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Abstract The monitoring of physical activities and
recognition of motion disorders belong to important di-

agnostical tools in neurology and rehabilitation. The

goal of the present paper is in the contribution to this

topic by (i) analysis of accelerometric signals recorded

by wearable sensors located at specific body positions
and by (ii) implementation of deep learning methods

to classify signal features. This paper uses the general

methodology to analysis of accelerometric signals ac-

quired during cycling at different routes followed by
the global positioning system (GPS). The experimen-

tal dataset includes 850 observations that were recorded

by a mobile device in the spine area (L3 verterbra) for

cycling routes with the different slope. The proposed

methodology includes the use of deep learning convolu-
tional neural networks with five layers applied to signal

values transformed into the frequency domain without
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Czech Republic, E-mail: oldrich.vysata@fnhk.cz

D. Jarchi
University of Essex, School of Computer Science and Elec-
tronic Engineering, Colchester CO4 3SQ, United Kingdom,
E-mail: delaram.jarchi@essex.ac.uk

S. Sanei
Nottingham Trent University, School of Science and Technol-
ogy, United Kingdom, E-mail: saeid.sanei@ntu.ac.uk

specification of any signal features. The accuracy of dis-
crimination between different motion patterns for the

uphill and downhill cycling and recognition of 4 classes

associated with different route slopes was 96.6 % with

the loss criterion of 0.275 for sigmoidal activation func-

tions. These results were compared with those evalu-
ated for selected sets of features estimated for each ob-

servation and classified by the support vector machine,

Bayesian methods, and the two-layer neural network.

The best cross-validation error of 0.361 was achieved for
the two-layer neural network model with the sigmoidal

and softmax transfer functions. Our methodology sug-

gests that deep learning neural networks are efficient

in the assessment of motion activities for automated

data processing and have a wide range of applications,
including rehabilitation, early diagnosis of neurological

problems, and possible use in engineering as well.

Keywords multimodal signal analysis · computational

intelligence · machine learning · deep neural networks ·

accelerometers · classification · motion monitoring

1 Introduction

Computer assisted monitoring of motion activities [57,

34,33,36,31] allows us to improve the quality of life

in many different areas, including health care and per-

sonal fitness. The need for early detection of different

pathological situations motivates the study of specific
methods to examine motion disorders in clinical neuro-

logical practice [13,2] using wearable sensors [38,58,54]

and vision based techniques. However, the use of video

camera systems is limited to the direct visibility of the
object [22], while wearable devices can directly trans-

late human motion into signal patterns for the following

mathematical processing and activity recognition. Re-
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Fig. 1 Principle of data processing presenting: (a) accelerometric data acquisition using a wearable sensor in the spine area
of the body with modules of these data for the selected set of experiments for uphill and downhill cycling, (b) data processing
steps, (c) a sample route 190 m long recorded by the GPS system, (d) associated accelerometric data acquired by 3-axis sensor
inside the smartphone, and (e) spectral values related to accelerometric data recorded during the uphill (Class CA), downhill
(CB), steep uphill (CC), steep downhill (CD) cycling with their mean values.

cent advances in sensor technology and wireless commu-
nication systems allow us to use smartphones, smart-

watches, and global positioning systems (GPS) for hu-

man motion monitoring (Fig. 1), assessment of sport

activities [46,9,44], detection of movement symmetry
[47], and gait analysis [26]. Associated methods of com-

putational intelligence and deep learning allow us to

evaluate these data with satisfactory accuracy in many

applications [53,1,35].

Classical clustering, segmentation, and classification

methods, including decision tree (DT), k-nearest neigh-

bour (k-NN), support vector machines (SVM), Bayesian

methods and the two-layer neural network (NN) algo-
rithms with different transfer functions, are often used

in this area [45,4,24]. Another more complex approach

is based on the use of deep learning methods that are

applied to optimise the multilayer NN for the construc-

tion and evaluation of motion models. The problem of
limited dataset size in these cases [60] are sometimes

solved by augmentation methodology, which enables us

to enlarge the size of training datasets, to reduce the

class imbalance, and to minimise scalability issues [37].
This approach has been tested in many areas, including

gait recognition algorithms [8,26] and in dentistry for

teeth category classification using convolutional NNs.

The classification of signal segments of biomedical

signals is performed by classical clustering methods,

by deep learning algorithms [51,42,16], and by specific

discrimination methods [30]. The time, frequency, and

scale domains are often used in these cases as the ini-
tial information sources for human activity monitoring.

Brain functionality is analysed in some studies [12] for

sleep scoring or emotion recognition. In addition, ECG

signals are often analysed in a similar way.

Deep learning methods [19,50,55,6] are often used

as general mathematical tools in many areas, including

engineering, biology [3], biomedicine, and neurology. On
the other hand, alternative specific methods of signal

and image processing, modelling [61,25,29,17], detec-

tion of multidimensional signal components, and signal

segments recognition are often related to specific prob-
lems. Applications of both approaches include analysis

of thermal processes and energy resources [15,56], bio-

metrics [28], stomatology [21], human activity recogni-

tion [18,59], or interpretation of natural kinematics for

human authentication [40]. While deep learning meth-
ods are able to process a complete signal segment or an

image as a general body, specific methods are based on

a selection of appropriate feature in time, or selected

functional domains in many cases.

The present paper is devoted to the application of

deep neural networks (DNNs) for motion analysis [20]

closely related to rehabilitation and evaluation of mo-
tion disorders. The goal of the study is in the contri-

bution to these topics and analysis of accelerometric

signals recorded by wearable sensors located at spe-

cific body positions. The analyzed signals include those

acquired by three-axis accelerometers during the up-
hill and downhill cycling on routes with different slopes

(Fig. 1(c)). All datasets were acquired by a smartphone

sensor that was located on the spine. This position was

selected as the best location [10] enabling to distinguish
different cycling activities with the highest accuracy.

The proposed methodology forms a contribution to

the analysis of human motion data acquired during dif-
ferent movement events including sport activities and

neurological disorders [13]. Accelerometric data ana-

lyzed in the present paper form a simple and cheap

information source while in other applications different
sensors can be used. Their selection includes video and

depth cameras for gait analysis [49], GPS systems for

cycling monitoring [9], thermal cameras [44] for breath-
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ing evaluation, heart rate [10] and further biosensors for

motion analysis during the sleep.

Results of the study contribute to the analysis of

accelerometric data for motion monitoring and they in-

clude the comparison of the deep learning (DL) with
further classification methods for recognition of differ-

ent motion patterns during cycling associated with se-

lected route slopes. From the more general point of

view, the paper contributes to classification of vibra-
tions associated with diagnosis of motion disorders in

neurology [13] or during sport activities, and for anal-

ysis of engineering systems as well.

2 Methods

2.1 Data Acquisition

Measuring accelerometric data during different cycling

activities allows the motion patterns that are important

for fitness evaluation to be recognised and for movement

disorders to be monitored. All signals were recorded by

wearable sensors inside a smartphone that was located
in the spine area (L3 lumbar vertebra) of the body,

as shown in Fig. 1(a). This selection resulted from the

previous research [13,10,52,38] that compared classifi-

cation results for sensors located at different parts of
the body simultaneously recorded by 31 sensors of the

perception neuron [5].

The three-axes accelerometric data and their time

stamps were recorded during uphill and downhill cy-

cling at routes of the different slopes to monitor physical
activity [2]. Fig. 1(c) presents one of cycling routes with

associated time stamps. The terrain slope was evalu-

ated from the global positioning system (GPS) with

data recorded by the GARMIN smartwatch system.

Our data set included 850 segments that resulted

from 170 cycling experiments with each of them di-

vided into 5 parts of the same length. The average sam-

pling frequency of accelerometric data acquisition was

115 Hz. Table 1 presents details of these sets including
time lengths of experiments for the uphill, downhill,

steep uphill, and steep downhill cycling.

The whole set of experiments was reduced by 3.53 %

of unreliable measurements to 820 records, which were

Table 1 Statistics of experiments including the average
route time lengths for selected terrain slopes with their stan-
dard deviations (STD).

Class
Route Time Length [s]
Mean STD

CA - uphill 157.1 2.9
CB - downhill 59.5 1.5
CC - steep uphill 165.7 7.6
CD - steep downhill 77.7 6.5
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Fig. 2 Principle of data processing and the classification sys-
tem based on the DNN with five layers.

in the range of the selected multiple of standard de-

viation from the mean value for each class. Each ex-

periment that belonged to specific class was associated

with the slope value evaluated from GPS data. Table 2

presents the summary of signal segments that we used.

All of the cycling experiments were divided into the

training and testing sets with 90 % and 10 % of observa-

tions, respectively. The selection of signal segments was

done randomly but with the balanced number of seg-
ments belonging to classes CA, CB, CC and CD. The

comparison of classification accuracies was then evalu-

ated both for the training and testing sets.

Fig. 1(e) presents spectral values (evaluated from
time domain values presented in Fig. 1(d) of training

sets of observations belonging to classes CA, CB, CC

and CD, with their mean values that represent typical

curves of spectral components individual classes. For

each experiment of the specific class, associated features
were estimated. The whole set of experiments was then

analysed using statistical tools and selected classifica-

tion methods were applied to the testing set.

Table 2 Statistics of accelerometric data including recorded
(Rec.) and extracted (Extr.) number of segments for differ-
ent terrain slopes with their standard deviation (STD), as
recorded by the Garmin GPS system.

Class
Segments Slope

Rec. Extr. S[%] STD
CA - uphill 205 199 10.3 3.3
CB - downhill 210 205 -9.4 3.9
CC - steep uphill 210 201 19.8 3.4
CD - steep downhill 225 215 -18.7 3.4

2.2 Feature Extraction and Classification

The data processing presented in Fig. 1(b) included sta-

tistical analysis of individual accelerometric records for

each class (Class CA: uphill cycling, Class CB: downhill

cycling, Class CC: steep uphill cycling, Class CD: steep
downhill cycling) recorded with a sampling frequency

fs, depending upon the used smartphone technology,

and varying between 80 and 150 Hz in many cases. The
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standard deviation of differences between each measure-

ment and their mean values was then used as a measure

to extract records affected by gross measurement errors.

The initial data processing included data interpola-

tion, filtering [31], and resampling to eliminate slightly
changing sampling period during data acquisition. This

process also included digital filtering to reject slowly

changing mean data values and high frequency com-

ponents. In this stage, the passband finite impulse re-
sponse (FIR) filtering of an order M was applied to

each signal segment {r(n)}N−1

n=0
for selected cutoff fre-

quencies to evaluate a new sequence {s(n)}N−1

n=0
.

In the next step, the modulus x(n) of the accelero-

metric data was evaluated from the components sx(n),
sy(n), and sz(n) recorded in three directions using the

following relation

x(n) =
√

sx(n)2 + sy(n)2 + sz(n)2 (1)

for all values n = 0, 1, 2, · · · , N − 1 in each segment N
values long. Each record was then transformed by the

discrete Fourier transform (DFT) into the frequency

domain, which was used to separate the signals into

individual classes.
The estimation of signal features can be performed

both in the time and transform domains using either the

discrete Fourier, wavelet [27,11] or Radon transforms.

In these domains, the time dependent features can be

evaluated and spectrograms or scalograms can be used
to optimise the structure and coefficients of complex

mathematical models for data classification. Our pro-

posed approach used the simple discrete Fourier trans-

form of each time segment {x(n)}N−1

n=0
N samples long

forming the sequence {X(k)}N−1

k=0
for k=0, 1, · · · , N−1

and defining frequency values fk = k/N fs, which ap-

peared to be sufficient in the given application.

The pattern matrix used for the following classifi-

cation was defined for the training set using randomly
chosen 90 % measured values by two methods:

– Deep learning: each column of the pattern matrix
included all of the values of each spectral curve in

the training set with a frequency resolution of fs/K

Hz for the chosen total number of K frequency sam-

ples (selected as K = 1024).
– Standard classification methods: each column of the

pattern matrix included specific features that were

associated with each sample in the training set, which

were estimated in the frequency domains.

Target values associated with each column of the pat-

tern matrix were in both cases specified by the positive

slope (Classes CA, CC) and the negative slope (Classes
CB, CD) value.

Accelerometric data segments in the time-domain

had different lengths but the modified DFT provided

the same selected number K=1024 of frequency sam-

ples in the range of 〈0, fs〉 Hz for the selected sampling

frequency fs=60 Hz (after resampling) which allowed

the use of the constant number of input elements R of

the deep learning network presented in Fig. 2(b). The
selection of R=K/4=256 enabled the use of the con-

stant number of input network coefficients that covered

frequency components 〈0, 15〉 Hz.

The features based upon spectral components in the
frequency domain included:

(i) The relative mean power in the range 〈fa1, fa2〉,

(ii) The relative mean power in the range 〈fa3, fa4〉.

Each of spectral features of a signal segment {x(n)}N−1

n=0

N samples long was evaluated using the discrete Fourier
transform in terms of the relative power P in a nor-

malised frequency band 〈fai, faj〉, as follows:

P =

∑

k∈Φ |X(k)|
2

∑N/2
k=0

|X(k)|
2

(2)

where Φ is the set of indices for frequencies fk∈ 〈fai, faj〉.

Figure 3 presents the distribution of selected couples

of features used for the following classification using the

relative mean power in the frequency range 〈3, 8〉 Hz

versus the relative mean power in the frequency range
〈8, 15〉 Hz with centers and c-multiples of standard de-

viations of each class for c = 0.2, c = 0.5 and c = 1.

Feature clusters for steep hill data processing are more

compact and better separated owing to their physiolog-

ical background.

Data segments affected by gross errors were elim-

inated from further processing. As a criterion of this

procedure the Euclidean distances of spatial positions

of features from the centers of gravity, their mean and

standard deviations were used.
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Fig. 3 The distribution of features using the relative mean
power in the frequency range 〈3, 8〉 Hz versus the relative
mean power in the frequency range 〈8, 15〉 Hz with centers
and c-multiples of standard deviations of each class for c =
0.2, c = 0.5, and c = 1 for (a) uphill/downhill cycling and
(b) steep uphill/downhill cycling using a selected accelerom-
eter position.
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2.3 Movement Recognition

Selected Q feature vectors associated with signal seg-

ments were used as column vectors of the pattern ma-
trixPR,Q. The target matrixTS,Q of desired class prob-

abilities was then applied [19,23] to classify all of the Q

feature vectors into S classes. The results of the deep

learning system were compared with those evaluated by

classical systems, which included a SVM, a Bayesian
method, and a two-layer NN.

The matrix AS,Q of output values of the selected

classification system are evaluated through the system

description function f by the following relation:

AS,Q = f(PR,Q) (3)

During the learning stage, system coefficients are op-

timized to obtain its output values AS,Q as close as

possible to target values TS,Q for each column vector

of the pattern matrix PR,Q. The values of the output
layer with the softmax function, based on the Bayes’

theorem [48], provide the probabilities of each class.

The DNN system [39] uses R frequency components

of signal segments in each pattern vector. The classi-
fication system included the input layer, bidirectional

long short term memory (LSTM) [43], fully connected

layer, softmax layer and the classification layer [19,41],

as presented in Fig. 2(b). The deep learning strategy

was used to minimize the selected criterion function.
The performance of classification models is often

evaluated by the log-loss function, which takes into ac-

count the probability that is assigned to the estimation

of the target value. This can be evaluated by the fol-
lowing relation

LL=−
1

Q

Q
∑

i=1

(t(i) log(p(i))+(1−t(i)) log(1−p(i))) (4)

where t(i) stands for the binary output to be predicted,

p(i) stands for the probability assigned by the model,
and Q is the number of target values. Coefficients of

the classification system are then optimised during the

machine learning process to minimise the value of this

criterion. Its strength lies in the fact that the log-loss
function combines the correct and strong prediction.

In addition, as a measure of predictive inaccuracy, it

should be as low as possible.

The standard two-layer NN system is formed by a

simplified system defined by Eq. 3 with R=2 features in
this case. The network coefficients include values of the

first and the second layer with the sigmoidal transfer

function in the first layer. These coefficients are opti-

mized to obtain probabilitiesAS,Q close to target values
TS,Q using the softmax function as in the DNN case.

Both the accuracies and the cross-validation errors were

used to evaluate the individual results.

Table 3 The confusion matrix for the evaluation of a model
classifying pattern vectors belonging to true (target) classes
and estimating their (predicted) classes for the multi-class
classification into S categories.

True (target) Class
C(1) C(k) C(S)

False Pos.
(out-diag.
row sum)

O
u
tp
u
t
(p
re
d
ic
te
d
)
cl
a
ss C(1) x(1,1)

True Pos.
(TP(1))

..
x(1,k)

..
x(1,S)

FP(1)

· · · · · · · · ·

C(k)
x(k,1)

.. x(k,k)
True Pos.
(TP(k))

..
x(k,S)

FP(k)

· · · · · · · · ·

C(S)
x(S,1)

..
x(S,k)

.. x(S,S)
True Pos.
(TP(S))

FP(S)

False Neg.
(out-diag.
col. sum)

FN(1) FN(k) FN(S)

The selection of the classification model is closely

related to the application area and the number of pat-

tern values used for system optimisation in the learning

stage. In many applications, simple classification sys-
tems provide sufficient results. However, in the case of

more complicated patterns, DNNs with specific (convo-

lutional) layers [19] are often used for effective decision

making with the sufficient generalisation ability.

The evaluation of the classification results was per-
formed by the multi-class Receiver Operating Charac-

teristic (ROC) [14,7,45] to illustrate the performance

of the classifier system, and by a confusion matrix pre-

sented in Table 3 for classification into S classes. The
ROC analysis was performed on the basis of a pairwise

comparison of one class against all other classes [32].

The associated common performance metrics used

in the multiclass confusion matrix include the following

ones:

– Precision of class k (pos. predict. value) - Probabil-

ity of correct classification of class k related to the

number of instants classified to class k

PPV (k) =
TP (k)

TP (k) + FP (k)
(5)

– Sensitivity of class k (True positive rate, recall) -

Probability of correct classification of class k related

to the number of instants belonging to class k

TPR(k) =
TP (k)

TP (k) + FN(k)
(6)

– Specificity of class k (True negative rate) - Proba-

bility of incorrect classification of class k related to

the number of instants not classified to class k

TNR(k) =
TNK(k)

TNK(k) + FPK(k)
, (7)

where TNK(k)=
∑

TP (j), FPK(k)=
∑

FP (j), j6=k
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Fig. 4 Results of the initial 400 epochs of the deep learning
optimisation presenting the training accuracy and the loss for
10 experiments with randomly selected initialisations.

– False positive rate - Probability of positive classifi-

cation for the negative set (1-specificity)

FPR(k) =
FPK(k)

TNK(k) + FPK(k)
(8)

– Accuracy - Probability of global correct classifica-

tion

ACC =

∑

k TP (k)
∑

k(TP (k)+FP (k))
(9)

3 Results

The accelerometric data were classified into four classes

(class CA: uphill cycling, class CB: downhill cycling,
class CC: steep uphill cycling, class CD: steep downhill

cycling) using several methods. Figure 4 shows the re-

sults of the initial 400 epochs of the deep learning opti-

misation process, presenting the training accuracy and
the loss for different randomly selected initialisations

of the whole model during 10 experiments. The goal of

this process was to optimise the network to maximise

the accuracy and to minimise the loss during individ-

ual epochs. This optimisation was performed using the
mathematical and software environment of the Mat-

lab2020a system.

Table 4 presents the accuracy AC [%] and the loss

value LV for 10 deep learning experiments for different
network initialisations presenting the final value (F) af-

ter 400 learning epochs and its mean (F30) evaluated

from 30 last epochs. Training was performed for the

training set of values presented in Fig. 2(a) and verifi-

cation for the different set of 10 % of experiments ran-
domly chosen from all observations. The mean value of

the accuracy and the loss evaluated from last 30 epochs

was 74.6 % and 0.63, respectively, with its standard de-

viation reduced by two orders with respect to the eval-
uation of final values only.

The optimization process of the DNN structure pre-

sented in Fig. 2 for the chosen initial learning rate

1000 2000 3000 4000 5000
Training Epoch

40

50

60

70

80

90

100

Ac
cu

ra
cy

 [%
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Lo
ss

DEEP LEARNING EVOLUTION

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 5 The evolution of the accuracy and the loss during 12
incremental learning stages of the deep learning system with
the final accuracy and loss value 96.9 % and 0.10, respectively.

(=0.001), learning rate drop period (=4), and gradi-

ent threshold (=2) in the incremental mode allowed
us to modify the network coefficients during the learn-

ing stage. Figure 5 presents the evolution of the accu-

racy and the loss during 12 incremental learning stages.

This process enabled us to improve the behaviour of

the DNN with the randomly selected training system
initialisations. We achieved the final accuracy and loss

value 96.9 % and 0.10, respectively, after 5000 training

epochs. The mean values of accuracies and loss values

for last 30 epochs was 97.3 % and 0.09, respectively. Ad-
ditional training epochs further increased the accuracy

but with the danger of overlearning.

The classification results achieved for the DNN were
compared with those evaluated by the SVM method,

Bayesian method (Näıve Bayes’ Classifier), and the two

layer NN with the sigmoidal and softmax transfer func-

tions. Figure 6 presents the classification into four classes

(CA: uphill cycling, CB: downhill cycling, CC: steep
uphill cycling, CD: steep downhill cycling) for two fea-

tures evaluated as the relative power in two frequency

Table 4 Accuracy AC [%] and the loss value LV for 10
deep learning experiments for different network initialisations
presenting the final value (F) after 400 learning epochs and
its mean (F30) evaluated from 30 last epochs.

Experiment
Accuracy [%] Loss Value
F F30 F F30

1 73.4 74.1 0.66 0.62
2 73.5 70.9 0.70 0.75
3 67.2 69.6 0.74 0.69
4 78.1 77.4 0.57 0.56
5 74.2 74.7 0.65 0.65
6 81.2 75.7 0.52 0.59
7 82.8 75.7 0.39 0.60
8 77.3 76.7 0.55 0.60
9 75.0 74.0 0.61 0.64
10 75.0 77.2 0.60 0.60

MEAN: 75.8 74.6 0.60 0.63
STD: 4.4 2.6 0.10 0.06
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(b) BAYES: Spine2 / ACC:60.5, CV:0.390
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Fig. 6 Classification of accelerometric data for two features evaluated as the relative power in two frequency bands using: (a)
the SVM method, (b) Bayesian method, and (c) the two layer NN with accuracy (AC [%]) and cross-validation (CV ) errors.

Table 5 Accuracy and cross-validation (CV) errors for clas-
sification of accelerometric data into two classes by the SVM,
Bayesian method, the two-layer NN and the five-layer DNN.

Method Accuracy [%] CV Error
SVM Method 60.1 0.412
Bayes’ Method 60.5 0.390
2-layers NN 63.0 0.361
5-layers deep NN 96.6 0.275

bands using selected classification methods with accu-

racy (AC) and the k-fold cross-validation (CV ) errors

(for k=10) with visualisation of class boundaries.

Table 5 presents a comparison of the accuracy and
cross validation errors for classification of NN and the

five-layer DNN after 5000 learning epochs. Results of

classification for the SVM, Bayesian method, and the

two-layer NN are very close, with an accuracy between
60.1 % and 62.9 % and the mean value of the cross-

validation of 0.388. Much higher accuracy of 96.6 % was

achieved for the DNN and its cross-validation decreased

by 29.1 % to 0.275.

   PREDICTED PROBABILITIES 
 (a) TEST SET CA  - ERROR: 35 %

2 4 6 8 10 12 14 16 18 20
0

50

100

(b) TEST SET CB -  ERROR: 40 %

2 4 6 8 10 12 14 16 18 20
0

50

100

(c) TEST SET CC -  ERROR: 10 %

2 4 6 8 10 12 14 16 18 20
0

50

100

Probability of CLASS A
Probability of CLASS B
Probability of CLASS C
Probability of CLASS D

(d) TEST SET CD -  ERROR: 10 %

2 4 6 8 10 12 14 16 18 20
Experiment

0

50

100

Fig. 7 Results of network test presenting predicted proba-
bilities of classes CA, CB, CC, and CD (corresponding with
those in Fig. 6) for the input test set of signal segments that
belong to (a) class CA (uphill cycling), (b) class CB (downhill
cycling), (c) class CC (steep uphill cycling), and (d) class CD
(steep downhill cycling) with associated classification errors.

Figure 7 presents the test of the optimised DL sys-

tem for input values selected from the testing set recor-

ded for uphill (class CA), downhill (class CB), steep

uphill (class CC), and steep downhill (class CD) cycling
with the predicted probabilities of of these classes. The

mean prediction error is 35, 40, 10, and 10 % for individ-

ual classes. For each segment four probabilities of the

belongings to separate classes are presented with their

highest value pointing to the predicted class. The to-
tal number of 19 segments out of 80 randomly selected

experiments were not classified correctly. In case of the

steep slope only 4 segments out of 40 is misclassified.

More detail results for the training and testing sets

are presented in confusion matrices presented in Table 6

for the two layer neural network classification into four
classes. Similar results evaluated for the deep learning

system are presented in Table 7. The accuracy of the

Table 6 Confusion matrix of the classification by the two
layer neural network model for the training and testing sets
with true positive values on the matrix diagonal (in the bold).

Precision Colorbar
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) NN CONFUSION MATRIX / Training
Set Target Class

FP (k) PPV (k)
k CA CB CC CD

O
u
tp
u
t

C
la
ss

CA 96 29 11 1 41 0.701
CB 40 109 31 29 100 0.522
CC 20 14 74 2 36 0.673
CD 1 22 48 143 71 0.668

FN(k) 61 65 90 32 ACC: 63.0 %
TPR(k) 0.611 0.626 0.451 0.817 Error: 0.370

(b) NN CONFUSION MATRIX / Testing
Set Target Class

FP (k) PPV (k)
k CA CB CC CD

O
u
tp
u
t

C
la
ss

CA 11 4 1 0 5 0.688
CB 6 8 3 2 11 0.421
CC 4 1 7 0 5 0.583
CD 1 2 6 18 9 0.667

FN(k) 11 7 10 2 ACC: 59.5 %
TPR(k) 0.500 0.533 0.412 0.900 Error: 0.405
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Table 7 Confusion matrix of the classification by the DL
neural network model for the training and testing sets with
true positive values on the matrix diagonal (in the bold).

Precision Colorbar
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) DL CONFUSION MATRIX / Training
Set Target Class

FP (k) PPV (k)
k CA CB CC CD

O
u
tp
u
t

C
la
ss

CA 173 1 3 2 6 0.967
CB 0 164 0 15 15 0.911
CC 0 0 178 1 1 0.916
CD 0 1 0 178 1 0.916

FN(k) 0 2 3 18 ACC: 96.8 %
TPR(k) 1.000 0.988 0.983 0.908 Error: 0.032

(b) DL CONFUSION MATRIX / Testing
Set Target Class

FP (k) PPV (k)
k CA CB CC CD

O
u
tp
u
t

C
la
ss

CA 13 3 3 1 7 0.650
CB 5 12 1 2 8 0.600
CC 2 0 18 0 2 0.900
CD 0 1 1 18 2 0.900

FN(k) 7 4 5 3 ACC: 76.3 %
TPR(k) 0.750 0.200 0.783 0.857 Error: 0.237

DL system has increased from 63.0 to 96.8 % for the

training set. The error value of the testing set decreased
from 0.405 to 0.237. The precision PPV (k) of classes

CC and CD (standing for the steep hill cycling) is much

higher than that for classes CA and CB allowing better

separation of motion activities as assumed.

4 Discussion

Our results show that the incremental DNN learning

strategy allows continuous monitoring of model accu-

racy dependent on the level of signal quality, data pre-
processing, and selection of model coefficients. Its ad-

vantage is moreover in no requirement for selection of

signal features. The classification accuracy was 96.6 %

and 72.5 % for training and testing sets. Our results

show that incremental learning allows continuous mon-
itoring of model accuracy dependent on the level of sig-

nal quality, data preprocessing, and selection of model

coefficients.

The proposed DNN system used the sigmoidal trans-
fer function in its second layer. Possible improvements

can be achieved by different network structures includ-

ing the use of scaled polynomial constant unit (SPOCU)

activation function [30] for instance. Its use increased
the training accuracy to 99.3 % (the loss: 0.03).

Classification of motion patterns and monitoring of

physical activities by accelerometers is affected by three

main factors: (i) optimal body positioning of accelero-
metric sensors [13,34,38], (ii) the load of the physical

exercise presented in Figs. 3, 7, and (iii) computational

tools and the selection of the appropriate mathemati-

cal methodology. Present results show that higher load

during accelerometric data acquisition can contribute

to better separation abilities of motion patterns.

The deep learning system can utilize the complete
signal segment in the time or transform domain as a

pattern vector and thus the process of selection of sig-

nal features can be eliminated. Data preprocessing for

signal segments classification is simplified as no features

are selected but the classification model is much more
complex comparing to standard classification methods.

In contrary to the deep learning, the standard approach

to classification based on a specification of features en-

ables the visualisation of signal segments properties,
both in the time and frequency domains. The combi-

nation of both approaches to data processing can lead

to a deeper understanding of the physical behaviour of

the studied system.

The general background of the current research sug-

gests the use of motion patterns classification in many

different areas using similar mathematical tools. Feature-

based methods can benefit from the visual assessment

of their distribution. On the other hand, deep learning
methods can be used for the direct analysis of observed

sequences either in the time or frequency domains with-

out any initial selection of features but with specific

demands for much more complex computational envi-
ronment. In both cases, new machine learning strate-

gies and their implementation for fitness assessment,

for real biomedical data processing, and for monitoring

of physiological functions will also be studied.

The video supplement of the present paper includes

the animation of several cycling routes related to the

(i) accelerometric data acquisition in the time domain

for uphill (CA) and downhill (CB) cycling, (ii) their

transform into the spectral domain enabling either the
direct implementation of the deep learning method-

ology or evaluation of selected signal characteristics,

and (iii) feature-based classification to distinguish two

classes of motion activities.

5 Conclusion

This paper has presented the use of selected meth-

ods for the classification of accelerometric cycling data.

Classification into categories of different loads was per-

formed by the DNN with results compared by those

of the SVM, Bayesian method and the two layer NN.
The advantage of the deep learning is in the fact that

no specific features were estimated, the complete data

segments were transformed into the frequency domain,

and then used as inputs into the proposed model. Lim-
itations of this approach are in the lower possibilities of

geometric interpretation of the whole process and needs

for the extensive computational environment.
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It is expected that further research will be devoted

to the study of specific advantages of deep learning sys-

tems for signal and image processing in biomedicine and

neurology. The methodological research will include the

study of incremental learning strategy allowing to change
the system structure and its coefficients during the learn-

ing process.
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