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Abstract Significant changes have been made on audio-based technologies over years in several
different fields. Healthcare is no exception. One of such avenues is health screening based on res-
piratory sounds. In this paper, we developed a tool to detect respiratory sounds that come from
respiratory infection carrying patients. Linear Predictive Cepstral Coefficient (LPCC)-based fea-
tures were used to characterize such audio clips. With Multilayer Perceptron (MLP)-based clas-
sifier, in our experiment, we achieved the highest possible accuracy of 99.22% that was tested on
a publicly available respiratory sounds dataset (ICBHI17) [20] of size 6800+ clips. In addition to
other popular machine learning classifiers, our results outperformed common works that exist in
the literature.
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1 Introduction

Respiratory diseases are the third leading cause of death worldwide. As rapid growth of respi-
ratory diseases is witnessed around the world, medical research field has gained interest in in-
tegrating potential audio signal analysis-based technique. Like in other application domains, au-
dio signal analysis tools can potentially help in analyzing respiratory sounds to detect problems
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in the respiratory tract. Audio analysis aids in timely diagnosis of respiratory ailments more ef-
fortlessly in the early stages of a respiratory dysfunction. Respiratory conditions are diagnosed
through spirometry and lung auscultation. Even though, spirometry is one of the most commonly
available lung function tests, it is limited to patient’s cooperation. As a result, it is error prone.
Auscultation is a technique that involves listening to the internal human body sounds with the aid
of a stethoscope. Over several years, it has been an effective tool to analyze lung disorders and/or
abnormalities. Such procedure is limited to trained physicians. Besides, for various reasons (e.g.,
faulty instrument), false positives can happen. Therefore, it opens a door to develop computerized
respiratory sound analysis tools/techniques, where automation is integral.

Lung sounds are difficult to analyze and distinguish because they are non-stationary and non-
linear signals. Automated analysis was made possible with the use of electronic stethoscope. In
2017, the largest publicly available respiratory sound database was compiled and encouraged
the development of algorithms that can identify common abnormal breath sounds (wheezes and
crackles) from clinical and nonclinical settings. Respiratory sounds are generally classified as nor-
mal or adventitious. Adventitious sounds are RS superimposed on normal respiratory sounds,
which can be crackles or wheezes. Crackles are discontinuous sounds, explosive, and non-musical.
that are typically less than 20 ms that occur frequently in cardiorespiratory diseases associated
with lung fibrosis (fine crackles) or chronic airway obstruction (coarse crackles). Wheezes are high
pitched sounds that last more than 100 ms. They are common in patients with obstructive airway
diseases and indicate obstructive airway conditions, such as asthma and COPD. The dataset con-
tains respiratory cycles that were recorded and annotated by professionals as wheezes, crackles,
both, or no abnormal sounds.

Rao et al. [19] discussed acoustic techniques for pulmonary analysis. They studied acoustic
aspects for different lung diseases. It includes different type of sounds in the thick of internal and
external sounds. Aykanat et al. [3] presented a convolutional network plus mel frequency cepstral
coefficient-support vector machine-based approach for lung sound classification. On a dataset of
17930 sounds from 1630 subjects, an accuracy of 86% (for healthy-pathological classification) was
reported. Pramono et al. [18] classified normal respiratory sounds and wheezes on a dataset of 38
recordings. Of 425 events, 223 were wheezes and the rest were normal. They reported a AUC value
of 0.8919 with MFCC-based features. Acharya et al. [1] presented a deep learning-based approach
for lung sound classification. They reported an accuracy of 71.81% on the ICBHI17 dataset of size
6800+ clips. Dokur [10] used machine learning approaches to distinguish respiratory sounds. In
their experiments, nine different categories from 36 patients were used. An accuracy of 92% was
reported by using Multilayer Perceptron (MLP).

Melbye et al. [14] studied the classification of lung sounds by 12 observers. They worked with
1 clip each from 10 adults and children and obtained fleiss kappa values of 0.62 and 0.59 for crack-
les and wheezes, respectively. Among the 20 cases, they found that in 17 cases, the observers con-
cluded presence of atleast 1 adventitious sound. Bahoura and Pelletier [4] used cepstral features
to distinguish normal and wheezing sounds. They worked with 12 instances from each class and
reported the highest true positive value of 76.6% for wheezing sounds. They also reported 90.6%
true positives for normal sounds with fourier transform-based features. Ma et al. [13] developed
a system to distinguish lung sounds using a resnet-based approach. On ICBHI17 dataset, an accu-
racy of 52.26% was reported. Emmanouilidou et al. [11] proposed a robust approach to identify
lung sounds in the presence of noise. In their experiments, with 1K+ volunteers (over 250 hours
of data), an accuracy of 86.7% was reported.

To analyze lung sounds, Sen et al. [23] used Gaussian mixture model and support vector
machine-based classifier. Using 20 healthy and non-healthy subjects, they reported an accuracy
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of 85%. Demir et al. [9] used a CNN-based approach. On ICBHI17 dataset, the highest accuracy of
83.2% was reported. Chen et al. [7] used a S-transform-based approach coupled with deep resid-
ual networks to classify lung sounds: crackle, wheeze, and normal. In their study, the reported
accuracy was 98.79%. Kok et al. [12] employed multiple features, such as MFCC, DWT, and time
domain metrics to distinguish healthy and non-healthy sounds. In their study, they reported ac-
curacy, specificity, and sensitivity values of 87.1%, 93.6%, and 86.8%, respectively on the ICBHI17
dataset.

Chambers et al. [6] developed a tool to identify healthy/ non-healthy patients using respiratory
sounds. They used several spectral, rhythm, SFX, and tonal features coupled with decision tree-
based classification. In their study, they reported an accuracy of 85% on a dataset of 920 records.
Altan et al. [2] developed a deep learning-based approach to detect chronic obstructive pulmonary
disease. Their tool used Hilbert-Huang transform on multi-channel lung sounds. In their experi-
ment, an accuracy of 93.67% was reported on a dataset of 600 sounds collected from 50 patients.
Cohen and Landsberg [8] classified 7 different type of sounds using linear predictive coefficient-
based technique. In their experiments, out of 105 instances, 100 were classified correctly.

Even though there exists a rich state-of-the-art literature for lung sound analysis, they do not
guarantee optimal performance. Moreover, non-healthy cases are composed of several issues/criteria.
Distinguishing healthy sounds from non-healthy sounds is not trivial. Handcrafted feature-based
systems are preferred over deep learning-based systems, where computational resource is consid-
ered. Secondly, prior to deeper analysis of non-healthy sounds, it is essential to distinguish healthy
and non-healthy sounds. A hierarchical approach can aid to reduce the workload of medical ex-
perts in resource-constrained regions. After ensuring that whether a person has lung infection, the
true positive case can be taken for further treatment(s)/processing.

In this paper, we developed an automated tool, where LPCC-based features are employed.
LPCC-based features were chosen due to its ability of modeling a variety of audio signals [15],
[16]. In our experiments, on a dataset ICBHI17 (of size 6800+ clips), we achieved an accuracy of
99.22% using MLP.

The remainder of the paper is organized as follows. Section 2 discusses on dataset. In Section
3, we describe the proposed tool. Experimental results are provided in Section 4. We conclude the
paper in Section 5.

2 Dataset description

To develop of a robust system, it is important to ensure that the dataset mimics real-world prob-
lems. Our system was trained on a publicly available respiratory sound database [20], which
is associated with the International Conference on Biomedical and Health Informatics (ICBHI).
Most of the database consists of audio samples recorded by the School of Health Sciences, Univer-
sity of Aveiro (ESSUA) research team at the Respiratory Research and Rehabilitation Laboratory
(Lab3R), ESSUA and at Hospital Infante D. Pedro, Aveiro, Portugal. The second research team,
from the Aristotle University of Thessaloniki (AUTH) and the University of Coimbra (UC), ac-
quired respiratory sounds at the Papanikolaou General Hospital, Thessaloniki and at the General
Hospital of Imathia (Health Unit of Naousa), Greece.

To collect data, disparate stethoscopes and microphones were used. The audios were recorded
from the trachea and 6 other chest locations: left and right posterior, anterior, and lateral. The au-
dios were collected in both clinical and non-clinical settings from adult participants of disparate
ages. Participants encompassed patients with lower and upper respiratory tract infections, pneu-
monia, bronchiolitis, COPD, asthma, bronchiectasis, and cystic fibrosis.
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Fig. 1: 200 audio clips (original): healthy class (left) and non-healthy class (right).

Table 1: Respiratory sound database [20].

Clip type Number of clips

Healthy 3642
Non-healthy 3256

The ICBHI database consists of 920 audio samples from 126 subjects. These are annotated by
respiratory experts, and used as a benchmark in the field. Each respiratory cycle in the dataset
is annotated amidst 4 classes. The annotations basically cover 2 broad groups: healthy and non-
healthy. The non-healthy category is further divided into wheeze and crackle with some cycles
having both issues. Among 6898 cycles totaling to 5.5 hours, 1864 cycles have crackles while 886
have wheezes. There are 506 cycles, which have both wheezes and crackles.

While recording, the participants were seated. The acquisition of respiratory sounds was per-
formed on adult and elderly patients. Many patients had COPD with comorbidities (e.g., heart
failure, diabetes, and hypertension). Further, noise exists, such as rubbing sound of the stetho-
scope with the patient’s dress, and background talking. Such varieties in the data made it chal-
lenging to identify problems in the respiratory sounds. One of the most challenging aspects of the
audio clips was the presence of heartbeat sound along with the breath sounds. No preprocessing
was performed to remove the heartbeat sounds.

For better understanding, visual representations of 200 audio clips from the healthy and non-
healthy sounds are shown in Fig. 1. In Table 1, a complete dataset is provided.

3 Proposed method: LPCC-based features and MLP

3.1 Respiratory sound representation: LPCC-based features

As audio clip contains high deviations across its entire length, its analysis is not trivial. Therefore,
each audio clip is broken down into smaller segments called frames to facilitate analysis. In our
study, we divided each clip into frames consisting of 256 sample points with a 100-point overlap
in between them. The parameters were empirically designed. The same 200 audio clips (as in
Fig. 1) are shown in Fig. 2 after framing. The number of Sz sized overlapping frames Of with O
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Fig. 2: 200 audio clips (as in Fig. 1) after framing: healthy class (left) and non-healthy class (right).

overlapping points for a signal having S points is presented below:

Of =
⌈S − Sz

O
+ 1
⌉
. (1)

After framing audio clips (into shorter segments), it was observed that in various instances
the starting and ending points were not aligned in a frame. These discontinuities/ jitters lead to
smearing of power across the frequency spectrum. This posed a problem in the form of spectral
leakage during frequency domain analysis which produced additional frequency components. To
tackle this, the frames were subjected to a window function. Hamming window was selected for
this purpose due to its efficacy as reported in [16]. The same frames (Fig. 2) are presented in Fig.
3 after windowing. The hamming window is mathematically illustrated as

A(z) = 0.54− 0.46 cos

(
2πz

Sz − 1

)
, (2)

where A(z) is the hamming window function and z is a point within a frame.
Thereafter, we performed Linear Predictive Coefficient (LPC) based analysis [15] on each of

them. The previous P samples are used to present the rth sample in a signal s() as

s(r) ≈ p1s(r − 1) + p2s(r − 2) + p3s(r − 3)+, . . . ,+pP s(r − P ), (3)

where p1, p2,. . . , pP are the LPCs or predictors. The error of this prediction E(r) bounded by the
actual and predicted samples: (s(r) and ŝ(r)) can be explained as

E(r) = s(r)− ŝ(r) = s(r)−
P∑

k=1

pks(r − k). (4)

The error of sum of squared differences (as shown below) is minimized to generate the unique
predictors for a x sized frame, which can be expressed as

Er =
∑
x

[
sr(x)−

P∑
k=1

pksr(x− k)
]2
. (5)
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Fig. 3: Representation of 200 audio clips (as in Fig. 1) after windowing: healthy class (left) and
non-healthy class (right).

Thereafter, a recursive technique is used to compute the Cepstral coefficients (C), which is
expressed as

C0 = loge P

Cr = pr +

r−1∑
q=1

q

r
Cqpr−q, for 1 < r ≤ P and

Cr =

r−1∑
q=r−P

q

r
Cqpr−q, for r > P


. (6)

Since clips in the dataset were of unequal lengths and number of frames obtained varied. When
features were extracted in frame level, it produced different dimensions. To handle this, we per-
formed two operations: a) grading and b) standard deviation measurement.

1. Firstly, the sum of LPCC coefficients in each of the frequency ranges (bands) across all the
frames was computed. Based on the sum of these energy values, bands were graded in an as-
cending order. This sequence of band numbers was used as features that helped in identifying
dominance of different bands for the clips from various categories.

2. Secondly, standard deviation was computed for every band. These two metrics were stacked to
form the feature, which is independent of the clip length and of very less dimension. 10, 20, 30,
40 and 50 dimensional features were extracted for the 2 classes. The trend of the 30 dimensional
feature values (best result) for the 2 classes is shown in Fig. 4.

3.2 Classification: MLP

We emplpyed MLP classfier – feed-forward artificial neural network – for classification purpose
[17]. Feedforward neural networks are made up of the input layer, output layer and hidden layer.
It is a supervised learning algorithm trained on a dataset using a function f() : Zn −→ Zo, where n
and o represent the dimensions for input and output. For a given set of features P = p1, p2, . . . , pn

and aim x, a non-linear function is learned for classification. The difference between MLP and
logistic regression lies in the existence of one or more non-linear layers (hidden layers) between
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Fig. 4: Representation of 30 dimensional features for the audio clips: healthy class (left); non-
healthy class (right).

the input and the output layer. MLP consists of three or more layers (input layer, output layer and
one or more hidden layers) of non-linear activating neurons. The number of hidden layers can be
increased according to the requirement of developing a model to accomplish certain task.

The initial layer is the input layer which comprises of a set of neurons {pi | p1, p2, . . . , pn}
denoting the features. Each neuron of the hidden layer modifies the values from the previous
layer using sum of weights as w1p1 + w2p2+, . . . ,+wnpn.

The activation function that represents the relationship between input and output layer in of
non-linear nature. It makes the model flexible in defining unpredictable relationships. The activa-
tion function can be expressed as

yi = tanh(wi) and yi = (1 + ewi)−1, (7)

where yi and wi denotes the outcome of the ith neuron and weighted sum of the input features.
The values from the ultimate hidden layer are provided to the output layer as output values. Each
layer of MLP contains several fully connected layers as each neuron in a layer is attached to all the
neurons of the previous layer. The parameters of each neuron are independent of the remaining
neurons of the layer ensuring possession of unique set of weights. The initial momentum and
learning rate were set to 0.2 and 0.3 respectively.

4 Results and analysis

4.1 Evaluation metrics and protocol

Accuracy is not enough to measure the performance of any system. It is also very much important
to analyze the disparate misclassifications. Hence, to evaluate our tool, the following performance
metrics are used: Precision, Accuracy, Sensitivity (Recall), Specificity, and Area under ROC curve
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Table 2: Performance of different feature dimensions using MLP.

Feature dim. Accuracy(%)

10 93.91
20 90.01
30 99.07
40 89.19
50 98.78

Table 3: Inter-class confusions for the 30 dimensional features (Best result) using MLP.

Healthy Non-healthy

Healthy 3611 31
Non-healthy 33 3223

Table 4: Performance for different momentum values on 30 dimensional features with learning
rate of 0.3.

Momentum Accuracy(%)

0.1 99.14
0.2 99.07
0.3 99.04
0.4 99.07
0.5 99.12

(AUC). They are computed as

Accuracy =
TP + TN

TP + TN + FP + FN
,

Precision =
TP

TP + FP
,

Sensitivity (Recall) =
TP

TP + FN
,

Specificity =
TN

TN + FP
, and

F1 score = 2× Precision× Recall
Precision + Recall , (8)

where TP , TN , FP , and FN refer to true positive, true negative, false positive, and false negative,
respectively.

To avoid possible bias in evaluation, 5-fold cross validation was used.

4.2 Our results

The performance of the different features are provided in Table 2. It is observed that the best result
was obtained with 30 dimensional features and it’s corresponding confusion matrix is provided
in Table 3.

Next, the momentum was varied from 0.1 to 0.5 with a step of 0.1, and results are provided
in Table 4. The best result was obtained for a momentum of 0.1 whose inter-class confusions are
provided in Table 5. As compared to the default scenario, there were 4 more misclassifications in
the case of the healthy cases (and 9 less misclassifications for the non-healthy cases).

Finally, the momentum was varied from 0.1-0.6 with a step of 0.1 whose results are provided
in Table 6. In our experiment, the highest performance was obtained when a learning rate of 0.5
was selected. We presented a confusion matrix for this setup in Table 7. It is observed that the
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Table 5: Inter-class confusions for momentum value of 0.1 on 30 dimensional features.

Healthy Non-healthy

Healthy 3607 35
Non-healthy 24 3232

Table 6: Performance for different learning rates with momentum of 0.2.

Learning rate Accuracy(%)

0.1 99.03
0.2 99.13
0.3 99.07
0.4 99.06
0.5 99.22
0.6 99.13

Table 7: Interclass confusions for learning rate of 0.5 and momentum of 0.2 on 30 dimensional
features.

Healthy non-healthy

Healthy 3615 27
non-healthy 27 3229

Table 8: Performance metrics for default scenario, best results after tuning momentum value and
best result after tuning learning rate.

Metrics Default Best momentum Best learning rate

Sensitivity 0.9915 0.9904 0.9917
Specificity 0.9899 0.9926 0.9926
Precision 0.9909 0.9834 0.9917
False positive rate 0.0101 0.0074 0.0074
False negative rate 0.0085 0.0096 0.0083
Accuracy(%) 99.07 99.14 99.22
F1 score 0.9912 0.9919 0.9917
AUC 0.9994 0.9995 0.9993

number of misclassifications for both classes was reduced as compared to the initial setup. The
misclassified instances were analyzed, and it was found that many of them had heartbeat sounds.
Along with this, other unwanted artefacts, such as talking and movement of the probe helped in
misclassifying.

It is observed that the misclassified instances was reduced by almost 15.63% as compared to
the original setup using default settings. As compared to best result, after momentum tuned, a
decrease of nearly 8.47% occurred for the misclassified instances.

A deeper analysis of the misclassifications revealed that approximately 0.74% of the healthy
cases were misclassified as opposed to non-healthy. In the case of non-healthy instances, approxi-
mately 0.83% of the clips were misclassified as healthy, which we call false negative.

The different performance metrics were computed for the default setup, best momentum, and
best learning rate (overall highest). Such results are provided in Table 8. The ROC curves for these
scenarios are shown in Fig. 5.
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Fig. 5: ROC curves: a) default settings, b) best momentum value (0.1), and c) best learning rate
(0.5, overall highest result).

4.3 Comparative study

The performance of several other classifiers was compared in order to establish the efficacy of MLP.
For comparison, the 30 dimensional feature set (best performance) was chosen. We experimented
with BayesNet, SVM, RNN, Naive Bayes, RBF network, Decision Table, LibLINEAR, and Simple
logistic. The results are provided in Table 9.

We also compared the performance of our system with reported works by Kok et al. [12] and
Chambers et al. [6]. The average accuracies for both the systems along with the proposed system
are provided in Table 10.

5 Conclusion

In this paper, we developed a tool to detect respiratory sounds that come from respiratory infec-
tion carrying patients. We have employed Linear Predictive Cepstral Coefficient (LPCC)-based
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Table 9: Performance of different classifiers on the 30 dimensional features.

Classifier Accuracy(%)

BayesNet 98.26
Naı̈ve Bayes 88.98
SVM 98.59
RBF Network 95.82
LibLINEAR 98.59
Simple Logistic 98.70
Decision Table 98.62
RNN 93.82
Multilayer Perceptron 99.22

Table 10: Comparison with reported works.

Work Accuracy(%)

Kok et al. [12] 87.10
Chambers et al. [6] 85.00
Proposed technique 99.22

features to characterize respiratory sounds. With Multilayer Perceptron (MLP)-based classifier, in
our experiment, we have achieved the highest possible accuracy of 99.22% (AUC = 0.9993) on a
publicly available dataset of size 6800+ clips. In addition to other popular machine learning clas-
sifiers, our results outperformed common works that exist in the literature.

Not limiting to binary classification (health/non-healthy), our immediate plan is to classify
disease types from non-healthy category. This will help identify the nature and severity of infec-
tion. As we observed that COVID-19 could possibly screened by analyzing respiratory sound [5],
we are now extending our experiments on COVID-19 [21,22].
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