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Abstract

BACKGROUND: Arable weeds threaten farming and food production, impacting on productivity. Large-scale data on weed
populations are typically lacking, and changes are frequently undocumented until they reach problem levels. Managing the
future spread of weeds requires that we understand the factors that influence current densities and distributions. In doing
so, one of the challenges is to measure populations at a large enough scale to be able to accurately measure changes in densi-
ties and distributions. Here we analyse the density and distribution of a major weed (Alopecurus myosuroides) on a large scale.
Our objectives were to (i) develop a methodology for rapid measurement of occurrence and abundance, (ii) test hypotheses
about the roles of soils and climate variation in determining densities, and (iii) use this information to identify areas in which
occurrence could increase in the future.

RESULTS: Populations were mapped through England over 4 years in 4631 locations. We also analysed UK atlas data published
over the past 50 years. Densities of populations show significant interannual variability, but historical data show that the spe-
cies has spread. We find significant impacts of soil and rainfall on densities, which increase with the proportion of heavy soils,
but decrease with increasing rainfall. Compared with independent atlas data we found that our statistical models provide good
predictions of large-scale occupancy and we provide maps of current and potential densities.

CONCLUSION: Models of spread highlight the localised nature of colonisation, and this emphasises the need for management
to limit dispersal. Comparisons of current, historical and potential distributions suggest sizeable habitable areas in which
increases in abundance are still possible.
© 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Supporting information may be found in the online version of this article.
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1 INTRODUCTION
The large-scale distributions of plants result from factors operat-
ing at a hierarchy of scales. Within populations, rates of birth
and death, and how these covary with the environment and den-
sity drive local abundances.1–3 Dispersal permits colonisation of
new habitats4 and ultimately determines large-scale distributions
and spread.5 These processes are interactive, so that local- and
regional-scale processes are not independent.6–8 Ultimately the
large-scale dynamics of plants depend on the interplay of pro-
cesses across scales.4,9,10 Unravelling this complexity is vital in
managing the spread of pest plants such as arable and invasive
weeds to enable proactive action against losses to crop yields,
and in identifying areas likely to be susceptible in the future.
The primary focus of weed management is usually at the field

scale, with individual interventions decided on a field-by-field
basis. However, the factors driving weed abundance can

frequently be operating at larger scales.11 These can include
changes in land management,12 climate13 or evolved herbicide
resistance.14 For such reasons, it is important to understand
changes in distributions of weeds beyond the field scale. A great
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deal of insight can potentially be gained from large-scale surveys
that link distributions to management practices.15,16

Several studies have mapped weeds across large numbers of
sites15,16 and in some countries systematic periodic surveys are
undertaken to map changes in distributions.17 However large-
scale atlas surveys require considerable coordination, effort and
time. In mapping weeds it also matters whether a population is
comprised of just a few plants (i.e. early stages of an infestation)
versus an extensive infestation of high densities (i.e. a well-
established population). For this reason, density-structured
modelling approaches were developed with populations being
assigned to one of a number of ordinal categories.18–20 These
techniques, however, do not address the problem of rapid map-
ping at larger spatial scales. Therefore, there is a need to develop
methods to rapidly map densities of weeds at scales beyond
individual fields, and in this paper we develop a new approach.
Here we analyse the large-scale dynamics of an annual grass,

Alopecurus myosuroides in the UK. This weed of cereal crops
(primarily winter wheat) has become the most significant
problem in UK agriculture, costing as much as £400 m per
year,21 and is present in 80% of fields across the arable grow-
ing region of the UK.14 Repeated use of the same chemicals
has led to the wide-scale evolution of resistance to herbicides
in this and other species,22–25 and is correlated with high local
densities.14

The large-scale environmental controls of the geographic distri-
bution of A. myosuroides are not well understood, although local-
scale determinants of the abundance of this weed are becoming
better characterised. Based on large-scale survey data, Hicks
et al., for example, describe a strong latitudinal trend in the den-
sity of A. myosuroides, this being higher in the south of the UK than
in the north. Previous coarse-scale atlas surveys have similarly
reported latitudinal differences.26,27 One hypothesis is that the
distribution of A. myosuroides may be limited by climate: large-
scale population modelling suggests that the northward spread
of A. myosuroides is limited by climate-driven demography.13

The model in this study showed close correspondence with distri-
bution data collected up to the year 2000, and it was predicted
that the current distribution was unlikely to change a great deal
even under the most extreme climate change scenarios. Pub-
lished nearly a decade ago, we can now begin to test these
predictions.
It has been suggested that edaphic factorsmay limit the distribu-

tion of A.myosuroides. As long ago as the 1920s, it was reported, for
instance, that A. myosuroides prefers ‘heavy land’.28 Recently, it has
been shown that local distributions of A. myosuroides are corre-
latedwith variations in soil characteristics such asmoisture and soil
organic carbon.29,30 However, it is not clear how these local rela-
tionships influence variation in density at larger scales.
In this paper, we address two sets of objectives. The first set

relates to developing a methodology for characterizing the
large-scale distribution of annual weeds, together with variation
in density. In particular, (i) we present a rapid method for mea-
suring weed population densities across a landscape and
(ii) we show that this method captures the distribution of the
species, by comparison with independent atlas data. The second
set of objectives are concerned with understanding the distribu-
tion of A. myosuroides. Specifically, (i) we characterise the large-
scale distribution of A. myosuroides and map changes in distribu-
tions in recent decades, (ii) we relate the occurrence of the spe-
cies to edaphic and land-use data to test hypotheses about the
factors driving abundance (specifically the roles of soil type

and climate) and (iii) we use this information to assess the risk
of further spread into areas where A. myosuroides is currently
not a problem.

2 MATERIALS AND METHODS
2.1 UK atlas data
The distributions of plants in the UK have been monitored exten-
sively and published in atlases.26,27 Here we analyse the data on
A. myosuroides. Data collection is coordinated by the Botanical Soci-
ety of Britain and Ireland (BSBI). The first atlas was published in 1962
and collated historical records up until that time.31 This atlas has
been updated in 200232 and 2020 (Fig. 1(a)). Here we refer to these
as the first, second and third atlases, respectively. Species occurrence
are recorded in presence format at the scale of hectads (10 × 10 km).

2.2 Analysis of UK atlas data
The presence within each 10 × 10 km site at the time of the first
census (t) was used to predict presence in the second census
(t + 1). We assumed a binomial error distribution with a logit link.
There are known biases in using such data to monitor distribution
change.33,34 We use a simple measure of observation effort5 (see
also Hill34). The change in number of species found at each site
between censuses (Δ) was included in every statistical model to
account for variations in observation effort.5

Following Doxford & Freckleton5 we fitted four statistical models
with the aim of characterising the change in distribution of the spe-
cies over recent decades. The four statistical models make different
assumptions about how the distribution of the speciesmight spread.
The first is referred to as the random colonisationmodel and assumes
that colonisation occurs at random with no spatial effects:

logit pi,t +1

� �
=⊎0 +⊎PPi,t +⊎ΔΔi Model I ð1Þ

pi,t + 1 is the probability (between 0 and 1) of site i being occupied
at time t + 1. The intercept ⊎0 is the probability that an isolated
site will be occupied at time t + 1. Pi,t is the (binary) presence or
absence at time t and allows for differential occupancy or extinc-
tion depending on whether the site is currently occupied or not
and ⊎P models this dependency. ⊎Δ is the parameter that controls
for variations in observation error (Δ).5

Model II is termed the localised phalanxmodel and is developed
from Model I by adding an additional term which measures the
effect of neighbouring sites (considered as a square lattice, in
which each square has eight neighbours, i.e. a Moore neighbour-
hood) on occupancy in time t + 1:

logit pi,t+1
� �

=⊎0 +⊎PPi,t +⊎NNi,t +⊎ΔΔi Model II ð2Þ

⊎N is the strength of the effect of Ni,t on occupancy, with Ni,t

varying between zero and eight populated neighbour sites sur-
rounding focal site i. Increasing Ni,t will, according to this model,
increase the probability of a site being colonised. However, Ni,t only
contributes expansion at the periphery of the current distribution.
Model III is the phalanx-spreadmodel whereby a distribution has

undergone a wide-ranging expansion:

logit pi,t+1
� �

=⊎0 +⊎PPi,t +⊎N1Ni,t+1 +⊎ΔΔi Model III ð3Þ

Spatial dependency is modelled through the occupancy at time
t + 1, rather than occupancy at time t: this is an autocovariate in
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which the state of the nearest neighbour sites is used as a predictor
of response at site i. If a species is spreading (or retreating) as a spa-
tial wave across the landscape, the probability that site i will
become occupied (or extinct) will be greater in areas in which col-
onisation (or extinction) have also happened. ⊎N1 is the strength of
the effect of Ni,t + 1 on occupancy.
Ni,t andNi,t + 1 were alsomodelled as covariates in the samemodel,

combining the localised phalanx and phalanx-spread models:

logit pi,t+1
� �

=⊎0 +⊎PPi,t +⊎NNi,t +⊎N1Ni,t+1 +⊎ΔΔi Model IV ð4Þ

Model IV allows for the initial and eventual configurations of
occupied patches to affect occupancy.
We fitted these models to the data in three ways. First, we mod-

elled the change between Atlas 1 and Atlas 2, within which period
there was a large expansion of the distribution of A. myosuroides.
Second, we modelled the change between Atlas 2 and Atlas
3. Finally, we modelled the whole dataset, adding an additional
intercept term to measure the difference between the two transi-
tion periods (period 1, i.e., Atlas 1 → Atlas 2, and period 2, i.e.,
Atlas 2 → Atlas 3). We used the Bayes Information Criterion (BIC)
to compare the relative fit of the four models.5

2.3 Field-scale density assessments
We surveyed densities of A. myosuroides within fields across the
UK to map large-scale trends in density. We undertook our

surveys in 2015, 2016, 2017 and 2018, concentrating on the arable
belt of the UK, as well as encompassing the core as well as north-
ern and southern edges of the distribution. The skeleton for the
sampling program was a system of 70 farms established for a
detailed farm-level study of the population dynamics of
A. myosuroides.14 Observers drove along local roads and recorded
the density of A. myosuroides in winter wheat fields. The team con-
sisted of an observer accompanied by a driver who, for safety rea-
sons, had no responsibility for making observations. When an
arable field was encountered, the car stopped and the observer
recorded the location and estimated the population of
A. myosuroides (see below). In 2017 we extended the survey
region to the north-west (Cumbria), to the south-east (Kent) and
the south-west (Oxfordshire) to permit us to more fully capture
clines in weed abundance. In 2018 the survey was repeated and
extended to cover the entire arable area of England.
The location, crop type (filtered to winter wheat) and an esti-

mate of field-scale density were recorded from the side of each
field. The rapid assessments used a five-point density structured
approach14: absent is a field containing no weeds, while four
states from low to very high represent increasing population den-
sities. Visual representations of each of the latter four density
states are given in Supplementary Online Material (SOM) Table 1.
The measurements of density are treated as point locations. The

datasets on environmental data (below) are gridded data (1 km2

squares). For each field we determined the square in which it was
located and recorded the mean value of the respective variable.

Figure 1. Mapping distributions of Alopecurus myosuroides. (a) The distribution of A. myosuroides in BSBI atlases and new sites found in this study. (b) The
sites surveyed in this study.
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2.4 Soil data
Data on soil types were taken from LandIS (https://www.landis.
org.uk/services/soilsguide/series_list.cfm). This system recognises
753 soil series, whichmay be simplified to 11major soil types.35 Of
the 11 possible soil types, our surveys included significant num-
bers of sites with four soil types: Type 4 (pelosols), Type 5 (brown
soils), Type 7 (surface-water gley soils) and Type 8 (ground-water
gley soils), the frequencies of which we included as predictors in
our statistical models. Of these soil types, the gleys are ‘heavy’ soil
types, associated with seasonal water logging. Pelosols have a
high proportion of clay, which tends to dry out. Brown soils repre-
sent a diverse range of soils commonly in agricultural use. The res-
olution of the UK soil map is 1 × 1 km. For each monitored
location we measured the proportion of each of these soil types
within the 1 km2 square in which it is situated.

2.5 Rainfall data
We used the CEH-Gridded Estimates of Areal Rainfall (CEH-GEAR)
dataset which consists of 1 × 1 km gridded estimates of daily and
monthly rainfall for Great Britain and Northern Ireland.36,37 This is a
dataset of modelled rainfall that extends up to 2015 at the time of
analysis. We used data onmeanmonthly rainfall. Data on annual rain-
fall are not available for each of the individual years inwhichwemon-
itored A. myosuroides. We were therefore unable to analyse whether
interannual variation in rainfall drives year-to-year changes in abun-
dance. Consequently, we analysed whether the abundance of
A. myosuroides varies with average annual rainfall. The rainfall data
did not exactly match our survey period, therefore we used mean
rainfall from the four most recent years for which data were available
(2012–2015). The rainfall variable we used therefore measures the
degree to which longer-term patterns of rainfall influence current
densities. We did not use longer averages (e.g. 30 years) because

we wished to test whether recent rainfall has influenced densities.
We averaged the mean monthly rainfall across these 4 years for the
1 × 1 km square within which each monitored location is situated.

2.6 Land use data
Information on prevailing patterns of land use were taken from
the CEH Land Cover Map.1 Given that our objective is to map
the occurrence of A. myosuroides within arable landscapes, for
each locality, we recorded this proportion for the 1 km2 square
within which it was located.

2.7 Analysis of field-scale density data
We modelled our field-scale density data using generalized addi-
tive models (GAMs),38 which are a family of flexible modelling
approaches. This approach is appropriate for this problem
because it permits us to model large-scale geographical clines in
density through flexible smoothing functions, as well as the
effects of individual drivers (soil and rainfall) included as conven-
tional regression covariates. Response and predictor variables
were normalised prior to fitting.
The starting point is an ordinary linear model. Ni(t) is the density

state at location i. This is modelled as a function of j = 1…4 soil
variables measured for site i (Sij) and rainfall average at each loca-
tion (Rij). Initial analysis indicated that the ordinal response vari-
able N (numerically coded 0…4) could be treated as continuous
following a square root transformation (denoted n=N0.5) and that
this adequately satisfied the distributional assumptions of the
model (we also compared our results with those of models in
which the raw counts, N, were assumed to follow an ordered cat-
egorical distribution). The fitted models and outcomes in terms of

Table 1. Models for the spread of Alopecurus myosuroides inferred from atlas data (Fig. 1(a)) following Doxford & Freckleton5

(a) Δ (±se) P(t) (±se) N(t) (±se) N(t + 1) (±se) BIC df

Model I 0.01 0.00 4.35 0.17 783.38 3
Model II 0.01 0.00 2.82 0.20 0.73 0.04 337.90 4
Model III 0.01 0.00 2.97 0.21 0.71 0.03 0.00 4
Model IV 0.01 0.00 2.98 0.22 −0.02 0.06 0.72 0.05 7.77 5

(b) Δ (±se) P(t) (±se) N(t) (±se) N(t + 1) (±se) BIC df

Model I 0.00 0.00 3.44 0.12 642.25 3
Model II 0.00 0.00 1.21 0.17 0.54 0.03 252.10 4
Model III 0.00 0.00 1.25 0.16 0.64 0.03 0.00 4
Model IV 0.00 0.00 1.20 0.19 0.03 0.05 0.63 0.04 7.60 5

(c) Δ (±se) P(t) (±se) N(t) (±se) N(t + 1) (±se) BIC df

Model I 0.01 0.00 3.65 0.09 1463.81 4
Model II 0.01 0.00 1.73 0.12 0.57 0.02 682.26 5
Model III 0.00 0.00 1.80 0.12 0.66 0.02 0.00 5
Model IV 0.00 0.00 1.91 0.13 −0.07 0.04 0.71 0.03 5.08 6

We fit four models: Model I, the random colonisationmodel; Model II, the localised phalanxmodel; Model III, the phalanx-spreadmodel; and Model IV
that integrates elements of all models. The tables report the parameter estimates for the effect of a proxy of sampling effort (Δ), the previous state of
each hectad (P(t)) and the numbers of neighbours containing A. mysosuroides (N) at times t and t + 1. The Bayes Information Criterion (BIC, relative to
the best model) and overall model degrees of freedom. (a) Models for change in distribution between atlas 1 and atlas 2. (b) Models for change in
distribution between atlas 2 and atlas 3. (c) Models for change in distribution over both atlas periods, including an additional intercept termmeasur-
ing the difference between the atlas periods.

1<http://digimap.edina.ac.uk>, downloaded: 2017-2110-18 20:50:30.58.
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significance tests were nearly identical, but the interpretation of
the model using the continuous response is simpler. The model
is then:

ni,t=⊍t + ∑
4

j=1
⊎jSij +⊎RRi+εi,t ð5Þ

where ⊍t is the year-specific intercept, ⊎j is the slope measuring
the effect of the jth soil variable and ⊎R is the slope for the effect
of rainfall. To account for systematic spatial variation in the distri-
bution, we included longitude and latitude (denoted Xi and Yi,
respectively) measured as easting and northing on the national
grid. These were included within a thin plate regression spline
smooth term [τ(Xi, Yi)] in the GAM:39

ni,t=⊍t + ∑
4

j=1
⊎jSij +⊎RRi+τ Xi ,Yið Þ+εi,t ð6Þ

Analysis of this model indicated that there was significant spatial
positive autocorrelation (see below for details of testing), that is,
residuals from locations that are close together tended to be more
similar. This could be because of the influence of local geographic
factors that we were unable to measure or include in our models,
or because the predictors are averaged at a relative coarse scale
(1 km2 square) relative to the observations, with potentially several
measurements within the same square or very close together. Such
autocorrelation can significantly detract from the performance of
such models.40 We therefore added a grouping representing the
hectad (10 × 10 km2) within which each observationwas recorded.

ni,t=⊍t+ ∑
5

j=1
⊎jSij+⊎RRi+τ Xi ,Yið Þ+h Xi ,Yið Þ+εi,t ð7Þ

h Xi ,Yið Þ∼N 0,⊞2h
� �

h(X, Y) represents the hectad that contains point X, Y. This is
modelled as a random effect with variance ⊞2h. By grouping obser-
vations from the same hectads in this way, it effectively acts as a
local-level random effect, which removes variance owing to local-
ity. Although this approach is slightly crude (e.g. it does not
account for covariance between adjacent hectads), we tested
the success of the method by retesting the residuals for spatial
autocorrelation. The models were fitted using the gam() function
in the MGCV package in R.41 We used restricted maximum likeli-
hood to select the model as this has been shown to be more
robust to undersmoothing, although it is computationally slightly
more intensive.31

As noted above, we tested for spatial autocorrelation in the
model residuals. We used Moran's I to test for this using a rando-
misation approach,32 implemented in the ade4 library42). Accord-
ing to this test, Eqn. (7) yielded a fit in which there was no spatial
autocorrelation in the residuals of the final model.

2.8 Model analysis
The fitted GAM was analysed in three ways. First, to visualise
the geographical variation in field densities of A. myosuroides
across the study area, we plotted the fitted smooth term, that
is, excluding the fixed effects as a time-varying intercept
model:

n̂i,t= ⊍̂t + τ̂ Xi ,Yið Þ ð8Þ

Second, to visualise the full variation in density resulting from
both broad-scale geographic trends and the influence of the fixed
predictor variables we generated the full fitted model:

n̂i,t= ⊍̂t + ∑
5

j=1
⊎̂jSij + ⊎̂RRi+ τ̂ Xi ,Yið Þ ð9Þ

Thirdly, to visualise the influence of the fixed effect predictors
we mapped:

n̂i,t= ⊍̂t+ ∑
5

j=1
⊎̂jSij+ ⊎̂RRi ð10Þ

This final quantity is important as it measures the influence of
environmental variation, controlling for large-scale geographic
variation. Current variation in density bears an imprint of historical
land management and previous densities of the species. By elim-
inating these, Eqn. (10) is a measure of the potential density of
A. myosuroides in the absence of such confounding or historical
factors, that is, a measure of risk of infestation. We normalised this
quantity (scaled to a value between 0 and 1).

2.9 Comparison of independent datasets
To tie the two datasets together, we compared the predictions of
the GAM with the atlas data. Note that the model predictions and
atlas data are independent of each other because the latter were
not used in the construction of the GAM. We used Mann–Whit-
ney–Wilcoxon tests (mathematically equivalent to the area under
the curve from a receiver operator characteristic plot) to compare
the predicted densities from the GAMs with the atlas distribution
of A. myosuroides. We compared the predictions of the fixed
effects (continuous values predicted from Eqn. (10)) for England
and Wales with recorded atlas distributions (binary presence/
absence) and calculated the rank biserial correlation (rsb; this var-
ies between −1 and 1) as a measure of effect size.

3 RESULTS
3.1 Large-scale distribution and change in atlas data
Based on atlas data, the distribution of A. myosuroides is primarily
southerly, but appears to have shown a steady northerly increase over
the past 50 years (Fig. 1(a)). The distribution of the species has
increased (from655hectads in the 1960s atlas, to 948 in the 2000 atlas
andoccupies 963 hectads in the latest). There is lowbut increasing fre-
quency in the north of England, with very low occurrence in Scotland.
Modelling the change in distribution between atlas surveys our

results confirm that the species has indeed spread, in contrast to
previous predictions.13 We found that the best fitting model was
Model III, the ‘phalanx spread’ (Table 1), and this was true for all
time periods. This model includes an autoregressive term for the
number of neighbours colonised surrounding a focal hectad, indi-
cating that spread is contiguous and relatively localised.

3.2 Spatio-temporal variation in field-scale density
assessments
Overall, our field surveys showed that A. myosuroides is extremely
common, occurring in 65% of surveyed fields. This fraction was
lowest in 2018 (51%), but highest in 2016, with all surveyed fields
containing A. myosuroides. The modal density state was the ‘low’
density state, with 44% of fields determined to be in this state.
There is variation in weed density both geographically as well as
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between years: according to the GAM, Fig. 2 shows the fitted den-
sities in each of the years separately (Eqn. (8)). The highest densi-
ties are observed in the central area of England, along an
approximate belt running from the south of our study area,
through the centre. Densities are notably lower in the northern
extreme, as well as in the far south east and west.

3.3 Drivers of occurrence in in field-scale density
assessments
Generalized additive models fitted to the national field-scale den-
sity assessments indicated a role for both soil type and

environmental conditions in driving densities, however there
was considerable interannual variation that is not explained by
average conditions (Table 2). Of the soil types considered there
were clear positive correlations of density with the occurrence
of both types of gley soils (Table 2). There was a negative impact
of rainfall on the mean density of A. myosuroides (Table 2) with a
decrease in densities with increasing mean rainfall. Although in
the UK the areas of highest rainfall are in the uplands, our surveys
excluded such areas. Thus, the impacts of average rainfall on den-
sity are through effects that occur within the range of conditions
experienced in arable farmed landscapes.

Figure 2. Modelled density of Alopecurus myosuroides in (a) 2015, (b) 2016, (c) 2017 and (d) 2018. The maps show generalized additive models to the
survey data, describing geographical variation through a thin plate regression spline (see text for details). The standard errors (units of density) of the
fitted values are shown in (e)–(h).

Table 2. Generalized additive models (GAMs) for data from the field-scale density assessments of A. myosuroides within the surveyed area (see
Fig. 1(b))

Term Coefficient SE df F P value

Year intercepts 0.75 0.085 3 155.1 <1 × 10−6

+2016 0.59 0.046
+2017 −0.13 0.047
+2018 −0.19 0.043
Soil type
Pelosol 0.045 0.023 1 3.71 0.054
Brown soil −0.038 0.023 1 2.60 0.107
Surface-water gley 0.051 0.023 1 4.82 0.028
Ground-water gley 0.090 0.025 1 13.1 < 0.001
Weather
log(rainfall) −0.202 0.020 1 100.4 <1 × 10−6

Smooth term
t(X, Y) - - 0.99 618.4 <1 × 10−6

Separate intercepts were fitted for each year. Four soil types were abundant in the area surveyed, and the proportion of the hectad's area were
included as linear covariates. Mean rainfall (2012–2015) was included, given previous suggestions that moisture plays a role in driving the abundance
of A. myosuroides.
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3.4 Predicted map of A. myosuroides density
Based on the data from the field-scale density assessments Fig. 3
represents the map of current average density of A. myosuroides in
UK arable agriculture predicted from the full GAM (Eqn. (9)). Reflect-
ing the primarily arable focus of our surveys, in Fig. 3 all areas with
less than 5% arable land use cover have been masked out. The
mapped density is the net consequence of both the systematic lon-
gitudinal and latitudinal variation in densities, together with the
modelled effects of environmental drivers within the surveyed area.
Although we have identified significant environmental predic-

tors of densities, the latitudinal cline of density is very clear in
Figs 2 and 3. These large-scale clines will result, in some part, from
historical factors. To eliminate these effects, in Fig. 4 the latitudinal
and longitudinal trends have been removed. This indicates that
historical factors are likely to have played a significant role in driv-
ing density. None of the variables identified (rainfall or soil type)
show such an obvious latitudinal trend.

3.5 Predicting distributions
In Fig. 4 we have extrapolated the GAM model to the whole of
England and Wales, controlling for large-scale variation
(Eqn. (10)). This map therefore is a measure of potential habitat
suitability. Comparing Fig. 4 (based on the model for our field-
scale density assessments) with Fig. 1 (the map of current
occurrence, based on the UK atlases), it appears that the areas
of occupancy (points in Fig. 1(a)) coincide with the areas of pre-
dicted highest densities (yellow shaded areas in Fig. 4). Note that
these two maps are independent of each other because the data
from Fig. 1(a) do not enter the models used to generate Fig. 4.
To synthesise the results from the two datasets, we compared

the observations from the atlas data with the model predictions.
Accordingly, Fig. 5 shows a more formal comparison of the two

datasets: there is clearly good discrimination between the occu-
pied and unoccupied atlas hectads. The correspondence between
the two datasets has increased over the past 50 years, indicating
models based on current densities predict current occupancy
more accurately that historical occupancy: the biserial correlation
for the correspondence betweenmodel predictions and the occu-
pancy in the 1960s atlas is 0.44, but this increases to 0.64 for cur-
rent occupancy, including the data from this study.

4 DISCUSSION
At a national scale the UK, in common with many other countries,
lacks schemes for regular large-scale mapping of weeds. Large-
scale atlas data are a rich source of information on long-term
changes17 but are undertaken too infrequently to allow rapid
changes in species' distributions to be mapped that occur as a
consequence of changes such as rapid evolution of herbicide
resistance,15 land use change43 or dispersal.44 Here we have
shown how a large-scale sampling approach can be used to accu-
rate map occurrence, predict susceptible areas and test long-
standing hypotheses about possible drivers. Our own data
showed, for example, that A. myosuroides has spread recently, so
that the most recent atlas data are already in need of updating
as the weed is now occurring in areas in which it was previously
not reported. This also highlights the need to regularly survey out-
side the current areas of occupancy to detect new populations.

4.1 Management of A. myosuroides: spatial and temporal
perspective
Our models show that the spread of the weed has occurred
through a local phalanx. This implies that local processes drive

Figure 3. Map of modelled density of Alopecurus myosuroides. The model
includes soil type and rainfall (Table 2) as well as a smooth term (thin plate
regression spline, see text for details). Figure 4. Risk modelling of Alopecurus myosuroides: map of modelled

density of the whole of England and Wales. The smooth term has been
removed so the map shows variation in density attributable to soil and
rainfall, that is, relative suitability in terms of edaphic conditions only.
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Figure 5. Comparison of predicted densities based on model predictions based on the national field-scale density assessments (Fig. 4) with occupancy
recorded in the atlas data (Fig. 1(a)). In each casewe have compared the predictions from themodel with the records of presence and absence fromone of
the atlases: (a) 1960s atlas (Wilcoxon test rrb = 0.44, P < 0.0001); (b) 2000 atlas (Wilcoxon test rrb= 0.52, P < 0.0001); (c) 2020 atlas (Wilcoxon test rrb = 0.62,
P < 0.0001); (d) 2020 atlas supplemented with the data collected in this study (Wilcoxon test rrb = 0.64, P < 0.00001). Note the y axis presents normalised
density, relative to minimum and maximum predicted densities, hence is on a 0–1 scale.
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the spread of this weed. Four local-scale processes are important.
First, increases in local densities have been driven by herbicide
resistance,14 and local spread will be facilitated by the movement
of seeds and pollen with resistant genotypes. Second, seeds may
disperse through natural dispersal, although A. myosuroides has
no specialised mechanisms for dispersal beyond a few
metres,45,46 indicating a limited role for this mechanism in geo-
graphic spread. Third, seed can be moved on farm machinery:
there has been no formal analysis of this form of dispersal in
A. myosuroides, but this is a well-known mechanism of seed dis-
persal in agricultural systems.44 Although there is some industry
recommendation that cleaning of machinery is important,47 the
results here indicate that spread of the weed into new areas has
been considerable.
Over the 4 years, densities were substantially higher in 2016

than in the three other years (Fig. 2). The decline in weed abun-
dance in 2017 compared with 2016 mirrored a national-scale
1.9% decrease in winter wheat area.2 This decline in winter wheat
frequency is attributable to the difficulty of producing wheat in
fields with high infestations of A. myosuroides, which often
prompts farmers to grow alternative cereals such as spring bar-
ley.48 The reason for the increase in 2016 is not fully explained:
it seems likely that weather would play a role, as this often impacts
on the effectiveness of control. Future analyses would benefit
from finer-scale weather information to test this possibility.

4.2 The importance of edaphic factors
It is important to understand the impacts of environmental condi-
tions on both the fine- and large-scale distributions of weeds.
Such understanding may permit us to forecast future distribu-
tions.29 At the fine scale associations have been found between
soil properties and the occurrence of A. myosuroides.30 This
includes positive correlations between soil texture (relating to
clay content) and weed density, as well as a positive effect of soil
moisture. These relationships within-field, that is within local
populations,30 exhibit scale-dependence, and in this paper we
have analysed these correlations at larger scales.
We found a positive association between the occurrence of

A. myosuroides and heavier gley soils at the landscape scale. The
existence of this relationship confirms previous suggestions that
A. myosuroides is associated with ‘heavy’ land,28 although earlier
work49 suggested that prevailing land use may be more signifi-
cant in driving abundance.50 The negative effect of rainfall on
the abundance of A. myosuroides that we report may well reflect
this: in the UK rainfall is correlated with altitude, with higher rain-
falls at greater elevations. In Fig. 4, the areas of predicted low den-
sities (red areas) correspond to the uplands. Upland areas are
unfavourable for arable farming, and hence are likely to be unsui-
table for A. myosuroides. Indeed, this association with lowlands is
evident in the overall distribution (Fig. 1(a)).

4.3 Large-scale distribution
There are clear geographic trends (Figs 2 and 3) in the current dis-
tribution, with a ‘corridor’ of high densities through the central
portion of England, one of the highest intensity arable regions
of the UK. Comparing the current modelled distribution of densi-
ties (Fig. 3) with the potential modelled distribution of densities in
terms of soil and rainfall (Fig. 4), there are many areas in which
A. myosuroides is currently found at low densities, but that do

not appear any less suitable in terms of potential distribution. This
map therefore indicates that there are significant fractions of the
country which are suitable, but in which infestations of
A. myosuroides are currently low or nonexistent. In Fig. 5 the pre-
dicted normalised density for unoccupied sites is clearly greater
than zero, reflecting this.
Previously, the (then) current and future distributions of

A. myosuroides were forecast using a process-based model.13

Based on detailed submodels for plant growth and population
dynamics, the model forecast future distributions under different
climate change scenarios. The model suggested that
A. myosuroides would be unlikely to spread more than modestly
outside of the current distribution, with population growth rates
forecast to be negative inmost areas unoccupied in the 2000 atlas
survey (i.e. outside the black and grey points in Fig. 1). Clearly the
data recorded both in the 2020 atlas and our surveys (blue and
red points in Fig. 1) indicate that these predictions have not been
borne out, with our fitted models showing that the species has
been spreading consistently over all periods.
Indeed, our models indicate that the species is likely to spread

further, with much of the mismatch between Fig. 3 and Fig. 4
likely to be the consequence of slow spread, with the species
yet to fill all potential habitat. The likely reasons for the continued
spread of the species could include herbicide resistance.14

Increases in abundance owing to this generate large source popu-
lations from which the species is able to spread (e.g. through
machinery). In the light of this, managing uninvaded areas to min-
imise development of herbicide resistance should be a priority for
management, for example through increased cultural
management.
Notwithstanding large-scale trends in density, the map of pre-

dicted suitability (Fig. 4) provided a good predictor of current
occupancy (Fig. 5). The increase in correspondence between the
maps (i.e. increase in bi-serial correlation) from pre-1960s to the
modelled distribution is a result of the expansion of distribution
of A. myosuroides. Populations have expanded into areas which
were previously unoccupied, but clearly suitable in terms of soil,
rainfall and land use. The species therefore has historically under-
filled its potential niche. Based on this finding, there are good rea-
sons to expect that A. myosuroides could expand its range into
currently unoccupied areas which Fig. 4 indicates may be suitable
for the species.

4.4 Methodology
In monitoring populations there is a trade-off between the
detail in which populations can be measured and the spatial
scale over which sampling can be extended, which depends
on the resources available.51 Our approach is simpler than con-
ventional, time-consuming plant count survey techniques. It is
easy to train surveyors with high levels of repeatability and
the resultant data can be used to answer questions that are
difficult to address using data collected only at the scale of
local populations. The rapid nature of the technique also
allows surveys to cover large geographical areas (either within
the field or between fields) and to answer questions at much
larger scales than previous weed research has been able to
answer.
In this study A. myosuroides is highly visible when mature, and

this approach could be modified for a range of weeds that are
similarly easy to identify at long range. We have previously devel-
opedmethods for in-fieldmonitoring that allow us tomonitor this
and a suite of other highly visible weed species.18 We have

2https://www.gov.uk/government/uploads/system/uploads/attachment_
data/file/670004/structure-jun2017final-uk-21dec17.pdf.
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confirmed that for such weeds, rapid visual surveys provide an
accurate and repeatable assessment of abundance. These
methods will obviously bemost applicable to weeds that are taller
than the surrounding crop, with clearly visible differences in col-
our and growth form. Weeds with shorter growth forms, particu-
larly those that are lower than the crop, would be impossible to
monitor using such approaches. In contrast A. myosuroides is a
highly visible weed (see SOM Table 1). Indeed it is so evident that
remote mapping is possible, for example using unmanned aerial
systems.52,53In the future, the logical extension of the method
we report here would be a remote autonomous monitoring
platform.
A number of studies have monitored weed populations at large

spatial scales, and the methodology employed is variable.15,54,55

The factors driving choice of methods probably relate to available
resources in terms of labour and funding, and there is not a cur-
rent standard methodology for such monitoring. There are, how-
ever, potential advantages to standardisation of methods.
Creation and use of standardised methods for data collection
can aid the collation of data on both spatial and temporal scales,
enabling the collection of spatially wide-reaching, long-term data-
sets. Using a standardised methodology can provide vast
improvements in data quality when compared to datasets created
from bringing together piecemeal bits of data from different stud-
ies using differing methods. It is not unusual for several teams to
be working simultaneously on the same weed species. Moreover,
there is often a lag from collection to publication, if indeed data
are published at all, and many datasets undoubtedly lie unused.
The likelihood of reuse is greater if the data have been collected
in a standardised way. Moreover, agronomists and farmers regu-
larly walk fields and record data. Standardised measures of weed
incidence or abundance should be useful in making crop man-
agement recommendations. We therefore argue that current
trends towards openness in data archiving to promote reuse are
best served if we can use standardised methodologies where
possible.
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