
Simulated Annealing based Symbiotic Organisms Search Optimization

Algorithm for Traveling Salesman Problem

 Absalom El-Shamir Ezugwu1*, Aderemi Oluyinka Adewumi1, Marc Eduard Frîncu2

*1School of Mathematics, Statistics and Computer Science, University of Kwazulu-Natal, Westville Campus,

Private Bag X54001, Durban 4000, South Africa
2Faculties of Mathematics and Computer Science, West University of Timisoara, Timisoara, Romania

ezugwua@ukzn.ac.za, adewumia@ukzn.ac.za, marc.frincu@e-uvt.ro

Abstract. Symbiotic Organisms Search (SOS) algorithm is an effective new metaheuristic search algorithm,

which has recently recorded wider application in solving complex optimization problems. SOS mimics the

symbiotic relationship strategies adopted by organisms in the ecosystem for survival. This paper, presents a

study on the application of SOS with Simulated Annealing (SA) to solve the well-known traveling salesman

problems (TSPs). The TSP is known to be NP-hard, which consist of a set of (𝑛 − 1)!/2 feasible solutions. The

intent of the proposed hybrid method is to evaluate the convergence behaviour and scalability of the symbiotic

organism’s search with simulated annealing to solve both small and large-scale travelling salesman problems.

The implementation of the SA based SOS (SOS-SA) algorithm was done in the MATLAB environment. To

inspect the performance of the proposed hybrid optimization method, experiments on the solution convergence,

average execution time, and percentage deviations of both the best and average solutions to the best known

solution were conducted. Similarly, in order to obtain unbiased and comprehensive comparisons, descriptive

statistics such as mean, standard deviation, minimum, maximum and range were used to describe each of the

algorithms, in the analysis section. The oneway ANOVA and Kruskal-Wallis test were further used to compare

the significant difference in performance between SOS-SA and the other selected state-of-the-art algorithms.

The performances of SOS-SA and SOS are evaluated on different sets of TSP benchmarks obtained from

TSPLIB (a library containing samples of TSP instances). The empirical analysis’ results show that the quality of

the final results as well as the convergence rate of the new algorithm in some cases produced even more superior

solutions than the best known TSP benchmarked results.

Keywords: Symbiotic organisms search (SOS); simulated annealing (SA); traveling salesman problem (TSP);

simulated annealing based symbiotic organisms search (SOS-SA).

1. Introduction

The traveling salesman problem (TSP) is an NP-hard problem, which has remained an interesting problem for a

long time in the field of discrete or combinatorial optimization techniques, which are based on linear and non-

linear programming. The TSP presents the task of finding an optimum path through a set of given locations

(cities), such that each location is passed through only once, and the salesman returns to the start location

(Durbin, 1987; Durbin et al., 1989). In operational research, TSPs still remain one of the most challenging

problems, which cannot be solved easily by using traditional optimization techniques such as enumeration

methods and mathematical programming (Çunkaş and Özsağlam, 2009). Solving TSP optimally takes huge

computational time and therefore the need for the development of fast heuristics that gives near optimal solution

in a reasonable computational effort (Matai et al., 2010). While on small graphs the execution time may not be

significant, on large datasets containing millions of vertices and edges the limitations (e.g., traceroutes, social

graphs) of existing approaches become obvious. With the emergence of the Big Data era when we deal with

huge graphs with different properties (e.g., sparse, power law, dense) there is a crucial need to develop novel

techniques based on new paradigms and scalable algorithms. Among possible approaches are those inspired

from metaheuristics which allow for a better exploration of the solution space and faster convergence to

suboptimal solutions.

In the past decades, many metaheuristic based algorithmic strategies were proposed in the quest for finding

near-optimum solutions to the TSPs, among which include Tabu Search (TS) (Knox, 1994), SA (Kirkpatrick et

al., 1983), Genetic Algorithm (GA) (Johnson and McGeoch, 1997), Ant Colony Optimization (ACO) (Dorigo

and Gambardella, 1997), Particle Swarm Optimization (PSO) (Shi et al., 2007), Artificial Immune System (AIS)

(Farmer et al., 1986), Artificial Neural Network (ANN) (Jolai and Ghanbari, 2010), Elastic Net (EN) (Durbin et

al., 1989), SOS (Cheng and Prayogo, 2014).

* Corresponding author:
 Email: EzugwuA@ukzn.ac.za (A. E. Ezugwu)

In this paper we focus on the SOS algorithm for reasons explained next. The algorithm draws inspiration from

nature through the symbiotic relationships strategies, which exist among organisms in the ecosystem. The SOS

algorithm was initially proposed to solve continuous engineering optimization problems. Several results (Tran et

al., 2016; Cheng et al., 2015; Aulady, 2013; Verma et al., 2015), which have used the SOS algorithm as an

optimization tool to find global optimum solutions, indicate that the algorithm shows a considerable robustness

in its performance when tested on complex mathematical benchmark problems. Therefore, the potential of SOS

in finding global solution to the aforementioned optimization problems makes it attractive for further

investigation. Furthermore, since SOS has not gained wide recognition in solving discrete problems, such as,

routing and assignment problems, we believe that demonstrating its effectiveness in solving TSP could pave the

way for wide scale applicability in solving complex discrete problems.

The TSP optimization problem is considered to be a large-scale optimization problem, which makes it difficult

to obtain satisfactory results by just using classical metaheuristic optimization algorithms such as SA, TS, GA

and ACO. Recent researches have shifted focus to employing different hybridization techniques to solve all

kinds of complex large scale optimization problems. The essence of the hybridization process is mainly to

utilize the complimentary advantages and value-added information found in several algorithms and insufficient

in single algorithm based approaches to enhance the efficiency of solving the large-scale problem like the TSP.

Two recent researches on the application of SOS to solve related discrete optimization problems for instance,

have shown that the classical version of the SOS algorithm still required some level of improvement for it to

achieve better solution quality, as evident in the work presented in (Yu et al., 2016; Eki et al., 2015). The

implementation results from these researches, shows that by combining basic SOS with some other algorithms,

like the local search methods or solution representation, this significantly improves the computation efficiency

and quality of the solutions. Another impact of the hybrid features is that it allows the SOS algorithm to easily

escape from falling into local optimum.

While the specific objective of this paper is to show that the hybrid SOS is a promising candidate optimization

solution for the TSP, the result also emphasizes the future applicability of the SOS algorithm augmented with

SA in efficiently solving a wider range of complex discrete problems. The proposed SOS-SA method was

implemented in Matlab and tested using TSP data sets (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/)
against other state-of-the-art algorithms such as Genetic Algorithm Particle Swarm Optimization Ant Colony

Optimization (GA-PSO-ACO) (Deng et al., 2012), Adaptive Simulated Annealing Algorithm with Greedy

Search (ASA-GS) (Geng et al., 2011), Multi-agent Simulated Annealing Algorithm with Instance-Based

Sampling (MSA-IBS) (Wang et al., 2015), List-Based Simulated Annealing (LBSA) (Zhan et al., 2016), and

Improved Discrete Bat algorithm (IBA) (Osaba et al., 2016). These sets of algorithms have been selected

because of their common similarities in implementation techniques with the SOS-SA algorithm. Results show

that the hybridized SOS-SA algorithm is able to achieve better results in solving most of the TSP benchmark

problems with graphs ranging from 42 up to 33,810 cities.

The technical contributions of this paper are as follows:

i. Proposal of a new TSP optimization method, called simulated annealing based symbiotic organisms

search optimization algorithm.

ii. Implementation of the proposed method using different scale of TSP benchmark instances.

iii. Performance comparison of the proposed hybrid method with other state-of-the-art algorithms (GA-

PSO-ACO, ASA-GS, MSA-IBS, LBSA, and IBA).

iv. Descriptive statistical validation of the SOS-SA results against other selected methods using different

statistical analysis tests.

The remainder of this paper is organised as follows: Section 2 presents the related work; Section 3 provides a

short description of the TSP problem; Section 4 presents the proposed SOS-SA method of solving TSP; while

Section 5 describes and discusses the simulation results carried out on some benchmarked TSP instances;

finally, conclusions and directions for future research are given in Section 6.

2. Related works

The TSP being a hard combinatorial optimization problem with high social interest, has over the past decades

drawn the attention of the scientific communities, with a record number of optimization algorithms being

proposed to address the minimization problem (Chen and Chien, 2011;). Interested readers may refer to (Wang

et al., 2016; Kanda et al., 2016; Sundar and Rathinam, 2016; Cornu et al., 2016; Zhang and Zhou, 2016;

Delgadillo et al., 2016; Zhang et al., 2016; Barbato et al., 2016; Mohan et al., 2017) for more recent results on

the TSP cases. In this section we present some of the most representative results.

The TSP being an NP-hard problem, which in most cases does not admit any constant factor approximation

(Garey and Johnson, 1979, except in some exceptional cases: Bender and Chekuri, 2000 and Mohan et al.,

2017), has resulted in the proposition of different optimization approaches, which are intended to provide

solutions to the complex problem. In (Matai et al., 2010) for instance, two approaches of solving TSP were

identified. The first approach uses the exact methods, of which guaranty of achieving optimal solution is greatly

disadvantaged by the exponential cost of execution time that scale with the problem dimension. Thus, this

approach is considered unsuitable for solving large TSPs. Two common examples of this approach are the

dynamic programming (Bellman, 1962), and branch and bound (Lawler and Wood, 1966; Volgenant and

Jonker, 1982). The second approach is known as the approximation algorithm. This approach only gives near

optimal solution, but does not guarantee optimal solution. One main advantage of this approach is that it

requires minimal computational effort regardless of the problem dimension. The approximation algorithms can

further be classified into local search and heuristic optimization algorithms. The local search or improvement

heuristics are usually applied to improve the quality of TSP solution generated. Examples of these heuristics are

the 2-Opt (Johnson, 1990), and 3-Opt (Lourenço et al., 2003) exchange heuristics.

In recent years, most of the new proposed methods for solving TSP indicate shift towards improving the

solution quality of the traditional based heuristics, through the development of hybrid algorithms that overcome

the disadvantages of the individual algorithms. Recent studies also show that the combined efforts of two or

more algorithms are usually more effective than the effort of each individual algorithm (Lin et al., 2016; Tsai et

al., 2004; Katayama et al., 2000; Talbi, 2002). This generally implies that often at times the capabilities of most

hybrid algorithms are more effective and efficient than that of the individual algorithms.

Some of the existing hybrid heuristic optimization based approaches used for searching near optimal solution for

TSPS outside those aforementioned in the previous section include: a hybrid of genetic algorithm particle swarm

optimization ant colony optimization (GA-PSO-ACO) (Deng et al., 2012), adaptive simulated annealing

algorithm with greedy search (ASA-GA) (Geng et al., 2011), multi-agent simulated annealing algorithm with

instance-based sampling (MSA-IBS) (Wang et al., 2015), list-based simulated annealing (LBSA) (Zhan et al.,

2016), invasive weed colony optimization (IWO) (Zhou et al., 2015), mosquito host-seeking algorithm (MHSA)

(Feng et al., 2009), an improved discrete bat (IBA) algorithm (Osaba et al., 2016), Discrete Cuckoo Search

(DCS) algorithm (Ouaarab et al., 2014), genetic simulated annealing ant colony system with particle swarm

optimization (Chen and Chien, 2011) and the symbiotic organisms search (SOS) algorithm (Yu et al., 2016; Eki

et al., 2015). These algorithms are problem independent and have strong global search capability, while the

hybrid features allows them to easily escape from falling into local optimum. Subsequently, brief reviews of the

related literature are discussed.

GA-PSO-ACO (Deng et al., 2012) is an algorithm which combines the evolution ideas of the genetic algorithm,

particle swarm optimization and ant colony optimization algorithm to solve the travelling salesman problem.

The implementation entails applying the combination of randomicity, rapidity and wholeness of the genetic

algorithm and particle swarm optimization methods to achieve a series of sub-optimal solutions. The resulting

solution is later exploited by the ant colony optimization procedure, by taking the advantage of the parallel,

positive feedback and high accuracy of solution to implement solving of whole problem. Osaba et al. (2016)

proposed an improved discrete version of bat algorithm (IBA) for solving both symmetric and asymmetric TSP.

The algorithm which was tested on 37 TSP instances produced an interesting result, which outperformed the

other alternative benchmarked algorithms in most of the cases.

Geng et al. (2011) proposed an adaptive hybrid algorithm that combines the problem solving efforts of

simulated annealing and greedy search technique (ASA-GS) to solve the TSP. The greed search technique assist

in speeding up the solution convergence rate, while the hybrid algorithm achieves better trade-off between

computation time and solution quality. The algorithm evaluation shows that it has good scalability and performs

better even with large-scale TSP instance. A combination of multi-agent and simulated annealing with instance

based sampling (MSA-IBS) was proposed by Wang et al. (2015) and used to solve the TSP. The hybrid process

exploited the learning ability of the instance-based search algorithm to improve the sampling efficiency of the

simulated annealing, the algorithm competed favourably in terms of solution quality and utilization of system

resource (like cpu time) as compared to the ASA-GS algorithm. In the work of Zhan et al. (2016), a list-based

simulated annealing algorithm was proposed also to solve the TSP. The algorithm uses the effectiveness and

parameter sensitivity of the list-based cooling schedule to control temperature reduction in SA, which is used as

acceptance criteria for choosing candidate solution. The simulation result of the LBSA shows that it is robust

and performs fairly well compared to some other state-of-the-art algorithms.

Similar works that uses simulated annealing can be found in (Chen and Chien, 2011), where the authors

proposed a new hybrid optimization method for solving the TSP. This paper consists of a hybrid of genetic

simulated annealing, ant colony system, and particle swarm optimization technique. In the implementation, the

ant colony system is used to generate the initial solution for the genetic algorithm’s procedure, after which the

initial solution is fine-tuned with the simulated annealing, which generates better solutions than the previous

one. The role of the particle swarm optimization technique is to facilitate the exchange of pheromone

information among the populations in the ant colony system after a predefined number of cycles. The simulation

results showed that the hybrid algorithm performed better compared to the other algorithms. In (Malek et al.,

1998) parallel and serial version of simulated annealing and tabu search algorithms was implemented and used

to solve the TSP. In (Fang et al., 2007), particle swarm optimization with simulated annealing was implemented

to solve TSP. The simulated annealing was applied to slowdown the degeneration of PSO swarm and to also

increase the swarm’s diversity. In addition, the choice of selecting the benchmarked algorithms that were

compared with the proposed SOS-SA was made considering two significant characteristics; (i) population based

algorithm implementations namely, GA-PSO-ACO, IBA and SOS, (ii) SA-based hybrid algorithm

implementations namely, ASA-GS, MSA-IBS and LBSA.

Due to the wider interest of this area of study, summarising all the related materials available in the literatures

can be a daunting task to embark on. Therefore, the interested readers are referred to the following materials for

further information on TSP and its computational solution (Applegate et al., 2011, Reinelt, 1998; Jünger et al.,

1995).

In this work we will show that existing algorithms such as GA-PSO-ACO, MSA-IBS, LBSA, SOS, and IBA

underperform our hybrid algorithm SOS-SA which enables SOS to escape local minimums and improves in

some cases some of the best results known so far.

3. Problem Formulation for TSP

The TSP is a well-known combinatorial optimization problem that has for the past decades attracted the interest

of research communities. There are different solution approaches proposed in the literatures, which are currently

being used to solve the three classes of the TSPs namely, the symmetric, asymmetric and multi traveling

salesman problems. The TSP problems are said to be NP-hard optimization problems, which mean that there is

no known polynomial time algorithm that can specifically guarantee the attainment of its optimal solution and

that is why heuristic or approximation approaches remain the preferred methods often recommended for solving

the TSP problems. The TSP has numerous application areas which were highlighted in (Matai et al., 2010),

some of which include: drilling of printed circuit boards, overhauling gas turbine engines, x-ray crystallography,

computer wiring, crew scheduling, interview scheduling, mission planning, vehicle routing, mask plotting in

PCB production, and design of global navigation satellite system surveying networks. In this paper, of interest is

the symmetric travelling salesman problem.

The symmetric TSP can also be defined in terms of a complete undirected graph 𝐺 = (𝑉, 𝐸), where the set 𝑉 =
 {1, 2, … , 𝑛} is the vertex set, 𝐸 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 < 𝑗} is an edge set (Matai, Singh, and Mittal, 2010). A cost

matrix 𝑋 = (𝑥𝑖,𝑗)𝑛×𝑛 is defined on 𝐸. The cost matrix satisfies the triangle inequality whenever 𝑥𝑖,𝑘 + 𝑥𝑗,𝑙 ≤

𝑥𝑖,𝑙 + 𝑥𝑗,𝑘for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 1 ≤ 𝑘 < 𝑙 ≤ 𝑛, or 𝑥𝑖,𝑗 ≤ 𝑥𝑖,𝑘 + 𝑥𝑘,𝑗, for all 𝑖, 𝑗, 𝑘. In particular, this is the

case of planer problems for which the vertices are points 𝑑𝑖 = (𝑞𝑖 , 𝑝𝑖) in the plane, and 𝑥𝑖,𝑗 =

√(𝑞𝑖 − 𝑞𝑗)
2 + (𝑝𝑖 − 𝑝𝑗)

2 is the Euclidean distance. The triangle inequality is also satisfied if 𝑥𝑖𝑗 is the length of

a shortest path from 𝑖 to 𝑗 on 𝐺. Also, in the classical problem in combinatorial optimization (Ozcan, and

Erenturk, 2004), the TSP can be defined as follows: given 𝑛 cities and the distance 𝑥𝑖𝑗 between them, the

shortest distance 𝜑 through all the cities can be computed by minimizing the function expressed in Eq. 1.

𝑓(𝜑) = ∑ 𝑥𝜑(𝑖),𝜑(𝑖+1) +

𝑛

𝑖=1

𝑥𝜑(𝑛),𝜑(1) (1)

where, 𝜑 a set of permutations 𝜑 → {1,2, … , 𝑛} with 𝑛 being all the possible number of tours of the problem,

and 𝑓(𝜑) representing the cost of the permutation 𝜑.

4. Simulated Annealing based Symbiotic Organisms Search (SOS-SA)

In this section, the two basic search algorithms that make up the hybrid algorithm proposed for solving the TSP

problem are discussed.

4.1 Symbiotic Organisms Search Algorithm

In the real world, the close association between two or more different organisms of different species living

together in an ecosystem, often but not necessarily benefits each member. When the relationship is beneficial to

both organisms, it is called mutualism and symbiosis. When it is beneficial to one without effect on the other it

is called commensalism, and when it is beneficial to one and detrimental to the other it is called parasitism.

Almost all the metaheuristics optimization algorithms are bio-inspired from natural biological phenomena,

which follow in the same trend with the symbiotic relationship explained in this section. The SOS algorithm

which applies the same symbiotic relationship principles seen among organisms in nature in solving

optimization problems differs greatly from other similar metaheuristic algorithms, in the sense that it does not

require any algorithm-specific parameters (Cheng et al., 2015). One major advantage of this is that an improper

tuning related to algorithm-specific parameters would lead to an increase in computational time and premature

convergence.

The algorithm is implemented by first creating a random ecosystem or population matrix, with each row (known

as organism) representing a candidate solution to the corresponding problem. The size of the population often

referred to as the ecosystem size (𝑒𝑐𝑜_𝑠𝑖𝑧𝑒) defines the number of organisms that make up the ecosystem, a

parameter usually set by the user. The search process starts immediately after the initial ecosystem has been

created and it comprises of continuous interactions among the ecosystem member organisms. The interactions

follow the three phases of symbioses interaction namely, mutualism, commensalism, and parasitism, which the

organisms adopt to increase their survival and fitness advantage for a prolonged period of time. In the course of

the interaction process, an organism would either receive a benefit or harmed, in which case the one that

benefits evolve to a fitter organism whereas the one that is harmed is eliminated. Iteratively the best organism is

modified and updated until the stopping criterion is reached. The SOS is implemented using the pseudocode

shown in algorithm listing 1.

The classical SOS algorithm was designed to operate on real-value variables, and this would probably limits it

application to discrete optimization problems, a conversion function, which converts the variables from real

values to integer values is given in equation 4. This idea follows similar concept proposed in (Tran et al., 2016)

to make SOS suitable for application to solve the TSP. Consider a distance or cost matrix where 𝑥𝑖,𝑗 is the

distance of 𝑖𝑡ℎ city to 𝑗𝑡ℎ city, which is optimized by the SOS algorithm during the search process. However, the

ecosystem population is created before the start of the search process and the population consist of all the

feasible solutions or possible associated tour costs defined by the distance matrix expressed in Eq. 2.

𝑋𝑚×𝑛 =

[

𝑥1,1 𝑥1,1 ⋯ 𝑥1,𝑛

𝑥2,1 𝑥2,2 … 𝑥2,𝑛

⋮ ⋮ ⋮ ⋮
𝑥𝑖,1 𝑥𝑖,2 𝑥𝑖,𝑗 𝑥𝑖,𝑛

⋮ ⋮ ⋱ ⋮
𝑥𝑚,1 𝑥𝑚,2 ⋯ 𝑥𝑚,𝑛]

 (2)

where 𝑚 represent the ecosystem size or the problem size and 𝑛 represent the number of elements in a vector of

decision variables in the problem under consideration. The decision variables for the TSP, which consists of the

cities and their associated costs are represented as a vector, which is expressed in Eq. 3.

𝑋 = [𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑗 , … , 𝑥𝑖,𝑛 ,] (3)

Therefore, to convert the real-value variables to integer values, the function expressed in Eq. 4 is implemented.

𝑋𝑖,𝑗 = 𝑟𝑜𝑢𝑛𝑑{𝑥𝑖,𝑛 × 𝑠𝑤𝑎𝑝(𝜑, 𝑖 + 1, 𝑗)} (4)

where 𝑥𝑖,𝑛 is the swapped state value, that is, the value for a particular tour through the set of given cities or

points. Usually, a neighbour state is obtained by randomly swapping the order of two cities. The 𝑠𝑤𝑎𝑝 function

represents the total number of swap action for each tour, while 𝑛 represents the number of tours. The function

rounds in Matlab is used to round each point of 𝑋𝑖,𝑗 to the nearest integer less than or equal to that point.

The SOS optimization strategy is performed by following three search and update phases (i.e., mutualism,

commensalism, and parasitism) as presented subsequently.

Mutualism phase: In the mutualism phase, two organisms 𝑋𝑖 and 𝑋𝑗|𝑖 ≠ 𝑗 (𝑋𝑗 is selected randomly from the

population) are considered on the bases of mutual interest. The association between 𝑋𝑖 and 𝑋𝑗 is to increase

mutual survival of the two organisms in the ecosystem. The resulting solution 𝑋𝑖
′and 𝑋𝑗

′are computed as shown

in Eqs.5 and 6:

𝑋𝑖
′ = 𝑋𝑖 + 𝑟𝑎𝑛𝑑(0,1) × (𝑋𝑏𝑒𝑠𝑡 − 𝑀𝑢𝑡𝑢𝑎𝑙𝑣𝑒𝑐𝑡 × 𝐾1) (5)

𝑋𝑗
′ = 𝑋𝑗 + 𝑟𝑎𝑛𝑑(0,1) × (𝑋𝑏𝑒𝑠𝑡 − 𝑀𝑢𝑡𝑢𝑎𝑙𝑣𝑒𝑐𝑡 × 𝐾2) (6)

The mutual vector denoted by 𝑀𝑢𝑡𝑢𝑎𝑙𝑣𝑒𝑐𝑡 is expressed as shown in Eq. 7.

𝑀𝑢𝑡𝑢𝑎𝑙𝑣𝑒𝑐𝑡 =
𝑋𝑖+𝑋𝑗

2
 (7)

The 𝑟𝑎𝑛𝑑 (0,1) function is a vector of uniformly distributed random numbers between 0 and 1. The values of

the benefit factors 𝐾1 and 𝐾2 are determined randomly as either 1 or 2, and represents the level of benefit to

each of the two organisms 𝑋𝑖and 𝑋𝑗 (where 1 and 2 denotes adequate and huge benefit that can be received by

both 𝑋𝑖 and 𝑋𝑗 in their current mutual symbiotic states). The organism with the best objective or fitness function

value in terms of the degree of adaptation in the ecosystem is represented by 𝑋𝑏𝑒𝑠𝑡 . The 𝑀𝑢𝑡𝑢𝑎𝑙𝑣𝑒𝑐𝑡 , signifies

mutualistic characteristics exhibited between the two organism to increase their survival advantage. It should be

noted that any update for any one of the two organisms is computed only if its new fitness function value

denoted by 𝑓(𝑋𝑖
′) or 𝑓(𝑋𝑗

′) is better than the previous solutions, 𝑓(𝑋𝑖) and 𝑓(𝑋𝑗). Given the above Eqs. 5 and 6

become:

𝑋𝑖
′ = 𝑋𝑖 + 𝑟𝑎𝑛𝑑(0,1) × (𝑋𝑏𝑒𝑠𝑡 − 𝑀𝑢𝑡𝑢𝑎𝑙𝑣𝑒𝑐𝑡 × 𝐾1), 𝑖𝑓 𝑓(𝑋𝑖

′) > 𝑓(𝑋𝑖) (7)

𝑋𝑗
′ = 𝑋𝑗 + 𝑟𝑎𝑛𝑑(0,1) × (𝑋𝑏𝑒𝑠𝑡 − 𝑀𝑢𝑡𝑢𝑎𝑙𝑣𝑒𝑐𝑡 × 𝐾1), 𝑖𝑓 𝑓(𝑋𝑗

′) > 𝑓(𝑋𝑗) (8)

Commensalism phase: In this phase, the organism 𝑋𝑖 selected randomly from the ecosystem strives to increase

its benefits from its association with 𝑋𝑗. This kind of symbiotic association only places 𝑋𝑖 at an advantage

position, over 𝑋𝑗 , even though, 𝑋𝑗 is not harmed in the process. The new solution emanating from the symbiotic

relationship is calculated as shown in Eq. 9:

𝑋𝑖
′ = 𝑋𝑖 + 𝑟𝑎𝑛𝑑(−1,1) × (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑗) 𝑖𝑓 𝑓(𝑋𝑖

′) > 𝑓(𝑋𝑖) (9)

Parasitism phase: Also in Cheng and Prayogo (2014), an example of parasitic symbiotic relationship was

illustrated by using the association that exists among three organisms, the plasmodium parasite, anopheles

mosquito and the human host. In this kind of association, the human host is harmed, the anopheles mosquito,

which is the parasite carrier, is left unharmed, while the plasmodium parasite thrives and reproduces inside the

human body. In the SOS model, by mimicking the aforementioned parasitic symbiotic behaviours, 𝑋𝑖 is

assigned a role akin to the anopheles mosquito through the creation of an artificial vector (or parasite vector)

𝑃𝑣𝑒𝑐 in the search space, by fine-tuning the randomly selected dimension of organism 𝑋𝑖 . Then, the organism 𝑋𝑗

is selected randomly from the ecosystem and serve as host to 𝑃𝑣𝑒𝑐 . Then, 𝑃𝑣𝑒𝑐will try to replace 𝑋𝑗 in the

ecosystem. If 𝑃𝑣𝑒𝑐 has a better fitness value than 𝑋𝑗 , then 𝑋𝑗 is replaced by 𝑃𝑣𝑒𝑐 , otherwise, 𝑋𝑗develops an

immunity from 𝑃𝑣𝑒𝑐 , which will invariably cease to exist in the ecosystem. The procedure for the classical SOS

algorithm proposed by Cheng and Prayogo (2014) is presented in the algorithm listing 1 below.

Algorithm 1: SOS pseudocode

Input: Initial ecosystem 𝑋, ecosystem size 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒, maximum iteration 𝑚𝑎𝑥𝑖𝑡𝑟

Output: best solution 𝑋𝑏𝑒𝑠𝑡

1: For counter = 1 to 𝑚𝑎𝑥𝑖𝑡𝑟

2: For each organism in the ecosystem 𝑋𝑖 , 𝑖 = 1,2, … , 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒

3: Search of the best organism 𝑋𝑏𝑒𝑠𝑡

4: Update organism by

a) Mutualism phase

b) Commensalism phase and

c) Parasitism phase

5: End for

6: End for

The SOS algorithm though efficient in solving complex optimization and discrete engineering problems, still

has high probability of plunging into local optimum (Vincent, et al., 2016). Therefore, the SOS-SA algorithm

has been proposed to overcome this shortcoming.

4.2 Simulated Annealing Algorithm

The application of SA to solve TSP was first introduced by Kirkpatrick et al. (1983). The process begins by

considering a solution space 𝑆 of a particular tour through the set of given cities or points 𝑋𝑖|𝑖 = 1,2, … , 𝑛, with

an update solutions 𝑋𝑖
′ created by randomly switching the orders of two cities. The energy function or fitness

function, which represents the length of route 𝑋𝑖, is denoted by 𝑓(𝑋𝑖). The relative change in cost ∆𝑓 between

𝑋𝑖 and 𝑋𝑖
′ is expressed as ∆𝑓 =

𝑓(𝑋𝑖
′)−𝑓(𝑋𝑖)

𝑓(𝑋𝑖)
. Beginning with the initial solution, only the solution which results in

smaller energy value than the previous solution is accepted by the algorithm, in other words, a solution is only

accepted when the fitness value of 𝑓(𝑋𝑖
′) < 𝑓(𝑋𝑖). However, accepting or rejecting a new solution with higher

fitness values for 𝑋′can be based on the acceptance probability function given as follows (Eq. 10):

𝑃(∆𝑓, 𝑇𝑘) = {𝑒
(
−∆𝑓
𝑇𝑘

)
, ∆𝑓 > 0

1, ∆𝑓 ≤ 0
 𝑓𝑜𝑟 𝑇𝑘 > 0 (10)

where 𝑇𝑘 is the parameter temperature at the 𝑘𝑡ℎ instance of accepting a new solution route, and for any given 𝑇,
for ∆𝑓 > 0, 𝑃 is greater for smaller values of ∆𝑓, which means that for the new solution 𝑋𝑖

′ that is only slightly

more costly than the current solution 𝑋𝑖 is more likely to be accepted than the new solution 𝑋𝑖
′ that is much more

costly than the current solution 𝑋𝑖. The value of 𝑇, which is an important control parameter, decreases

proportionally with 𝑃, that is as the lim
𝑇→0+

𝑒
(
−∆𝑓

𝑇𝑘
)
= 0 , ∆𝑓 > 0. Therefore, as the value of 𝑇 decreases, the

probability of accepting a degraded route also decreases. In this paper the following cooling schedule is adopted

(Eq. 11):

𝑇𝑘+1 = 𝛼𝑇𝑘 (11)

Where, 𝛼 denotes the cooling coefficient, which is some random constant values between 0 and 1, it is also the

rate at which the temperature is lowered each time a new solution 𝑋𝑖
′ is discovered. The SA procedure is as

presented in the algorithm listing 2 below:

Algorithm 2: Pseudocode for SA

Input: Initial temperature 𝑇0, final temperature 𝑇𝑘 , cooling rate 𝛼, maximum iteration 𝑚𝑎𝑥𝑖𝑡𝑒𝑟

Output: Best cost

1: Chose a random route 𝑋𝑖 and initialize 𝑇0 and 𝛼

2: For counter=1 to 𝑚𝑎𝑥𝑖𝑡𝑒𝑟

3: Create a new solution 𝑋𝑖
′ by randomly swapping two cities in neighbourhood of 𝑋𝑖

3: Compute ∆𝑓 =
𝑓(𝑋𝑖

′)−𝑓(𝑋𝑖)

𝑓(𝑋𝑖)
 and use the acceptance probability function to either accept or reject the new

solution, based on the following conditions:

a) if ∆𝑓 ≤ 0, then 𝑋𝑖 ← 𝑋𝑖
′

b) if ∆𝑓 > 0, then 𝑋𝑖 ← 𝑋𝑖
′ depending on Eq. (10)

4: Reduce the temperature using Eq. (11) and increment 𝑘

5: Update the best solution

6: End for

4.3 SOS-SA Framework for Solving TSP

The SOS-SA algorithm is a hybrid of symbiotic organisms search and simulated annealing algorithm. The SA is

a local search metaheuristic algorithm widely used for solving both discrete and continuous optimization

problems (Kirkpatrick et al., 1983). One of the main benefits of SA lies in its ability to escape the problem of

getting stuck in a local minimum by allowing hill-climbing moves to search for a global solution. Therefore, a

hybrid approach is proposed by introducing SA is to assist the SOS in avoiding being trapped into local

minimum and to also increase its level of diversity while searching for optimum solution in the problem search

space. Exploiting the fast optimal search capability of the SOS algorithm with the hill-climbing probability jump

property of the SA, as described in algorithm listing 1 and 2 above, a new hybrid algorithm (SOS-SA) is

proposed to solve the TSP problem. The steps of the hybrid SOS-SA algorithm are then described in algorithm

listing 3.

Algorithm 3: SOS-SA pseudocode

Input: Initial ecosystem 𝑋, ecosystem size 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒, Initial temperature 𝑇0, final temperature 𝑇𝑘 , cooling rate 𝛼,

maximum iteration 𝑚𝑎𝑥𝑖𝑡𝑒𝑟,

Output: best known solution 𝑋𝑏𝑒𝑠𝑡

1: Create and evaluate new solutions

a) Generate 𝑋𝑖, 𝑖 = 1,2, … , 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒

𝑭𝒐𝒓 𝑖 = 1 𝑡𝑜 𝑚𝑎𝑥𝑖𝑡𝑒𝑟

b) Compute cost / fitness function of 𝑋𝑖, 𝑓(𝑋𝑖)

c) Determine the best solution 𝑋𝑏𝑒𝑠𝑡

d) Compute ∆𝑓 =
𝑓(𝑋𝑖

′)−𝑓(𝑋𝑖)

𝑓(𝑋𝑖)

If ∆𝑓 ≤ 0 or 𝑝 > 𝑢, where 𝑝 is the acceptance probability (Eq, 10) and 𝑢 is a random number

between 0 and 1

e) then update solution by assigning 𝑋𝑏𝑒𝑠𝑡 ← 𝑋𝑖

f) End if
𝑭𝒐𝒓 𝑖 = 1 𝑡𝑜 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒

2: Update organism (route) with SA (Algorithm 1) on the three SOS phases in Algorithm 2

 𝑭𝒐𝒓 𝑖 = 1 𝑡𝑜 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒

𝑎)𝑀𝑢𝑡𝑢𝑎𝑙𝑖𝑠𝑚 𝑝ℎ𝑎𝑠𝑒
𝑏)𝐶𝑜𝑚𝑚𝑒𝑛𝑠𝑎𝑙𝑖𝑠𝑚 𝑝ℎ𝑎𝑠𝑒

𝑐)𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑠𝑚 𝑝ℎ𝑎𝑠𝑒
} The three SOS phases are applied to optimize the search process

3: Update the best solution 𝑋𝑏𝑒𝑠𝑡 ever found

4: Update temperature using the cooling schedule given in Eq. (11)

5: End for

6: End for

7: End for

The SOS-SA algorithm follows through all the steps highlighted in algorithm 3, starting by first initializing the

ecosystem 𝑋𝑖 of size 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒. Then creating and evaluating each new organism’s positions by computing and

comparing their respective tour cost functions, such that the organism with the least tour cost is selected as 𝑋𝑏𝑒𝑠𝑡

. Iteratively, the process is repeated by updating the current solution with the best solution ever found until the

organism with the global best solution is discovered. The SOS-SA algorithm uses the three SOS relationships’

phases to update the organism. The algorithm finishes when maximum iterations criterion is attained. Otherwise,

the algorithm continues to calculate new positions. However, stopping condition is quite an important factor that

can determine the final result of the simulation. For example, if the algorithm is stopped too early, the

approximation of the solution might not be even close to the targeted global optimum, and prolonging the

simulation incurs unnecessary huge amount of computational effort and time. A fixed generation number of

1,000 was set as the stopping condition for the simulation and this setting was adequate, as it limits

unproductive work. Fig. 1 illustrates the SOS-SA algorithm procedures.

Fig.1. Flowchart for the SOS-SA algorithm

Ecosystem Initialisation, 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒, initial ecosystem 𝑋𝑖, initial

temperature, cooling rate, termination criteria

Generate a candidate solution 𝑋𝑖
′, based on current solution 𝑋𝑖

and a specified neighbourhood structure

𝑝 = 𝑒
ቀ
−∆𝑓
𝑇𝑘

ቁ

Generate 𝑢 = 𝑅𝑎𝑛𝑑 (0, 1) randomly

Identify best organism(𝑋𝑏𝑒𝑠𝑡)

∆𝑓 ≤ 0

𝑋𝑏𝑒𝑠𝑡 = 𝑋𝑖

Update organism by 𝑴𝒖𝒕𝒖𝒂𝒍𝒊𝒔𝒎 𝒑𝒉𝒂𝒔𝒆

Update organism by 𝑪𝒐𝒎𝒎𝒆𝒏𝒔𝒂𝒍𝒊𝒔𝒎 𝒑𝒉𝒂𝒔𝒆

Update organism by 𝑷𝒂𝒓𝒂𝒔𝒊𝒕𝒊𝒔𝒎 𝒑𝒉𝒂𝒔𝒆

𝑢 < 𝑝

𝑖 = 𝑒𝑐𝑜_𝑠𝑖𝑧𝑒?

Apply cooling schedule: 𝑇𝑘+1 = 𝛼𝑇𝑘

is termination
condition achieved?

𝑚𝑎𝑖𝑛 𝑙𝑜𝑜𝑝

Yes

Yes

No

No

No

No

Yes

Best known solution

𝑖 = 𝑖 + 1

Yes

5. Simulation and Result

The TSP experimental data sets used in this paper were obtained from the MP-TESTDATA, which covers: The

TSPLIB Symmetric Traveling Salesman Problem Instances2 and Best known solutions for symmetric TSPs3. In

order to evaluate the performance of the SOS-SA algorithm, two sets of simulation experiments were conducted.

The first experiment was carried out to evaluate the performance of the proposed SOS-SA algorithm, GA-PSO-

ACO, MSA-IBS, and LBSA, against the best known solution from the TSPLIB, on six (6) benchmarked TSP

results and their results as presented in Table 2.Similar comparisons were also carried out for SOS-SA, SOS,

GA-PSO-ACO, MSA-IBS, and LBSA, to compare the quality of solutions for each algorithm. The comparison

results are as presented in Tables 3, 4, 5, 6, 7, 8 and 9.

The second experiment was carried out to evaluate the computational effort of the SOS-SA algorithm based on

execution time, on 40 benchmarked TSP instances and the results are presented in Table 10. In Table 2, the

boldly highlighted column indicate those areas where the SOS-SA competed and performed favourably with the

best known solution of the optimal TSPLIB instance and the other three state-of-the-art algorithms. Several

statistical tests were also conducted to validate the obtained results, as depicted in Tables 11 (on 40

benchmarked TSP instance), 12 (on 20 benchmarked TSP instance), and 13 (on 16 benchmarked TSP instance).

The average of 20 trials was taken and the number of the outer iteration times was set to 1,000 and 2,000

respectively.

5.1 Experimental configurations

The experimental results presented in this section demonstrate the scalability, effectiveness and efficiency of the

SOS-SA in solving different TSP instances ranging from 42 up to 33,810 cities. The simulation time and

number of iterations used to solve the TSP instances on a single machine are similarly presented here. The

experimental testing platform for the SOS-SA and SOS algorithms were conducted on a 2.83GHz CPU Desktop

with 2GB RAM, while the implementation software is Matlab R2014b. For the implementation of MSA-IBS

and LBSA algorithms, the experiments were run on a 2.8GHz PC with 2GB RAM, ASA-GS was run on 2.83

GHz PC, and GA-PSO-ACO was run on Intel Core i52410 Laptop with 2.30 GHz and 4GB RAM. For the entire

TSP instance tested, the maximum iterations for the outer loop were set to 1,000, which correspond to the

iteration times set for the other compared algorithms. In the case of other algorithms, the selection population

size is dependent on the scale of problem instance, which is the case with SOS-SA and SOS algorithms. As

stated in (Zhan et al., 2016), the algorithm execution stopping condition is either when an optimal solution is

found or when the iteration times of the outer loop reaches 1,000.

Since parameter selection may significantly influence the solution’s quality of each algorithm performance, the

parameter settings for all the simulations conducted are presented in Table 1.

Table 1: Experimental parameter configuration

SOS-SA Parameters SOS Parameter

Population size= 50, 100 Population size= 100
Maximum iteration= 1000, 2000 Maximum iteration= 2000
Initial temperature = 0.025 Initial temperature = 0.025
Cooling rate = 0.99 Cooling rate = NA
Number of cities to swap = 2 Number of cities to swap = NA

LBSA Parameters

Population size=100
Maximum iteration = 1000

Inertia temperature = produced according to initial acceptance probability 𝒑𝟎 in the range of 𝟏𝟎−𝟐𝟎 to 0.9

Cooling rate is adaptively selected as follows: 𝒕𝒊 =
−𝒅𝒊

𝐥𝐧 (𝒓𝒊)
 , where 𝒓 is a random number and 𝒅 is the difference of objective function values.

Number of cities to swap = 2

ASA-GS Parameter MSA-IBS

Population size = NA Population size = NA
Maximum iteration= 1000 Maximum iteration= NA
Initial temperature = 1000 Initial temperature = NA
Cooling rate = ((𝜶 × 𝑵^𝟎. 𝟓 − 𝟏)) ⁄ (𝜶 × 𝑵^𝟎. 𝟓), N=no. of cities & 𝜶 = 𝟏 Cooling rate = NA
Number of cities to swap = NA Number of cities to swap = NA

IBA GA-PSO-ACO

2 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/
3 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/stsp-sol.html

Population size= 50 Population size= 100
Maximum iteration= 1000 Maximum iteration= 1000
Initial temperature = NA Initial temperature = NA
Cooling rate = NA Cooling rate = NA
Number of cities to swap = 2-opt & 3-opt Number of cities to swap = NA

5.2 Evaluation

Table 2, describes the summary of the best known results so far obtained using the SOS-SA algorithm. Where

the second column represents the name of the TSP instance, the third column represents the best known solution

length taken from the TSPLIB, the fourth column represents the length of the best known solution found by

SOS-SA algorithm, the fifth column represents the average length of the solution found by SOS-SA algorithm,

and the sixth column represents the percentage deviation of the SOS-SA best solution. The SOS-SA best

solution percentage deviation (PDbest), which determines the closeness of the solution to the best known

solution (BKS), is calculated as shown in Eq. 12:

𝑃𝐷𝑏𝑒𝑠𝑡 =
(𝐵𝑒𝑠𝑡 − 𝐵𝐾𝑆)

𝐵𝐾𝑆
× 100 (12)

where 𝐵𝑒𝑠𝑡 denotes the best length value for each algorithm for the total number of runs under each problem

instance.

The percentage deviation of the SOS-SA mean solution was also computed and used to compare it performance

with the best known solution and other algorithms. The percentage deviation of the mean solution is

subsequently defined as follows:

𝑃𝐷𝑚𝑒𝑎𝑛 =
(𝑀𝑒𝑎𝑛 − 𝐵𝐾𝑆)

𝐵𝐾𝑆
× 100 (13)

where 𝑀𝑒𝑎𝑛 denotes the average length value for each algorithm for the total number of runs under each

problem instance.

5.3 Discussion of results

Table 2 demonstrates the extreme performance capability of the SOS-SA algorithm in comparison with other

state-of-the-art algorithms. The new algorithm outperformed all the three algorithms and this include the best

known solution so far “BKS” in the six TSP instance examined with percentage deviation (𝑃𝐷𝑏𝑒𝑠𝑡) < 0 and

performance accuracy that is above 100%. Though the SOS-SA share some common characteristics with GA-

PSO-ACO based on the SOS component, and also due to the fact that each algorithm has a strong global search

capability, the GA-PSO-ACO still has very strong tendency of falling into a local minimum, for which the SA

component in the SOS-SA is able to prevent. As can be seen from the results shown in Table 2, MSA-IBS and

LBSA competed relatively and favourably with over 99% performance accuracy against the best known solution

in all the instances. The possible challenge with the two algorithms can be traced to few factors, some of which

include the use of several parameters, high computation and communication cost incurred during the iterative

execution of the algorithm, especially for the multi-agent based MSA-IBS algorithm. Fig. 2 illustrates the

performance evaluation of the SOS-SA algorithm among other three algorithms including the BKS based on

computed percentage deviation.

Table 2: Best-so-far solutions found by SOS-SA algorithm compared with the beset know solution from TSPLIB and other algorithms, the best results are highlighted in bold.

S/N Instance BKSa GA-PSO-ACO [Deng et al., 2012] MSA-IBS [Wang et al., 2015] LBSA [Zhan et al., 2016] SOS-SA

Bestb Mean Diff. PDbest (%)c Best Mean Diff. PDbest (%) Best Mean Diff. PDbest (%) Best Mean Diff. PDbest (%)

1 dantzig42 699 NA

NA NA NA

NA NA NA

NA NA 679 699.4823 -20 -2.86

2 Berlin52 7542 7544.37 7544.37 2.37 0.03 7542 7542 0 0 7542 7542 0 0 7540 7541.107 -2 -0.03

3 Pr76 108159 NA NA NA NA NA NA NA NA NA NA NA NA 107899 107899 -260 -0.24

4 Rat99 1211 1218 1275 7 0.578 1211 1211.04 0 0 1211 1211.1 0 0 1210 1210.108 -1 -0.08

5 Pr107 44303 44316 44589 13 0.029 44303 44379.88 0 0 44303 44392.25 0 0 44301 44302.83 -2 -0.01

6 Pr124 59030 59051 60157 21 0.036 59030 59032.88 0 0 59030 59031.8 0 0 58985 59010.65 -45 -0.08

aBest know solution so far or the theoretical value [http://elib.zib.de/pub/mp-testdata/tsp/tsplib/stsp-sol.html]
bBest known solution for each of the algorithms
cRelative percentage error for the results obtained by 10 runs.

The negative signs against the difference (Diff.) values and percentage deviations (𝑃𝐷𝑚𝑒𝑎𝑛 and 𝑃𝐷𝑏𝑒𝑠𝑡) in

Table 2 and other Tables are left as indication to show that the SOS-SA solution outperformed in some cases the

best known solution, although percentage deviation is supposed to be an absolute value.

Fig.2. SOS-SA best solution percentage deviations compared with GA-PSO-ACO, MSA-IBS, and LBSA.

Tables 3, 4, 5, 6, 7, 8, and 9, demonstrate the comparisons among GA-PSO-ACO, MSA-IBS, LBSA, SOS, and

SOS-SA algorithms on seven (7) different TSP instances. The comparisons are based on the quality of results

produced by each of the algorithms. Also, as earlier stated, negative value means that the SOS-SA solution is

better than the BKS solution.

Table 3: Algorithms comparison for Berlin52

Algorithm Scale BKS Best Mean Diff. PDbest (%) PDmean(%)

GA-PSO-ACO [Deng et al., 2012] 52 7542 7544.37 7544.37 2.37 0.0314 0.0314
MSA-IBS [Wang et al., 2015] 52 7542 7542 7542 0 0 0
LBSA [Zhan et al., 2016] 52 7542 7542 7542 0 0 0
SOS 52 7542 7647 7659.48 104.68 1.3880 1.5577
SOS-SA 52 7542 7540 7541.12 -2 -0.0265 -0.0117

Table 4: Algorithms comparison for Rat99

Algorithm Scale BKS Best Mean Diff. PDbest (%) PDmean(%)

GA-PSO-ACO [Deng et al., 2012] 99 1211 1218 1275 7 0.5780 5.2849
MSA-IBS [Wang et al., 2015] 99 1211 1211 1211.04 0 0 0.0033
LBSA [Zhan et al., 2016] 99 1211 1211 1211.1 0 0 0.0083
SOS 99 1211 1284 1297.381 73 6.0281 7.1330
SOS-SA 99 1211 1210 1210.108 -1 -0.0826 -0.0737

Table 5: Algorithms comparison for Pr107

Algorithm Scale BKS Best Mean Diff. PDbest (%) PDmean(%)

GA-PSO-ACO [Deng et al., 2012] 107 44303 44316 44589 13 0.0293 0.6456
MSA-IBS [Wang et al., 2015] 107 44303 44303 44379.88 0 0 0.1735
LBSA [Zhan et al., 2016] 107 44303 44303 44392.25 0 0 0.2015
SOS 107 44303 46097 46112.22 1794 4.0494 4.0837
SOS-SA 107 44303 44301 44302.83 -2 -0.0045 -0.0004

Table 6: Algorithms comparison for Pr124

Algorithm Scale BKS Best Mean Diff. PDbest (%) PDmean(%)

GA-PSO-ACO [Deng et al., 2012] 124 59030 59051 60157 21 0.0004 1.9092
MSA-IBS [Wang et al., 2015] 124 59030 59030 59032.88 0 0 0.0049
LBSA [Zhan et al., 2016] 124 59030 59030 59031.80 0 0 0.0030
SOS 124 59030 68942 69211.12 9912 0.1679 17.2474
SOS-SA 124 59030 58985 59010.65 -45 -0.0008 -0.0328

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Berlin52 Rat99 Pr107 Pr124

P
e

rc
e

n
ta

ge
 d

e
vi

at
io

n
(%

)

TSPLIB problem instance

GA-PSO-ACO

MSA-IBS

LBSA

SOS-SA

Table 7: Algorithms comparison for Rat575

Algorithm Scale BKS Best Mean Diff. PDbest (%) PDmean(%)

GA-PSO-ACO [Deng et al., 2012] 575 6773 6912 6952 139 2.0523 2.6428
MSA-IBS [Wang et al., 2015] 575 6773 6819 6854.64 46 0.6792 1.2054
LBSA [Zhan et al., 2016] 575 6773 6829 6847.95 56 0.8268 1.1066
SOS 575 6773 7018.22 6991.92 245.22 3.6206 3.2322
SOS-SA 575 6773 6773 6802.04 0 0 0.4288

Table 8: Algorithms comparison for Rat783

Algorithm Scale BKS Best Mean Diff. PDbest (%) PDmean(%)

GA-PSO-ACO [Deng et al., 2012] 783 8806 9030 9126 224 2.5437 3.6339
MSA-IBS [Wang et al., 2015] 783 8806 8897 8918.28 91 1.0334 1.2750
LBSA [Zhan et al., 2016] 783 8806 8887 8913.25 81 0.9198 1.2179
SOS 783 8806 9884.37 9906.88 1078.37 12.2459 12.501
SOS-SA 783 8806 8806 8817.91 0 0 0.1353

Table 9: Algorithms comparison for Pr1002

Algorithm Scale BKS Best Mean Diff. PDbest (%) PDmean(%)

GA-PSO-ACO [Deng et al., 2012] 1002 259045 265987 266774 6942 2.6798 2.9837
MSA-IBS [Wang et al., 2015] 1002 259045 261463 262211.7 2418 0.9334 1.2225
LBSA [Zhan et al., 2016] 1002 259045 261490 262202.5 2445 0.9439 1.2189
SOS 1002 259045 280169.68 281140.08 21124.68 8.1548 8.5294
SOS-SA 1002 259045 261491 262301.8 2446 0.9442 1.2572

In Table 10, the computational cost for the four algorithms are given in the last column under the title ‘Time’,

and it’s clear that the SOS-SA has the least convergence time frame compared to the other three algorithms.

Generally, in terms of the convergence time, it can be argued that the SOS-SA is more successful than the

remaining three algorithms, considering for example: the TSP instance ‘Rd400’ where it takes SOS-SA 2.71

seconds to converge, while in the case of the other three, it took 30.4 seconds for ASA-GS, 3.2 seconds for

MSA-IBS, and 3.46 seconds for LBSA respectively. However, there are instances where the SOS-SA is

outperformed by both LBSA and MSA-IBS, and this could be attributed to the deep explorative and exploitative

capability of the SOS component in SOS-SA algorithm that would at times incur additional cost in finding

global best tour routes. One example of this case can be seen in the problem instance ‘D1291’ where MSA-IBS

with convergence time of 10.59 outperformed both LBSA and SOS-SA algorithms, with each having

convergence time of 11.77 and 12.08 respectively. This exceptional behaviour exhibited at times by MSA-IBS

can be traced to some level of intelligence acquired from the learning-based sampling process, which can

effectively improve the performance of the SA’s sampling efficiency. Figs. 3-5 show the different convergence

rates for the four algorithms with regards to varying TSP problem lengths.

Table 10: ASA-GS, MSA-IBS, LBSA, and SOS-SA convergence times and speed comparison, the results are the average of 1000
executions. The best results are highlighted in bold.

S/N Instance BKS
ASA-GS [Geng et al., 2011] MSA-IBS [Wang et al., 2015] LBSA [Zhan et al., 2016] SOS-SA

Mean Time Mean Time Mean Time Mean Time

1 Ch150 6528 6539.8 10.91 6529 0.86 6529.8 1.29 6529.8384 1.0296

2 Kroa150 26524 26538.6 10.9 26524 0.82 26524 0.98 26524.0176 0.7020

3 Krob150 26130 26178.1 10.9 26135 1.51 26137 1.65 26131.8331 1.1700

4 Pr152 73682 73694.7 10.85 73682 0.84 73682 0.87 73682.1801 0.8268

5 U159 42080 42398.9 11.49 42080 0.79 42080 0.91 42080.9819 0.8736

6 Rat195 2323 2348.05 14.37 2330.2 1.86 2328 1.93 2326.5979 1.1856

7 D198 15780 15845.4 14.6 15780 1.39 15780 1.53 15782.1061 1.0452

8 Kroa200 29368 29438.4 14.26 29378 1.74 29373.8 1.67 29370.7811 1.2792

9 Krob200 29437 29513.1 14.24 29439.8 1.95 29442.2 2.1 29449.8182 1.5132

10 Ts225 126643 126646 16.05 126643 1.3 126643 1.54 126701.0841 1.4196

11 Pr226 80369 80687.4 16.7 80369 1.93 80369.8 2.16 80369.3077 1.5444

12 Gil262 2378 2398.61 19.43 2378.8 2.39 2379.2 2.72 2381.9145 2.0387

13 Pr264 49135 49138.9 19.09 49135 1.43 49135 1.49 49135.7188 1.5056

14 Pr299 48191 48326.4 21.94 48226.4 2.67 48221.2 2.93 48227.9301 2.3444

15 Lin318 42029 42383.7 23.35 42184.4 2.4 42195.6 2.58 42179.3111 2.6121

16 Rd400 15281 15429.8 30.4 15347.2 3.2 15350.4 3.46 15451.8108 2.7114

17 Fl417 11861 12043.8 32.02 11875.6 3.72 11867.8 4.01 11877.5194 3.9410

18 Pr439 107217 110226 34.92 107407.2 3.6 107465.2 3.95 107561.1441 3.1801

19 Pcb442 50778 51269.2 35.75 50970 3.68 50877 4.31 50871.8228 4.4017

20 U574 36905 37369.8 48.47 37155.8 5.21 37164.6 6.13 37164.4871 6.6099

21 Rat575 6773 6904.82 52.1 6839.8 5.27 6837.4 5.99 6839.5194 5.1184

22 U724 41910 42470.4 66.83 42212.2 8.11 42252 8.34 42262.1108 7.9999

23 Rat783 8806 8982.19 78.9 8893.4 8.99 8888.2 8.9 8899.5507 8.6130

24 Pr1002 259045 264274 164.42 261481.8 12.71 261805.2 12.96 261802.4892 12.8141

25 Pcb1173 56892 57820.5 193.08 57561.6 8.9 57431.8 9.61 57569.9388 8.7301

26 D1291 50801 52252.3 214.64 51343.8 10.59 51198.8 11.77 51291.0871 12.0816

27 Rl1323 270199 273444 210.16 271818.4 11.53 271714.4 12.64 271710.6288 11.0188

28 Fl1400 20127 20782.2 232.02 20374.8 17.72 20249.4 15.43 20231.0177 14.7381

29 D1655 62128 64155.9 281.88 62893 16.18 63001.4 16.45 64111.9201 16.1902

30 Vm1748 336556 343911 276.98 339617.8 19.7 339710.8 19.05 336719.3891 18.2714

31 U2319 234256 236744 410.97 235236 17.02 235975 18.94 235338.0944 18.1111

32 Pcb3038 137694 141242 554.28 139706.2 27.64 139635.2 29.05 139701.8133 25.6712

33 Fnl4461 182566 187409 830.9 185535.4 30.43 185509.4 29.67 185546.0411 32.7422

34 Rl5934 556045 575437 1043.95 566166.8 50.76 566053 52.5 566211.7184 49.9871

35 Pla7397 23260728 24166453 1245.22 2.38E+07 100.69 2.38E+07 89.61 2.38E+07 98.7222

36 Usa13509 19982859 20811106 2016.05 2.04E+07 365.12 2.04E+07 326.76 2.14E+07 313.1080

37 Brd14051 469385 486197 2080.5 478609.6 375.28 478010 369.86 478098.9076 370.8801

38 D18512 645238 669445 2593.97 658149.2 654.85 657457.2 629.14 659457.4512 601.8544

39 Pla33810 66048945 69533166 4199.88 68075607 1959.68 68029226.4 1998.19 68076220.2281 1899.9919

40 Pla85900 142382641 156083025 8855.13 146495515.6 7596.18 145526542.6 7586.6 146429581.1412 7591.1833

Average 650.31   283.52   282.49 278.99403

Overall, the SOS-SA performed better than the remaining three algorithms in 62.5% of the computed graphs

ranging from 150 up to 85,900 cities (i.e., 25 out of 40 instances).

Fig.3. ASA-GS, MSA-IBS, LBSA, and SOS-SA time comparison, for TSP with graphs ranging from 150 up to

299 cities

Fig.4. ASA-GS, MSA-IBS, LBSA, and SOS-SA time comparison, for TSP with graphs ranging from 318 up to

724 cities.

0

5

10

15

20

25

150 150 150 152 159 195 198 200 200 225 226 262 264 299

A
lg

o
ri

th
m

 r
u

n
 t

im
e

 (
s)

TSP problem sizes

ASA-GS
MSA-IBS
LBSA
SOS-SA

0

10

20

30

40

50

60

70

80

90

318 400 417 439 442 574 575 724

A
lg

o
ri

th
m

 r
u

n
 t

im
e

 (
s)

TSP problem sizes

ASA-GS

MSA-IBS

LBSA

SOS-SA

Fig.5. ASA-GS, MSA-IBS, LBSA, and SOS-SA time comparison, for TSP with graphs ranging from 1002 up to

85,900 cities.

In Table 11, the percentage deviation of the SOS-SA for the 35 TSP instance considered was computed to be

0.2645, which is significantly better than the 1.2929 of GA-PSO-ACO, 0.3385 of MSA-IBS, and 0.3229 of

LBSA respectively. Therefore, this verifies the fact that the performance of the SOS-SA algorithms competes

favourably with the state-of-the-art TSP algorithms and in some instance with the best known solution from the

TSPLIB problem instances.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1
0

02

1
1

73

1
2

91

1
3

23

1
4

00

1
6

55

1
7

48

2
3

19

3
0

38

4
4

61

5
9

34

7
3

97

1
3

50
9

1
4

05
1

1
8

51
2

3
3

81
0

8
5

90
0

A
lg

o
ri

th
m

 r
u

n
 t

im
e

(s
)

TSP problem size

ASA-GS

MSA-IBS

LBSA

SOS-SA

Table 11: GA-PSO-ACO, MSA-IBS, LBSA, and SOS-SA comparison on 35 benchmarked TSPLIB tour instances for 20 trials. The columns shows the best solution found, the average solution and the relative percentage
error computed using Eq. (10). The best results so far are highlighted in bold.

S/N Instance BKS GA-PSO-ACO [Deng et al., 2012] MSA-IBS [Wang et al., 2015] LBSA [Zhan et al., 2016] SOS-SA

 Best Mean
PDbest

(%)
Best Mean PDbest (%) Best Mean PDbest (%) Best Mean PDbest (%)

1 Att48 33522 33524 33662 0.0060 33522 33554.64 0 33522 33536.6 0 33523 33539.68 0.0030

2 Eli51 426 426 431.84 0 426 426.48 0 426 426.5 0 426 426 0

3 Berlin52 7542 7544.37 7544.37 0.0314 7542 7542 0 7542 7542 0 7540 7541.107 -0.0265

4 St70 675 679.6 694.6 0.6815 675 677.16 0 675 675.55 0 675 675 0

5 Eil76 538 545.39 550.16 1.3736 538 538.2 0 538 538 0 538 538 0

6 Pr76
10815

9
109206 110023 0.9680 108159 108288 0 108159 108268.3 0 108162 109214.8 0.0028

7 Rat99 1211 1218 1275 0.5780 1211 1211.04 0 1211 1211.1 0 1210 1210.108 -0.0826

8 Rad100 7910 7936 8039 0.3287 7910 7914.56 0 7910 7914.7 0 7910 7912.875 0

9 KroD100 21294 21309 21484 0.0704 21294 21340.64 0 21294 21314.2 0 21294 21410.02 0

10 Eil101 629 633.07 637.93 0.6471 629 629.6 0 629 629 0 629 629 0

11 Lin105 14379 14397 14521 0.1252 14379 14380.48 0 14379 14379 0 14379 14380.27 0

12 Pr107 44303 44316 44589 0.0293 44303 44379.88 0 44303 44392.25 0 44301 44302.83 -0.0045

13 Pr124 59030 59051 60157 0.0356 59030 59032.88 0 59030 59031.8 0 58985 59010.65 -0.0762

14 Bier127
11828

2
118282 120301 0 118282 118334.6 0 118282 118351.2 0 118282 118331.2 0

15 Ch130 6110 6141 6203.47 0.5074 6110 6121.96 0 6110 6127.95 0 6110 6110 0

16 Pr144 58537 58595 58662 0.0991 58537 58549.72 0 58537 58570.15 0 58537 58610.91 0

17 KroA150 26524 26676 26803 0.5731 26524 26538.2 0 26524 26542.6 0 26524 27032.18 0

18 Pr152 73682 73861 73989 0.2429 73682 73727.96 0 73682 73688.8 0 73683 73689.56 0.0014

19 U159 42080 42395 42506 0.7486 42080 42182.32 0 42080 42198.85 0 42080 42188.47 0

20 Rat195 2323 2341 2362 0.7749 2328 2334.2 0.2152 2328 2331 0.2152 2325 2329.032 0.0861

21 RroA200 29368 29731 31015 1.2360 29368 29422.64 0 29368 29405.35 0 29368 29435.76 0

22 Gil262 2378 2399 2439 0.8831 2379 2383.56 0.0421 2379 2382.45 0.0421 2381 2384.695 0.1262

23 Pr299 48191 48662 48763 0.9774 48192 48263.08 0.0021 48191 48250 0 48191 48197.49 0

24 Lin318 42029 42633 42771 1.4371 42076 42292.04 0.1118 42070 42264.35 0.0976 42029 42291.67 0

25 Rd400 15281 15464 15503 1.19757 15324 15377.56 0.2814 15311 15373.75 0.1963 15310 15318.11 0.1898

26 Pcb442 50778 51414 51494 1.2525 50879 51050.12 0.1989 50832 51041.7 0.1063 50812 51039.21 0.0670

27 Rat575 6773 6912 6952 2.0523 6819 6854.64 0.6792 6829 6847.95 0.8268 6773 6802.04 0

28 U724 41910 42657 42713 1.7824 42150 42302.12 0.5727 42205 42357.8 0.7039 41910 42262.11 0

29 Rat783 8806 9030 9126 2.5437 8897 8918.28 1.0334 8887 8913.25 0.9198 8806 8817.91 0

30 Pr1002
25904

5
265987 266774 2.6798 261463 262211.7 0.9334 261490 262202.5 0.9439 261491 262301.8 0.9442

31 D1291 50801 52378 52443 3.1043 51098 51340.84 0.5846 51032 51358.7 0.4547 51091 51316.18 0.5709

32 D1655 62128 64401 65241 3.6586 62784 63011.96 1.0559 62779 62994.65 1.0478 62779 63014.18 1.0478

33 Nl4461
18256

6
189334 192574 3.7072 185377 185631.1 1.5397 185290 185501.7 1.4921 185361 185401.7 1.5310

34 Brd14051
46938

5
490432 503560 4.4840 478040 478618.8 1.8439 477226 477612.7 1.6705 478385 477817 1.9174

35 Pla33810
66048

945
70299195 72420147 6.4350 67868250 68038833 2.7545 67754877 67848535 2.5828 68004101 67100510 2.9602

 Average values: 1.2929 0.3385 0.3229 0.2645

In Tables 12 and 13, the comparisons of SOS-SA, SOS, and IBA are presented. The computed average values

for the 𝑃𝐷𝑏𝑒𝑠𝑡 and 𝑃𝐷𝑚𝑒𝑎𝑛 of SOS-SA were obtained as -0.1262 and 0.4230 as shown in Table 12, and

0.0262 and 0.4891 as shown in Table 13. The average values for the SOS were obtained as 2.5019 and 4.3537

respectively, while those of the IBA in Table 13 were obtained as 0.2106 and 1.3911 respectively. Therefore,

comparing the three algorithms, the computed average values for 𝑃𝐷𝑏𝑒𝑠𝑡 and 𝑃𝐷𝑚𝑒𝑎𝑛 show that SOS-SA

obtained smaller percentage deviations than the SOS and IBA algorithms in all the instances considered in the

two tables.

The percentage deviation test carried out shows the capability of the SOS-SA algorithm to find the best solution

in a more effective and efficient manner. This can be attributed to the hybridization characteristics of the

individual algorithms, where the systematic reasoning skill of the SA based on its ability to use the acceptance

probability criteria to find better solution within the problem local search space is added to the exploration and

exploitation capability of the SOS algorithm.

Table12: Comparison of SOS-SA with SOS, where 𝑃𝐷𝑏𝑒𝑠𝑡 and 𝑃𝐷𝑚𝑒𝑎𝑛 represent the percentage deviations of both the best solution

found and the average solution to the best known solution (BKS).

S/N Instance SOS-SA SOS

 Name BKS Mean Best Diff. PDbest (%) PDmean(%) Mean Best Diff. PDbest (%) PDmean(%)

1 dantzig42 699 699.482 679 -20 -2.8612 0.0690 710.502 702 3 0.4292 1.6455

2 Eil51 426 426 426 0 0 0 438.728 429 3 0.7042 2.9878

3 Berlin52 7542 7541.11 7540 -2 -0.0265 -0.0118 7659.49 7647 105 1.3922 1.5578

4 St70 675 675 675 0 0 0 699.129 675 0 0 3.5747

5 Eil76 538 538 538 0 0 0 556.312 542 4 0.7435 3.4037

6 Rat99 1211 1210.11 1210 -1 -0.0826 -0.0735 1297.38 1284 73 6.0281 7.1329

7 KroA100 21282 21424 21282 0 0 0.6672 21633.8 21401 119 0.5592 1.6530

8 KroB100 22140 22331.8 22140 0 0 0.8663 23142.8 22155 15 0.0678 4.5294

9 KroC100 20749 20860.8 20749 0 0 0.5388 21020.2 20811 62 0.2988 1.3071

10 KroD100 21294 21494.1 21294 0 0 0.9397 22044.3 21492 198 0.9298 3.5235

11 KroE100 22068 22205.9 22068 0 0 0.6249 22467.1 22128 60 0.2719 1.8085

12 Eil101 629 629 629 0 0 0 659.713 649 20 3.1797 4.8830

13 Pr107 44303 44302.8 44301 -2 -0.0045 -0.0005 46112.2 46097 1794 4.0494 4.0837

14 Pr124 59030 59010.7 58985 -45 -0.0762 -0.0327 69211.1 68942 9912 16.7915 17.2473

15 Pr136 96772 98636 97129 357 0.3689 1.9262 100461 98018 1246 1.2876 3.8121

16 Pr144 58537 58610.8 58537 0 0 0.1261 60136.9 58587 50 0.0854 2.7331

17 Pr152 73682 73689.6 73683 1 0.0014 0.0103 74699.8 74229 547 0.7424 1.3813

18 Pr264 49135 50201.6 49212 77 0.1567 2.1708 52498.5 51477 2342 4.7665 6.8454

19 Pr299 48191 48197.5 48191 0 0 0.0135 50102.4 49624 1433 2.9736 3.9663

20 Lin318 42029 42291.7 42029 0 0 0.6250 45811.1 44020 1991 4.7372 8.99879

 Average Values: -0.1262 0.4230 2.5019 4.3537

Table 13: Table12: Comparison of SOS-SA with IBA, where 𝑃𝐷𝑏𝑒𝑠𝑡 and 𝑃𝐷𝑚𝑒𝑎𝑛 represent the percentage deviations of both the best

solution found and the average solution to the best known solution (BKS).

S/N Instance SOS-SA IBA [Osaba et al., 2016]

 Name BKS Mean Best Diff. PDbest (%) PDmean(%) Mean Best Diff. PDbest(%) PDmean(%)

1 Eil51 426 426 426 0 0 0 428.1 426 0 0 0.4929

2 Berlin52 7542 7541.11 7540 -2 -0.0265 -0.0118 7542 7542 0 0 0

3 St70 675 675 675 0 0 0 679.1 675 0 0 0.6074

4 Eil76 538 538 538 0 0 0 548.1 539 1 0.1859 1.8773

5 KroA100 21282 21424 21282 0 0 0.6672 21445.3 21282 0 0 0.7673

6 KroB100 22140 22331.8 22140 0 0 0.8663 22506.4 22140 0 0 1.6549

7 KroC100 20749 20860.8 20749 0 0 0.5388 21050 20749 0 0 1.4507

8 KroD100 21294 21494.1 21294 0 0 0.9397 21593.4 21294 0 0 1.4060

9 KroE100 22068 22205.9 22068 0 0 0.6249 22349.6 22068 0 0 1.2761

10 Eil101 629 629 629 0 0 0 646.4 634 5 0.7949 2.7663

11 Pr107 44303 44302.8 44301 -2 -0.0045 -0.0005 44793.8 44303 0 0 1.1078

12 Pr124 59030 59010.7 58985 -45 -0.0762 -0.0327 59412.1 59030 0 0 0.6473

13 Pr136 96772 98636 97129 357 0.3689 1.9262 99351.2 97547 775 0.8009 2.6652

14 Pr144 58537 58610.8 58537 0 0 0.1261 58876.2 58537 0 0 0.5795

15 Pr152 73682 73689.6 73683 1 0.0014 0.0103 74676.9 73921 239 0.3244 1.3503

16 Pr264 49135 50201.6 49212 77 0.1567 2.1708 50908.3 49756 621 1.2639 3.6090

Average values: 0.0262 0.4891

0.2106 1.3911

Figs. 6-9, demonstrate the simulation tests of a number of TSB problem instances of different scales which were

benchmarked to test the effectiveness of the new SOS-SA algorithm. The simulation results show route tracing

and convergence graphs of each of the cities using SOS-SA algorithm. The algorithm execution was terminated

after 2000 runs for each TSP instance. However, we are only able to show convergence graphs for the proposed

algorithm because the other compared algorithms’ data were taken from literature and this information was

unavailable.

Fig.6. the result of 52-city (Eli52) TSPs using SOS-SA

Fig.7. the result of 54-city (Eil54) TSPs using SOS-SA

Fig.8. the result of 70-city (St70) TSPs using SOS-SA

Fig.9. the result of 101-city (Eil101) TSPs using SOS-SA

5.4 Descriptive Statistical analysis

In this section, the Stata statistical package was used to further validate of the algorithm performance. The

Shapiro-Will (W) test was used to formerly test whether the data were normally distributed. The Levene’s test

was used to test whether all the algorithms have the same variance, while both the oneway ANOVA test and

Kruskal-Wallis test were used to test for difference in performance among all the algorithms. The oneway

ANOVE is used whenever the parametric assumption were met, while the Kruskal-Wallis test is used whenever

the parametric assumption were not met. In summary, descriptive statistics such as mean, standard deviation,

minimum, maximum and range were used to describe the algorithms. Histograms and Shapiro-Wilk test were

used to assess the normality of the algorithms, while the Levene’s test was used to test the equality of Variance

among the algorithms. Finally, to examine the significant difference in performance among the algorithms, the

Friedman Test (with post hoc tests) was used. It is important to note that the difference in performance tests was

done not based on the actual data but on transformed data. The main purpose of the difference in performance

test was to verify that each of the selected algorithms that were compared with the SOS-SA is of high standard

as claimed in the respective literatures. It is important to note that, in statistics, data transformation, which is the

application of a deterministic mathematical function to each point in a data set, is utilized to help improve the

normality of the experimental data sets and the interpretability or appearance of graphs (Zuur et al., 2010; Jason,

2002).

5.4.1 Descriptive analysis of the SOS-SA and SOS algorithms

Table 14 presents the descriptive statistics of the performance of SOS-SA and SOS with the theoretical value or

the best known solution as the control algorithm. The SOS-SA is averagely smaller than the SOS in terms of

mean, standard deviation, minimum, maximum and rang compared in terms of the best known solution.

Therefore, this suggests that the SOS-SA is better than the SOS. The SOS’ data has the widest range and spread

of data around its mean value, while SOS-SA algorithm has the smallest range and dispersion of data around its

mean value. Moreover, the standard deviations of the two algorithms are quiet high which suggests that there is

great variation around the mean value for the two algorithms. The implication is that the data may not be

normally distributed and parametric approaches cannot be used directly to test the significance of the difference

in performance between SOS-SA and SOS.

Table 14: Descriptive statistics validation of SOS-SA and SOS algorithms compared to the best known solution (BKS)

Algorithm Mean Std deviation Min Max Range

BKS 29,546.60 28,177.05 426 96,772 96,346

SOS 30,545.45 29,211.58 429 98,018 97,589

SOS_SA 29,564.85 28,223.54 426 97,129 96,703

To conveniently study whether the normality assumption is violated in the sample data under study, both

informal and formal approaches were used. Based on the histograms (Fig. 10) of the algorithms SOS-SA and

SOS, it can be readily seen that the algorithms’ histograms are flatter and skewer than that of a normal

distribution curve (Bell-shape curve) therefore providing more evidence of the non-normality of the three

algorithms. However, the algorithms seem to follow the same form of skewness and flatness; meaning that, the

spread of the data may not be significantly different within the two algorithms. In other words, the variance of

the two algorithms may be equal.

Figure 10: Histogram of SOS-SA and SOS-SA with the BKS as the control algorithm

Formally, the Shapiro-Wilk (𝑊) test statistic was considered in the analysis as being more robust than other

tests statistics such as the skewness-Kurtosis, Kolmogorov-Smirnov and the Shapiro-Francia tests statistics.

According to Table 15, after checking for the presence of outliers, the normality test was conducted based on the

level data and four transformed data to avoid the problem of failing to adequately transform the data. The results

show that the algorithms are indeed non-normally distributed at the level form, but were only found so based on

the 𝜆-parameter Box-Cox power transformation. On this basis, Box-Cox power transformed forms of the

algorithms were further used for the test of equality of variance.

Table 15: Normality test of SOS-SA and SOS algorithms at different forms using the Shapiro-Wilk test statistic

Form BKS SOS SOS-SA

Level 0.889** 0.888** 0.888**

Log 0.813*** 0.815*** 0.812***

Square root 0.813*** 0.815*** 0.812***

K-parameter log 0.895*** 0.893*** 0.895***

Lambda-parameter Box-Cox power 0.907 0.905 0.906

Note: ***<0.01 and **<0.05

0

2
.5

e
-0

5

0

2
.5

e
-0

5

0 50000 100000

0 50000 100000

BKS SOS

SOS-SA

Density
Normal efficiency

D
e
n
s
it
y

Efficiency

Graphs by algorithm

The analysis of equal variance across the three algorithms was based on the Levene’s test because it is robust

even with departure from normality of the data. The result in Table 16 indicates that based on mean, median and

10th percentile, the test was found to be statistically insignificant; implying that, the null hypothesis of equal

variance cannot be rejected. In other words, compared with the best known solution (BKS), SOS-SA and SOS

have equal variance.

Table 16: Equal variance test of SOS-SA and SOS algorithms against the best known solution using the Levene’s test statistic

Statistic Levene's P-value

W0 0.001 0.998

W50 0.001 0.998

W10 0.002 0.997

W0=mean, W50=Median, W10=10th percentile.

Based on the findings obtained so far, one way Analysis of Variance (ANOVA) was carried out to assess the

difference between the BKS, SOS-SA and SOS. The result of the test presented in Table 17 indicates that the

majority of variation in the algorithms’ observations is explained in the variation within and not the variation

between. In other words, the contribution of the model to explain the difference between the three methods is

minimal in relation to that of the residual. Consequently, the ANOVA test was found to be statistically

insignificant on the basis of the low F-statistic and high p-value. In other words, there is no statistically

significant difference between the best known solution and the proposed SOS-SA algorithm.

Table 17: Oneway ANOVA test of the difference between SOS-SA and SOS compared to the best known solution

Source of variation SS df MS F P-value

Between group 250.82 2 125.41 2.30E-03 0.997

Within group 3,106,466.42 57 54,499.41

Total 3,106,717.25 59 52656.22

5.4.2 Descriptive analysis of the GA-PSO-ACO, MSA-IBS, LBSA, and SOS-SA algorithms

Table 18 presents the descriptive statistics of the performance of four algorithms namely, GA-PSO-ACO, MSA-

IBS, LBSA, and SA- SOS with the best known solution as the control algorithm. The SOS-SA algorithm is

averagely the smallest algorithm followed by LBSA, suggesting that SOS-SA is the best algorithm followed by

LBSA. The standard deviations of all the algorithms are quite high suggesting that there is great variation

around the mean value for all the algorithms. In other words, the data may not be normally distributed and

parametric approaches cannot be used directly to test the significance of the difference among the algorithms.

Table 18: Descriptive statistics of GA-PSO-ACO, LBSA, MSA-IBS, and SOS-SA to the best known solution

Algorithm Mean Std dev. Min Max Range

GA-PSO-ACO 2,063,992 11,900,000 426 70,300,000 70,299,574

LBSA 1,997,597 11,500,000 426 68,000,000 67,999,574

MSA-IBS 1,993,722 11,500,000 426 67,900,000 67,899,574

SOS-SA 1,990,455 11,400,000 426 67,800,000 67,799,574

BKS 1,941,301 11,200,000 426 66,000,000 65,999,574

Based on the histograms (Fig. 11) of the algorithms GA-PSO-ACO, LBSA, MSA-IBS, and SOS-SA, it can be

readily be seen that the algorithms do not follow a normal distribution therefore providing more evidence of the

non-normality of the data.

Fig. 11: Histogram of GA-PSO-ACO, LBSA, MSA-IBS with BKS as the control algorithm

 According to Table 19, after checking for the presence of outliers, the normality test was conducted based on

the level data and four transformed data to avoid the problem of failing to adequately transform the data. The

results show that the algorithms are indeed non-normally distributed even after various transformations. The test

of the difference among the four (4) algorithms based on their transformed data was carried out using the

Kruskal-Wallis test.

Table 19: Normality test for GA-PSO-ACO, LBSA, MSA-IBS, and SOS-SA algorithms at different forms using the Shapiro-Wilk test
statistic

Form GA-PSO-ACO LBSA MSA-IBS SOS-SA BKS

Level 0.16557*** 0.16564*** 0.16564*** 0.16563*** 0.1657***

Log 0.90744*** 0.90755*** 0.90754*** 0.90756*** 0.90775***

Square root 0.90744*** 0.90755*** 0.90754*** 0.90756*** 0.90775***

K-parameter log 0.9189** 0.91886** 0.91886** Na Na

Lambda-parameter Box-Cox power Na Na Na Na Na

Note: ***<0.01

The Kruskal-Wallis test is a nonparametric test that does not depend on the normality and homogeneity of the

data. The analysis is based not on the original data but on the rank of the data after sorting them in ascending

order. In Table 20, the result of the test both with and without ties indicates that based on the transformed data,

there is no statistically significant difference among SOS-SA, LBSA, and MSA-IBS and that the difference

observe could be due to sampling peculiarity. This is also to verify that SOS-SA is being compared with some

of the best state-of-the-art heuristic algorithms, having the most similar techniques of implementation with the

SOS-SA.

Table 20: Difference analysis of GA-PSO-ACO, LBSA, MSA-IBS, SOS-SA and BKS using Kruskal-Wallis test

Algorithm Sum Rank

Chi-squared

Without ties With ties

GA-PSO-ACO 3,162 0.107 0.107

LBSA 3,069

MSA-IBS 3,079.5

SOS-SA 3,046

BKS 3,033.5

5.4.3 Descriptive analysis of SOS-SA and IBA algorithms

Table 21 presents the descriptive statistics of the performance of SOS-SA and IBA compared with the best

known solution. The SOS-SA algorithm is averagely the smallest, therefore, this suggest that SOS-SA performs

0

1
.8

e
-0

7

0

1
.8

e
-0

7

-2703372.8 70299199

-2703372.8 70299199 -2703372.8 70299199

GA-PSO-ACO LBSA MSA-IBS

SOS-SA BKS

Density
Normal efficiency

D
e
n
s
it
y

Efficiency

Graphs by algorithm

better than the IBA. The IBA’s data has the widest range and spread of data around its mean value while SOS-

SA has the smallest range and dispersion of data around its mean value compared to the best known solution.

Moreover, the standard deviations of the two algorithms are quiet high which suggests that there is great

variation around the mean value for all the algorithms. The implication is that the data may not be normally

distributed and parametric approaches cannot be used directly to test the significance of the difference in

performance among SOS-SA and IBA.

Table 21: Descriptive statistics of IBA, BKS and SOS_SA
Algorithm Mean Std deviation Min Max Range

IBA 31,277.69 29,494.45 426 97,547 97,121

BKS 31,175.13 29,330.33 426 96,772 96,346

SOS-SA 31,199.25 29,384.09 426 97,129 96,703

Based on the histograms (Fig. 12) of the two algorithms, it can be readily seen that the algorithms’ histograms

are flatter and skewer than that of a normal distribution curve (Bell-shape curve) therefore providing more

evidence of the non-normality of the two algorithms. However, both algorithms with the BKS seem to follow

the same form of skewness and flatness; meaning that, the spread of the data may not be significantly different

within the three algorithms. In other words, the variance of the three algorithms may be equal.

Fig. 12: Histogram of SOS-SA and IBA with BKS as the control algorithm

According to Table 22, the results show that the algorithms are indeed non-normally distributed at the level

form but were only found so based on the 𝜆-parameter Box-Cox power transformation. On this basis, Box-Cox

power transformed forms of the algorithms were further used for the test of equality of variance.

Table 22: Normality test of BKS, SOS_SA, and IBA algorithms at different forms using the Shapiro-Wilk test statistic

Form BKS IBA SOS_SA

Level 0.8901* 0.8894* 0.8901*

Log 0.8058*** 0.8065*** 0.806***

Square root 0.8058*** 0.8065*** 0.806***

K-parameter log 0.9123** 0.9123** 0.9124**

Lambda-parameter Box-Cox power 0.9218 0.9219 0.9219

Note: ***<0.01 and **<0.05

The analysis of equal variance across the two algorithms was based on the Levene’s test because it is robust

even with departure from normality of the data. The result in Table 23 indicates that based on mean, median and

10th percentile, the test was found to be statistically insignificant; implying that, the null hypothesis of equal

variance cannot be rejected. In other words, SOS-SA and IBA, with the best known solution have equal

variance.

0

1
.9

e
-0

5

0

1
.9

e
-0

5

0 50000 100000 150000

0 50000 100000 150000

IBA BKS

SOS-SA

Density
Normal efficiency

D
e

n
s
it
y

Efficiency

Graphs by algorithm

Table 23: Equal variance test of SOS-SA and IBA algorithms to the best known solution using the Levene’s test statistic

Statistic Levene's P-value

W0 0.0053 0.9946

W50 0.0048 0.9951

W10 0.0051 0.9949

W0=mean, W50=Median, W10=10th percentile.

Based on the findings obtained so far, one-way Analysis of Variance (ANOVA) was carried out to assess the

difference between SOS-SA and IBA algorithms with the best known solution as the control algorithm. The

result of the test presented in Table 24 indicates that the majority of variation in the algorithms’ observations is

explained the variation within and not the variation between. In other words, the contribution of the model to

explain the difference between the three algorithms is minimal in relation to that of the residual. Consequently

the ANOVA test was found to be statistically insignificant on the basis of the low F-statistic and high p-value.

In other words, there is no statistically significant difference between the two algorithms.

Table 24: Oneway ANOVA test of the difference between SOS-SA and IBA

Source of variation SS df MS F P-value

Between group 643.66 2 321.83 0.01 0.9943

Within group 2,519,515.64 45 55,989.24

Total 2,520,159.30 47 53620.41

Note: SS=Sum of Squares, MS=Mean Sum of Square, df=Degree of freedom

5.4.4 Friedman Test (with post hoc tests) analysis of algorithm performance

In this section, the Friedman’s non-parametric test was further used to check for existence of any significant

difference in performance among the algorithms whilst running, 𝜒2 (1) = 19, p-value = 0.000 for comparison

between SOS-SA and SOS, 𝜒2 (1) = 8, p-value = 0.005 for comparison between SOS-SA and IBA, and 𝜒2(3) =

73.189, p-value = 0.000 for comparison among SOS-SA with GA-PSO-ACO, MSA-IBS, and LBSA. The

median (IQR) perceived effort levels for the SOS and SOS-SA running trial were 21681 (848 to 51013) and

21681 (812 to 48956), while the median (IQR) perceived effort levels for the IBA and SOS-SA running trial

were 21681 (2392 to 56341) and 21681 (2391 to 56205), respectively. It can be concluded that there are

statistically significant differences among the algorithms based on the mean ranking returned by the Friedman’s

test presented in table 25. However, since the Friedman’s test can only show the existence of significant

difference between two algorithms, the test does not pinpoint which groups in particular differ from each other

in the case of multiple algorithms comparison (for example, GA-PSO-ACO, MSA-IBS, LBSA, and SOS-SA).

Therefore, to adequately evaluate the statistical performance of the SOS-SA, the Friedman test with post hoc

tests was further conducted and the result obtained is as reported next.

Table 25: Mean ranking returned by Friedman’s non parametric test

Test 1 Test 2 Test 2

Algorithms Ranking Algorithms Ranking Algorithms Ranking

GA-PSO-ACO 3.91 SOS 2.00 IBA 1.75
MSA-IBS 2.24 SOS-SA 1.00 SOS-SA 1.25

LBSA 1.96

SOS-SA 1.89

The Friedman test with post hoc tests indicate that there was a statistically significant difference in the

performance of SOS-SA with GA-PSO-ACO, MSA-IBS, and LBSA, this is observed whilst running, 𝜒2(3) =

73.189, p-value = 0.000. Post hoc analysis with Wilcoxon signed-rank tests was conducted with a Bonferroni

correction applied, resulting in a significance level set at computed p-value < 0.0125 (i.e. 0.05/4, since we are

comparing GA-PSO-ACO, MSA-IBS, LBSA, and SOS-SA). The median (IQR) perceived effort levels for each

of the GA-PSO-ACO, MSA-IBS, LBSA, and SOS-SA running trial were 33524 (6912 to 59051), 33522 (6819

to 59030), 33522 (6829 to 59030), and 33523 (6773 to 58985) respectively. There were statistically significant

differences between the performance of SOS-SA and GA-PSO-ACO running trials (Z = -5.012, p-value =

0.000). However, there were no significant differences between the SOS-SA and MSA-IBS running trials (Z = -

1.625, p-value = 0.104), or between SOS-SA and LBSA running trials (Z = -0.355, p-value = 0.722).

In summary, the statistical analysis has revealed some interesting results with respect to all the algorithms that

were compared with the proposed optimization method. First, the analysis result showed that the SOS-SA

performed favourable well compared to other state-of-the-art algorithms. This is verified based on the result of

the descriptive statistics test using Mean, Standard deviation, Min, Max, and Range described in Tables 14, 18

and 21 respectively. This also corresponds to the analysis of the results presented in Tables 11, 12, and 13, were

SOS-SA (with 32%) outperformed the other three algorithms namely, GA-PSO-ACO (with 19%), MSA-IBS

(with 20%), and LBSA (with 28%) in terms of convergence. Similar evaluation with SOS and IBA showed the

convergence performance of SOS-SA to be 95% (19 out 20 instances) and 50% (8 out of 16 instances) for both

SOS and IBA. Second, based on the performance difference among all the algorithms compared with SOS-SA

using transformed data and with BKS as control algorithm, the analysis revealed that MSA-IBS, LBSA, and

IBA are equally good algorithms as claimed by the respective authors. Third, SOS-SA appears to be next to the

control algorithm (or BKS) in most of the performance analysis result presented, for instance in Table 20, the

Sum Rank (i.e., SOS-SA = 3,046 and BKS = 3,033.5). Finally, considering the Friedman Test (with post hoc

tests) analysis for the individual algorithm performances, since the p-values of GA-PSO-ACO, SOS, and IBA

are less than 0.05, we can say that SOS-SA is statistically significantly better. In the case of MSA-IBS and

LBSA, since their p-values are greater than the computed p-value of 0.0125, therefore, we can say that there are

no significant differences in performance between these algorithms and the SOS-SA. Therefore, this

consequently verifies the initial claim that the SOS-SA algorithm can compete favorable with even the best

known solution, as it tends to perform better in some cases than the BKS, which then verifies the results

presented in Table 2. The unique advantage of the SOS-SA over other algorithms can be attributed to its

capability to deeply explore and exploit problem search space, during search process. This is made possible by

the benefit factor mechanism in the mutualism phase and the artificial vector mechanisms in the parasitism

phase of the SOS. Finally, we conclude this analysis section by saying that the proposed SOS-SA optimization

method has promising and immense potential for solving the TSP as well as other complex discrete problems.

5.5. Remarks

In the course of the empirical evaluation of the proposed algorithms, some potential Challenges were observed,

which are highlighted as follows:

• Computation Time. Though the SOS-SA algorithm performed favourably against the best known

available solution from TSPLIB and other state-of-the-art algorithms, there is still room for

improvement in terms of computational time, and more specifically, the iterative computation of tour

cost function. The SOS-SA algorithm spends time recalculating the cost function with every change in

iteration and most importantly, it was also observed that the computation cost increases proportionately

with increase in the dimension of the TSP problem instance. A more simplified and adaptive method of

calculating the cost function is therefore required to speed-up the computation time.

• Acceptance probability function. Similarly, the computation of the acceptance probability function

consumes a lot of system resources, more specifically, CPU time. This is as a result of the exponential

computation required to determine the probability of acceptance or rejection of a new solution.

Therefore, approximating the calculation of this function without compromising the decision rule can

significantly improve the performance of the framework in terms of cost of execution.

• SA parameter selection. SA parameter required some level of experience in selecting a good set of

performance parameters, as they would partly affect the performance of the SOS-SA algorithm, in

escaping global minimum as quickly as possible. Selecting a good set of SA performance parameters

was the main bottleneck experienced during the simulation experiment, as parameter fine-tuning were

made more frequently. This challenge also affected the length of time the optimal solutions were

attained. A typical example is the selection of an appropriate cooling schedule for the different

simulations. Finding an appropriate cooling schedule was a major challenge for the SOS-SA

implementation from one problem instance to another. One possible solution is to implement an

adaptive method of setting the cooling schedule for different problem instances.

• Scalability. In the course of the simulation process specifically for large length TSP problems, the

system ran out of memory severally as the dimension of the TSPLIB benchmark increased, as it was

observed for Pla33810 and Pla85900. These two instances, during execution, required additional

memory. Therefore, considering also the first two aforementioned issues, one possible option would be

to identify possible parallelism for the SOS-SA algorithm, which can improve both framework

computational time and memory utilization concurrently.

6. Conclusion and Future Direction

In this paper, a novel and hybrid simulated annealing based symbiotic organisms search algorithm is proposed

as a new approach for solving symmetric TSP. The SOS algorithm which is inspired by the symbiotic

relationships among organisms in the ecosystem was initially proposed to handle engineering optimization

problems. The design of a hybrid SOS-SA framework, which incorporates the SA local search capability into

the problem search space of SOS algorithm, and the application of the simulation results of the SOS-SA to the

TSP were discussed. The simulation results supports the fact that the new SOS-SA framework can realise TSP

optimal solutions and compete favourably with other state-of-the-art optimization algorithms being applied to

the TSP related problems and complex discrete problems. As future work the authors intend to further improve

the algorithm by testing its scalability in a parallel and distributed environments for various Big Data graphs

from SNAP (https://snap.stanford.edu/data/) with different properties (e.g., sparse, dense, power law).

Scalability will be tested when problem size is fixed and number of cores/machines increases, and when the

number of machines is fixed and the problem increases.

Funding

This work was supported by the research grant from University of KwaZulu-Natal, College of Agriculture,

Engineering and Science. Durban, South Africa.

Author Contributions

AEE and AOA conceived and designed the experiments, AEE and AOA performed the experiments, AEE and

MEF analysed the data, AEE, AOA and MEF wrote the paper.

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Reference

Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2011). The traveling salesman problem: a

computational study. Princeton university press.

Aulady, M. (2013). A hybrid symbiotic organisms search-quantum neural network for predicting high

performance concrete compressive strength.

Barbato, M., Grappe, R., Lacroix, M., & Calvo, R. W. (2016). Polyhedral results and a branch-and-cut algorithm

for the double traveling Salesman problem with multiple stacks. Discrete Optimization, 21, 25-41.

Bellman, R. (1962). Dynamic programming treatment of the travelling salesman problem. Journal of the ACM

(JACM), 9(1), pp.61-63.

Bender, M. A., & Chekuri, C. (2000). Performance guarantees for the TSP with a parameterized triangle

inequality. Information Processing Letters, 73(1), 17-21.

Chen, S. M., & Chien, C. Y. (2011). Solving the traveling salesman problem based on the genetic simulated

annealing ant colony system with particle swarm optimization techniques. Expert Systems With

Applications, 38(12), 14439–14450.

Cheng, M. Y, Prayogo, D. (2014). Symbiotic organism search: A new metaheuristic optimization. Computers

and Structures, 139:98-112.

Cheng, M.Y., Prayogo, D. and Tran, D. H. (2015). Optimizing multiple-resources levelling in multiple projects

using discrete symbiotic organisms search. Journal of Computing in Civil Engineering, 30(3),

p.04015036.

Cornu, M., Cazenave, T., & Vanderpooten, D. (2016). Perturbed Decomposition Algorithm applied to the multi-

objective Traveling Salesman Problem. Computers & Operations Research.

Çunkaş, M. and Özsağlam, M. Y. (2009). A comparative study on particle swarm optimization and genetic

algorithms for traveling salesman problems. Cybernetics and Systems: An International Journal, 40(6),

pp.490-507.

Delgadillo, F. J. D., Montiel, O., & Sepúlveda, R. (2016). Reducing the size of traveling salesman problems

using vaccination by fuzzy selector. Expert Systems with Applications, 49(1), 20–30.

Deng, W., Chen, R., He, B., Liu, Y., Yin, L. and Guo, J. (2012). A novel two-stage hybrid swarm intelligence

optimization algorithm and application. Soft Computing, 16(10), pp.1707-1722.

Dorigo, M. and Gambardella, L. M. (1997). Ant colonies for the travelling salesman problem. BioSystems,

43(2), pp.73-81.

Durbin, R. (1987). An analogue approach to the travelling salesman. Nature, 326, p.16.

Durbin, R., Szeliski, R. and Yuille, A. (1989). An analysis of the elastic net approach to the traveling salesman

problem. Neural Computation, 1(3), pp.348-358.

Fang, L., Chen, P., & Liu, S. (2007). Particle swarm optimization with simulated annealing for TSP. In

Proceedings of the 6th WSEAS International Conference on Artificial Intelligence, Knowledge

Engineering and Data Bases (AIKED’07) (pp. 206-210).

Farmer, J. D., Packard, N. H. and Perelson, A. S. (1986). The immune system, adaptation, and machine learning.

Physica D: Nonlinear Phenomena, 22(1), pp.187-204.

Feng, X., Lau, F.C. and Gao, D. (2009). A New Bio-inspired Approach to the Traveling Salesman Problem.

Complex Sciences, pp.1310-1321.

Garey, M. R., & Johnson, D. S. (1979). Com-puters and Intractablility: A Guide to the Theory of NP-

Completeness.

Geng, X., Chen, Z., Yang, W., Shi, D. and Zhao, K. (2011). Solving the traveling salesman problem based on an

adaptive simulated annealing algorithm with greedy search. Applied Soft Computing, 11(4), pp.3680-

3689.

Jason, O. (2002). Notes on the use of data transformations. Practical Assessment, Research & Evaluation, 8(6).

Johnson, D. S. (1990). Local optimization and the traveling salesman problem. In International Colloquium on

Automata, Languages, and Programming (pp. 446-461). Springer Berlin Heidelberg.

Johnson, D. S. and McGeoch, L. A. (1997). The traveling salesman problem: A case study in local optimization.

Local search in combinatorial optimization, 1, pp.215-310.

Jolai, F., and Ghanbari, A. (2010). Integrating data transformation techniques with Hopfield neural networks for

solving travelling salesman problem. Expert Systems with Applications, 37(7), 5331-5335.

Jünger, M., Reinelt, G., & Rinaldi, G. (1995). The traveling salesman problem. Handbooks in operations

research and management science, 7, 225-330.

Kanda, J., de Carvalho, A., Hruschka, E., Soares, C., & Brazdil, P. (2016). Meta-learning to select the best meta-

heuristic for the Traveling Salesman Problem: A comparison of meta-features. Neurocomputing.

Katayama, K., Sakamoto, H., & Narihisa, H. (2000). The efficiency of hybrid mutation genetic algorithm for the

travelling salesman problem. Mathematical and Computer Modelling, 31(10), 197-203.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). Optimization by simulated annealing. science,

220(4598), pp.671-680.

Knox, J. (1994). Tabu search performance on the symmetric traveling salesman problem. Computers &

Operations Research, 21(8), pp.867-876.

Lawler, E.L. and Wood, D.E. (1966). Branch-and-bound methods: A survey. Operations research, 14(4),

pp.699-719.

Lin, Y., Bian, Z., & Liu, X. (2016). Developing a dynamic neighborhood structure for an adaptive hybrid

simulated annealing–tabu search algorithm to solve the symmetrical traveling salesman problem. Applied

Soft Computing, 49, 937-952.

Lourenço, H. R., Martin, O. C. and Stützle, T. (2003). Iterated local search. In Handbook of metaheuristics (pp.

320-353). Springer US.

Malek, M., Guruswamy, M., Pandya, M., & Owens, H. (1989). Serial and parallel simulated annealing and tabu

search algorithms for the traveling salesman problem. Annals of Operations Research, 21(1), 59-84.

Matai, R., Singh, S. P. and Mittal, M. L. (2010). Traveling salesman problem: An overview of applications,

formulations, and solution approaches. Traveling Salesman Problem, Theory and Applications, pp.1-24.

Mohan, U., Ramani, S., & Mishra, S. (2016). Constant factor approximation algorithm for TSP satisfying a

biased triangle inequality. Theoretical Computer Science, 657, 111–126.

Osaba, E., Yang, X. S., Diaz, F., Lopez-Garcia, P., & Carballedo, R. (2016). An improved discrete bat algorithm

for symmetric and asymmetric Traveling Salesman Problems. Engineering Applications of Artificial

Intelligence, 48, 59-71.

Ouaarab, A., Ahiod, B., & Yang, X. S. (2014). Improved and discrete cuckoo search for solving the travelling

salesman problem. In Cuckoo Search and Firefly Algorithm (pp. 63-84). Springer International

Publishing.

Ozcan, E. and Erenturk, M. (2004). A brief review of memetic algorithms for solving Euclidean 2D traveling

salesrep problem. In Proc. of the 13th Turkish Symposium on Artificial Intelligence and Neural

Networks (pp. 99-108).

Reinelt, G. (1994). The traveling salesman: computational solutions for TSP applications. Springer-Verlag.

Shi, X. H., Liang, Y. C., Lee, H. P., Lu, C. and Wang, Q. X. (2007). Particle swarm optimization-based

algorithms for TSP and generalized TSP. Information Processing Letters, 103(5), pp.169-176.

Sundar, K., & Rathinam, S. (2016). Generalized multiple depot traveling salesmen problem—Polyhedral study

and exact algorithm. Computers & Operations Research, 70, 39-55.

Talbi, E. G. (2002). A taxonomy of hybrid metaheuristics. Journal of heuristics, 8(5), 541-564.

Tran, D. H., Cheng, M. Y. and Prayogo, D. (2016). A novel Multiple Objective Symbiotic Organisms Search

(MOSOS) for time–cost–labor utilization tradeoff problem. Knowledge-Based Systems, 94, pp.132-145.

Tsai, C. F., Tsai, C. W., & Tseng, C. C. (2004). A new hybrid heuristic approach for solving large traveling

salesman problem. Information Sciences, 166(1), 67-81.

Verma, S., Saha, S., and Mukherjee, V. (2015). A novel symbiotic organisms search algorithm for congestion

management in deregulated environment. Journal of Experimental & Theoretical Artificial Intelligence,

1-21.

Vincent, F. Y., Redi, A. P., Yang, C. L., Ruskartina, E., & Santosa, B. (2016). Symbiotic organisms search and

two solution representations for solving the capacitated vehicle routing problem. Applied Soft

Computing.

Volgenant, T. and Jonker, R. (1982). A branch and bound algorithm for the symmetric traveling salesman

problem based on the 1-tree relaxation. European Journal of Operational Research, 9(1), pp.83-89.

Wang, C., Lin, M., Zhong, Y. and Zhang, H. (2015). Solving travelling salesman problem using multiagent

simulated annealing algorithm with instance-based sampling. International Journal of Computing Science

and Mathematics, 6(4), pp.336-353.

Wang, J., Ersoy, O. K., He, M., & Wang, F. (2016). Multi-offspring genetic algorithm and its application to the

traveling salesman problem. Applied Soft Computing, 43, 415-423.

Zhan, S. H., Lin, J., Zhang, Z. J. and Zhong, Y. W. (2016). List-Based Simulated Annealing Algorithm for

Traveling Salesman Problem. Computational intelligence and neuroscience, 2016, pp. 1-12.

Zhang, H., & Zhou, J. (2016). Dynamic multiscale region search algorithm using vitality selection for traveling

salesman problem. Expert Systems with Applications, 60, 81-95.

Zhang, H., Tong, W., Xu, Y., & Lin, G. (2016). The Steiner traveling salesman problem with online advanced

edge blockages. Computers & Operations Research, 70, 26-38.

Zhou, Y., Luo, Q., Chen, H., He, A. and Wu, J., 2015. A discrete invasive weed optimization algorithm for

solving traveling salesman problem. Neurocomputing, 151, pp.1227-1236.

Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical

problems. Methods in Ecology and Evolution, 1(1), 3-14.

Appendix 1. Simulation results demonstrating the convergence curves for Pr107, Pr124, U159, Rat195, Gil262,

Pr299, Pcb442, and Rat575 TSPLIB instance.

Fig.A1.

Convergence curve for Pr107 Fig.A2. Convergence curve for Pr124

Fig.3A. Convergence curve for U159 Fig.4A. Convergence curve for Rat195

Fig.5A. Convergence curve for Gil262 Fig.6A. Convergence curve for Pr299

Fig.7A. Convergence curve for Pcb442 Fig.8A. Convergence curve for Rat575

