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Abstract

Many common medical conditions (such as cancer, arthritis, chronic obstructive pulmonary

disease (COPD), and others) are associated with inflammation, and even more so when

combined with the effects of ageing and multimorbidity. While the inflammatory response

varies in different tissue types, under disease and in response to therapeutic interventions, it

has common interactions that occur between immune cells and inflammatory mediators.

Understanding these underlying inflammatory mechanisms is key in progressing treatments

and therapies for numerous inflammatory conditions. It is now considered that constituent

mechanisms of the inflammatory response can be actively manipulated in order to drive res-

olution of inflammatory damage; particularly, those mechanisms related to the pro-inflam-

matory role of neutrophils and the anti-inflammatory role of macrophages. In this article,

we describe the assembly of a hybrid mathematical model in which the spatial spread of

inflammatory mediators is described through partial differential equations, and immune cells

(neutrophils and macrophages) are described individually via an agent-based modelling

approach. We pay close attention to how immune cells chemotax toward pro-inflammatory

mediators, presenting a model for cell chemotaxis that is calibrated against experimentally

observed cell trajectories in healthy and COPD-affected scenarios. We illustrate how

variations in key model parameters can drive the switch from resolution of inflammation to

chronic outcomes, and show that aberrant neutrophil chemotaxis can move an otherwise

healthy outcome to one of chronicity. Finally, we reflect on our results in the context of the

on-going hunt for new therapeutic interventions.

Author summary

Inflammation is the body’s primary defence to harmful stimuli such as infections, toxins

and tissue strain but also underlies a much broader range of conditions, including asthma,

arthritis and cancer. The inflammatory response is key in resolving injury to facilitate
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recovery, and involves a range of interactions between immune cells (leukocytes, neutro-

phils and macrophages in particular) and inflammatory mediators. Immune cells are

recruited from the blood stream in response to injury. Once in tissue, neutrophils release

toxins to kill invading agents and resolve damage; however, if not carefully managed by

other immune cells (mainly macrophages), their responses can increase inflammation

instead of helping to resolve it. We model these interactions in response to damage using

a spatial model, examining how a healthy response can prevent localised inflammation

from spreading. We pay close attention to how cells migrate toward the damaged area, as

many inflammatory conditions are associated with impairment of this process. We cali-

brate our model against experimentally-observed cell trajectories from healthy patients

and patients with chronic obstructive pulmonary disease. We illustrate that a healthy out-

come depends strongly upon efficient cell migration and a delicate balance between the

pro- and anti-inflammatory effects of neutrophils and macrophages.

Introduction

A wealth of medical conditions, including cancer, arthritis, and chronic obstructive pulmonary

disease (COPD), to name just a few, are underpinned by inflammation of the affected tissue.

The acute inflammatory response is a broad term encompassing interactions between numer-

ous key immune cells, which act to mitigate against inflammatory damage. The efficacy of this

response acts as a key switch between restoring the healthy state or, if impaired, leading to

chronic inflammatory damage. Understanding the acute inflammatory response is therefore

key to progressing our understanding of these myriad conditions. Furthermore, the long-held

view that the acute inflammatory response is a passive process has, in recent years, become

superseded by school of thought that the active manipulation of its constituent mechanisms

exhibits significant promise in the hunt for new therapies [1]. In this work, we aim to provide

insight into the interactions between key immune cells and inflammatory mediators via a

mathematical model of generic inflammation that offers scope to be tailored to specific ail-

ments, with a view to informing future therapeutic targets. In particular, we aim to elucidate

the extent to which localised tissue damage can spread spatially to invade neighbouring healthy

tissue, paying particularly close attention to the role efficient neutrophil chemotaxis plays in

resolving inflammation.

While the range of inflammation-related pathologies is broad, the cellular and chemical

interactions that comprise the inflammatory response are largely similar across ailments [2].

The initial response primarily involves recruitment of leukocytes (neutrophils and macro-

phages) from the vasculature into the affected tissue. Neutrophils are recruited early and

release substances that can kill bacteria, but which can also be detrimental to healthy tissue.

The lifespan of neutrophils is short (typically from hours to days [3, 4]), and the apoptosis of

neutrophils presents significant risk to the tissue, since their eventual necrosis results in the

release of the cells’ toxic contents, causing more damage to the tissue [5]. This risk is mitigated

by macrophages, which are recruited later and phagocytose foreign particles and dead or

dying cells, including apoptotic neutrophils; the phagocytosis of apoptotic neutrophils thus

minimises further tissue damage [5, 6]. The recruitment of these immune cells and the interac-

tions between them are regulated by a variety of both pro- and anti-inflammatory mediators.

The recruitment of neutrophils essentially provides a net positive feedback loop that can

cause further tissue damage via release of pro-inflammatory mediators, while the recruitment

of macrophages provides two negative feedback loops comprising the release of anti-
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inflammatory mediators (thus reducing neutrophil recruitment) and the phagocytosis of apo-

ptotic neutrophils.

Central to the question of whether the above cellular interactions yield resolution of damage

is the question of how efficiently relevant leukocytes are recruited to the damaged tissue.

Numerous inflammatory conditions are associated with aberrant migration of neutrophils, in

particular, while detrimental changes in neutrophil migration have also been observed in age-

ing, with neutrophils generally exhibiting reduced chemotaxis. (See e.g. [7–9] and references

therein.) The in-vitro study of [10] used time-lapse photography to record trajectories of

healthy and COPD-affected neutrophils migrating up gradients of interleukin-8 (IL-8), dem-

onstrating that healthy neutrophils chemotax more efficiently, while impaired neutrophils can

have weaker sensitivity to the local chemoattractant gradient, which we associate with an

impaired ability to resolve tissue damage. We use the quantitative measurements of directed

neutrophil motility given by [10] to calibrate our description of leukocyte chemotaxis in the

model presented below.

Several authors have previously presented mathematical models of the inflammatory

response, most commonly using ordinary or partial differential equations (ODEs, PDEs) to

describe simplified groups of constituent cells and mediators. The early work of Lauffenburger

and colleagues highlighted how the effectiveness of the inflammatory response depends criti-

cally upon the rates of diffusion and chemotaxis of inflammatory cells [11, 12]. Taking a spa-

tially-averaged approach, Kumar et al. [13] presented a model of a generic pathogen that

included an early immune response and a late pro-inflammatory feedback, and suggested vari-

ous therapies for persistent inflammation with the late feedback being a particular target for

manipulation. Reynolds et al. [14] built upon this work to illustrate how modulation of a time-

dependent anti-inflammatory response could also present a route to therapeutic interventions.

Focusing upon understanding spatial interactions between generic groups of inflammatory

cells, chemokines and anti-inflammatory cytokines, Penner et al. [15] used a reaction–diffu-

sion (PDE) model to demonstrate how variations in key parameters can give rise to spatial pat-

terns such as travelling waves, localised breathers and spatially inhomogeneous oscillations.

The work of Dunster et al. [16] used a dynamical systems approach to analyse a homogeneous

(ODE) model that included a thorough catalogue of interactions between pro- and anti-

inflammatory mediators, macrophages and active and apoptotic neutrophils, identifying the

rates of neutrophil apoptosis and macrophage phagocytosis as key targets for future therapies.

This work was expanded to a spatial setting by Bayani et al. [17], who showed that spatially

inhomogeneous configurations are permissible close to the switch from chronicity to health

predicted by the original ODE model, in a manner that is sensitively controlled by the rates of

mediator diffusion and immune cell diffusion and chemotaxis.

In all of the above models, the differential-equation-based modelling paradigm presents

some limitations in terms of the ease of incorporating a full repertoire of relevant cells and

interactions, which many authors circumvent by focusing on just the most key mechanisms or

grouping together key components. Furthermore, differential equation models do not reflect

the individual behaviours of each cell, and do not capture the inherent stochasticity in the

response. An alternative approach is to use ‘cellular automata’ or ‘agent-based’ models (ABM),

in which the behaviours of individual cells are described by a set of (usually stochastic) update

rules. This modelling strategy has been utilised successfully in a range of biological applica-

tions, including tumour growth [18], bone remodelling [19], immune responses in the gut

[20] and sexually-transmitted infections [21]. Within the context of generic inflammation, an

ABM approach has been deployed by authors including Liepe et al. [22], who used approxi-

mate Bayesian computation to calibrate models of leukocyte dynamics against experimental

data, and An, Vodovotz and coworkers, who have applied agent-based models to applications
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including diabetic foot ulcers, vocal fold injury and wound healing. (See [23, 24] and refer-

ences therein.) Cockrell and An [25] used an agent-based model of systemic inflammation to

examine the controllability of sepsis via genetic algorithms that can push persistent non-recov-

ering inflammation to a state of health. With the longer-term goal of incorporating more

advanced machine learning algorithms, the authors identified the scope to use their work as a

foundation for future studies that could progress the goal of personalised medicine, in which

intervention strategies are bespoke to the patient’s individual condition. Existing literature

also includes examples in which hybrid approaches are utilised, in which ABM are integrated

with continuum descriptions such as differential equations. These hybrid models offer a wealth

of advantages over both ODE/PDE-based models and classical ABM, since they combine the

cell-scale detail and stochasticity offered by ABM with the computational convenience of

using differential equations to model aspects that are well approximated by continuum

descriptions. Solovyev et al. [26] used a hybrid modelling approach to construct a model of

pressure ulcer formation in patients with spinal chord injury, in which contributory mecha-

nisms related to blood flow were modelled via ODEs and skin injury, inflammation and ulcer

formation were modelled via ABM. Their model predicts that patients with spinal chord injury

are at greater risk of developing pressure ulcers. Furthermore, the model of Bhui and Hayenga

[27] used a hybrid approach to model leukocyte migration during atherogenesis, in which cel-

lular behaviours were modelled via ABM and haemodynamic effects were modelled via

computational fluid dynamics. The authors’ multiscale approach was successful in replicating

leukocyte migration dynamics and the formation of atherosclerotic plaques.

In this paper, we describe the assembly of a hybrid PDE–ABM of the acute inflammatory

response, in which generic groups of pro- and anti-inflammatory mediators are modelled via

PDEs (in a manner similar to that of [17]) and groups of key immune cells (macrophages and

both active and apoptotic neutrophils) are incorporated through an agent-based approach. In

doing so, our principal aim is to provide new insight into spatial aspects of spreading inflam-

mation, addressing the questions of how localised tissue damage can invade neighbouring

healthy tissue, and how the spatial motility of constituent components of the inflammatory

response can be manipulated to promote restoration of health. While previous models often

restrict attention to specific tissues or inflammatory conditions, we present a generic model

that has relevance spanning multiple scenarios. Given the significance of chemotaxis in previ-

ous works, we pay particular attention to how to describe accurately the chemotactic motion

of cells, and calibrate our resulting chemotaxis model against the experimental data of [10], for

healthy patients and patients with COPD. Our goal here is not to provide new insight in to

COPD per se; it is to illustrate the manner in which our model can be easily tuned to relevant

cell motility data in order to accurately describe specific conditions of interest in the future.

We then proceed to elucidate the dependence of the inflammatory outcome upon each indi-

vidual cellular behaviour, and examine the model’s sensitivity to related parameters. We

draw brief qualitative comparison with the PDE model of [17], before finally reflecting on the

results of our simulations within the broad context of the continuing search for inflammatory

interventions.

Methods

We, here, explain the construction and parameterisation of our model, beginning with prelim-

inaries related to choices of domain and initial conditions, before describing the constitutive

PDEs used in modelling the spatial distribution and spread of inflammatory mediators and the

stochastic rules that govern cell behaviour. We then focus in particular upon the manner in

which we model chemotactic cell motion in response to inflammatory damage. We implement
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our model via the existing agent-based modelling platform Repast Simphony (which is

described in detail in [28]); the source code used to produce our simulations is available via

github. Briefly, our code consists of the interactions between four classes: an Environment

class, which contains the implementation of the PDEs that govern pro- and anti-inflammatory

mediators, and the classes Macrophage, Neutrophil and Apoptotic, which describe agents rep-

resenting macrophages, active neutrophils and apoptotic neutrophils respectively. Repast

Simphony offers the advantage that agents can easily be provided with scheduled methods that

act to evolve the agent at each ‘tick’ of the simulation. The interactions between the above clas-

ses are managed by an over-arching Builder class, which is also responsible for configuring the

spatial domain, together with initial and boundary conditions, as described below.

Domain and initial conditions

In our simulations, agents are placed within a square/rectangular region that represents the

model’s spatial domain, as illustrated in Fig 1. With the exception of when considering a

reduced model via which we calibrate our description of chemotaxis below, in which we

choose our domain to match corresponding experiments, we configure our domain and initial

conditions as follows. We simulate our model on a 100 × 100 spatial grid. The domain is sub-

ject to periodic boundary conditions on all sides.

We note that the processes that underlie tissue damage are broad and can vary between tis-

sues and ailments. Since our model is generic and constructed to have applicability spanning

multiple inflammatory scenarios, we do not incorporate a specific description of tissue damage

in our model. Instead, we treat the concentration of pro-inflammatory mediators present at

any spatial location as a convenient proxy for tissue damage, and regard an absence of pro-

inflammatory components (mediators and neutrophils) as a marker for restoration of health.

We note that this approach comprises a degree of simplification for tractability; for example, it

is conceivable that there may exist configurations in which pro-inflammatory mediator

Fig 1. Schema of the spatial domain used in our simulations. Inset: the Moore neighbourhood of a generic cell, showing the indexing system used to number

neighbouring grid spaces when defining and calibrating our model of cell chemotaxis.

https://doi.org/10.1371/journal.pcbi.1008413.g001
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concentrations are instantaneously high, while inflammation is low due to e.g. high-concentra-

tions of anti-inflammatory mediators. This notwithstanding, long-term inflammatory out-

comes do correlate with concentrations of pro-inflammatory mediators, with some pro-

inflammatory mediators (such as interleukin-6) commonly being used as biomarkers for pro-

gression of inflammatory conditions [29].

Owing to the above, our simulations focus on the question of how the cascade of inflamma-

tory responses act to resolve perturbations to the healthy state. Specifically, we perturb the

healthy state by setting the pro-inflammatory mediator concentration to some positive value,

c = c0, within a circular area of radius r in the centre of the domain. (This perturbation acts as

our proxy for initial tissue damage.) Outside of this area, c = 0. We initialise our simulations

with no cells and no anti-inflammatory mediators. This initial concentration of pro-inflamma-

tory mediators then drives recruitment of cells according to the flow chart illustrated in Fig 2,

and as described in the following sections. The interaction and evolution of individual agents

will be elucidated in subsequent sections and figures.

Modelling mediators

We model the spatial distribution and spread of pro- and anti-inflammatory mediators

(denoted c and g respectively) via reaction–diffusion PDEs. We denote by Dc and Dg the diffu-

sion coefficients of each mediator, and introduce associated decay rates γc and γg respectively.

The evolution of the mediators is then governed by the equations

@c
@t
¼ DcD

2c � gccþ Gc; ð1Þ

@g
@t
¼ DgD

2g � ggg þ Gg: ð2Þ

In the above, Γc and Γg incorporate any sources of mediators owing to the actions of the cel-

lular agents described below. Eqs (1) and (2) are solved numerically on the discrete grid

described above; the numerical scheme employs a five-point Laplacian for the diffusive term

and utilises Euler’s method for the timestepping, with an associated timestep dt. Note that we

tune dt to ensure numerical stability, and in doing so take multiple numerical timesteps per

tick of the ABM algorithm.

Macrophages

Macrophages are recruited to damaged tissue in order to regulate inflammatory responses and

mitigate against further damage by apoptotic neutrophils. In our model, at each tick, each

macrophage agent carries out four actions: it decides whether to move (and, if so, where to); it

attempts to remove apoptotic neutrophils in its neighbourhood; it potentially releases anti-

inflammatory mediators and it decides whether to vacate the tissue (if inflammation is suffi-

ciently resolved). These hierarchical actions are illustrated in the flow chart shown in Fig 3; we

expand upon how these behaviours are implemented below.

Macrophage recruitment. In the presence of suitably high concentrations of pro-inflam-

matory mediators, macrophages are recruited to the damaged tissue in order to counteract the

inflammation. In order to model the natural delay between inflammatory damage and media-

tor recruitment, we schedule recruitment of macrophages every five ticks. Macrophages are

recruited subject to a probability pmr provided that the local pro-inflammatory mediator con-

centration is above a threshold αmr; this is, at each grid point, if c> αmr, macrophage agents

are recruited with probability pmr. To avoid the biologically unrealistic possibility of infinite
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recruitment and accumulation of cells, we prescribe a maximum global number of macro-

phages mmax to be recruited within the tissue. We will infer this saturation level from available

experimental data, as explained in the parameterisation section below. Upon recruitment,

macrophages are configured with a lifespan, drawn from an appropriate distribution, which

we also discuss below. This lifespan represents the duration for which the macrophage is

expected to be in a biologically active state. This is broadly of the order of days and in general

Fig 2. Flow chart illustrating the overarching cell recruitment and update structure of the model. Here, m and n
represent the total number of macrophages and neutrophils in the domain respectively.

https://doi.org/10.1371/journal.pcbi.1008413.g002
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is observed to be much longer than that of neutrophils [30, 31]. Typically, macrophages live

longer than a typical simulation presented here; however, if this lifespan is exceeded, the cell is

removed from the simulation.

Macrophage motion. Macrophages are known to actively migrate toward apoptotic neu-

trophils, with the aim of phagocytosing these before they lyse and cause further inflammatory

damage [32]. We thus configure our macrophage agents to move preferentially towards a

neighbouring location that contains apoptotic neutrophils; if multiple neighbouring sites con-

tain apoptotic cells, then one of these is selected at random. In the absence of any apoptotic

neutrophils in any given macrophage’s neighbourhood, its preferential action is to undergo

chemotaxis towards higher concentrations of pro-inflammatory mediators. We discuss the

Fig 3. Flow chart illustrating the actions of each agent of the macrophage class. Here, �c represents the total concentration of mediator c in

the neighbourhood of the agent.

https://doi.org/10.1371/journal.pcbi.1008413.g003
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manner in which this chemotaxis is implemented in a dedicated section below. In the absence

of both apoptotic neutrophils and pro-inflammatory mediators in the agent’s neighbourhood,

the macrophage moves to a random neighbouring location.

Phagocytosis of apoptotic neutrophils. Macrophages act to clear apoptotic neutrophils

through phagocytosis, and in doing so can promote the anti-inflammatory response. In our

model, the phagocytosis of apoptotic neutrophils by macrophages is scheduled at every tick

and simply consists, for each individual macrophage, of randomly selecting an apoptotic cell at

its current position, if there are any, and removing it with probability pma.

Release of anti-inflammatory mediators. It is well known that macrophages can exhibit

a diverse range of behaviours, the selection of which relates to phenotypic switching that

occurs upon environmental stimuli [33, 34]. Macrophages are commonly grouped into two

broad subtypes: the classically activated M1 subtype, and the alternatively activated M2 sub-

type. Anti-inflammatory responses are associated with the latter of these [34]. We make the

simple modelling assumption that the phenotypic switch that activates the anti-inflammatory

response occurs when a given macrophase first phagocytoses an apoptotic neutrophil. Prior to

this, that macrophage does not release any mediators. Following its first phagocytic activity,

the macrophage yields an anti-inflammatory response in which (at every tick) the concentra-

tion of anti-inflammatory mediator at the macrophage’s location is increased by a quantity δmg

with probability pmg.

Macrophage departure. Upon resolution of damage, we allow macrophages to vacate the

modelled tissue, as observed in previous studies [35–37]. In order to do so, the total concentra-

tion of pro-inflammatory mediators in a given macrophage’s neighbourhood is assessed and if

this is below a threshold αml that macrophage then leaves the tissue with probability pml. The

corresponding agent is then immediately removed from the simulation.

Active neutrophils

Neutrophils are recruited to areas of tissue damage in response to high levels of pro-inflamma-

tory mediators, but in a manner that depends also upon local concentrations of anti-inflamma-

tory mediators [38]. Since neutrophils are recruited more rapidly than macrophages in general

[39], we schedule the recruitment of neutrophils every two ticks. Neutrophils themselves can

further contribute to the damage by continuous release of pro-inflammatory mediators. Neu-

trophils are relatively short-lived cells, and upon their eventual apoptosis can release large

amounts of their toxic cell contents, further enhancing inflammation. A schematic representa-

tion of the set of rules regulating each neutrophil’s activity is provided in Fig 4; we expand

upon the implementation of these behaviours below.

Neutrophil recruitment. Unlike the recruitment of macrophages described above, we

consider neutrophil recruitment to be dependent upon the concentrations of both pro- and

anti-inflammatory mediators; when the pro-inflammatory mediator concentration, c, is high

and the anti-inflammatory mediator concentration, g, is low, we recruit neutrophils with a

given probability. In our model, if both c> αncr and g< αngr we recruit a new neutrophil with

probability pnr. As with macrophages, we prescribe a maximum global number of neutrophils

in the system, nmax, to avoid infinite recruitment and accumulation of cells within the tissue.

Further details are provided in the dedicated parametrisation below. Once again, when a new

neutrophil is added to the system, it is assigned a lifespan drawn from an appropriate distribu-

tion. In this case, this lifespan represents the typical delay between recruitment of a new neu-

trophil and that neutrophil becoming apoptotic. Neutrophils have widely been observed to

have considerably shorter lifespans than macrophages, broadly in the range of hours to few
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days [3, 4, 9, 40, 41]. Once again, further details are given in the parameterisation section

below.

Neutrophil motion. Neutrophils are modelled to move chemotactically toward high con-

centrations of the pro-inflammatory mediator, c. We describe the implementation of this

motion in a subsequent section.

Release of pro-inflammatory mediators. Neutrophils provide a positive feedback to the

inflammatory system, through continuous release of pro-inflammatory mediators [42]. At

each tick, each neutrophil acts to increase the pro-inflammatory mediator concentration, c, at

its current location by an increment δnc with probability pnc.
Apoptosis. Upon depletion of a neutrophil agent’s lifespan, that neutrophil dies natu-

rally through apoptosis. The biological implications of a neutrophil’s apoptosis in the inflam-

matory context are multiple and directly affect the complex chain of cellular and chemical

interactions described above. In our model, a neutrophil’s apoptosis involves removal of the

agent itself (with probability one), and replacing that agent by a new agent of the Apoptotic

class, described below.

Fig 4. Flow chart illustrating the actions of each neutrophil agent.

https://doi.org/10.1371/journal.pcbi.1008413.g004
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Apoptotic neutrophils

Apoptotic neutrophils are considered to be essentially dormant until their eventual necrosis,

which we model to occur after a delay drawn from an appropriate distribution, as described in

the parameterisation section below. Apoptosis is associated with a significant reduction of cell

behaviours, including vastly reduced motility [43]. In our model, we assume that apoptotic

cells do not move at all. At the point of its necrosis, an apoptotic neutrophil will release its

toxic contents [37, 44, 45], thus generating further tissue damage and an increase in the

inflammatory response that here we equate to an increase in pro-inflammatory mediators.

Since we do not model tissue damage explicitly here, we incorporate the effects of necrosis of

apoptotic neutrophils as a direct source of pro-inflammatory mediators, which we assume to

occur with probability one on the necrosis of each apoptotic neutrophil. When an apoptotic

neutrophil undergoes necrosis, the pro-inflammatory mediator concentration, c, at the cell’s

current location is increased by a quantity δac. That agent is then immediately removed from

the system. Fig 5 summarises the limited activity of apoptotic neutrophils at each tick.

Modelling chemotaxis

We here describe the manner in which we implement chemotaxis of cells toward areas of high

concentrations of pro-inflammatory mediators. We implement the same description of che-

motaxis for both macrophages and active neutrophils, and in this section use the term ‘cell’ to

refer to either of these (but not apoptotic neutrophils, which do not move at all).

It is well documented in previous literature that cells have the ability to integrate multiple

external signals that inform their direction of motion, but also exhibit a degree of directional

persistence [46, 47]. We, here, construct a model of chemotaxis that takes into account both of

these factors, modelling chemotaxis as a biased persistent random walk. We will observe,

below, that incorporating persistence in the cells’ motion is key in replicating experimentally-

observed cell trajectories. Moreover, many inflammatory conditions are known to involve

Fig 5. Flow chart illustrating the actions of each agent of the apoptotic class.

https://doi.org/10.1371/journal.pcbi.1008413.g005
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defective neutrophil chemotaxis [7–9], which we here consider as a transition to weaker sensi-

tivities to external signals and, potentially, a greater degree of persistence of cell motion.

At every tick of our model, each cell moves by selecting a target grid space from the eight

options within its Moore neighbourhood. This selection is governed by some probabilistic

rule, which we construct in function of both information on the gradient of c in that neigh-

bourhood and the cell’s ‘memory’ of its most recent direction of movement. That is, we con-

struct a probability distribution of the form

p ¼ pgrad � pmem; ð3Þ

in which pgrad describes the probability of moving in each direction in response to the che-

moattractant gradient in the absence of cell memory effects, and pmem describes the probability

of moving in each direction in the absence of any chemoattractant, based purely on the cell’s

persistence of motion.

Let us consider a generic cell i, with neighbourhood N i. For each position j 2 N i, the prob-

ability that the cell moves to position j (in the absence of memory effects) is a function of cj − ci
(i.e. the difference in chemoattractant concentrations between position j and the current posi-

tion). We prescribe

pgrad
j ¼

wðcj � ciÞX

k2N i

wðck � ciÞ
;

ð4Þ

where w(x) is a potentially nonlinear weighting function that controls the strength of the

dependence upon the chemoattractive signal, and the summation on the denominator is sim-

ply a normalisation that ensures that these probabilities sum to unity. Here, we choose

wðxÞ ¼ exp ðkgradxÞ; ð5Þ

where kgrad is a scaling parameter, which we will later infer from experimental data.

In order to incorporate cell persistence, cellular agents are embedded with a record of the

direction of their previous move, θprev. If θprev = 0 for a given cell, that cell’s most recent move

was to the right; if θprev = π/2, the cell’s most recent move was upwards, etc. The probability

associated with the cell’s memory (pmem) follows a Gaussian distribution, in which the most

likely next move is that associated with the preservation of direction. The possibilities for the

cell’s next move correspond to the angles θj = (j−1)π/4, for j = 1, . . ., 8. The probability that the

cell proceeds by moving in a direction prescribed by the angle θj (given θprev) is given by

pmem
j ¼

1

K
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

mem

p e
�
ðyj � yprevÞ

2

2s2
mem

 !

; ð6Þ

where K is a normalising constant that accounts for the fact that the Gaussian is sampled at

only eight discrete points, and ensures probabilities sum to unity. The extent to which a cell is

likely to change direction is regulated via the standard deviation parameter σmem, which we

once again infer from experimental data below.

Finally, we combine the two facets of cell motion above, and prescribe the probability that

cell i moves to position j 2 N i according to

pj ¼
pgrad
j � pmem

jX

k2N i

ðpgradk � pmem
k Þ

;
ð7Þ
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where, once again, the denominator provides suitable normalisation. We investigate the sensi-

tivity of our model to choices of the parameters kgrad and σmem, in particular, in subsequent

sections.

Parameterisation

We here consider, initially, the spatial and temporal scales associated with the ABM described

above, paying particular attention to the quantities appearing in the mediator equations of (1)

and (2). Within our model, it is natural to consider the resolution of the grid to be such that

each grid space corresponds to one cell diameter. We choose to set each grid space to corre-

spond to the diameter of a macrophage, which is approximately 20 μm. For a 100 × 100 grid,

this corresponds to a square domain of width 2 mm. When considering the nondimensionali-

sation required to arrive at the dimensionless PDEs (1) and (2) from dimensional analogues, it

is computationally convenient to scale lengths against the size of one grid space (since this pro-

vides a mesh with unit spacing that can be coupled easily to the agent-based portion of the

model). We therefore deploy a spatial scaling L� = 20 μm (with stars denoting dimensional

parameters here) and run simulations on the domain [0, 100] × [0, 100]. Similarly, we are

required to choose an appropriate scaling of time, T�. In doing so, we configure the cell veloci-

ties against data reported in the literature. Macrophage velocities are reported to lie in the

approximate range 0.5–30 μm/min [48–50]. We therefore set each tick to be equivalent to 1

minute (i.e. T� = 1 min) and allow macrophages to move once per tick, resulting in a typical

macrophage velocity of 20 μm/min. Meanwhile, neutrophils are reported to move roughly

twice as fast as macrophages, with average velocities in the range 3.5–63.5 μm/min [10, 51, 52].

We therefore allow neutrophils to move twice per tick with a corresponding neutrophil veloc-

ity of 40 μm/min. We note, here, that we impose a direct equivalence between one unit of time

in the PDEs of (1) and (2) and one tick of our ABM.

Typical (dimensional) mediator diffusion rates are reported to lie broadly in the range

10−8 − 10−6 cm2/sec. (See [53–55] and references therein.) Here, we take dimensional values

D�c ’ D�g ’ 10� 7cm2=sec � D� as our baseline choice, and apply the nondimensionalisation

described above to obtain

Dc ¼ Dg ¼
D�T�

L�2
¼ 1:5: ð8Þ

We take this as our standard baseline value for Dc and Dg in the simulations below. Simi-

larly, the decay rate parameter γc in (1) is related to its dimensional equivalent according to

gc ¼ g
�
cT
�. Following [16], we take g�c ’ 3 day

� 1
, which provides γc’ 0.002. Again, we take

this as our baseline value for γc in simulations below, and for ease we also assume γg = γc.
It then remains to consider the scaling of mediator concentrations themselves. It will be of

interest below to make comparison with the related PDE–based model of the inflammatory

response presented in [17] below, in which pro-inflammatory mediator concentrations were

scaled against the production of pro-inflammatory mediator by apoptotic neutrophils on

necrosis. Whilst it is difficult to recover the scaling of [17] exactly, we can make a qualitative

comparison by setting the amount of pro-inflammatory mediator released by an apoptotic

neutrophil (δac) equal to one in our model, and accordingly consider mediators to operate on

the scale [0, 1]. We therefore choose our initial conditions to include a central circular area of

radius r within which we perturb the healthy steady state by setting c = c0 (with c0 2 [0, 1]), sur-

rounded by healthy tissue in which c = 0. For ease, we assume that there is no anti-inflamma-

tory mediator initially, so that g = 0 everywhere in the domain.
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In order to infer a biologically realistic proportionality between the maximum number of

macrophages and neutrophils within the tissue, we refer to standard measurements of human

differential white blood cells. In particular, neutrophils account for 40% to 80% of the total leu-

kocyte population while macrophages have considerably lower proportions, with typical values

between 2% − 10% [56]. As such, by recalling that gridpoints are scaled with respect to the

diameter of macrophages (�20 μm) and that we operate over a 2 mm × 2 mm domain, we fix

the maximum number of macrophages at mmax = 1000 and a limit number of neutrophils four

times larger at nmax = 4000.

Finally, we consider appropriate choices for leukocyte lifespans. As discussed above, the

amount of time that macrophages and neutrophils remain active in a tissue can vary signifi-

cantly between different tissues and in different inflammatory contexts. Macrophages can typi-

cally be active from several days to months [30, 31], while the lifespan of neutrophils is

generally considerably shorter, from within hours to a few days [3, 4, 9, 40, 41]. Thus, recalling

that according to our parameterisation one tick is equivalent to one minute, we model this

information by randomly selecting macrophage lifespans from a uniform distribution on the

interval [1440, 86400] (i.e. 1–60 days) and neutrophil lifespans from a uniform distribution on

the interval [60, 1440] (i.e. 1–24 hours). For apoptotic neutrophils, there is a lack of experimen-

tal methods to properly detect and measure the necrosis timescales [57], but it is generally

understood that this a rapid process [58]. We thus prescribe an approximate lifespan for apo-

ptotic neutrophils randomly assigned from a uniform distribution on the interval [60, 720]

(i.e. 1–12 hours).

Many of the remaining parameters in our model are not known exactly, but some can be

inferred qualitatively from biological intuition. For example, we expect the production of pro-

inflammatory mediators by active neutrophils to be on a scale much smaller than that by apo-

ptotic neutrophils, so δnc� δac. Similarly, due to the scaling of mediator concentrations, we

intuitively expect δmg, αncr, αngr, αmr, αml 2 [0, 1]. For those parameters whose values are not

directly available from existing literature, we choose baseline values that best display the mod-

el’s scope for switching between chronic and healthy outcomes. A summary of our model

parameters, together with baseline values used in the simulations below, is given in Table 1.

We calibrate the parameters associated with cell chemotaxis by comparison with the existing

experimental data of [10] below, and also investigate the sensitivity of the model to variations

in key parameters in subsequent sections.

Results

In this section, we begin by examining a reduced model in which we simulate the motion of a

population of neutrophils toward a fixed chemoattractive target. In doing so, we compare our

simulations with existing experimental results in order to inform our choices of the chemotac-

tic parameters kgrad and σmem. In this reduced model, we neglect macrophages, apoptosis of

neutrophils and all inflammatory interactions, and study cell motion alone. Having identified

suitable choices of the motily parameters, we deploy these in simulations of our full model,

before investigating the model’s sensitivity to variations in the remaining parameter values.

Calibrating the chemotaxis model

Defects in neutrophil recruitment result in a delayed progression of inflammation, potentially

preventing the restoration of a healthy state and leading the way to diseases [59]. Understand-

ing the conditions that prevent the correct migration of leukocytes to the sources of damage

upon an inflammatory event is key to developing effective therapeutic tools, in order to con-

tain and eventually tackle such disorders.
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The study of Sapey et al. [10] investigated the differences in neutrophil chemotaxis between

healthy controls and patients affected with chronic obstructive pulmonary disease (COPD)—a

disease associated with airway inflammation, increased neutrophil recruitment, and aberrant

neutrophil migratory dynamics. In their study, Sapey et al. use time-lapse microscopy to monitor

the spatial trajectories of populations of neutrophils as they migrate in the presence of a linear

gradient of the chemoattractant interleukin–8 (IL–8). In doing so, they record average cell

speeds, cell velocities in the direction of the attractant, and a mean chemotactic index, which rep-

resents the extent to which cell trajectories align with the direction of the chemotactic gradient.

We compare our simulations directly against the results from [10] in order to infer appropriate

choices of our chemotaxis parameters kgrad and σmem, in both healthy and inflamed situations.

In order to compare our simulations with these experiments, we introduce a nondimensio-

nalisation (used in this section only) that compares directly with the experimental setup. In

Table 1. Model parameters, together with baseline values used in the simulations below. PDE parameters are

inferred from existing literature as described in the text. Chemotaxis parameters are computed via comparison with

the experimental data of [10]. The remaining parameters are mostly unavailable in existing literature, and are thus esti-

mated based on simulation. The model’s sensitivity to these parameter choices is investigated in more detail in the

Results section below.

Parameter Definition Value

Initial Conditions

c0 severity of perturbation to the healthy state 1

r radius of perturbed area 10

Mediator (PDE) Parameters

Dc, Dg diffusion coefficients 1.5

γc, γg decay rates 0.002

Source Terms

δac mediator c released by apoptotic neutrophils 1

δnc mediator c released by active neutrophils 0.001

δmg mediator g released by macrophages 0.001

Probabilities

pnr neutrophil recruitment 0.02

pnc release of mediator c by active neutrophils 0.5

pmr macrophage recruitment 0.04

pmg release of mediator g by macrophages 0.8

pml macrophages leaving the tissue 0.8

pma macrophage phagocytosis of apoptotic neutrophils 1

Thresholds

αncr minimum mediator c for neutrophil recruitment 0.05

αngr maximum mediator g for neutrophil recruitment 0.015

αmr minimum mediator c for macrophage recruitment 0.4

αml minimum mediator c for macrophages to remain 0.02

Chemotaxis Parameters

kgrad strength of response to chemoattractant—healthy regime 80

—impaired regime 8

σmem cell persistence—healthy regime 1

—impaired regime 1.2

Miscellaneous

nmax maximum number of neutrophils 4000

mmax maximum number of macrophages 1000

https://doi.org/10.1371/journal.pcbi.1008413.t001
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particular, we choose to set each grid space to correspond to 1 μm and, given that the time-

lapse images of [10] represent an area of approximately 240 μm × 180 μm, we consider a

240 × 180 rectangular grid as our domain. We consider a distribution of chemoattractant with

dimensionless concentrations of zero on the lower boundary and one on the upper boundary,

with no lateral variation. Here, we run simulations corresponding to the 20 min duration of

experiments presented. Given that the only temporally-dependent behaviour in this reduced

model is cell motion itself, the precise definition of one tick in our simulations is arbitrary,

given that we have the option to permit multiple cell moves per tick. Given observed cell veloc-

ities from [10], and for fixed choices of kgrad and σmem, we compute the expected number of

moves needed to travel the required vertical distance in 20 min. Having done so, we also com-

pute the mean chemotactic index associated with an expected trajectory. The resulting pairs of

kgrad and σmem values that yield the chemotactic indices measured in [10] are carried forward

as viable parameter values for subsequent simulations.

Let us describe a generic cell’s trajectory in terms of a series of individual moves, denoting

by mk the cell’s kth move. Each cell move is one of the eight options illustrated in Fig 1, which

we number from one to eight; if mk = 1, the cell’s kth move is to the right; if mk = 5, the cell’s kth

move is to the left, etc. We are thus interested in the probability of the cell selecting move mk,

from the eight possibilities, given its previous move mk−1. We define a transition matrix, P,

such that, at move k, pij represents the probability that the kth move is move j given that the

(k − 1)th move was move i; i.e.

pij ¼ P ðmk ¼ j jmk� 1 ¼ iÞ ; i; j ¼ 1; . . . ; 8 : ð9Þ

At the start of our simulations, agents are initialised with a randomly assigned orientation,

each with equal probability, i.e.

Π0 ¼
1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

� �

: ð10Þ

The cell’s trajectory is then described by a Markov chain, with transition probability P and

initial data P0, in which each state is one of the eight moves described above. Given this, the

probability that the kth move is move i is given by

Pðmk ¼ iÞ ¼ ðΠ0 � P
kÞi ; i ¼ 1; . . . ; 8 : ð11Þ

Let us now define a new matrix Q such that

qik ¼ Pðmk ¼ iÞ ; ð12Þ

with the right-hand side of (12) being computed according to (11). Given this matrix, we can

calculate the expected distance travelled in the vertical direction after N moves as

dv ¼
XN

k¼1

X4

i¼2

qik �
X8

i¼6

qik

 !

: ð13Þ

Given a target cell velocity, we can infer an expected distance of travel from the experimen-

tal data, and by comparing this with (13), we prescribe the total number of moves to be carried

out within a given simulation. This effectively prescribes the number of moves per tick in our

full model, holding fixed the required number of ticks.
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Similarly, for each possible move i, let us construct a vector α such that αi is the angle that

the trajectory of move i makes with the vertical, i.e.

α ¼
p

2
;
p

4
; 0;

p

4
;
p

2
;
3p

2
; p;

3p

2

� �

: ð14Þ

We can then compute the expected mean chemotactic index after N moves according to

Ichem ¼
1

N

XN

k¼1

X8

i¼1

cos ðaiÞqik : ð15Þ

We use (15) to calibrate our model against the experimental observations of [10] as follows.

For a given choice of kgrad and σmem, and a given cell velocity from [10], we infer the expected

vertical distance of travel (dv) over the course of a 20 min experiment, and use (13) to calculate

the number of moves (N) required to replicate this in our model. Given N, we then use (15) to

calculate the mean chemotactic index that we expect to observe in our simulations from a the-

oretical perspective (Ichem). We compare this value against the documented mean chemotactic

index measurements of [10] to quantify the extent to which our model replicates in-vitro cell

trajectories for these choices of kgrad and σmem. We refine our choices of kgrad and σmem accord-

ingly, to ensure our simulations reflect in-vitro observations, as described below.

Fig 6 illustrates the expected mean chemotactic index calculated via (15) for ranges of kgrad
and σmem. In Fig 6A, we show results calibrated using measurements of neutrophils from

healthy controls in the study of [10], for which the reported mean cell velocity is 3.77 μm/min

and the mean chemotactic index is 0.39. We therefore choose the number of moves, N, by

requiring that dv’ 75.4 in (13). The heavy black line in the figure illustrates a curve in (σmem,

kgrad)–space for which the target chemotactic index is realised. Any pair of parameters that lie

on this curve may be chosen as suitable values; we choose kgrad = 80 and σmem = 1 to illustrate

the corresponding behaviour below. For these parameters our calculation requires that we per-

form N = 160 moves within our simulation. In Fig 6B, we repeat this calculation using mea-

surements of neutrophils from COPD-affected individuals, for which the mean cell velocity is

0.09 μm/min, and the mean chemotactic index is 0.04. We observe that accurate recovery of

Fig 6. Plots of the mean chemotactic index attained for each combination of kgrad and σmem. In (A), we calibrate our

model against the healthy control data of [10] using a mean cell velocity of 3.77 μm/min; the black line represents a mean

chemotactic index of 0.39. In (B), we calibrate our model against the COPD-affected data of [10] using a mean cell velocity

of 0.09 μm/min; the black line represents a mean chemotactic index of 0.04.

https://doi.org/10.1371/journal.pcbi.1008413.g006
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experimental observations in the healthy case involves a reasonably significant dependence

upon the cell persistence parameter σmem, while the COPD case exhibits a much weaker depe-

dence on cell memory alongside a lesser ability of cells to sense the chemotactic gradient, cor-

responding to smaller choices of kgrad. Below, we choose kgrad = 8 and σmem = 1.2 to illustate

behaviours in the chemotactically impaired case. Fig 7 illustrates the cell trajectories observed

in [10] alongside simulations of our model using each of the parameter sets identified above.

We observe reasonably well-directed motion toward the chemoattractant in the healthy case

(Fig 7A and 7B), but much less directed motion in the COPD case (Fig 7C and 7D).

Simulations of the full inflammatory model

Below, we present simulations of the full inflammatory model in both healthy and impaired

chemotactic regimes, and for a range of the remaining model parameters. Throughout, we are

primarily interested in how variations in model parameters drive switching between chronic

outcomes and full resolution of inflammation. Below, we associate chronic outcomes with a

sustained presence of pro-inflammatory mediators or active/apoptotic neutrophils. Simula-

tions for which the numbers of pro-inflammatory mediators and active/apoptotic neutrophils

all eventually reach zero are identified as healthy outcomes, with inflammation being fully

resolved.

Fig 7. Comparison of the in vitro cell tracking experiments of [10] (A,C) with simulations of our calibrated chemotaxis

model (B,D). In (A,B), we illustrate the healthy case, with simulations calibrated using a mean cell velocity of 3.77 μm/min and a

mean chemotactic index is 0.39, providing kgrad = 80 and σmem = 1. In (C,D), we illustrate the inflamed (COPD) case, with

simulations calibrated using a mean cell velocity of 0.09 μm/min and a mean chemotactic index is 0.04, providing kgrad = 8 and

σmem = 1.2. (A,C) Reprinted with permission of the American Thoracic Society. Copyright ©2019 American Thoracic Society.

Cite: Sapey et al. (2011) ‘Behavioral and structural differences in migrating peripheral neutrophils from patients with chronic

obstructive pulmonary disease’, American Journal of Respiratory and Critical Care Medicine 183(9), 1176-1186. The American

Journal of Respiratory and Critical Care Medicine is an official journal of the American Thoracic Society.

https://doi.org/10.1371/journal.pcbi.1008413.g007
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In Fig 8 we illustrate simulations of the full inflammatory model, with chemotaxis parame-

ters corresponding to the healthy case described above (kgrad = 80, σmem = 1) and the remaining

parameter values as given in Table 1. In the figure, we show snapshots of a typical simulation

over a range of ticks spanning 0–20,000. Initially, we perturb the healthy steady state via a posi-

tive concentration (c0) of pro-inflammatory mediators in the centre of the domain (which we

use as a proxy for tissue damage). This perturbation drives recruitment of both neutrophils

and macrophages, with the combined effects of diffusion of pro-inflammatory mediators and

the pro-inflammatory feedback from neutrophils ultimately yielding a globally inflamed,

chronic state. Given the stochastic nature of our model, we routinely simulate in batches of

100 simulations, and consider the mean response. Fig 8 also shows the mean global cell count

for each type of cell (B–D), and the maximal mediator concentrations across the domain (E,F).

We observe that the active neutrophil and macrophage populations rapidly grow toward their

maximum capacities in response to the initial perturbation, and these levels are sustained due

to the sustained presence of pro-inflammatory mediators. Mediator concentrations ultimately

Fig 8. A typical simulation of the inflammation model showing a chronic, globally inflamed outcome, for healthy choices of

chemotactic parameters (kgrad = 80, σmem = 1) and all other model parameters as given in Table 1. (A) Successive snapshots of the

simulation in which high levels of pro-inflammatory mediators are shown in dark reds in the background; active/apoptotic neutrophils

are shown in green/orange respectively and macrophages are shown in blue. (B–D) Global cell counts for active neutrophils, apoptotic

neutrophils and macrophages respectively. (E,F) Maximal concentrations of mediators c and g across the domain. Solid lines represent

the mean result over 100 simulations of the model; shaded areas represent plus/minus one standard deviation.

https://doi.org/10.1371/journal.pcbi.1008413.g008
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reach a pseudo-steady state, with high levels of pro-inflammatory mediators (in particular)

sustained indefinitely.

Given the chronic response yielded by the baseline parameter set of Table 1 (for healthy

choices of chemotactic parameters), we observe that manipulation of some key parameters can

switch the system to a healthy long-term outcome, in which all of the pro-inflammatory com-

ponents of the model (i.e. c and the sizes of the active/apoptotic neutrophil populations) go to

zero. Fig 9 illustrates temporal snapshots of a typical resolving simulation. Our simulations

reveal that the size and severity of the initial perturbation from the healthy steady state (r and

c0 respectively) and the mediator thresholds governing leukocyte recruitment (αmr, αncr and

αngr) exhibit the most significant switching behaviour in this regard. As Fig 10 shows, reducing

the severity of the initial perturbation by setting either r = 5 or c0 = 0.5 yields a healthy out-

come. Similarly, reducing the number of neutrophils recruited by either increasing αncr or

decreasing αngr can yield a healthy response (as shown for αncr = 0.1 and αngr = 0.0015 in Fig

10). Likewise, we can bias the system toward an eventual healthy state by stimulating a greater

anti-inflammatory response through enhanced macrophage recruitment by reducing αmr, as

illustrated for αmr = 0.25 in Fig 10.

For parameters yielding a typical healthy response, impaired neutrophil chemotaxis can

switch the outcome to one of chronicity, as illustrated in Fig 11, which compares simulations

in each chemotaxis regime for αmr = 0.25 and all other parameters as given in Table 1. For

healthy neutrophil chemotaxis (kgrad = 80, σmem = 1), neutrophils remain largely localised at

the area of the initial perturbation in the short term, resulting in a significant surge in pro-

inflammatory mediators in this region that elicits a strong macrophage response. These mac-

rophages then begin to mitigate against further damage by releasing anti-inflammatory media-

tors and phagocytosing apoptotic neutrophils, resulting in the ultimate restoration of the

healthy state. When neutrophil chemotaxis is impaired, neutrophils rapidly migrate away from

the site of the initial perturbation. As they do so, they continue to release pro-inflammatory

mediators; however, the wider spatial distribution of neutrophils results in these mediators

being more spread out across the domain, with local levels falling below the threshold for mac-

rophage recruitment (as shown in Fig 11D). As a result, macrophage populations are much

smaller in general, and are not able to generate sufficient anti-inflammatory feedback to allow

the inflammation to resolve. The system attains a chronic state, with a low level of pro-inflam-

matory mediators sustained indefinitely through the continued presence of active and apopto-

tic neutrophils.

Parameter sensitivity analysis

In Fig 12, we examine the extent to which the inflammatory outcome depends upon our

choices of model parameters. Holding chemotactic parameters fixed at the healthy choices

resulting from the calibration above (kgrad = 80, σmem = 1), we perform simulations with each

parameter in Table 1 increased by 50% (denoted by upward pointing green triangles in the fig-

ure) and decreased by 50% (denoted by downward pointing red triangles in the figure) and

record the mean percentage change in the maximal level of pro-inflammatory mediator c at

t = 5000. (We omit the parameter δac from this analysis, as this parameter is directly implicated

in the non-dimensionalisation of the model. For parameters representing probabilities for

which an increase of 50% would result in a choice greater than one, we instead perform simu-

lations with unit probability.) As usual, all results are averaged across batches of 100 simula-

tions. Since the baseline parameter set of Table 1 yields a chronic outcome (Fig 8), we are

particularly interested in whether changes in parameter values can result in a switch to full res-

olution (i.e. a percentage change of −100% in Fig 12).
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Intuitively, a reduction in the severity of the initial perturbation (via either c0 or r) can result

in the inflammation being fully resolved. Interestingly, the model is highly sensitive to varia-

tions in the rate of pro-inflammatory mediator diffusion, Dc, in that both high and low choices

can drive resolution, by weakening the model’s positive feedback or strengthening its negative

Fig 9. Snapshots of a typical healthy response, for healthy choices of chemotactic parameters (kgrad = 80, σmem = 1), αmr
= 0.25 and all other model parameters as given in Table 1. High levels of pro-inflammatory mediators are shown in dark

reds in the background; active/apoptotic neutrophils are shown in green/orange respectively and macrophages are shown in

blue. Corresponding time-courses showing global cell counts and mediator concentrations are shown in green in Fig 10.

https://doi.org/10.1371/journal.pcbi.1008413.g009
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feedback respectively. For large choices of Dc, pro-inflammatory mediators rapidly spread

spatially, attaining low levels across the domain. This results in a much weaker neutrophil

response, which is ultimately overcome by macrophages. Conversely, for small choices of Dc,

pro-inflammatory mediators remain more localised, with greater levels at the site of the initial

perturbation. This triggers more rapid recruitment of macrophages, which in turn generate

increased release of anti-inflammatory mediators, which once again trigger full resolution.

Similarly the model exhibits some dependence upon the pro-inflammatory mediator decay

parameter, γc. For the parameters studied in Fig 12, a reduction of γc is sufficient to stimulate a

greater macrophage response, yielding a long-term reduction in the levels of pro-inflammatory

mediators. The model is much less sensitive to the PDE-parameters associated with anti-

inflammatory mediators, Dg and γg, for the parameters investigated here.

Reducing the recruitment of neutrophils by increasing αncr (or decreasing pnr) or stimulat-

ing the recruitment of macrophages by reducing αmr can switch the model to a healthy out-

come. The model is less sensitive to choices of the neutrophil recruitment parameter αngr;
however, more significant reductions in this parameter can also drive resolution, as illustrated

in Fig 10. The model exhibits a bidirectional sensitivity to the strength of the pro-inflammatory

neutrophil feedback (δnc, pnc) in the same manner as is described for the diffusion parameter

Dc above. The model is largely insensitive to variations in the remaining parameters (for the

combinations examined here); in particular, while variations in probabilistic parameters

related to macrophages may affect the timescales associated with macrophage recruitment and

the anti-inflammatory response, these do not affect the long-term inflammatory outcome

Fig 10. Simulations resulting in healthy, resolved outcomes for c0 = 0.5 (blue), r = 5 (red), αmr = 0.25 (green), αncr = 0.1

(magenta) and αngr = 0.0015 (cyan), with healthy choices of chemotaxis parameters (kgrad = 80, σmem = 1) and all other

parameters as in Table 1. The chronic inflammation of Fig 8 is shown in black. (A–C) Global cell counts for active

neutrophils, apoptotic neutrophils and macrophages respectively. (D,E) Maximal concentrations of mediators c and g across

the domain. Solid lines represent the mean result over 100 simulations of the model; shaded areas represent plus/minus one

standard deviation.

https://doi.org/10.1371/journal.pcbi.1008413.g010
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here. We note that the detrimental effects of reducing the phagocytosis probability pma are not

readily apparent here, since our parameter sensitivity is conducted with reference to a baseline

case that is already chronic; however, simulations conducted for parameter sets that generally

yield a healthy response can exhibit a switch to chronicity under a reduction of pma. These

results are omitted for concision. The parameter αml does not effect a switch between healthy

and chronic outcomes, here.

We remark, here, that the parameter sensitivity analysis conducted here restricts attention

to variation of individual parameters in isolation only. Given the high dimensionality of the

parameter-space in which this model resides, it is likely that further switching behaviour can

result on varying parameters in tandem. While a global parameter sensitivity analysis would be

beneficial in further elucidating parameter dependence, the computational cost of performing

such an analysis presents a barrier here. While our parameter sensitivity analysis has revealed

the roles of various parameters/behaviours in switching between chronicity and restoration of

health above, it is perhaps equally pertinent to note that the model seems to exihibit relatively

low dependence upon our choices of many of the probabilistic and threshold parameters given

in Table 1. Given that these are the parameters whose values we have the least confidence in,

Fig 12 provides valuable reassurance that our model conclusions are relatively robust to our

choices of these parameters.

Discussion

We have constructed a hybrid PDE–ABM of the acute inflammatory response, which eluci-

dates the roles of key constituent mechanisms in controlling the switch from chronic

Fig 11. Simulations for αmr = 0.25 and all other parameters as given in Table 1, with healthy neutrophil chemotaxis (kgrad =

80, σmem = 1, shown as dashed blue lines) and impaired neutrophil chemotaxis (kgrad = 8, σmem = 1.2, shown as solid red

lines). (A–C) Global cell counts for active neutrophils, apoptotic neutrophils and macrophages respectively. (D,E) Maximal

concentrations of mediators c and g across the domain. Dotted lines demark the thresholds for neutrophil recruitment (c = αncr,
g = αngr); the dash-dotted line demarks the threshold for macrophage recruitment (c = αmr). Impaired neutrophil chemotaxis

causes a previously healthy outcome to become chronic.

https://doi.org/10.1371/journal.pcbi.1008413.g011
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inflammation to healthy outcomes (or vice versa). Our model illustrates that the long-term

inflammatory outcome is determined by two broad categories of behaviours. Firstly, there is a

complex and delicate repertoire of spatially-independent interactions that represent the pro-

inflammatory (positive) feedbacks of neutrophils and the anti-inflammatory (negative) feed-

backs of macrophages. Conditions that enhance the neutrophil response (via e.g. δac, δnc large

or αncr small in our model) are more likely to yield a self-perpetuating inflammatory condition,

while treatments that enhance the macrophage response (via e.g. δmg large or αmr small) are

more likely to stimulate resolution in the long-term. (See Figs 9 and 12.) Mitigating against

inflammation by actively manipulating the synthesis of anti-inflammatory mediators, in par-

ticular, remains an active area of research in the ongoing search for new treatments [60–62];

however, we are not currently aware of any clinical interventions that explicitly manipulate

macrophage number. Secondly, we have shown that efficient leukocyte chemotaxis is key in

controlling the spread of inflammation driven by spreading pro-inflammatory mediators and

potentially aberrantly migrating neutrophils, with impaired chemotaxis having the potential to

switch a healthy configuration to one of chronicity. While these mechanisms are distinct in

some sense, it is key to note that cellular interactions are reliant upon the required components

occupying the same area of space, and as such these behaviours are inextricably linked. Our

model provides insight into how these mechanisms could potentially be manipulated, either

individually or in tandem, in the ongoing hunt for treatments.

Our model pays particularly close attention to how to accurately replicate leukocyte trajec-

tories under healthy and impaired chemotactic regimes. Aberrant neutrophil migration is

heavily implicated in myriad inflammatory conditions (as described in, e.g., [8, 63, 64]), and is

Fig 12. Percentage change in the maximal level of pro-inflammatory mediator c at t = 5000 on varying each individual

parameter by + 50% (green) and −50% (red), from the baseline parameter values given in Table 1, with healthy choices of

chemotaxis parameters (kgrad = 80, σmem = 1). Triangles denote the mean percentage change in the response; error bars denote

plus/minus one standard deviation. (For probabilities for which an increase of 50% results in a choice greater than one, the green

results correspond to simulations with unit probability.) Note that a change in response of −100% corresponds to a switch from a

chronic to a healthy outcome.

https://doi.org/10.1371/journal.pcbi.1008413.g012
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an attractive target for treatment of various inflammatory conditions, such as COPD [9, 10].

Furthermore, neutrophils from older but otherwise healthy adults are known to be dysfunc-

tional, having a reduced ability to move towards sites of inflammation [8]. This loss of motility

in neutrophils has also been found to be worse in infection, such as bacterial pneumonia that

often follows viral infection or sepsis [65]. As such, targeting neutrophil motility is now of

strong interest as a potential therapeutic target; however, the dual role of neutrophils renders it

critical that such interventions are carefully investigated to ensure that necessary phagocytic

functions are facilitated while host damage is also prevented [65]. While our leukocyte migra-

tion model is deliberately simple in its design, we have shown (via comparison with the spatial

data of [10]) that its parameterisation provides sufficient scope to be tuned against experimen-

tal data to recover in-vitro cellular trajectories well. We note that more complicated models of

both individual and collective cell migration that include detailed descriptions of relevant cel-

lular and sub-cellular mechanisms are available in existing literature—see e.g. [66–68] and ref-

erences therein; however, their implementation within an agent-based framework would be

largely more cumbersome than the phenomenological approach used here. Our simulations

show (in Fig 11) that in an impaired chemotactic regime, in which cells are equipped with a

weaker sensitivity to the chemotactic target (i.e. reduced kgrad) and a greater persistence in

their direction of motion (i.e. increased σmem), an otherwise healthy response can be pushed to

a self-perpetuating inflamed state (for all other parameters unchanged). This observation is of

key importance in two regards: not only do these simulations reveal that impaired leukocyte

chemotaxis can act as an independent switch between health and chronicity; they also illumi-

nate the importance of careful calibration of chemotaxis models against experimental data,

without which models could easily generate deceiving results.

Previous mathematical models of the inflammatory response have generally adopted a dif-

ferential-equation-based approach, and generally focus upon relatively simple descriptions of

generic populations of leukocytes, potentially omitting some key cellular interactions for

mathematical tractability. Examples include the models of [11–14, 69], amongst others. The

recent work of Bayani et al. [17] complemented these models with a spatially-dependent

(PDE) description of the classes of leukocytes and inflammatory mediators described here, to

examine the extent to which motility of these components can cause localised damage to

invade neighbouring healthy tissue. Many of the observations of the model described herein

are consistent with those of [17]. Our model is highly sensitive to changes in the rate of diffu-

sion of pro-inflammatory mediators, Dc, with rapid diffusion eliciting only a weak neutrophil

response and slow diffusion triggering a strong but localised anti-inflammatory response via

macrophages, both of which can restore the healthy state. The model of [17] demonstrated

that rapid diffusions in general drive restoration of the globally healthy state, and that efficient

neutrophil chemotaxis can act to resolve spatially inhomogeneous inflammatory patterns,

which is consistent with our findings above. The models of [16] and [17] also exhibit strong

sensitivity to the strength of the (positive) neutrophil feedback, with weak neutrophil feedback

yielding a bistable regime in which both healthy and chronic outcomes are stable, and very

strong neutrophil feedback resulting in a greater macrophage response that guarantees that a

healthy outcome is attained. This is consistent with our observations that the hybrid model

presented here exhibits a bidirectional sensitivity to the strength of this feedback via the

parameter δnc (as shown in Fig 12). Furthermore, the rate of phagocytosis of apoptotic neutro-

phils has been shown to play a critical role in determining inflammatory outcomes, with the

previous models of [16] and [17] showing that impaired phagocytosis results in the only per-

missible outcome being one of chronicity, while efficient phagocytosis yields bistability with

both healthy and chronic configurations possible. This is consistent with the observations of

our current model, in which large choices of pma provide both chronic and healthy outcomes
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(in a manner dependent upon other model parameters; Fig 9), but small choices of pma elimi-

nate the scope for healthy outcomes.

The hybrid model presented here has facilitated inclusion of a greater array of cell-specific

behaviours than is afforded by many previous (mostly ODE- or PDE-based) models. For

example, the model includes a description of cells’ chemotaxis toward pro-inflammatory medi-

ators that is calibrated against experimental data, and also specifically incorporates the prefer-

ential motion of macrophages toward nearby apoptotic neutrophils (a chemotactic behaviour

that was omitted in the model of [17], for example). Furthermore, the model includes an

explicit (while simplistic) description of the activation of the anti-inflammatory macrophage

response that can be applied on a cell by cell basis as each macrophage undergoes its first

phagocytosis of an apoptotic neutrophil. The precise cellular and sub-cellular mechanisms that

initiate production of anti-inflammatory mediators are complex (see e.g. [6] for details); how-

ever, the link between the phagocytosis of apototic cells and the phenotypic switch of macro-

phages from the classically activated M1 phenotype to the alternatively activated, anti-

inflammatory M2 phenotype is well documented in existing literature [70–72]. This notwith-

standing, it is well-known that the M1/M2 classification of macrophages presents a degree of

over-simplification in itself, with the broad range of macrophage phenotypes actually spanning

a continuous spectrum [6]. There is a great degree of scope to extend our model to include

more detailed descriptions of macrophage phenotypes and corresponding inflammation-

related behaviours going forward. In the model presented here, we include only the anti-

inflammatory effects of the M2 macrophage; however, macrophages of the M1 phenotype can

also provide pro-inflammatory stimuli, which are here omitted as we focus on the dominant

pro-inflammatory effects of neutrophils. Our model also omits the scope for bidirectional

switching between macrophage phenotypes. More refined modelling of the relevant cell signal-

ling cascades that govern phenotypic switching of macrophages remains a target for future

study.

Our model exhibits significant scope to be calibrated to model specific inflammatory condi-

tions in specific tissues. An open question, in this context, is that of how to infer some parame-

ter values directly from experiments. While the PDE parameters (Dc, Dg, γc, γg) can be inferred

from existing literature to some extent, and chemotactic parameters (kgrad, σmem) can be

inferred from cell tracking experiments as described here, there remains a degree of uncer-

tainty regarding the various threshold parameters controlling cell recruitment (αncr, αngr, αmr)

and the strengths of the corresponding inflammatory feedbacks (δnc, δac, δmg). These parame-

ters are likely to vary across both inflammatory conditions and affected tissues. We have the

least confidence in the precise values of the probabilistic parameters in the model; however, we

have also shown that in most cases the model’s outputs are robust to variations in these values

(Fig 12). Furthermore it is to be expected that our model exhibits some sensitivity to the choice

of how cellular responses are scheduled ‘per tick’, or equivalently how a tick itself is defined.

We note that tick definition affects only the agent-based components of our model, since

numerical solution of the PDEs is implemented independently. In our implementation, most

behaviours are scheduled to occur at every tick. We anticipate that alternative implementations

of most behaviours simply correspond to alternative choices of the related probabilities or

feedback parameters, and thus would not impact upon the qualitative observations presented

here. The only behaviour that is not scheduled every tick here is cell recruitment, which we

schedule every two ticks for neutrophils and every five ticks for macrophages to account for

more rapid recruitment of neutrophils in vivo. Simulations that experiment with alternative

choices of these recruitment frequencies (omitted here for brevity) reveal that the model is rel-

atively robust to variations of these values. For parameter choices that yield a healthy outcome

here (e.g. αmr = 0.25; Figs 9 and 10), alternative choices of cell recruitment frequencies
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generally still result in a healthy outcome, but with some small variation in the time taken to

eliminate pro-inflammatory components fully. For a parameter-set corresponding to a typical

chronic simulation (e.g. that of Fig 8), small variations in recruitment frequencies make mini-

mal difference to model results; however, significantly slower neutrophil recruitment or signif-

icantly more rapid macrophage recruitment can yield a switch from chronicity to restoration

of health in some cases. Experimental studies that quantify cell recruitment, in particular,

would advance our ability to model accurately specific inflammatory conditions.

We note that, while our model pays close attention to leukocyte movement within the tissue

of interest, the description of how leukocytes arrive from the vasculature was kept deliberately

simple. In reality, cell transmigration from blood vessels depends on a complex set of events

that reduce the velocity of cells flowing in the blood and enable cell adhesion to the endothelial

lining, resulting in the endothelial lining itself activating to allow cells to migrate through the

vessel wall into the tissue. [73] While including all of these events would be unnecessarily com-

plex in a model of generic inflammation such as that presented here, our model could easily be

adapted to include feedbacks from mediators that enhance or restrict transmigration. We note

that doing so may involve replacing existing rules governing maximum global cell numbers

with more localised analogues that account for spatial variations in endothelial lining activa-

tion. Such modifications constitute a valuable target for future work, but would be best

addressed when suitable experimental data are available to focus the application of the model

toward answering questions related to specific tissues or inflammatory conditions.

There is great scope to develop upon our model further in the future, to study specific tis-

sues, ailments or clinical interventions. Furthermore, there is currently significant and grow-

ing interest in multimorbidity, i.e. the concurrent presence of two or more chronic conditions

such as COPD and cardiovascular disease, which is more common with increasing age and is

thought to be associated with inflammation and cellular dysfunction [74]. Understanding how

the inflammatory process is modified by disease, healthy ageing and drugs, both alone and in

combination, is difficult but necessary if therapeutic targets are to be identified and their

effects fully understood. The model presented here is generic but can act as a framework

within which future modifications in line with specific tissue and/or disease can be easily

incorporated. An example would be modelling the effects of Rheumatoid arthritis on the syno-

vium where macrophage numbers have been shown to correlate with disease activity and their

depletion has a therapeutic effect [75, 76]. Such adaptation would require, among others,

changes to our description of macrophage heterogeneity but could allow clinical investigations

into the effects of drugs that target circulating monocytes and thereby reduce macrophage

transmigration into tissue [75]. The advantage of hybrid models, which integrate constituent

underlying processes across multiple scales, is that they are easily comparable to experimental

data (such as histological studies) and offer easily interpreted tools that could be used in pro-

gressing our understanding of such complex, multifaceted inflammatory scenarios.
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