Title: Tuning the Ferrotoroidic Coupling and Magnetic Hysteresis in Double-triangle Complexes {Dy3MIII2Dy3} via the MIII-linker

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Eur. J. Inorg. Chem. 10.1002/ ejic.202001082

Link to VoR: https://doi.org/10.1002/ ejic.202001082
Tuning the Ferrotoroidic Coupling and Magnetic Hysteresis in Double-triangle Complexes \{\text{Dy}_3\text{M}^{\text{III}}\text{Dy}_3\} via the \text{M}^{\text{III}}-linker

[1] J. M. Ashtree and Prof. A. Soncini, School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia. E-mail: ronsoncini@unimelb.edu.au, website: www.sonciniresearchgroup.com
[b] Dr. I. Borilović, Dr. W. Phonsri, Dr. C. M. Forsyth and Prof. K. S. Murray, School of Chemistry, Monash University, Building 23, 17 Rainforest Walk, Clayton, Victoria 3800, Australia. E-mail: keith.murray@monash.edu
[c] Dr. K. R. Vignesh, A. Swain and Prof. G. Rajaraman, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India-400 076. E-mail: rajaraman@chem.iitb.ac.in, website: https://ether.chem.iitb.ac.in/~rajaraman/
[d] S. H. Hamilton, Y. L. Whyatt and Dr. S. K. Langley, School of Science and the Environment, Division of Chemistry, Manchester Metropolitan University, Manchester, UK. E-mail: s.langley@mmu.ac.uk
[e] Dr. S. L. Benjamin, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
[f] Prof. W. Wernsdorfer, Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76144 Eggenstein-Leopoldshafen, Germany.

Supporting information for this article is given via a link at the end of the document.

Abstract: We present the syntheses, structures, magnetic data and theoretical analyses for two families of heptanuclear clusters, wherein two staggered dysprosium(III) triangles are linked by various M(III) d/tol-block ions. The families differ in the counter-anion and are of formulae \[\text{Dy}_3\text{M}(\text{OH})_2(\text{tol})_2(\text{MeOH})_3\text{(NO}_3\text{)}_3\text{MeOH and }\text{Dy}_3\text{M}(\text{OH})_2(\text{tol})_2(\text{MeOH})_3\text{Cl}\text{MeOH (M = Cr, Mn, Fe, Co, Al; o-tol = o-toluate).}\] We find that variation of the central metal ion M is crucial in tuning the toroidal moments on the triangular units, with diamagnetic M linking ions enhancing the ferrotoroidic coupling. By detailed simulation and analysis of various magnetic measurements, including sub-kelvin microsquid hysteresis loops, we identified the specific signature of the M linking ions’ modulation of toroidal properties, including the mechanism whereby anisotropic, paramagnetic M ions lead to hysteresis profiles with larger remnant magnetisations and broader coercive fields.

Introduction

Lanthanide-containing molecular complexes have been investigated over the last few decades for potential applications in quantum information processing,[2] high-density data storage, and nanoscale devices including molecular spin valves and transistors.[1a,2] By varying the coordination environments of lanthanide ions to influence their electronic structures, researchers seek to optimise molecule-based devices. For example, data storage devices benefit from longer relaxation times in single-molecule magnets (SMMs) whose moments have been manipulated by external fields.[3]

Of particular interest are single-molecule toricels (SMTs) with toroidal/vortex arrangements of spins, [4,6] which make SMTs less sensitive than SMMs to intermolecular interactions and homogeneous magnetic fields, and thereby allow even closer packing of nanoscale devices.[5a] Also considering the potential to control the populations of toroidal states using charge/spin currents,[7-9] it is clear why research into SMTs is a priority area. The first detailed examples of molecular toroidal moments were pioneering experimental[4] and theoretical[5] studies on strongly anisotropic spin rings in general,[5a] and a (Dy3) triangular complex in particular.[4c] Further examples include other (Dy3) triangles,[10] (Dy3) squares[11] and cubanes,[12] and (Dy3) hexagons[13] (see Fig. S1 in SI). Toroidal moments in (Fe3Dy3) and (Cu3Tb3) rings can stem from Fe6-Dy8-Cu6-Tb8 ferromagnetic exchange coupling[14] and counter-rotating toroidal moments (antiferrotoroidic, AFT) were found in the ground state of a (Dy3) molecule.[15] For the latest reviews of SMTs and ferrotoroidic materials, see Refs. 16 and 17, respectively.

Recently, we linked[16] two staggered (Dy3) units with a six-coordinate Cr4+ in \([\text{Cr}_4\text{Dy}_6\text{OH}_3(\text{tol})_3(\text{MeOH})_3\text{MeOH (1; o-tol = o-toluate)},\) where intra-triangle dipolar coupling produced separate toroidal moments on each (Dy3) unit, and inter-triangle dipolar coupling led to a co-rotating, ferrotoroidal (FT) ground state. Importantly, direct simulation of the spin dynamics of 1 revealed how the signature of low-energy FT states could be discerned from hysteresis measurements.[16]

It is clearly desirable to favourably tune the properties of 1 by systematically changing the LnIII ion, central MIII ion, solvent, carboxylate and co-anion. Initial work to replace Dy with Tb and Ho led to the first observation of ferrotoroidicity in these f-block ions.[19] Herein we discuss the effects of changing the M ions and counter-anions in the families \([M\text{Dy}_5\text{OH}_3(\text{tol})_3(\text{NO}_3\text{)}_3\text{MeOH}_3\text{Cl (M = Mn-2, Fe-3, Co-4, Al-5))}\) and \([M\text{Dy}_5\text{OH}_3(\text{tol})_3(\text{MeOH})_3\text{Cl (M = Cr-1, Mn-2, Fe-3, Co-4, Al-5))}\). We also determined the Mn anisotropy in 2[20] by making \([\text{Mn}\text{Dy}_5\text{OH}_3(\text{tol})_3(\text{MeOH})_3\text{Cl (M = 6))}\] with diamagnetic YIII. By combining experimental data with \textit{ab initio} calculations and parameter-free models, we identified several trends in these complexes’ structural, energetic and magnetic properties. In particular, we successfully implemented a strategy[18] to enhance the FT coupling, and proved that coupling between the toroidal states and the central ion is crucial to tune these systems’ spin dynamics properties, specifically, to modulate their magnetic relaxation rates.
Results and Discussion

Synthesis
The nitrate and chloride families were prepared according to the following equations (details in SI):
\[6 \text{Dy(NO}_3\text{)}_3 \cdot 6\text{H}_2\text{O} + M(\text{NO}_3\text{)}_2 \cdot 2\text{hydrate} + 12 \text{o-tollic acid} + 20 \text{Et}_3\text{N} \rightarrow [M^{15}\text{Dy}_2(\text{o-til})_{12}\text{(OH)}_8(\text{NO}_3)_2(\text{MeOH})_8]_6 \]
\[6 \text{DyCl}_3 \cdot 6\text{H}_2\text{O} + M(\text{Cl})_2 \cdot 2\text{hydrate} + 12 \text{o-tollic acid} + 20 \text{Et}_3\text{N} \rightarrow [M^{15}\text{Dy}_2(\text{o-til})_{12}\text{(OH)}_8(\text{MeOH})_8]\text{Cl} \]

Crystal structures show subtle changes between families
In both families, two staggered (Dy\(_3\)) triangles lie above and below a trivalent d-p-block ion (Fig. 1). The nitrates 2–5 are isostructural with 1,\(^{18}\) crystallising in the triclinic space group \(P \bar{1}\) (asymmetric unit contains one Dy\(_3\), half of M; see Fig. S4 and Tables S1, S2). The coordination on Dy1 is disordered with MeOH/NO\(_3\) modelled in the ratio 0.75:0.25. The Mn(II) moiety in 2 has two short axial distances (1.919(2) Å) and four longer equatorial distances (av. 2.02 Å).

The chlorides 1'–5' crystallise in the trigonal space group R-3 (asymmetric unit contains one Dy\(_3\), one sixth of M; see Fig. S5 and Tables S3, S4). Each methanol is bound terminally to one Dy\(^{III}\) without disorder. Non-coordinating Cl\(^-\) counter-ions lie above (Dy\(_3\)) triangles, directed towards H-atoms in \(\mu_2\)-hydroxides (O-H\(\cdots\)Cl = 3.179 Å) and coordinated methanols (O-H\(\cdots\)Cl = 3.321 Å). The average Dy-ligand bond length is 2.382 Å. The average Mn\(^{II}\) bond lengths in 1'–5' are 1.978, 1.990, 2.008, 1.908 and 1.893 Å, respectively. All six Mn-O distances in 2' are equal by symmetry (1.99 Å). Other details are the same as for 1.\(^{18}\)

Ab initio calculations
Using these atomic coordinates, we calculated \(ab\ ini\) at the CASSCF/RASSIO-SO level of theory the magnetic anisotropy, \(g\)-tensors and energy levels of each paramagnetic ion in 2–5 and 1'–6' (details in SI). The axially-compressed Mn environment in 2 results in zero-field splitting (ZFS) with \(D > 0\),\(^{20}\) while the trigonally symmetric environments in 2' and 6' give \(D < 0\).\(^{21}\) Small values of \(D\) in 1', 3' and 3' confirm expectations that Cr and Fe are near isotropic (see Table S5). Similar to 1,\(^{18}\), inversion-related Dy\(^{III}\) ions possess effectively the same \(g\)-tensors, with very small transverse components \(g_t\) and large axial components \(g_a\) in the ground Kramers doublets (KDs, see Tables S6, S7) dominated by the microstates \(m_j = \pm 15/2\) of the Dy\(^{III}\) \(4\text{H}_{15/2}\) ground level. Each Dy\(^{III}\) ion’s magnetic easy axis almost lies in-plane and tangentially to a \(\{\text{Dy}(3)>\text{Cl}\) triangle (Fig. 2). Although the Dy\(^{III}\) axes form circular patterns, this alone does not prove the existence of toroidal ground states – for example, two Dy\(^{III}\) ions within a triangle may have their magnetic moments oriented clockwise, but the third Dy\(^{III}\) ion’s moment may be oriented anticlockwise, producing a ‘Dy-flipped’ magnetic state. Rather, the ground states’ identities also depend on the nature of the magnetic coupling between the Dy\(^{III}\) ions, and of course need to be consistent with analyses of the experimental data.

Toroido-structural correlations: strategies to optimise ferrotoroidic coupling

Solvent interactions in crystal structures and \(ab\ ini\) results, we have developed theoretical models (see SI) to calculate the exchange- and dipolar-coupled spectra of these complexes, and to analyse the correlations between their structures and SMT properties. Though the nitrate and chloride families had similar geometric proportions \(h\) and \(r\) (Fig. 3), the Mn\(^{II}\) ionic radii (Fig. S3) affected the ratios \(h/r\) listed in Table 1. As expected,\(^{18}\) this had important consequences for the ferrotoroidic coupling.

Figure 1. (a) Top and (b) side views of Mn-2, showing staggered (Dy\(_3\)) rings. Dy atoms green, Mn blue, O red, N blue. NB The disordered MeOH/NO\(_3\) at Dy1 is shown as NO\(_3\). (c) Top and (d) side views of Mn-2'; Cl in deep green.

Figure 2. Orientations of magnetic anisotropy axes (dotted lines) in each complex. For illustrative purposes, blue arrows depict the directions of local magnetic moments in one of the ground doublets, being FT for 1'/2'/3'/4'/5'/5' (con-rotatory arrows), and AFT for 2'/3' (counter-rotatory arrows).
Effects of changing M and counterion on quantities in Fig. 3, energy gaps between FT and AFT states (ΔE_{AFT-FT}), and energy gaps between FT states and lowest energy Dy-flipped magnetic state (ΔE_{Mox-FT}). NB the ground states are AFT in 3 and 2.

<table>
<thead>
<tr>
<th>Complex</th>
<th>h (Å)</th>
<th>r (Å)</th>
<th>η (°)</th>
<th>φ (°)</th>
<th>J_s</th>
<th>J_i</th>
<th>ΔE_{AFT-FT}</th>
<th>ΔE_{Mox-FT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Cr(NO₃)</td>
<td>5.385</td>
<td>2.176</td>
<td>2.475</td>
<td>6.635</td>
<td>0.930</td>
<td>-0.08</td>
<td>-0.043</td>
<td>0.159</td>
</tr>
<tr>
<td>2-Mn(NO₃)</td>
<td>5.389</td>
<td>2.177</td>
<td>2.494</td>
<td>3.218</td>
<td>-2.235</td>
<td>+0.48</td>
<td>-0.053</td>
<td>0.210</td>
</tr>
<tr>
<td>3-Fe(NO₃)</td>
<td>5.444</td>
<td>2.176</td>
<td>2.502</td>
<td>-3.821</td>
<td>-1.305</td>
<td>-0.28</td>
<td>-0.01</td>
<td>-0.511</td>
</tr>
<tr>
<td>4-Co(NO₃)</td>
<td>5.274</td>
<td>2.170</td>
<td>2.431</td>
<td>-3.629</td>
<td>-0.620</td>
<td>N/A</td>
<td>-0.017</td>
<td>0.280</td>
</tr>
<tr>
<td>5-Al(NO₃)</td>
<td>5.308</td>
<td>2.174</td>
<td>2.442</td>
<td>4.576</td>
<td>0.871</td>
<td>N/A</td>
<td>-0.016</td>
<td>0.256</td>
</tr>
<tr>
<td>1'-Cr(Al)</td>
<td>5.424</td>
<td>2.182</td>
<td>2.485</td>
<td>0.216</td>
<td>-2.295</td>
<td>-0.08</td>
<td>0.023</td>
<td>0.159</td>
</tr>
<tr>
<td>2'-Mn(Al)</td>
<td>5.440</td>
<td>2.181</td>
<td>2.494</td>
<td>-3.657</td>
<td>0.499</td>
<td>+0.35</td>
<td>-0.01</td>
<td>-0.389</td>
</tr>
<tr>
<td>3'-Fe(Al)</td>
<td>5.469</td>
<td>2.186</td>
<td>2.502</td>
<td>1.171</td>
<td>1.333</td>
<td>+0.31</td>
<td>-0.03</td>
<td>0.005</td>
</tr>
<tr>
<td>4'-Co(Al)</td>
<td>5.301</td>
<td>2.173</td>
<td>2.440</td>
<td>-1.683</td>
<td>0.018</td>
<td>N/A</td>
<td>-0.038</td>
<td>0.300</td>
</tr>
<tr>
<td>5'-Al(Al)</td>
<td>5.345</td>
<td>2.186</td>
<td>2.445</td>
<td>-6.404</td>
<td>3.344</td>
<td>N/A</td>
<td>-0.033</td>
<td>0.188</td>
</tr>
</tbody>
</table>

[a] The value of J_s for 1'-Cr(Al) was fitted from low-field, low-temperature powder magnetisation experimental data. See Fig. S14 for more information.

Signatures of toroidal states on static magnetisation and dc susceptibility

Powder magnetisation isotherms (M vs. H) are shown in Fig. 4. Interestingly, the saturation values (Table 2) all exceed the upper bounds predicted for randomly oriented powders (see SI). This means the crystallites have partially aligned with the external field, despite being dispersed in Vaseline. By contrast, our theoretical models’ saturation magnetisations are all slightly below the upper bounds, as we assumed random crystallite orientations.

<table>
<thead>
<tr>
<th>Complex</th>
<th>M (µemu) at 2 K, 5 T</th>
<th>χM/T (cm³ K mol⁻¹) at 300 K, 1 T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Cr(NO₃)</td>
<td>34.47</td>
<td>32.25</td>
</tr>
<tr>
<td>2-Mn(NO₃)</td>
<td>36.70</td>
<td>33.00</td>
</tr>
<tr>
<td>3-Fe(NO₃)</td>
<td>38.72</td>
<td>33.75</td>
</tr>
<tr>
<td>4-Co(NO₃)</td>
<td>34.38</td>
<td>30.00</td>
</tr>
<tr>
<td>5-Al(NO₃)</td>
<td>34.87</td>
<td>30.00</td>
</tr>
<tr>
<td>1'-Cr(Al)</td>
<td>35.86</td>
<td>32.25</td>
</tr>
<tr>
<td>2'-Mn(Al)</td>
<td>N/A</td>
<td>33.00</td>
</tr>
<tr>
<td>3'-Fe(Al)</td>
<td>40.12</td>
<td>33.75</td>
</tr>
<tr>
<td>4'-Co(Al)</td>
<td>35.54</td>
<td>30.00</td>
</tr>
<tr>
<td>5'-Al(Al)</td>
<td>32.50</td>
<td>30.00</td>
</tr>
</tbody>
</table>

[18] Crystal structures with pseudo-S₄ symmetry and η, φ ≠ 0 as evaluated here (Table 1) can in principle disrupt this trend.
Although the AFT states in each complex are significantly populated at 2 K, their magnetic moments (~4 μB) are much smaller than in the low-lying single-Dy-flipped states (~20 μB) or double-Dy-flipped ‘onion’ states (~40 μB). Therefore, the sizes of the energy gaps ΔEMag-FT determine whether M vs. H curves are S-shaped (large ΔEMag-FT), or rise sharply at low fields (small ΔEMag-FT).

For similar reasons to the ΔEMag-FT trends, ΔEMag-FT decreases as S, h, r, |J|, |J2|, |η| and/or |Φ| increase (nitrates ΔEMag-FT: 4 > 5 > 1 > 2 > 3; chlorides ΔEMag-FT: 4’ > 5’ > 1’ > 2’ > 3’, Table 1). Accordingly, the M vs. H curves for 2/2/3/3’ all rise sharply at low fields, but the curves for 4/4/5 are S-shaped (Fig. 4). The curves for 1/1’ are also S-shaped despite moderate ΔEMag-FT values, because antiferromagnetic J1 constants cause partial cancellations of CrIII and DyIII moments, rather than the addition of MnIII/FeIII and DyIII moments seen in 2/2/3/3’ with strongly ferromagnetic J1.

The only model that significantly disagrees with low-H experimental data is for 5’, suggesting (i) overestimation of ΔEMag-FT due to inaccuracies in ab initio calculations for J2, η and/or Φ, or (ii) lasting alignment of 5’ crystallites with the external field after a previous experimental run to the data shown.

These findings highlight the need to develop parameter-free theoretical models independently of experimental measurements, where possible. If experiments and models disagree, the data should not be arbitrarily scaled to give agreement, as this obscures useful information. In this case, we learned that dispersing crystallites in Vaseline does not sufficiently suppress torquing, so in future studies on similar complexes, we will use an alternative medium such as icosane, or press the powders in a nonmagnetic binder.

Independent theoretical analyses are particularly important in systems suspected to have toroidal moments. Experimental data alone may not be sufficient to identify the ground states as FT/AFT/magnetic, particularly when the associated energy gaps are small – the absence of an S-shaped M vs. H curve does not necessarily prove the absence of toroidal ground states.

Direct current (dc) magnetic susceptibility data are shown in Fig. 5. The temperature variation of χM/T is generally similar in all (DyMIII/DyIII) complexes; it remains roughly constant between 300 and ~100 K, then decreases gradually from thermal depopulation of Dy Stark levels, then drops rapidly below ~10 K because the ground FT/AFT states have such small magnetic moments. (E.g. DyIII-flipped magnetic states in 4 have net moments up to 39.681 μB, while μ(FT) = 0.012 μB, μ(AFT) = 4.778 μB.)
The χMT models (developed as per Ref. 18) accurately capture the low-T experimental behaviour, but often undershoot the mid-/high-T data, which is possibly related to inaccuracies in the ab initio excited KD energies (Tables S6, S7). Alternatively, the discrepancy may indicate the crystallites have partially aligned with the field once again, despite being dispersed in Vaseline: while the modelled χMT products at 300 K, 1 T are slightly smaller than the high-T, non-interacting limits (DyIII, S = 5/2, L = 15/2, $g = 4/3$, C = 14.17 cm$^{-1}$ K mol$^{-1}$), the experimental data exceed these upper bounds for all complexes except 5' (Table 2). Unfortunately, we did not have enough bulk sample for magnetic studies on 2', but 6' with diamagnetic YIII has χMT = 3.0 cm$^{-1}$ mol$^{-1}$ K between 300 and ~20 K, and a rapid decrease below 20 K (Fig. S10). This is consistent with the ab initio result of ZFS in high-spin d4 MnIII.

To explore the contributions of dipolar and exchange coupling, we also tested models with alternate values of J_1 and J_2 (Figs. S7–S9, S11–S14). Though slight changes were observed, the main features of M vs. H and χMT vs. T experiments were reproduced even by ‘dipolar-only’ models. This means dipolar coupling, not exchange coupling, is the dominant intramolecular interaction in each (DyMIII3Dy3) complex.

Ac susceptibility measurements

We measured alternating current (ac) magnetic susceptibilities at various temperatures, ac-frequencies and dc-field strengths (Fig. S15). The out-of-phase components χ'' for complexes 1'2/4/4'/5/5' show larger ac-frequency dependence at smaller temperatures, indicating slow magnetic relaxation. This dependence became clearer for 4' and 5' in fixed dc-fields of $H_{DC} = 0.23$ and 0.2 T, respectively. However, in all cases, the maxima in χ'' are not well defined even at 2 K. This is especially apparent in 1' and 5' at $H_{DC} = 0.3$ T, where χ'' rises sharply with increasing ac-frequencies only below 2.6 K, similar to the behaviour observed in 1 for $H_{DC} = 0.2$ T.[58] Complex 3 is an exception, with no clear ac-frequency dependence (indicating fast relaxation) when $H_{DC} = 0$ or 0.3 T. While the in-phase components χ' of 1' and 5' have broad, frequency-independent maxima at ~2.6 K when $H_{DC} = 0.3$ T, the maxima in χ' for 5' shift to higher temperatures with increasing ac-frequencies.

To better understand this behaviour, we performed single-ion ab initio calculations to produce qualitative mechanisms for Dy magnetic relaxation (Figs. 6, S16). Generally, the transition matrix elements for quantum tunnelling of the magnetisation (QTM) are small in ground KDs, e.g. 0.02 μ_B for Dy1 in 2 (Fig. 6, top-left). (The Dy1 ion in 4 is an exception, with larger QTM (0.13 μ_B) allowing magnetic relaxation within its ground KD, which has a relatively larger ratio of $g_y/g_z = 0.337$.) By comparison, the elements for thermally-assisted QTM (TA-QTM) are relatively large in first-excited KDs, e.g. 0.53 μ_B for Dy1 in 2. Therefore, magnetic relaxation should mainly occur via first-excited KDs, and should be slowed by lower temperatures and larger energy barriers.

However, while TA-QTM may be a source of temperature-dependent magnetic relaxation, the first-excited KDs are too high in energy to fully explain the relaxation observed at such low temperatures as 2 K. Also, similar ac susceptibilities can be obtained from complexes with contrasting first-excited KD energies (different energies due to changes in M, e.g. ~120 cm$^{-1}$ (1') vs. ~90 cm$^{-1}$ (5'), or coordination of -NO$_2$ vs. -Cl, as seen[29] in DyIII single-ion magnets). This implies other relaxation mechanisms are taking place, such as Raman processes caused by spin-phonon coupling, intra- and intermolecular interactions, hyperfine couplings to nuclear spins in 141Dy/M153Dy ligands, etc.

Simulations of the hysteretic dynamics: crucial role of the M-linker in tuning toroidal-magnetic Zeeman level crossings

Single-crystal microSQUID measurements at various temperatures and field sweep rates are shown in Figs. 7, S17–S22. All [DyMIII3Dy3] complexes display magnetic hysteresis, though to varying extents, and a much larger dependence on temperatures than sweep rates. Comparing the nitrates (Fig. 7, left) and chlorides (right), we observe relatively minor differences caused by subtle changes in geometric proportions (h, r, δ). DyIII easy axes (η, φ) and exchange coupling (J_1, J_2). Perhaps the most significant change between nitrate/chloride pairs is in 2/2', resulting from contrasting MnIII anisotropies. However, we are mostly interested in how the physical mechanisms causing hysteresis depend on M: diamagnetic vs. paramagnetic, isotropic vs. anisotropic.
To better understand the various hysteresis profiles observed, we extended the simulation program developed in Ref. 18 to account for changes in S_M, the field orientation, and the magnetic anisotropy of the central M^{II} ion. We also explored including two- and three-Dy-flip processes, inserting temperature- and field-dependence into the incoherent tunneling pre-factors γ_{III}, and explicitly calculating the time-dependent broadening parameters λ_{III} (see SI), but these extensions were ultimately removed from the simulations as they were not necessary to successfully reproduce the experimental behaviour.

By computationally exploring the parameter spaces for S_M, h, r, η, φ, J_{II}, J_2, various transition rates, and the applied field’s orientation, we uncovered the following interesting trends:

- Increasing η_I and/or the field’s in-plane angle φ_F ‘stretched out’ the hysteresis profiles (larger H_D, more gradual climbs in M/M_s at moderate fields);
- Including more collective DyIII states gave better agreement with the experimental temperature dependence (larger T reduces hysteresis, decreases M_C);
- Larger single-DyIII-flip tunneling pre-factors $\gamma_{1Dy-flip}$ produced larger zero-field steps in M/M_s;
- Larger single-DyIII-flip spin-phonon pre-factors $\gamma_{2Dy-flip}$ caused greater temperature dependence, smaller M_{rem} and steeper climbs in M/M_s at moderate fields;
- Larger DyIII-tunneling broadening parameters $\lambda_{Dy-flip}$ gave smoother hysteresis profiles;
- Changing the M^{II} ion’s transition rates had little effect on the simulated hysteresis, implying M-ion relaxation occurs on a much faster timescale than the field sweep rates.

Of course, when simulating experimental data (Figs. 8, 9), we fixed parameters as their calculated/measured values – the only free parameters were the field direction and single-DyIII-flip transition rates. Nevertheless, by studying the trends above, we concluded that MII-DyIII dipolar/exchange coupling was stabilising collective DyIII states to varying extents, and this was the main factor affecting the hysteresis. Indeed, the order of ground state level crossings in the Zeeman spectra (Fig. 10) is of crucial importance, and is determined by the M ion’s spin ($S_Cr = 3/2$, $S_{Mn} = 2$, $S_{Fe} = 5/2$, $S_{Co} = S_{Al} = 0$) and the value of J_1 (antiferromagnetic for M = Cr; ferromagnetic for M = Mn, Fe).

When a strong magnetic field acting on 1Cr^2 and the field direction and single-DyIII-flip transition rates. Nevertheless, by studying the trends above, we concluded that MII-DyIII dipolar/exchange coupling was stabilising collective DyIII states to varying extents, and this was the main factor affecting the hysteresis. Indeed, the order of ground state level crossings in the Zeeman spectra (Fig. 10) is of crucial importance, and is determined by the M ion’s spin ($S_Cr = 3/2$, $S_{Mn} = 2$, $S_{Fe} = 5/2$, $S_{Co} = S_{Al} = 0$) and the value of J_1 (antiferromagnetic for M = Cr; ferromagnetic for M = Mn, Fe).

When a strong magnetic field acting on 1Cr^2 and the field direction and single-DyIII-flip transition rates. Nevertheless, by studying the trends above, we concluded that MII-DyIII dipolar/exchange coupling was stabilising collective DyIII states to varying extents, and this was the main factor affecting the hysteresis. Indeed, the order of ground state level crossings in the Zeeman spectra (Fig. 10) is of crucial importance, and is determined by the M ion’s spin ($S_Cr = 3/2$, $S_{Mn} = 2$, $S_{Fe} = 5/2$, $S_{Co} = S_{Al} = 0$) and the value of J_1 (antiferromagnetic for M = Cr; ferromagnetic for M = Mn, Fe).
Depending on the M moment's direction relative to the net DyIII moments, M may increase \(M_{\text{rem}} \) (ferromagnetic \(J_3 \) in 2/2') or decrease \(M_{\text{rem}} \) (antiferromagnetic \(J_3 \) in 1/1'), though CrIII does contribute to \(M_{\text{rem}} \) in FT states. As the field reverses, \(M/M_S \) declines because of tunnelling between various DyIII-flipped states. Then, \(M/M_S \) becomes increasingly negative when the reversed field reaches level crossings between the FT/AFT states and single-DyIII-flipped states. Some slight hysteresis occurs at high fields as spin-phonon relaxation gradually transfers population to the other onion state, and the cycle begins again.

Conversely, when a strong magnetic field acting on 4/4'/5/5' is gradually decreased, the ground state's identity changes sequentially: onion to single-DyIII-flipped to FT/AFT. This allows an efficient transfer of population into one of the AFT states (Fig. 11), whose small out-of-plane moment produces a large portion of \(M_{\text{rem}} \). Thus, differences between the hysteresis profiles of 4/4'/5/5' arise from (i) changes in \(\eta \) affecting the AFT states' moments, (ii) varying ratios of AFT/DyIII-flipped states' contributions to \(M_{\text{rem}} \), and (iii) different field orientations relative to the AFT states' moments.

Like in 1/1'/2/2', a step in \(M/M_S \) occurs at zero field as tunnelling events re-distribute the population remaining in the single-DyIII-flipped states. However, this decline is brief and \(M/M_S \) plateaus after the field is reversed, because the AFT state's magnetisation cannot be depleted until tunnelling can eventually occur to the single-DyIII-flipped states, then to an onion state.

Similar sequential level crossings are found in 3' (Fig. 10), but at smaller fields because MIII-DyIII coupling stabilises the DyIII-flipped states with respect to the FT/AFT states. Based on the sudden increase in the powder magnetisation for 3' (Fig. 4), and the very narrow hysteresis profile (Fig. 7), we suspect our calculated value for \(J_3 \) is too small (or \(|/|J_3|\) is too large), and the level crossings actually occur at even lower fields. This would explain the narrow hysteresis observed, with rapid changes in \(M/M_S \) arising from tightly spaced, sequential level crossings.

Hypothetically, without MnIII-anisotropy in 2/2', the MnIII moment would freely align with net DyIII moments and stabilise DyIII-flipped states even further, causing the key level crossings in 2 (2') to occur at 0.10 T (0.17 T) rather than 0.28 T (0.25 T), respectively (Fig. S24). As a result, the hysteresis profiles would be much narrower, possibly resembling that of 3'. Therefore, MnIII anisotropy is a crucial factor in why 2/2' display the broadest hysteresis profiles in the entire \((\text{Dy}\text{,Mn})\text{Dy}_3 \) series.

The diversity in the shapes of hysteresis profiles presented here highlights the need for detailed theoretical calculations to determine the nature of a molecule's ground state. Each new system must be analysed independently, without relying on similarities to hysteresis profiles of molecules previously found to be FT or AFT. For example, the complex 2' possesses an AFT ground state, yet its hysteresis profile is very similar to that of a recently synthesised \(\text{Fe}_3\text{Dy}_4 \) cyclic coordination cluster, whose ground state was predicted to be FT based on Dy-Dy spin-spin correlations.\[23\]

Conversely, when a strong magnetic field acting on 4/4'/5/5' is gradually decreased, the ground state’s identity changes sequentially: onion to single-DyIII-flipped to FT/AFT. This allows an efficient transfer of population into one of the AFT states (Fig. 11), whose small out-of-plane moment produces a large portion of \(M_{\text{rem}} \). Thus, differences between the hysteresis profiles of 4/4'/5/5' arise from (i) changes in \(\eta \) affecting the AFT states’ moments, (ii) varying ratios of AFT/DyIII-flipped states’ contributions to \(M_{\text{rem}} \), and (iii) different field orientations relative to the AFT states’ moments.

Like in 1/1'/2/2', a step in \(M/M_S \) occurs at zero field as tunnelling events re-distribute the population remaining in the single-DyIII-flipped states. However, this decline is brief and \(M/M_S \) plateaus after the field is reversed, because the AFT state’s magnetisation cannot be depleted until tunnelling can eventually occur to the single-DyIII-flipped states, then to an onion state.

Similar sequential level crossings are found in 3' (Fig. 10), but at smaller fields because MIII-DyIII coupling stabilises the DyIII-flipped states with respect to the FT/AFT states. Based on the sudden increase in the powder magnetisation for 3' (Fig. 4), and the very narrow hysteresis profile (Fig. 7), we suspect our calculated value for \(J_3 \) is too small (or \(|/|J_3|\) is too large), and the level crossings actually occur at even lower fields. This would explain the narrow hysteresis observed, with rapid changes in \(M/M_S \) arising from tightly spaced, sequential level crossings.
Figure 11. When a strong field is gradually decreased and the order of level crossings enables sequential one-flip transitions (black arrows), the AFT state which is two Dy-flips from the onion state becomes preferentially populated over the FT states (three Dy-flips from the onion state, not shown) and the other AFT state which is four Dy-flips from the onion state.

Conclusion

By thoroughly analysing an abundance of experimental data on ten derivatives of the parent double-triangle complex 1-Cr(NO$_3$)$_3$, we have discovered and confirmed several significant trends in their energetic, structural and magnetic properties. These trends are the first toroido-structural correlations ever to be reported, and constitute a new type of magneto-structural correlations. Particularly, we have shown that (i) small, diamagnetic M linking ions enhance the ferrotoroidic coupling between Dy$_3$ units; (ii) the ability of a paramagnetic M ion to stabilise antiferrotoroidic states may be hindered by its anisotropy, if any; (iii) by careful selection of the M ion, a complex’s hysteresis profile can be tuned to increase the remanent magnetisation and/or coercive field. By extending and generalising our hysteresis simulation program, we were able to analyse the slow magnetic relaxation for each choice of M ion, and produce variable-temperature hysteresis simulations for these lanthanide-based SMMs/SMTs. Future work could explore the possibility of removing the M ion altogether, and instead linking the triangles using covalent organic groups or π–π interactions in the ligands. This would likely lead to changes in the Dy$^{	ext{III}}$ ions’ relative positions and easy axis orientations. However, if these challenges could be overcome while maintaining distinct toroidal moments on each triangle, the smaller range of h/r values accessible after removing the M ion would lead to even stronger ferrotoroidic coupling. Our findings represent significant steps forward in understanding and optimising ferrotoroidal magnetism in lanthanide clusters. However, much more research still needs to be done into how we can incorporate these molecules into technological devices, and ultimately benefit from their fascinating magnetic properties.

Experimental Section

All experimental aspects of syntheses, structures, magnetism and theory are given in the SI. The CCDC numbers for the crystal structures are 2003233-2003240 (2–5, 1–4’), 2004663 (5’), and 2004527 (6’). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgements

JMA acknowledges an Australian Government Research Training Program Scholarship. KRV thanks IIT Bombay for a Research Associate position. AS acknowledges an Australian Research Council Future Fellowship (FT180100519), KSM and AS acknowledge an Australian Research Council Discovery grant (DP17010034).

Keywords: ab initio calculations • ferrotoroidal • heterometallic complexes • hysteresis • toroids

RESEARCH ARTICLE

Experimental data, \textit{ab initio} calculations and parameter-free models explore strategies to tune ferro- and antiferrorotoroidic ground states, implemented in a series of double-triangle complexes \(\{ \text{Dy}_3 \text{M}^3 \text{Dy}_3 \} \) with various \(\text{M} \) ions, counter-anions and symmetries. Mechanistic studies and simulations of hysteresis reveal how level crossings' positions determine whether complexes display slow magnetic relaxation.

@QuantumAshtree @unimelb