multi traveling 

salesman problems. The TSP problems are said to be NP-hard optimization problems, which mean that there is 

no known polynomial time algorithm that can specifically guarantee the attainment of its optimal solution and 

that is why heuristic or approximation approaches remain the preferred methods often recommended for solving 

the TSP problems. The TSP has numerous application areas which were highlighted in (Matai et al., 2010), 

some of which include: drilling of printed circuit boards, overhauling gas turbine engines, x-ray crystallography, 

computer wiring, crew scheduling, interview scheduling, mission planning, vehicle routing, mask plotting in 

PCB production, and design of global navigation satellite system surveying networks. In this paper, of interest is 

the symmetric travelling salesman problem. 

The symmetric TSP can also be defined in terms of a complete undirected graph 𝐺 = (𝑉, 𝐸), where the set 𝑉 =
 {1, 2, … , 𝑛} is the vertex set, 𝐸 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 < 𝑗} is an edge set (Matai, Singh, and Mittal, 2010). A cost 

matrix 𝑋 = (𝑥𝑖,𝑗)𝑛×𝑛 is defined on 𝐸. The cost matrix satisfies the triangle inequality whenever 𝑥𝑖,𝑘 + 𝑥𝑗,𝑙 ≤

𝑥𝑖,𝑙 + 𝑥𝑗,𝑘for all 1 ≤  𝑖 <  𝑗 ≤  𝑛, 1 ≤  𝑘 < 𝑙 ≤  𝑛, or   𝑥𝑖,𝑗 ≤ 𝑥𝑖,𝑘 + 𝑥𝑘,𝑗, for all 𝑖, 𝑗, 𝑘. In particular, this is the 

case of planer problems for which the vertices are points 𝑑𝑖 = (𝑞𝑖 , 𝑝𝑖) in the plane, and 𝑥𝑖,𝑗 =

√(𝑞𝑖 − 𝑞𝑗)
2 + (𝑝𝑖 − 𝑝𝑗)

2 is the Euclidean distance. The triangle inequality is also satisfied if 𝑥𝑖𝑗  is the length of 

a shortest path from 𝑖 to 𝑗 on 𝐺. Also, in the classical problem in combinatorial optimization (Ozcan, and 

Erenturk, 2004), the TSP can be defined as follows: given 𝑛 cities and the distance 𝑥𝑖𝑗  between them, the 

shortest distance 𝜑 through all the cities can be computed by minimizing the function expressed in Eq. 1. 

𝑓(𝜑) = ∑ 𝑥𝜑(𝑖),𝜑(𝑖+1) +

𝑛

𝑖=1

𝑥𝜑(𝑛),𝜑(1)                                                      (1) 

where, 𝜑 a set of permutations 𝜑 → {1,2, … , 𝑛} with 𝑛 being all the possible number of tours of the problem, 

and 𝑓(𝜑) representing the cost of the permutation 𝜑.  

4. Simulated Annealing based Symbiotic Organisms Search (SOS-SA) 

In this section, the two basic search algorithms that make up the hybrid algorithm proposed for solving the TSP 

problem are discussed. 

 

 



4.1 Symbiotic Organisms Search Algorithm 

In the real world, the close association between two or more different organisms of different species living 

together in an ecosystem, often but not necessarily benefits each member. When the relationship is beneficial to 

both organisms, it is called mutualism and symbiosis. When it is beneficial to one without effect on the other it 

is called commensalism, and when it is beneficial to one and detrimental to the other it is called parasitism. 

Almost all the metaheuristics optimization algorithms are bio-inspired from natural biological phenomena, 

which follow in the same trend with the symbiotic relationship explained in this section. The SOS algorithm 

which applies the same symbiotic relationship principles seen among organisms in nature in solving 

optimization problems differs greatly from other similar metaheuristic algorithms, in the sense that it does not 

require any algorithm-specific parameters (Cheng et al., 2015). One major advantage of this is that an improper 

tuning related to algorithm-specific parameters would lead to an increase in computational time and premature 

convergence. 

The algorithm is implemented by first creating a random ecosystem or population matrix, with each row (known 

as organism) representing a candidate solution to the corresponding problem. The size of the population often 

referred to as the ecosystem size (𝑒𝑐𝑜_𝑠𝑖𝑧𝑒) defines the number of organisms that make up the ecosystem, a 

parameter usually set by the user. The search process starts immediately after the initial ecosystem has been 

created and it comprises of continuous interactions among the ecosystem member organisms. The interactions 

follow the three phases of symbioses interaction namely, mutualism, commensalism, and parasitism, which the 

organisms adopt to increase their survival and fitness advantage for a prolonged period of time. In the course of 

the interaction process, an organism would either receive a benefit or harmed, in which case the one that 

benefits evolve to a fitter organism whereas the one that is harmed is eliminated. Iteratively the best organism is 

modified and updated until the stopping criterion is reached. The SOS is implemented using the pseudocode 

shown in algorithm listing 1.  

The classical SOS algorithm was designed to operate on real-value variables, and this would probably limits it 

application to discrete optimization problems, a conversion function, which converts the variables from real 

values to integer values is given in equation 4. This idea follows similar concept proposed in (Tran et al., 2016) 

to make SOS suitable for application to solve the TSP. Consider a distance or cost matrix where 𝑥𝑖,𝑗 is the 

distance of 𝑖𝑡ℎ city to 𝑗𝑡ℎ city, which is optimized by the SOS algorithm during the search process. However, the 

ecosystem population is created before the start of the search process and the population consist of all the 

feasible solutions or possible associated tour costs defined by the distance matrix expressed in Eq. 2. 

𝑋𝑚×𝑛 = 

[
 
 
 
 
 
𝑥1,1 𝑥1,1 ⋯ 𝑥1,𝑛

𝑥2,1 𝑥2,2 … 𝑥2,𝑛

⋮ ⋮ ⋮ ⋮
𝑥𝑖,1 𝑥𝑖,2 𝑥𝑖,𝑗 𝑥𝑖,𝑛

⋮ ⋮ ⋱ ⋮
𝑥𝑚,1 𝑥𝑚,2 ⋯ 𝑥𝑚,𝑛]

 
 
 
 
 

     (2) 

where 𝑚 represent the ecosystem size or the problem size and 𝑛 represent the number of elements in a vector of 

decision variables in the problem under consideration. The decision variables for the TSP, which consists of the 

cities and their associated costs are represented as a vector, which is expressed in Eq. 3. 

𝑋 = [𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑗 , … , 𝑥𝑖,𝑛 , ]      (3) 

Therefore, to convert the real-value variables to integer values, the function expressed in Eq. 4 is implemented. 

𝑋𝑖,𝑗 = 𝑟𝑜𝑢𝑛𝑑{𝑥𝑖,𝑛 × 𝑠𝑤𝑎𝑝(𝜑, 𝑖 + 1, 𝑗)}     (4) 

where 𝑥𝑖,𝑛 is the swapped state value, that is, the value for a particular tour through the set of given cities or 

points. Usually, a neighbour state is obtained by randomly swapping the order of two cities. The 𝑠𝑤𝑎𝑝 function 

represents the total number of swap action for each tour, while 𝑛 represents the number of tours. The function 

rounds in Matlab is used to round each point of 𝑋𝑖,𝑗 to the nearest integer less than or equal to that point. 

The SOS optimization strategy is performed by following three search and update phases (i.e., mutualism, 

commensalism, and parasitism) as presented subsequently.   

Mutualism phase: In the mutualism phase, two organisms 𝑋𝑖 and 𝑋𝑗|𝑖 ≠ 𝑗 (𝑋𝑗 is selected randomly from the 

population) are considered on the bases of mutual interest. The association between 𝑋𝑖 and 𝑋𝑗 is to increase 



mutual survival of the two organisms in the ecosystem. The resulting solution 𝑋𝑖
′and 𝑋𝑗

′are computed as shown 

in Eqs.5 and 6: 

𝑋𝑖
′ = 𝑋𝑖 + 𝑟𝑎𝑛𝑑(0,1) × (𝑋𝑏𝑒𝑠𝑡 − 𝑀𝑢𝑡𝑢𝑎𝑙𝑣𝑒𝑐𝑡 × 𝐾1)    (5) 

𝑋𝑗
′ = 𝑋𝑗 + 𝑟𝑎𝑛𝑑(0,1) × (𝑋𝑏𝑒𝑠𝑡 − 𝑀𝑢𝑡𝑢𝑎𝑙𝑣𝑒𝑐𝑡 × 𝐾2)    (6) 

The mutual vector denoted by 𝑀𝑢𝑡𝑢𝑎𝑙𝑣𝑒𝑐𝑡  is expressed as shown in Eq. 7. 

𝑀𝑢𝑡𝑢𝑎𝑙𝑣𝑒𝑐𝑡 =
𝑋𝑖+𝑋𝑗

2
       (7) 

The 𝑟𝑎𝑛𝑑 (0,1) function is a vector of uniformly distributed random numbers between 0 and 1. The values of 

the benefit factors 𝐾1 and 𝐾2 are determined randomly as either 1 or 2, and represents the level of benefit to 

each of the two organisms 𝑋𝑖and 𝑋𝑗 (where 1 and 2 denotes adequate and huge benefit that can be received by 

both 𝑋𝑖 and 𝑋𝑗 in their current mutual symbiotic states). The organism with the best objective or fitness function 

value in terms of the degree of adaptation in the ecosystem is represented by 𝑋𝑏𝑒𝑠𝑡 .  The 𝑀𝑢𝑡𝑢𝑎𝑙𝑣𝑒𝑐𝑡 , signifies 

mutualistic characteristics exhibited between the two organism to increase their survival advantage. It should be 

noted that any update for any one of the two organisms is computed only if its new fitness function value 

denoted by 𝑓(𝑋𝑖
′) or 𝑓(𝑋𝑗

′) is better than the previous solutions, 𝑓(𝑋𝑖) and 𝑓(𝑋𝑗). Given the above Eqs. 5 and 6 

become: 

𝑋𝑖
′ = 𝑋𝑖 + 𝑟𝑎𝑛𝑑(0,1) × (𝑋𝑏𝑒𝑠𝑡 − 𝑀𝑢𝑡𝑢𝑎𝑙𝑣𝑒𝑐𝑡 × 𝐾1),   𝑖𝑓   𝑓(𝑋𝑖

′) > 𝑓(𝑋𝑖)                     (7) 

𝑋𝑗
′ = 𝑋𝑗 + 𝑟𝑎𝑛𝑑(0,1) × (𝑋𝑏𝑒𝑠𝑡 − 𝑀𝑢𝑡𝑢𝑎𝑙𝑣𝑒𝑐𝑡 × 𝐾1),   𝑖𝑓  𝑓(𝑋𝑗

′) > 𝑓(𝑋𝑗)                    (8) 

Commensalism phase: In this phase, the organism 𝑋𝑖 selected randomly from the ecosystem strives to increase 

its benefits from its association with 𝑋𝑗. This kind of symbiotic association only places 𝑋𝑖 at an advantage 

position, over 𝑋𝑗 , even though, 𝑋𝑗 is not harmed in the process. The new solution emanating from the symbiotic 

relationship is calculated as shown in Eq. 9:  

𝑋𝑖
′ = 𝑋𝑖 + 𝑟𝑎𝑛𝑑(−1,1) × (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑗) 𝑖𝑓   𝑓(𝑋𝑖

′) > 𝑓(𝑋𝑖)     (9) 

Parasitism phase: Also in Cheng and Prayogo (2014), an example of parasitic symbiotic relationship was 

illustrated by using the association that exists among three organisms, the plasmodium parasite, anopheles 

mosquito and the human host. In this kind of association, the human host is harmed, the anopheles mosquito, 

which is the parasite carrier, is left unharmed, while the plasmodium parasite thrives and reproduces inside the 

human body. In the SOS model, by mimicking the aforementioned parasitic symbiotic behaviours, 𝑋𝑖 is 

assigned a role akin to the anopheles mosquito through the creation of an artificial vector (or parasite vector) 

𝑃𝑣𝑒𝑐  in the search space, by fine-tuning the randomly selected dimension of organism 𝑋𝑖 . Then, the organism 𝑋𝑗 

is selected randomly from the ecosystem and serve as host to 𝑃𝑣𝑒𝑐 . Then, 𝑃𝑣𝑒𝑐will try to replace 𝑋𝑗 in the 

ecosystem. If 𝑃𝑣𝑒𝑐  has a better fitness value than  𝑋𝑗 , then 𝑋𝑗 is replaced by 𝑃𝑣𝑒𝑐 , otherwise, 𝑋𝑗develops an 

immunity from  𝑃𝑣𝑒𝑐 , which will invariably cease to exist in the ecosystem. The procedure for the classical SOS 

algorithm proposed by Cheng and Prayogo (2014) is presented in the algorithm listing 1 below. 

Algorithm 1: SOS pseudocode 

Input: Initial ecosystem 𝑋, ecosystem size 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒, maximum iteration 𝑚𝑎𝑥𝑖𝑡𝑟 

Output: best solution 𝑋𝑏𝑒𝑠𝑡  

1: For counter = 1 to 𝑚𝑎𝑥𝑖𝑡𝑟 

2: For each organism in the ecosystem 𝑋𝑖 , 𝑖 = 1,2, … , 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒 

3: Search of the best organism 𝑋𝑏𝑒𝑠𝑡  

4: Update organism by 

a) Mutualism phase 

b) Commensalism phase and 

c) Parasitism phase 

5: End for 

6: End for 

The SOS algorithm though efficient in solving complex optimization and discrete engineering problems, still 

has high probability of plunging into local optimum (Vincent, et al., 2016). Therefore, the SOS-SA algorithm 

has been proposed to overcome this shortcoming. 



4.2 Simulated Annealing Algorithm 

The application of SA to solve TSP was first introduced by Kirkpatrick et al. (1983). The process begins by 

considering a solution space 𝑆 of a particular tour through the set of given cities or points 𝑋𝑖|𝑖 = 1,2, … , 𝑛, with 

an update solutions 𝑋𝑖
′ created by randomly switching the orders of two cities. The energy function or fitness 

function, which represents the length of route 𝑋𝑖, is denoted by 𝑓(𝑋𝑖). The relative change in cost ∆𝑓 between 

𝑋𝑖 and 𝑋𝑖
′ is expressed as ∆𝑓 =

𝑓(𝑋𝑖
′)−𝑓(𝑋𝑖)

𝑓(𝑋𝑖)
. Beginning with the initial solution, only the solution which results in 

smaller energy value than the previous solution is accepted by the algorithm, in other words, a solution is only 

accepted when the fitness value of 𝑓(𝑋𝑖
′) < 𝑓(𝑋𝑖). However, accepting or rejecting a new solution with higher 

fitness values for 𝑋′can be based on the acceptance probability function given as follows (Eq. 10): 

𝑃(∆𝑓, 𝑇𝑘) = {𝑒
(
−∆𝑓
𝑇𝑘

)
, ∆𝑓 > 0

1,                  ∆𝑓 ≤ 0
         𝑓𝑜𝑟 𝑇𝑘 > 0                                     (10) 

where 𝑇𝑘 is the parameter temperature at the 𝑘𝑡ℎ instance of accepting a new solution route, and for any given 𝑇, 
for ∆𝑓 > 0, 𝑃 is greater for smaller values of ∆𝑓, which means that for the new solution 𝑋𝑖

′ that is only slightly 

more costly than the current solution 𝑋𝑖 is more likely to be accepted than the new solution 𝑋𝑖
′ that is much more 

costly than the current solution 𝑋𝑖. The value of 𝑇, which is an important control parameter, decreases 

proportionally with 𝑃, that is as the lim
𝑇→0+

𝑒
(
−∆𝑓

𝑇𝑘
)
= 0 , ∆𝑓 > 0. Therefore, as the value of 𝑇 decreases, the 

probability of accepting a degraded route also decreases. In this paper the following cooling schedule is adopted 

(Eq. 11): 

𝑇𝑘+1 = 𝛼𝑇𝑘                                                                                      (11)   

Where, 𝛼 denotes the cooling coefficient, which is some random constant values between 0 and 1, it is also the 

rate at which the temperature is lowered each time a new solution 𝑋𝑖
′ is discovered. The SA procedure is as 

presented in the algorithm listing 2 below: 

Algorithm 2: Pseudocode for SA 

Input: Initial temperature 𝑇0, final temperature 𝑇𝑘 , cooling rate 𝛼, maximum iteration 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 

Output: Best cost 

1: Chose a random route 𝑋𝑖 and initialize 𝑇0 and 𝛼 

2: For counter=1 to 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 

3: Create a new solution 𝑋𝑖
′ by randomly swapping two cities in neighbourhood of 𝑋𝑖 

3: Compute ∆𝑓 =
𝑓(𝑋𝑖

′)−𝑓(𝑋𝑖)

𝑓(𝑋𝑖)
 and use the acceptance probability function to either accept or reject the new 

solution, based on the following conditions: 

a) if ∆𝑓 ≤ 0, then 𝑋𝑖 ← 𝑋𝑖
′  

b) if ∆𝑓 > 0, then 𝑋𝑖 ← 𝑋𝑖
′  depending on Eq. (10) 

4: Reduce the temperature using Eq. (11) and increment 𝑘  

5: Update the best solution 

6: End for 

4.3 SOS-SA Framework for Solving TSP 

The SOS-SA algorithm is a hybrid of symbiotic organisms search and simulated annealing algorithm. The SA is 

a local search metaheuristic algorithm widely used for solving both discrete and continuous optimization 

problems (Kirkpatrick et al., 1983). One of the main benefits of SA lies in its ability to escape the problem of 

getting stuck in a local minimum by allowing hill-climbing moves to search for a global solution. Therefore, a 

hybrid approach is proposed by introducing SA is to assist the SOS in avoiding being trapped into local 

minimum and to also increase its level of diversity while searching for optimum solution in the problem search 

space. Exploiting the fast optimal search capability of the SOS algorithm with the hill-climbing probability jump 

property of the SA, as described in algorithm listing 1 and 2 above, a new hybrid algorithm (SOS-SA) is 

proposed to solve the TSP problem. The steps of the hybrid SOS-SA algorithm are then described in algorithm 

listing 3. 

 

 



Algorithm 3: SOS-SA pseudocode 

Input: Initial ecosystem 𝑋, ecosystem size 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒, Initial temperature 𝑇0, final temperature 𝑇𝑘 , cooling rate 𝛼, 

maximum iteration 𝑚𝑎𝑥𝑖𝑡𝑒𝑟,  

Output: best known solution 𝑋𝑏𝑒𝑠𝑡   

1: Create and evaluate new solutions 

a) Generate 𝑋𝑖, 𝑖 = 1,2, … , 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒 

𝑭𝒐𝒓 𝑖 =  1 𝑡𝑜 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 

b) Compute cost / fitness function of  𝑋𝑖, 𝑓(𝑋𝑖) 

c) Determine the best solution 𝑋𝑏𝑒𝑠𝑡 

d) Compute ∆𝑓 =
𝑓(𝑋𝑖

′)−𝑓(𝑋𝑖)

𝑓(𝑋𝑖)
 

If ∆𝑓 ≤ 0 or  𝑝 > 𝑢, where 𝑝 is the acceptance probability (Eq, 10) and 𝑢 is a random number 

between 0 and 1 

e) then update solution by assigning 𝑋𝑏𝑒𝑠𝑡 ← 𝑋𝑖 

f) End if 
𝑭𝒐𝒓 𝑖 =  1 𝑡𝑜 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒 

2: Update organism (route) with SA (Algorithm 1) on the three SOS phases in Algorithm 2 

       𝑭𝒐𝒓 𝑖 =  1 𝑡𝑜 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒 

           

𝑎)𝑀𝑢𝑡𝑢𝑎𝑙𝑖𝑠𝑚 𝑝ℎ𝑎𝑠𝑒        
𝑏)𝐶𝑜𝑚𝑚𝑒𝑛𝑠𝑎𝑙𝑖𝑠𝑚 𝑝ℎ𝑎𝑠𝑒

𝑐)𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑠𝑚 𝑝ℎ𝑎𝑠𝑒         
} The three SOS phases are applied to optimize the search process 

3: Update the best solution 𝑋𝑏𝑒𝑠𝑡  ever found 

4: Update temperature using the cooling schedule given in Eq. (11) 

5: End for 

6: End for 

7: End for 

The SOS-SA algorithm follows through all the steps highlighted in algorithm 3, starting by first initializing the 

ecosystem 𝑋𝑖 of size 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒. Then creating and evaluating each new organism’s positions by computing and 

comparing their respective tour cost functions, such that the organism with the least tour cost is selected as 𝑋𝑏𝑒𝑠𝑡  

. Iteratively, the process is repeated by updating the current solution with the best solution ever found until the 

organism with the global best solution is discovered. The SOS-SA algorithm uses the three SOS relationships’ 

phases to update the organism. The algorithm finishes when maximum iterations criterion is attained. Otherwise, 

the algorithm continues to calculate new positions. However, stopping condition is quite an important factor that 

can determine the final result of the simulation. For example, if the algorithm is stopped too early, the 

approximation of the solution might not be even close to the targeted global optimum, and prolonging the 

simulation incurs unnecessary huge amount of computational effort and time. A fixed generation number of 

1,000 was set as the stopping condition for the simulation and this setting was adequate, as it limits 

unproductive work. Fig. 1 illustrates the SOS-SA algorithm procedures.  



 

Fig.1. Flowchart for the SOS-SA algorithm 
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5. Simulation and Result 

The TSP experimental data sets used in this paper were obtained from the MP-TESTDATA, which covers: The 

TSPLIB Symmetric Traveling Salesman Problem Instances2 and Best known solutions for symmetric TSPs3. In 

order to evaluate the performance of the SOS-SA algorithm, two sets of simulation experiments were conducted.  

The first experiment was carried out to evaluate the performance of the proposed SOS-SA algorithm, GA-PSO-

ACO, MSA-IBS, and LBSA, against the best known solution from the TSPLIB, on six (6) benchmarked TSP 

results and their results as presented in Table 2.Similar comparisons were also carried out for SOS-SA, SOS, 

GA-PSO-ACO, MSA-IBS, and LBSA, to compare the quality of solutions for each algorithm. The comparison 

results are as presented in Tables 3, 4, 5, 6, 7, 8 and 9.  

The second experiment was carried out to evaluate the computational effort of the SOS-SA algorithm based on 

execution time, on 40 benchmarked TSP instances and the results are presented in Table 10. In Table 2, the 

boldly highlighted column indicate those areas where the SOS-SA competed and performed favourably with the 

best known solution of the optimal TSPLIB instance and the other three state-of-the-art algorithms. Several 

statistical tests were also conducted to validate the obtained results, as depicted in Tables 11 (on 40 

benchmarked TSP instance), 12 (on 20 benchmarked TSP instance), and 13 (on 16 benchmarked TSP instance). 

The average of 20 trials was taken and the number of the outer iteration times was set to 1,000 and 2,000 

respectively. 

5.1 Experimental configurations 

The experimental results presented in this section demonstrate the scalability, effectiveness and efficiency of the 

SOS-SA in solving different TSP instances ranging from 42 up to 33,810 cities. The simulation time and 

number of iterations used to solve the TSP instances on a single machine are similarly presented here. The 

experimental testing platform for the SOS-SA and SOS algorithms were conducted on a 2.83GHz CPU Desktop 

with 2GB RAM, while the implementation software is Matlab R2014b. For the implementation of MSA-IBS 

and LBSA algorithms, the experiments were run on a 2.8GHz PC with 2GB RAM, ASA-GS was run on 2.83 

GHz PC, and GA-PSO-ACO was run on Intel Core i52410 Laptop with 2.30 GHz and 4GB RAM. For the entire 

TSP instance tested, the maximum iterations for the outer loop were set to 1,000, which correspond to the 

iteration times set for the other compared algorithms. In the case of other algorithms, the selection population 

size is dependent on the scale of problem instance, which is the case with SOS-SA and SOS algorithms. As 

stated in (Zhan et al., 2016), the algorithm execution stopping condition is either when an optimal solution is 

found or when the iteration times of the outer loop reaches 1,000.  

Since parameter selection may significantly influence the solution’s quality of each algorithm performance, the 

parameter settings for all the simulations conducted are presented in Table 1. 

Table 1: Experimental parameter configuration 

SOS-SA Parameters SOS Parameter 

Population size= 50, 100 Population size= 100 
Maximum iteration= 1000, 2000 Maximum iteration= 2000 
Initial temperature = 0.025 Initial temperature = 0.025 
Cooling rate = 0.99 Cooling rate = NA 
Number of cities to swap = 2 Number of cities to swap = NA 
  

LBSA Parameters  

Population size=100 
Maximum iteration = 1000 

Inertia temperature = produced according to initial acceptance probability 𝒑𝟎 in the range of 𝟏𝟎−𝟐𝟎 to 0.9 

Cooling rate is adaptively selected as follows: 𝒕𝒊 =
−𝒅𝒊

𝐥𝐧 (𝒓𝒊)
 , where 𝒓 is a random number and 𝒅 is the difference of objective function values. 

Number of cities to swap = 2 
 

ASA-GS Parameter MSA-IBS 

Population size = NA Population size = NA 
Maximum iteration= 1000 Maximum iteration= NA 
Initial temperature = 1000 Initial temperature = NA 
Cooling rate = ((𝜶 × 𝑵^𝟎. 𝟓 − 𝟏)) ⁄ (𝜶 × 𝑵^𝟎. 𝟓 ), N=no. of cities & 𝜶 = 𝟏 Cooling rate = NA 
Number of cities to swap = NA Number of cities to swap = NA 
  

IBA GA-PSO-ACO 

 
2 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/ 
3 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/stsp-sol.html 



Population size= 50 Population size= 100 
Maximum iteration= 1000 Maximum iteration= 1000 
Initial temperature = NA Initial temperature = NA 
Cooling rate = NA Cooling rate = NA 
Number of cities to swap = 2-opt & 3-opt Number of cities to swap = NA 
  

5.2 Evaluation 

Table 2, describes the summary of the best known results so far obtained using the SOS-SA algorithm. Where 

the second column represents the name of the TSP instance, the third column represents the best known solution 

length taken from the TSPLIB, the fourth column represents the length of the best known solution found by 

SOS-SA algorithm, the fifth column represents the average length of the solution found by SOS-SA algorithm, 

and the sixth column represents the percentage deviation of the SOS-SA best solution. The SOS-SA best 

solution percentage deviation (PDbest), which determines the closeness of the solution to the best known 

solution (BKS), is calculated as shown in Eq. 12: 

𝑃𝐷𝑏𝑒𝑠𝑡 =
(𝐵𝑒𝑠𝑡 − 𝐵𝐾𝑆)

𝐵𝐾𝑆
× 100                                                                 (12) 

where 𝐵𝑒𝑠𝑡 denotes the best length value for each algorithm for the total number of runs under each problem 

instance. 

The percentage deviation of the SOS-SA mean solution was also computed and used to compare it performance 

with the best known solution and other algorithms. The percentage deviation of the mean solution is 

subsequently defined as follows: 

𝑃𝐷𝑚𝑒𝑎𝑛 =
(𝑀𝑒𝑎𝑛 − 𝐵𝐾𝑆)

𝐵𝐾𝑆
× 100                                                                 (13) 

where 𝑀𝑒𝑎𝑛 denotes the average length value for each algorithm for the total number of runs under each 

problem instance. 

5.3 Discussion of results 

Table 2 demonstrates the extreme performance capability of the SOS-SA algorithm in comparison with other 

state-of-the-art algorithms. The new algorithm outperformed all the three algorithms and this include the best 

known solution so far “BKS” in the six TSP instance examined with percentage deviation (𝑃𝐷𝑏𝑒𝑠𝑡) < 0 and 

performance accuracy that is above 100%. Though the SOS-SA share some common characteristics with GA-

PSO-ACO based on the SOS component, and also due to the fact that each algorithm has a strong global search 

capability, the GA-PSO-ACO still has very strong tendency of falling into a local minimum, for which the SA 

component in the SOS-SA is able to prevent. As can be seen from the results shown in Table 2, MSA-IBS and 

LBSA competed relatively and favourably with over 99% performance accuracy against the best known solution 

in all the instances. The possible challenge with the two algorithms can be traced to few factors, some of which 

include the use of several parameters, high computation and communication cost incurred during the iterative 

execution of the algorithm, especially for the multi-agent based MSA-IBS algorithm. Fig. 2 illustrates the 

performance evaluation of the SOS-SA algorithm among other three algorithms including the BKS based on 

computed percentage deviation. 

 



 

Table 2: Best-so-far solutions found by SOS-SA algorithm compared with the beset know solution from TSPLIB and other algorithms, the best results are highlighted in bold. 

S/N Instance BKSa GA-PSO-ACO [Deng et al., 2012] MSA-IBS [Wang et al., 2015] LBSA [Zhan et al., 2016] SOS-SA 
   

Bestb Mean Diff. PDbest (%)c Best Mean Diff. PDbest (%) Best Mean Diff. PDbest (%) Best Mean Diff. PDbest (%) 

1 dantzig42 699 NA 
 

NA NA NA 
 

NA NA NA 
 

NA NA 679 699.4823 -20 -2.86 

2 Berlin52 7542 7544.37 7544.37 2.37 0.03 7542 7542 0 0 7542 7542 0 0 7540 7541.107 -2 -0.03 

3 Pr76 108159 NA NA NA NA NA NA NA NA NA NA NA NA 107899 107899 -260 -0.24 

4 Rat99 1211 1218 1275 7 0.578 1211 1211.04 0 0 1211 1211.1 0 0 1210 1210.108 -1 -0.08 

5 Pr107 44303 44316 44589 13 0.029 44303 44379.88 0 0 44303 44392.25 0 0 44301 44302.83 -2 -0.01 

6 Pr124 59030 59051 60157 21 0.036 59030 59032.88 0 0 59030 59031.8 0 0 58985 59010.65 -45 -0.08 

aBest know solution so far or the theoretical value [http://elib.zib.de/pub/mp-testdata/tsp/tsplib/stsp-sol.html] 
bBest known solution for each of the algorithms 
cRelative percentage error for the results obtained by 10 runs. 



The negative signs against the difference (Diff.) values and percentage deviations (𝑃𝐷𝑚𝑒𝑎𝑛 and 𝑃𝐷𝑏𝑒𝑠𝑡) in 

Table 2 and other Tables are left as indication to show that the SOS-SA solution outperformed in some cases the 

best known solution, although percentage deviation is supposed to be an absolute value.  

 
Fig.2. SOS-SA best solution percentage deviations compared with GA-PSO-ACO, MSA-IBS, and LBSA. 

Tables 3, 4, 5, 6, 7, 8, and 9, demonstrate the comparisons among GA-PSO-ACO, MSA-IBS, LBSA, SOS, and 

SOS-SA algorithms on seven (7) different TSP instances. The comparisons are based on the quality of results 

produced by each of the algorithms. Also, as earlier stated, negative value means that the SOS-SA solution is 

better than the BKS solution. 

Table 3: Algorithms comparison for Berlin52 

Algorithm Scale BKS Best Mean Diff. PDbest (%) PDmean(%) 

GA-PSO-ACO [Deng et al., 2012] 52 7542 7544.37 7544.37 2.37 0.0314 0.0314 
MSA-IBS [Wang et al., 2015] 52 7542 7542 7542 0 0 0 
LBSA [Zhan et al., 2016] 52 7542 7542 7542 0 0 0 
SOS 52 7542 7647 7659.48 104.68 1.3880 1.5577 
SOS-SA 52 7542 7540 7541.12 -2 -0.0265 -0.0117 

Table 4: Algorithms comparison for Rat99 

Algorithm Scale BKS Best Mean Diff. PDbest (%) PDmean(%) 

GA-PSO-ACO [Deng et al., 2012] 99 1211 1218 1275 7 0.5780 5.2849 
MSA-IBS [Wang et al., 2015] 99 1211 1211 1211.04 0 0 0.0033 
LBSA [Zhan et al., 2016] 99 1211 1211 1211.1 0 0 0.0083 
SOS 99 1211 1284 1297.381 73 6.0281 7.1330 
SOS-SA 99 1211 1210 1210.108 -1 -0.0826 -0.0737 

Table 5: Algorithms comparison for Pr107 

Algorithm Scale BKS Best Mean Diff. PDbest (%) PDmean(%) 

GA-PSO-ACO [Deng et al., 2012] 107 44303 44316 44589 13 0.0293 0.6456 
MSA-IBS [Wang et al., 2015] 107 44303 44303 44379.88 0 0 0.1735 
LBSA [Zhan et al., 2016] 107 44303 44303 44392.25 0 0 0.2015 
SOS 107 44303 46097 46112.22 1794 4.0494 4.0837 
SOS-SA 107 44303 44301 44302.83 -2 -0.0045 -0.0004 

Table 6: Algorithms comparison for Pr124 

Algorithm Scale BKS Best Mean Diff. PDbest (%) PDmean(%) 

GA-PSO-ACO [Deng et al., 2012] 124 59030 59051 60157 21 0.0004 1.9092 
MSA-IBS [Wang et al., 2015] 124 59030 59030 59032.88 0 0 0.0049 
LBSA [Zhan et al., 2016] 124 59030 59030 59031.80 0 0 0.0030 
SOS 124 59030 68942 69211.12 9912 0.1679 17.2474 
SOS-SA 124 59030 58985 59010.65 -45 -0.0008 -0.0328 
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Table 7: Algorithms comparison for Rat575 

Algorithm Scale BKS Best Mean Diff. PDbest (%) PDmean(%) 

GA-PSO-ACO [Deng et al., 2012] 575 6773 6912 6952 139 2.0523 2.6428 
MSA-IBS [Wang et al., 2015] 575 6773 6819 6854.64 46 0.6792 1.2054 
LBSA [Zhan et al., 2016] 575 6773 6829 6847.95 56 0.8268 1.1066 
SOS 575 6773 7018.22 6991.92 245.22 3.6206 3.2322 
SOS-SA 575 6773 6773 6802.04 0 0 0.4288 

Table 8: Algorithms comparison for Rat783 

Algorithm Scale BKS Best Mean Diff. PDbest (%) PDmean(%) 

GA-PSO-ACO [Deng et al., 2012] 783 8806 9030 9126 224 2.5437 3.6339 
MSA-IBS [Wang et al., 2015] 783 8806 8897 8918.28 91 1.0334 1.2750 
LBSA [Zhan et al., 2016] 783 8806 8887 8913.25 81 0.9198 1.2179 
SOS 783 8806 9884.37 9906.88 1078.37 12.2459 12.501 
SOS-SA 783 8806 8806 8817.91 0 0 0.1353 

 
Table 9: Algorithms comparison for Pr1002 

Algorithm Scale BKS Best Mean Diff. PDbest (%) PDmean(%) 

GA-PSO-ACO [Deng et al., 2012] 1002 259045 265987 266774 6942 2.6798 2.9837 
MSA-IBS [Wang et al., 2015] 1002 259045 261463 262211.7 2418 0.9334 1.2225 
LBSA [Zhan et al., 2016] 1002 259045 261490 262202.5 2445 0.9439 1.2189 
SOS 1002 259045 280169.68 281140.08 21124.68 8.1548 8.5294 
SOS-SA 1002 259045 261491 262301.8 2446 0.9442 1.2572 

In Table 10, the computational cost for the four algorithms are given in the last column under the title ‘Time’, 

and it’s clear that the SOS-SA has the least convergence time frame compared to the other three algorithms. 

Generally, in terms of the convergence time, it can be argued that the SOS-SA is more successful than the 

remaining three algorithms, considering for example: the TSP instance ‘Rd400’ where it takes SOS-SA 2.71 

seconds to converge, while in the case of the other three, it took 30.4 seconds for ASA-GS, 3.2 seconds for 

MSA-IBS, and 3.46 seconds for LBSA respectively. However, there are instances where the SOS-SA is 

outperformed by both LBSA and MSA-IBS, and this could be attributed to the deep explorative and exploitative 

capability of the SOS component in SOS-SA algorithm that would at times incur additional cost in finding 

global best tour routes. One example of this case can be seen in the problem instance ‘D1291’ where MSA-IBS 

with convergence time of 10.59 outperformed both LBSA and SOS-SA algorithms, with each having 

convergence time of 11.77 and 12.08 respectively. This exceptional behaviour exhibited at times by MSA-IBS 

can be traced to some level of intelligence acquired from the learning-based sampling process, which can 

effectively improve the performance of the SA’s sampling efficiency. Figs. 3-5 show the different convergence 

rates for the four algorithms with regards to varying TSP problem lengths. 

Table 10: ASA-GS, MSA-IBS, LBSA, and SOS-SA convergence times and speed comparison, the results are the average of 1000 
executions. The best results are highlighted in bold. 

S/N Instance BKS 
ASA-GS [Geng et al., 2011] MSA-IBS [Wang et al., 2015] LBSA [Zhan et al., 2016] SOS-SA 

Mean Time Mean Time Mean Time Mean Time 

1 Ch150 6528 6539.8 10.91 6529 0.86 6529.8 1.29 6529.8384 1.0296 

2 Kroa150 26524 26538.6 10.9 26524 0.82 26524 0.98 26524.0176 0.7020 

3 Krob150 26130 26178.1 10.9 26135 1.51 26137 1.65 26131.8331 1.1700 

4 Pr152 73682 73694.7 10.85 73682 0.84 73682 0.87 73682.1801 0.8268 

5 U159 42080 42398.9 11.49 42080 0.79 42080 0.91 42080.9819 0.8736 

6 Rat195 2323 2348.05 14.37 2330.2 1.86 2328 1.93 2326.5979 1.1856 

7 D198 15780 15845.4 14.6 15780 1.39 15780 1.53 15782.1061 1.0452 

8 Kroa200 29368 29438.4 14.26 29378 1.74 29373.8 1.67 29370.7811 1.2792 

9 Krob200 29437 29513.1 14.24 29439.8 1.95 29442.2 2.1 29449.8182 1.5132 

10 Ts225 126643 126646 16.05 126643 1.3 126643 1.54 126701.0841 1.4196 

11 Pr226 80369 80687.4 16.7 80369 1.93 80369.8 2.16 80369.3077 1.5444 

12 Gil262 2378 2398.61 19.43 2378.8 2.39 2379.2 2.72 2381.9145 2.0387 

13 Pr264 49135 49138.9 19.09 49135 1.43 49135 1.49 49135.7188 1.5056 

14 Pr299 48191 48326.4 21.94 48226.4 2.67 48221.2 2.93 48227.9301 2.3444 

15 Lin318 42029 42383.7 23.35 42184.4 2.4 42195.6 2.58 42179.3111 2.6121 

16 Rd400 15281 15429.8 30.4 15347.2 3.2 15350.4 3.46 15451.8108 2.7114 

17 Fl417 11861 12043.8 32.02 11875.6 3.72 11867.8 4.01 11877.5194 3.9410 

18 Pr439 107217 110226 34.92 107407.2 3.6 107465.2 3.95 107561.1441 3.1801 

19 Pcb442 50778 51269.2 35.75 50970 3.68 50877 4.31 50871.8228 4.4017 

20 U574 36905 37369.8 48.47 37155.8 5.21 37164.6 6.13 37164.4871 6.6099 

21 Rat575 6773 6904.82 52.1 6839.8 5.27 6837.4 5.99 6839.5194 5.1184 

22 U724 41910 42470.4 66.83 42212.2 8.11 42252 8.34 42262.1108 7.9999 

23 Rat783 8806 8982.19 78.9 8893.4 8.99 8888.2 8.9 8899.5507 8.6130 

24 Pr1002 259045 264274 164.42 261481.8 12.71 261805.2 12.96 261802.4892 12.8141 

25 Pcb1173 56892 57820.5 193.08 57561.6 8.9 57431.8 9.61 57569.9388 8.7301 

26 D1291 50801 52252.3 214.64 51343.8 10.59 51198.8 11.77 51291.0871 12.0816 

27 Rl1323 270199 273444 210.16 271818.4 11.53 271714.4 12.64 271710.6288 11.0188 

28 Fl1400 20127 20782.2 232.02 20374.8 17.72 20249.4 15.43 20231.0177 14.7381 

29 D1655 62128 64155.9 281.88 62893 16.18 63001.4 16.45 64111.9201 16.1902 

30 Vm1748 336556 343911 276.98 339617.8 19.7 339710.8 19.05 336719.3891 18.2714 

31 U2319 234256 236744 410.97 235236 17.02 235975 18.94 235338.0944 18.1111 

32 Pcb3038 137694 141242 554.28 139706.2 27.64 139635.2 29.05 139701.8133 25.6712 



33 Fnl4461 182566 187409 830.9 185535.4 30.43 185509.4 29.67 185546.0411 32.7422 

34 Rl5934 556045 575437 1043.95 566166.8 50.76 566053 52.5 566211.7184 49.9871 

35 Pla7397 23260728 24166453 1245.22 2.38E+07 100.69 2.38E+07 89.61 2.38E+07 98.7222 

36 Usa13509 19982859 20811106 2016.05 2.04E+07 365.12 2.04E+07 326.76 2.14E+07 313.1080 

37 Brd14051 469385 486197 2080.5 478609.6 375.28 478010 369.86 478098.9076 370.8801 

38 D18512 645238 669445 2593.97 658149.2 654.85 657457.2 629.14 659457.4512 601.8544 

39 Pla33810 66048945 69533166 4199.88 68075607 1959.68 68029226.4 1998.19 68076220.2281 1899.9919 

40 Pla85900 142382641 156083025 8855.13 146495515.6 7596.18 145526542.6 7586.6 146429581.1412 7591.1833 

Average 650.31   283.52   282.49  278.99403 

Overall, the SOS-SA performed better than the remaining three algorithms in 62.5% of the computed graphs 

ranging from 150 up to 85,900 cities (i.e., 25 out of 40 instances). 

 

Fig.3. ASA-GS, MSA-IBS, LBSA, and SOS-SA time comparison, for TSP with graphs ranging from 150 up to 

299 cities 

 

Fig.4. ASA-GS, MSA-IBS, LBSA, and SOS-SA time comparison, for TSP with graphs ranging from 318 up to 

724 cities. 
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Fig.5. ASA-GS, MSA-IBS, LBSA, and SOS-SA time comparison, for TSP with graphs ranging from 1002 up to 

85,900 cities. 

In Table 11, the percentage deviation of the SOS-SA for the 35 TSP instance considered was computed to be 

0.2645, which is significantly better than the 1.2929 of GA-PSO-ACO, 0.3385 of MSA-IBS, and 0.3229 of 

LBSA respectively. Therefore, this verifies the fact that the performance of the SOS-SA algorithms competes 

favourably with the state-of-the-art TSP algorithms and in some instance with the best known solution from the 

TSPLIB problem instances. 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1
0

02

1
1

73

1
2

91

1
3

23

1
4

00

1
6

55

1
7

48

2
3

19

3
0

38

4
4

61

5
9

34

7
3

97

1
3

50
9

1
4

05
1

1
8

51
2

3
3

81
0

8
5

90
0

A
lg

o
ri

th
m

 r
u

n
 t

im
e

(s
)

TSP problem size

ASA-GS

MSA-IBS

LBSA

SOS-SA



Table 11: GA-PSO-ACO, MSA-IBS, LBSA, and SOS-SA comparison on 35 benchmarked TSPLIB tour instances for 20 trials. The columns shows the best solution found, the average solution and the relative percentage 
error computed using Eq. (10). The best results so far are highlighted in bold. 

S/N Instance BKS GA-PSO-ACO [Deng et al., 2012] MSA-IBS [Wang et al., 2015] LBSA [Zhan et al., 2016] SOS-SA 

   Best Mean 
PDbest 

(%) 
Best Mean PDbest (%) Best Mean PDbest (%) Best Mean PDbest (%) 

1 Att48 33522 33524 33662 0.0060 33522 33554.64 0 33522 33536.6 0 33523 33539.68 0.0030 

2 Eli51 426 426 431.84 0 426 426.48 0 426 426.5 0 426 426 0 

3 Berlin52 7542 7544.37 7544.37 0.0314 7542 7542 0 7542 7542 0 7540 7541.107 -0.0265 

4 St70 675 679.6 694.6 0.6815 675 677.16 0 675 675.55 0 675 675 0 

5 Eil76 538 545.39 550.16 1.3736 538 538.2 0 538 538 0 538 538 0 

6 Pr76 
10815

9 
109206 110023 0.9680 108159 108288 0 108159 108268.3 0 108162 109214.8 0.0028 

7 Rat99 1211 1218 1275 0.5780 1211 1211.04 0 1211 1211.1 0 1210 1210.108 -0.0826 

8 Rad100 7910 7936 8039 0.3287 7910 7914.56 0 7910 7914.7 0 7910 7912.875 0 

9 KroD100 21294 21309 21484 0.0704 21294 21340.64 0 21294 21314.2 0 21294 21410.02 0 

10 Eil101 629 633.07 637.93 0.6471 629 629.6 0 629 629 0 629 629 0 

11 Lin105 14379 14397 14521 0.1252 14379 14380.48 0 14379 14379 0 14379 14380.27 0 

12 Pr107 44303 44316 44589 0.0293 44303 44379.88 0 44303 44392.25 0 44301 44302.83 -0.0045 

13 Pr124 59030 59051 60157 0.0356 59030 59032.88 0 59030 59031.8 0 58985 59010.65 -0.0762 

14 Bier127 
11828

2 
118282 120301 0 118282 118334.6 0 118282 118351.2 0 118282 118331.2 0 

15 Ch130 6110 6141 6203.47 0.5074 6110 6121.96 0 6110 6127.95 0 6110 6110 0 

16 Pr144 58537 58595 58662 0.0991 58537 58549.72 0 58537 58570.15 0 58537 58610.91 0 

17 KroA150 26524 26676 26803 0.5731 26524 26538.2 0 26524 26542.6 0 26524 27032.18 0 

18 Pr152 73682 73861 73989 0.2429 73682 73727.96 0 73682 73688.8 0 73683 73689.56 0.0014 

19 U159 42080 42395 42506 0.7486 42080 42182.32 0 42080 42198.85 0 42080 42188.47 0 

20 Rat195 2323 2341 2362 0.7749 2328 2334.2 0.2152 2328 2331 0.2152 2325 2329.032 0.0861 

21 RroA200 29368 29731 31015 1.2360 29368 29422.64 0 29368 29405.35 0 29368 29435.76 0 

22 Gil262 2378 2399 2439 0.8831 2379 2383.56 0.0421 2379 2382.45 0.0421 2381 2384.695 0.1262 

23 Pr299 48191 48662 48763 0.9774 48192 48263.08 0.0021 48191 48250 0 48191 48197.49 0 



24 Lin318 42029 42633 42771 1.4371 42076 42292.04 0.1118 42070 42264.35 0.0976 42029 42291.67 0 

25 Rd400 15281 15464 15503 1.19757 15324 15377.56 0.2814 15311 15373.75 0.1963 15310 15318.11 0.1898 

26 Pcb442 50778 51414 51494 1.2525 50879 51050.12 0.1989 50832 51041.7 0.1063 50812 51039.21 0.0670 

27 Rat575 6773 6912 6952 2.0523 6819 6854.64 0.6792 6829 6847.95 0.8268 6773 6802.04 0 

28 U724 41910 42657 42713 1.7824 42150 42302.12 0.5727 42205 42357.8 0.7039 41910 42262.11 0 

29 Rat783 8806 9030 9126 2.5437 8897 8918.28 1.0334 8887 8913.25 0.9198 8806 8817.91 0 

30 Pr1002 
25904

5 
265987 266774 2.6798 261463 262211.7 0.9334 261490 262202.5 0.9439 261491 262301.8 0.9442 

31 D1291 50801 52378 52443 3.1043 51098 51340.84 0.5846 51032 51358.7 0.4547 51091 51316.18 0.5709 

32 D1655 62128 64401 65241 3.6586 62784 63011.96 1.0559 62779 62994.65 1.0478 62779 63014.18 1.0478 

33 Nl4461 
18256

6 
189334 192574 3.7072 185377 185631.1 1.5397 185290 185501.7 1.4921 185361 185401.7 1.5310 

34 Brd14051 
46938

5 
490432 503560 4.4840 478040 478618.8 1.8439 477226 477612.7 1.6705 478385 477817 1.9174 

35 Pla33810 
66048

945 
70299195 72420147 6.4350 67868250 68038833 2.7545 67754877 67848535 2.5828 68004101 67100510 2.9602 

   Average values: 1.2929   0.3385   0.3229   0.2645 



In Tables 12 and 13, the comparisons of SOS-SA, SOS, and IBA are presented. The computed average values 

for the  𝑃𝐷𝑏𝑒𝑠𝑡 and 𝑃𝐷𝑚𝑒𝑎𝑛 of SOS-SA were obtained as -0.1262 and 0.4230 as shown in Table 12, and 

0.0262 and 0.4891 as shown in Table 13. The average values for the SOS were obtained as 2.5019 and 4.3537 

respectively, while those of the IBA in Table 13 were obtained as 0.2106 and 1.3911 respectively. Therefore, 

comparing the three algorithms, the computed average values for 𝑃𝐷𝑏𝑒𝑠𝑡 and 𝑃𝐷𝑚𝑒𝑎𝑛 show that SOS-SA 

obtained smaller percentage deviations than the SOS and IBA algorithms in all the instances considered in the 

two tables. 

The percentage deviation test carried out shows the capability of the SOS-SA algorithm to find the best solution 

in a more effective and efficient manner. This can be attributed to the hybridization characteristics of the 

individual algorithms, where the systematic reasoning skill of the SA based on its ability to use the acceptance 

probability criteria to find better solution within the problem local search space is added to the exploration and 

exploitation capability of the SOS algorithm.  

Table12: Comparison of SOS-SA with SOS, where 𝑃𝐷𝑏𝑒𝑠𝑡 and 𝑃𝐷𝑚𝑒𝑎𝑛 represent the percentage deviations of both the best solution 

found and the average solution to the best known solution (BKS). 

S/N Instance SOS-SA   SOS 

  Name BKS Mean Best Diff. PDbest (%) PDmean(%) Mean Best Diff. PDbest (%) PDmean(%) 

1 dantzig42 699 699.482 679 -20 -2.8612 0.0690 710.502 702 3 0.4292 1.6455 

2 Eil51 426 426 426 0 0 0 438.728 429 3 0.7042 2.9878 

3 Berlin52 7542 7541.11 7540 -2 -0.0265 -0.0118 7659.49 7647 105 1.3922 1.5578 

4 St70 675 675 675 0 0 0 699.129 675 0 0 3.5747 

5 Eil76 538 538 538 0 0 0 556.312 542 4 0.7435 3.4037 

6 Rat99 1211 1210.11 1210 -1 -0.0826 -0.0735 1297.38 1284 73 6.0281 7.1329 

7 KroA100 21282 21424 21282 0 0 0.6672 21633.8 21401 119 0.5592 1.6530 

8 KroB100 22140 22331.8 22140 0 0 0.8663 23142.8 22155 15 0.0678 4.5294 

9 KroC100 20749 20860.8 20749 0 0 0.5388 21020.2 20811 62 0.2988 1.3071 

10 KroD100 21294 21494.1 21294 0 0 0.9397 22044.3 21492 198 0.9298 3.5235 

11 KroE100 22068 22205.9 22068 0 0 0.6249 22467.1 22128 60 0.2719 1.8085 

12 Eil101 629 629 629 0 0 0 659.713 649 20 3.1797 4.8830 

13 Pr107 44303 44302.8 44301 -2 -0.0045 -0.0005 46112.2 46097 1794 4.0494 4.0837 

14 Pr124 59030 59010.7 58985 -45 -0.0762 -0.0327 69211.1 68942 9912 16.7915 17.2473 

15 Pr136 96772 98636 97129 357 0.3689 1.9262 100461 98018 1246 1.2876 3.8121 

16 Pr144 58537 58610.8 58537 0 0 0.1261 60136.9 58587 50 0.0854 2.7331 

17 Pr152 73682 73689.6 73683 1 0.0014 0.0103 74699.8 74229 547 0.7424 1.3813 

18 Pr264 49135 50201.6 49212 77 0.1567 2.1708 52498.5 51477 2342 4.7665 6.8454 

19 Pr299 48191 48197.5 48191 0 0 0.0135 50102.4 49624 1433 2.9736 3.9663 

20 Lin318 42029 42291.7 42029 0 0 0.6250 45811.1 44020 1991 4.7372 8.99879 

   Average Values:  -0.1262 0.4230       2.5019 4.3537 

Table 13: Table12: Comparison of SOS-SA with IBA, where 𝑃𝐷𝑏𝑒𝑠𝑡 and 𝑃𝐷𝑚𝑒𝑎𝑛 represent the percentage deviations of both the best 

solution found and the average solution to the best known solution (BKS). 

S/N Instance SOS-SA IBA [Osaba et al., 2016] 

  Name BKS Mean Best Diff. PDbest (%) PDmean(%) Mean Best Diff. PDbest(%) PDmean(%) 

1 Eil51 426 426 426 0 0 0 428.1 426 0 0 0.4929 

2 Berlin52 7542 7541.11 7540 -2 -0.0265 -0.0118 7542 7542 0 0 0 

3 St70 675 675 675 0 0 0 679.1 675 0 0 0.6074 

4 Eil76 538 538 538 0 0 0 548.1 539 1 0.1859 1.8773 

5 KroA100 21282 21424 21282 0 0 0.6672 21445.3 21282 0 0 0.7673 



6 KroB100 22140 22331.8 22140 0 0 0.8663 22506.4 22140 0 0 1.6549 

7 KroC100 20749 20860.8 20749 0 0 0.5388 21050 20749 0 0 1.4507 

8 KroD100 21294 21494.1 21294 0 0 0.9397 21593.4 21294 0 0 1.4060 

9 KroE100 22068 22205.9 22068 0 0 0.6249 22349.6 22068 0 0 1.2761 

10 Eil101 629 629 629 0 0 0 646.4 634 5 0.7949 2.7663 

11 Pr107 44303 44302.8 44301 -2 -0.0045 -0.0005 44793.8 44303 0 0 1.1078 

12 Pr124 59030 59010.7 58985 -45 -0.0762 -0.0327 59412.1 59030 0 0 0.6473 

13 Pr136 96772 98636 97129 357 0.3689 1.9262 99351.2 97547 775 0.8009 2.6652 

14 Pr144 58537 58610.8 58537 0 0 0.1261 58876.2 58537 0 0 0.5795 

15 Pr152 73682 73689.6 73683 1 0.0014 0.0103 74676.9 73921 239 0.3244 1.3503 

16 Pr264 49135 50201.6 49212 77 0.1567 2.1708 50908.3 49756 621 1.2639 3.6090 

  
Average values: 0.0262 0.4891 

   
0.2106 1.3911 

Figs. 6-9, demonstrate the simulation tests of a number of TSB problem instances of different scales which were 

benchmarked to test the effectiveness of the new SOS-SA algorithm. The simulation results show route tracing 

and convergence graphs of each of the cities using SOS-SA algorithm. The algorithm execution was terminated 

after 2000 runs for each TSP instance. However, we are only able to show convergence graphs for the proposed 

algorithm because the other compared algorithms’ data were taken from literature and this information was 

unavailable. 

   
Fig.6. the result of 52-city (Eli52) TSPs using SOS-SA 

 
Fig.7. the result of 54-city (Eil54) TSPs using SOS-SA 



 
Fig.8. the result of 70-city (St70) TSPs using SOS-SA 

 
Fig.9. the result of 101-city (Eil101) TSPs using SOS-SA 

5.4 Descriptive Statistical analysis 

In this section, the Stata statistical package was used to further validate of the algorithm performance. The 

Shapiro-Will (W) test was used to formerly test whether the data were normally distributed. The Levene’s test 

was used to test whether all the algorithms have the same variance, while both the oneway ANOVA test and 

Kruskal-Wallis test were used to test for difference in performance among all the algorithms. The oneway 

ANOVE is used whenever the parametric assumption were met, while the Kruskal-Wallis test is used whenever 

the parametric assumption were not met. In summary, descriptive statistics such as mean, standard deviation, 

minimum, maximum and range were used to describe the algorithms. Histograms and Shapiro-Wilk test were 

used to assess the normality of the algorithms, while the Levene’s test was used to test the equality of Variance 

among the algorithms. Finally, to examine the significant difference in performance among the algorithms, the 

Friedman Test (with post hoc tests) was used. It is important to note that the difference in performance tests was 

done not based on the actual data but on transformed data. The main purpose of the difference in performance 

test was to verify that each of the selected algorithms that were compared with the SOS-SA is of high standard 

as claimed in the respective literatures. It is important to note that, in statistics, data transformation, which is the 

application of a deterministic mathematical function to each point in a data set, is utilized to help improve the 

normality of the experimental data sets and the interpretability or appearance of graphs (Zuur et al., 2010; Jason, 

2002). 

5.4.1 Descriptive analysis of the SOS-SA and SOS algorithms 

Table 14 presents the descriptive statistics of the performance of SOS-SA and SOS with the theoretical value or 

the best known solution as the control algorithm. The SOS-SA is averagely smaller than the SOS in terms of 

mean, standard deviation, minimum, maximum and rang compared in terms of the best known solution. 

Therefore, this suggests that the SOS-SA is better than the SOS. The SOS’ data has the widest range and spread 



of data around its mean value, while SOS-SA algorithm has the smallest range and dispersion of data around its 

mean value. Moreover, the standard deviations of the two algorithms are quiet high which suggests that there is 

great variation around the mean value for the two algorithms. The implication is that the data may not be 

normally distributed and parametric approaches cannot be used directly to test the significance of the difference 

in performance between SOS-SA and SOS. 

Table 14: Descriptive statistics validation of SOS-SA and SOS algorithms compared to the best known solution (BKS) 

Algorithm Mean Std deviation Min Max Range 

BKS 29,546.60 28,177.05 426 96,772 96,346 

SOS 30,545.45 29,211.58 429 98,018 97,589 

SOS_SA 29,564.85 28,223.54 426 97,129 96,703 

To conveniently study whether the normality assumption is violated in the sample data under study, both 

informal and formal approaches were used. Based on the histograms (Fig. 10) of the algorithms SOS-SA and 

SOS, it can be readily seen that the algorithms’ histograms are flatter and skewer than that of a normal 

distribution curve (Bell-shape curve) therefore providing more evidence of the non-normality of the three 

algorithms. However, the algorithms seem to follow the same form of skewness and flatness; meaning that, the 

spread of the data may not be significantly different within the two algorithms. In other words, the variance of 

the two algorithms may be equal.  

 

Figure 10: Histogram of SOS-SA and SOS-SA with the BKS as the control algorithm 

Formally, the Shapiro-Wilk (𝑊) test statistic was considered in the analysis as being more robust than other 

tests statistics such as the skewness-Kurtosis, Kolmogorov-Smirnov and the Shapiro-Francia tests statistics. 

According to Table 15, after checking for the presence of outliers, the normality test was conducted based on the 

level data and four transformed data to avoid the problem of failing to adequately transform the data. The results 

show that the algorithms are indeed non-normally distributed at the level form, but were only found so based on 

the 𝜆-parameter Box-Cox power transformation. On this basis, Box-Cox power transformed forms of the 

algorithms were further used for the test of equality of variance.  

Table 15: Normality test of SOS-SA and SOS algorithms at different forms using the Shapiro-Wilk test statistic 

Form BKS SOS SOS-SA 

Level  0.889** 0.888** 0.888** 

Log  0.813*** 0.815*** 0.812*** 

Square root  0.813*** 0.815*** 0.812*** 

K-parameter log  0.895*** 0.893*** 0.895*** 

Lambda-parameter Box-Cox power  0.907 0.905 0.906 

Note: ***<0.01 and **<0.05    
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The analysis of equal variance across the three algorithms was based on the Levene’s test because it is robust 

even with departure from normality of the data. The result in Table 16 indicates that based on mean, median and 

10th percentile, the test was found to be statistically insignificant; implying that, the null hypothesis of equal 

variance cannot be rejected. In other words, compared with the best known solution (BKS), SOS-SA and SOS 

have equal variance. 

Table 16: Equal variance test of SOS-SA and SOS algorithms against the best known solution using the Levene’s test statistic 

Statistic Levene's P-value 

W0 0.001 0.998 

W50 0.001 0.998 

W10 0.002 0.997 

W0=mean, W50=Median, W10=10th percentile. 

Based on the findings obtained so far, one way Analysis of Variance (ANOVA) was carried out to assess the 

difference between the BKS, SOS-SA and SOS. The result of the test presented in Table 17 indicates that the 

majority of variation in the algorithms’ observations is explained in the variation within and not the variation 

between. In other words, the contribution of the model to explain the difference between the three methods is 

minimal in relation to that of the residual. Consequently, the ANOVA test was found to be statistically 

insignificant on the basis of the low F-statistic and high p-value. In other words, there is no statistically 

significant difference between the best known solution and the proposed SOS-SA algorithm. 

Table 17: Oneway ANOVA test of the difference between SOS-SA and SOS compared to the best known solution 

Source of variation SS df MS F P-value 

Between group 250.82 2 125.41 2.30E-03 0.997 

Within group   3,106,466.42  57      54,499.41  
  

Total   3,106,717.25  59 52656.22 
  

5.4.2 Descriptive analysis of the GA-PSO-ACO, MSA-IBS, LBSA, and SOS-SA algorithms 

Table 18 presents the descriptive statistics of the performance of four algorithms namely, GA-PSO-ACO, MSA-

IBS, LBSA, and SA- SOS with the best known solution as the control algorithm. The SOS-SA algorithm is 

averagely the smallest algorithm followed by LBSA, suggesting that SOS-SA is the best algorithm followed by 

LBSA. The standard deviations of all the algorithms are quite high suggesting that there is great variation 

around the mean value for all the algorithms. In other words, the data may not be normally distributed and 

parametric approaches cannot be used directly to test the significance of the difference among the algorithms.  

Table 18: Descriptive statistics of GA-PSO-ACO, LBSA, MSA-IBS, and SOS-SA to the best known solution 

Algorithm Mean Std dev. Min Max Range 

GA-PSO-ACO 2,063,992 11,900,000 426 70,300,000 70,299,574 

LBSA 1,997,597 11,500,000 426 68,000,000 67,999,574 

MSA-IBS 1,993,722 11,500,000 426 67,900,000 67,899,574 

SOS-SA 1,990,455 11,400,000 426 67,800,000 67,799,574 

BKS 1,941,301 11,200,000 426 66,000,000 65,999,574 

Based on the histograms (Fig. 11) of the algorithms GA-PSO-ACO, LBSA, MSA-IBS, and SOS-SA, it can be 

readily be seen that the algorithms do not follow a normal distribution therefore providing more evidence of the 

non-normality of the data. 



 
Fig. 11: Histogram of GA-PSO-ACO, LBSA, MSA-IBS with BKS as the control algorithm 

 According to Table 19, after checking for the presence of outliers, the normality test was conducted based on 

the level data and four transformed data to avoid the problem of failing to adequately transform the data. The 

results show that the algorithms are indeed non-normally distributed even after various transformations. The test 

of the difference among the four (4) algorithms based on their transformed data was carried out using the 

Kruskal-Wallis test.  

Table 19: Normality test for GA-PSO-ACO, LBSA, MSA-IBS, and SOS-SA algorithms at different forms using the Shapiro-Wilk test 
statistic 

Form GA-PSO-ACO LBSA MSA-IBS SOS-SA BKS 

Level  0.16557*** 0.16564*** 0.16564*** 0.16563*** 0.1657*** 

Log  0.90744*** 0.90755*** 0.90754*** 0.90756*** 0.90775*** 

Square root  0.90744*** 0.90755*** 0.90754*** 0.90756*** 0.90775*** 

K-parameter log  0.9189** 0.91886** 0.91886** Na Na 

Lambda-parameter Box-Cox power  Na Na Na Na Na 

Note: ***<0.01  

    
The Kruskal-Wallis test is a nonparametric test that does not depend on the normality and homogeneity of the 

data. The analysis is based not on the original data but on the rank of the data after sorting them in ascending 

order. In Table 20, the result of the test both with and without ties indicates that based on the transformed data, 

there is no statistically significant difference among SOS-SA, LBSA, and MSA-IBS and that the difference 

observe could be due to sampling peculiarity. This is also to verify that SOS-SA is being compared with some 

of the best state-of-the-art heuristic algorithms, having the most similar techniques of implementation with the 

SOS-SA. 

Table 20: Difference analysis of GA-PSO-ACO, LBSA, MSA-IBS, SOS-SA and BKS using Kruskal-Wallis test 

Algorithm Sum Rank 

Chi-squared 

Without ties With ties 

GA-PSO-ACO 3,162 0.107 0.107 

LBSA 3,069   

MSA-IBS 3,079.5   

SOS-SA 3,046   

BKS 3,033.5   

5.4.3 Descriptive analysis of SOS-SA and IBA algorithms 

Table 21 presents the descriptive statistics of the performance of SOS-SA and IBA compared with the best 

known solution. The SOS-SA algorithm is averagely the smallest, therefore, this suggest that SOS-SA performs 
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better than the IBA. The IBA’s data has the widest range and spread of data around its mean value while SOS-

SA has the smallest range and dispersion of data around its mean value compared to the best known solution. 

Moreover, the standard deviations of the two algorithms are quiet high which suggests that there is great 

variation around the mean value for all the algorithms. The implication is that the data may not be normally 

distributed and parametric approaches cannot be used directly to test the significance of the difference in 

performance among SOS-SA and IBA. 

Table 21: Descriptive statistics of IBA, BKS and SOS_SA  
Algorithm Mean Std deviation Min Max Range 

IBA      31,277.69       29,494.45  426 97,547 97,121 

BKS      31,175.13       29,330.33  426 96,772 96,346 

SOS-SA      31,199.25       29,384.09  426 97,129 96,703 

Based on the histograms (Fig. 12) of the two algorithms, it can be readily seen that the algorithms’ histograms 

are flatter and skewer than that of a normal distribution curve (Bell-shape curve) therefore providing more 

evidence of the non-normality of the two algorithms. However, both algorithms with the BKS seem to follow 

the same form of skewness and flatness; meaning that, the spread of the data may not be significantly different 

within the three algorithms. In other words, the variance of the three algorithms may be equal.  

 

Fig. 12: Histogram of SOS-SA and IBA with BKS as the control algorithm 

According to Table 22, the results show that the algorithms are indeed non-normally distributed at the level 

form but were only found so based on the 𝜆-parameter Box-Cox power transformation. On this basis, Box-Cox 

power transformed forms of the algorithms were further used for the test of equality of variance.  

Table 22: Normality test of BKS, SOS_SA, and IBA algorithms at different forms using the Shapiro-Wilk test statistic 

Form BKS IBA SOS_SA 

Level  0.8901* 0.8894* 0.8901* 

Log  0.8058*** 0.8065*** 0.806*** 

Square root  0.8058*** 0.8065*** 0.806*** 

K-parameter log  0.9123** 0.9123** 0.9124** 

Lambda-parameter Box-Cox power  0.9218 0.9219 0.9219 

Note: ***<0.01 and **<0.05    

The analysis of equal variance across the two algorithms was based on the Levene’s test because it is robust 

even with departure from normality of the data. The result in Table 23 indicates that based on mean, median and 

10th percentile, the test was found to be statistically insignificant; implying that, the null hypothesis of equal 

variance cannot be rejected. In other words, SOS-SA and IBA, with the best known solution have equal 

variance. 
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Table 23: Equal variance test of SOS-SA and IBA algorithms to the best known solution using the Levene’s test statistic 

Statistic Levene's P-value 

W0 0.0053 0.9946 

W50 0.0048 0.9951 

W10 0.0051 0.9949 

W0=mean, W50=Median, W10=10th percentile. 

Based on the findings obtained so far, one-way Analysis of Variance (ANOVA) was carried out to assess the 

difference between SOS-SA and IBA algorithms with the best known solution as the control algorithm. The 

result of the test presented in Table 24 indicates that the majority of variation in the algorithms’ observations is 

explained the variation within and not the variation between. In other words, the contribution of the model to 

explain the difference between the three algorithms is minimal in relation to that of the residual. Consequently 

the ANOVA test was found to be statistically insignificant on the basis of the low F-statistic and high p-value. 

In other words, there is no statistically significant difference between the two algorithms. 

Table 24: Oneway ANOVA test of the difference between SOS-SA and IBA 

Source of variation SS df MS F P-value 

Between group 643.66 2 321.83 0.01 0.9943 

Within group 2,519,515.64 45 55,989.24   

Total 2,520,159.30 47 53620.41   

Note: SS=Sum of Squares, MS=Mean Sum of Square, df=Degree of freedom 

5.4.4 Friedman Test (with post hoc tests) analysis of algorithm performance 

In this section, the Friedman’s non-parametric test was further used to check for existence of any significant 

difference in performance among the algorithms whilst running, 𝜒2 (1) = 19, p-value = 0.000 for comparison 

between SOS-SA and SOS, 𝜒2 (1) = 8, p-value = 0.005 for comparison between SOS-SA and IBA, and 𝜒2(3) = 

73.189, p-value = 0.000 for comparison among SOS-SA with GA-PSO-ACO, MSA-IBS, and LBSA. The 

median (IQR) perceived effort levels for the SOS and SOS-SA running trial were 21681 (848 to 51013) and 

21681 (812 to 48956), while the median (IQR) perceived effort levels for the IBA and SOS-SA running trial 

were 21681 (2392 to 56341) and 21681 (2391 to 56205), respectively. It can be concluded that there are 

statistically significant differences among the algorithms based on the mean ranking returned by the Friedman’s 

test presented in table 25. However, since the Friedman’s test can only show the existence of significant 

difference between two algorithms, the test does not pinpoint which groups in particular differ from each other 

in the case of multiple algorithms comparison (for example, GA-PSO-ACO, MSA-IBS, LBSA, and SOS-SA). 

Therefore, to adequately evaluate the statistical performance of the SOS-SA, the Friedman test with post hoc 

tests was further conducted and the result obtained is as reported next. 

Table 25: Mean ranking returned by Friedman’s non parametric test 

Test 1 Test 2 Test 2 

Algorithms Ranking Algorithms Ranking Algorithms Ranking 

GA-PSO-ACO 3.91 SOS 2.00 IBA 1.75 
MSA-IBS 2.24 SOS-SA 1.00 SOS-SA 1.25 

LBSA 1.96     

SOS-SA 1.89     

The Friedman test with post hoc tests indicate that there was a statistically significant difference in the 

performance of SOS-SA with GA-PSO-ACO, MSA-IBS, and LBSA, this is observed whilst running, 𝜒2(3) = 

73.189, p-value = 0.000. Post hoc analysis with Wilcoxon signed-rank tests was conducted with a Bonferroni 

correction applied, resulting in a significance level set at computed p-value < 0.0125 (i.e. 0.05/4, since we are 

comparing GA-PSO-ACO, MSA-IBS, LBSA, and SOS-SA). The median (IQR) perceived effort levels for each 

of the GA-PSO-ACO, MSA-IBS, LBSA, and SOS-SA running trial were 33524 (6912 to 59051), 33522 (6819 

to 59030), 33522 (6829 to 59030), and 33523 (6773 to 58985) respectively. There were statistically significant 

differences between the performance of SOS-SA and GA-PSO-ACO running trials (Z = -5.012, p-value = 

0.000). However, there were no significant differences between the SOS-SA and MSA-IBS running trials (Z = -

1.625, p-value = 0.104), or between SOS-SA and LBSA running trials (Z = -0.355, p-value = 0.722). 

In summary, the statistical analysis has revealed some interesting results with respect to all the algorithms that 

were compared with the proposed optimization method.  First, the analysis result showed that the SOS-SA 



performed favourable well compared to other state-of-the-art algorithms. This is verified based on the result of 

the descriptive statistics test using Mean, Standard deviation, Min, Max, and Range described in Tables 14, 18 

and 21 respectively. This also corresponds to the analysis of the results presented in Tables 11, 12, and 13, were 

SOS-SA (with 32%) outperformed the other three algorithms namely, GA-PSO-ACO (with 19%), MSA-IBS 

(with 20%), and LBSA (with 28%) in terms of convergence. Similar evaluation with SOS and IBA showed the 

convergence performance of SOS-SA to be 95% (19 out 20 instances) and 50% (8 out of 16 instances) for both 

SOS and IBA. Second, based on the performance difference among all the algorithms compared with SOS-SA 

using transformed data and with BKS as control algorithm, the analysis revealed that MSA-IBS, LBSA, and 

IBA are equally good algorithms as claimed by the respective authors. Third, SOS-SA appears to be next to the 

control algorithm (or BKS) in most of the performance analysis result presented, for instance in Table 20, the 

Sum Rank (i.e., SOS-SA = 3,046 and BKS = 3,033.5). Finally, considering the Friedman Test (with post hoc 

tests) analysis for the individual algorithm performances, since the p-values of GA-PSO-ACO, SOS, and IBA 

are less than 0.05, we can say that SOS-SA is statistically significantly better. In the case of MSA-IBS and 

LBSA, since their p-values are greater than the computed p-value of 0.0125, therefore, we can say that there are 

no significant differences in performance between these algorithms and the SOS-SA. Therefore, this 

consequently verifies the initial claim that the SOS-SA algorithm can compete favorable with even the best 

known solution, as it tends to perform better in some cases than the BKS, which then verifies the results 

presented in Table 2. The unique advantage of the SOS-SA over other algorithms can be attributed to its 

capability to deeply explore and exploit problem search space, during search process. This is made possible by 

the benefit factor mechanism in the mutualism phase and the artificial vector mechanisms in the parasitism 

phase of the SOS. Finally, we conclude this analysis section by saying that the proposed SOS-SA optimization 

method has promising and immense potential for solving the TSP as well as other complex discrete problems. 

5.5. Remarks 

In the course of the empirical evaluation of the proposed algorithms, some potential Challenges were observed, 

which are highlighted as follows: 

• Computation Time. Though the SOS-SA algorithm performed favourably against the best known 

available solution from TSPLIB and other state-of-the-art algorithms, there is still room for 

improvement in terms of computational time, and more specifically, the iterative computation of tour 

cost function. The SOS-SA algorithm spends time recalculating the cost function with every change in 

iteration and most importantly, it was also observed that the computation cost increases proportionately 

with increase in the dimension of the TSP problem instance. A more simplified and adaptive method of 

calculating the cost function is therefore required to speed-up the computation time.  

• Acceptance probability function. Similarly, the computation of the acceptance probability function 

consumes a lot of system resources, more specifically, CPU time. This is as a result of the exponential 

computation required to determine the probability of acceptance or rejection of a new solution.  

Therefore, approximating the calculation of this function without compromising the decision rule can 

significantly improve the performance of the framework in terms of cost of execution. 

• SA parameter selection. SA parameter required some level of experience in selecting a good set of 

performance parameters, as they would partly affect the performance of the SOS-SA algorithm, in 

escaping global minimum as quickly as possible. Selecting a good set of SA performance parameters 

was the main bottleneck experienced during the simulation experiment, as parameter fine-tuning were 

made more frequently. This challenge also affected the length of time the optimal solutions were 

attained. A typical example is the selection of an appropriate cooling schedule for the different 

simulations. Finding an appropriate cooling schedule was a major challenge for the SOS-SA 

implementation from one problem instance to another. One possible solution is to implement an 

adaptive method of setting the cooling schedule for different problem instances. 

• Scalability. In the course of the simulation process specifically for large length TSP problems, the 

system ran out of memory severally as the dimension of the TSPLIB benchmark increased, as it was 

observed for Pla33810 and Pla85900. These two instances, during execution, required additional 

memory. Therefore, considering also the first two aforementioned issues, one possible option would be 

to identify possible parallelism for the SOS-SA algorithm, which can improve both framework 

computational time and memory utilization concurrently. 

6. Conclusion and Future Direction 

In this paper, a novel and hybrid simulated annealing based symbiotic organisms search algorithm is proposed 

as a new approach for solving symmetric TSP. The SOS algorithm which is inspired by the symbiotic 

relationships among organisms in the ecosystem was initially proposed to handle engineering optimization 



problems. The design of a hybrid SOS-SA framework, which incorporates the SA local search capability into 

the problem search space of SOS algorithm, and the application of the simulation results of the SOS-SA to the 

TSP were discussed. The simulation results supports the fact that the new SOS-SA framework can realise TSP 

optimal solutions and compete favourably with other state-of-the-art optimization algorithms being applied to 

the TSP related problems and complex discrete problems. As future work the authors intend to further improve 

the algorithm by testing its scalability in a parallel and distributed environments for various Big Data graphs 

from SNAP (https://snap.stanford.edu/data/) with different properties (e.g., sparse, dense, power law). 

Scalability will be tested when problem size is fixed and number of cores/machines increases, and when the 

number of machines is fixed and the problem increases.  
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Appendix 1. Simulation results demonstrating the convergence curves for Pr107, Pr124, U159, Rat195, Gil262, 

Pr299, Pcb442, and Rat575 TSPLIB instance. 

Fig.A1. 

Convergence curve for Pr107                Fig.A2. Convergence curve for Pr124 

 
Fig.3A. Convergence curve for U159                  Fig.4A. Convergence curve for Rat195 



 
Fig.5A. Convergence curve for Gil262  Fig.6A. Convergence curve for Pr299 

 
Fig.7A. Convergence curve for Pcb442   Fig.8A. Convergence curve for Rat575 

 


