
1 
 

Running head: DEPENDENCY LEARNING IN ADULTS AND CHILDREN 

 

 

Concurrent Visual Learning of Adjacent and Nonadjacent Dependencies in Adults and 

Children  

 

Lai-Sang Iao*, Jens Roeser, Lucy Justice, and Gary Jones  

 

Department of Psychology, Nottingham Trent University, 50 Shakespeare Street, 

Nottingham, United Kingdom, NG1 4FQ  

 

*Corresponding author 

Address for correspondence: Department of Psychology, Nottingham Trent University, 50 

Shakespeare Street, Nottingham, United Kingdom, NG1 4FQ 

E-mail: lai-sang.iao@ntu.ac.uk 

Phone: +44 (0)115 848 2387 

 

 

Acknowledgements 

This study was supported by the Quality Research funds awarded to Lai-Sang Iao from 

Nottingham Trent University. We thank Natalie Harrison, Adam Asmal, and Robin Clark for 

assisting in data collection. We also thank the participants, parents, and head teachers who 

made this research possible.  

 

Author Note  

Data and R scripts for the model fits of the study can be found on https://osf.io/bcyvr/ (Iao, 

Roeser, Justice, & Jones, 2020, December 29). 

 

Declarations of interest: none 

mailto:lai-sang.iao@ntu.ac.uk


2 
 

Concurrent Visual Learning of Adjacent and Nonadjacent Dependencies in Adults and 

Children 

 

Abstract 

Concurrent learning of adjacent and nonadjacent dependencies has been shown in 

adults only. This study extended this line of research by examining dependency-specific 

learning for both adjacent and nonadjacent dependencies concurrently in both adults and 

children. Seventy adults aged 18 to 64 (40 females, 30 males; Experiment 1) and 64 children 

aged 10 to 11 years (40 girls, 24 boys; Experiment 2) were tested with a new serial reaction 

time (SRT) task in which they were trained for 6 - 8 minutes on materials comprising equally 

probable adjacent and nonadjacent dependencies. They were then asked to discriminate 

between trained and untrained dependencies in a familiarity task. Both adults and children 

showed implicit concurrent learning of both adjacent and nonadjacent dependencies. The two 

dependency types were learnt to the same extent. However, adults showed a rapid, 

sustainable and dependency-specific sensitivity throughout the SRT task while children only 

showed a dependency-specific sensitivity to violations of expectations after exposure. When 

the two groups were statistically compared, only adults showed a dependency-specific 

learning effect after exposure. These findings are in line with the age-related improvement 

model of dependency learning.  
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knowledge; child development 
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Introduction 

Humans of all ages rapidly extract statistical regularities among sensory elements 

across time and/or space (for recent reviews, see Conway, 2020; Saffran & Kirkham, 2018). 

Many of these regularities occur among temporally adjacent elements. For example, the 

transitional probability from one syllable to the next is high when the two syllables follow 

one another within a word, but low when the two syllables are spanning a word boundary. 

Using these transitional probabilities, adults, children and infants learn nonsense words and 

their boundaries in artificial languages (e.g., Aslin, Saffran, & Newport, 1998; Saffran, Aslin, 

& Newport, 1996; Saffran, Newport, & Aslin, 1996; Saffran, Newport, Aslin, Tunick, & 

Barrueco, 1997). Such statistical learning of adjacent dependencies has vastly been 

investigated not only across ages but also across modalities (e.g., Arciuli & Simpson, 2011; 

Bulf, Johnson, & Valenza, 2011; Campbell, Zimerman, Healey, Lee, & Hasher, 2012; 

Conway & Christiansen, 2005; Emberson, Conway, & Christiansen, 2011). However, 

adjacent dependencies are not the only type of dependencies that exist in natural language, 

music, motor and visual sequences. They coexist with nonadjacent dependencies in which 

two depending elements are separated by one or more intervening elements. For example, in 

English, there are dependencies between auxiliaries and inflectional morphemes (e.g., 

“is [kick]ing”) and agreement between subject and verb (e.g., “the boys [in the red team] are 

great”). Both adjacent and nonadjacent dependencies may consist of similar elements in the 

same domain and co-occur in the same sequence (e.g., the root word [kick] consists of 

adjacent syllables with high transitional probability and is straddled by a nonadjacent 

dependency that consists of the auxiliary “is” and the inflectional morpheme “ing”). The two 

dependency types must be concurrently processed for the acquisition and development of 

language and various skills across domains. Therefore, it is crucial to understand how the two 
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dependency types are concurrently processed and acquired as well as how this capacity may 

differ depending on age.  

It is widely known that adjacent dependencies in various domains can be learned and 

assessed since infancy and throughout the lifespan with different types of measures (e.g., 

Arciuli & Simpson, 2011; Bulf et al., 2011; Saffran et al., 1996; Campbell et al., 2012; 

Conway & Christiansen, 2005; Ferdinand & Kray, 2017; Meulemans, Van der Linden, & 

Perruchet, 1998). One type of these measures is termed indirect, such as the serial reaction 

time (SRT) task which asks participants to respond to a visual cue that changes its location 

and does not explicitly refer participants to the to-be-learned sequence of location change 

(Nissen & Bullemer, 1987). This predetermined sequence of location change is therefore 

unknown to participants but they respond more quickly and accurately as the sequence 

repeats over time. When there are trials that are inconsistent with the sequence, participants’ 

reaction times slow down compared to trials that are consistent with the sequence, suggesting 

that they had learned at least some aspects of the sequence. Given that participants’ response 

times are measured throughout the task, both learning process and outcome can be revealed. 

The SRT task is therefore also regarded as an online measure of dependency learning. There 

are also direct measures, such as a familiarity task (e.g., Conway & Christiansen, 2005; 

Ferdinand & Kray, 2017) which explicitly asks participants to use their knowledge obtained 

from a previous learning session to discriminate between trained and untrained items. These 

measures, that can only reveal learning outcome, are also known as offline measures. Recent 

studies have emphasised the importance of using different types of measures to understand 

how participants learn dependencies, including both adjacent and nonadjacent dependencies, 

during exposure and whether their knowledge can be used intentionally after exposure (e.g., 

Bertels, Boursain, Destrebecqz, & Gaillard, 2015; Lammertink, van Witteloostuijn, Boersma, 
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Wijnen, & Rispens, 2019; van Witteloostuijn, Lammertink, Boersma, Wijnen, & Rispens, 

2019; Vuong, Meyer, & Christiansen, 2016). 

Nonadjacent dependency is different from adjacent dependency in terms of temporal 

and/or spatial distance between the elements that make up the dependency. This distance does 

not exist in adjacent dependency whereas the distance between the beginning and ending 

elements of a nonadjacent dependency can have one or more intervening elements (e.g., 

“is [kick]ing,” “the boys [in the red team] are great”). Nonadjacent dependencies are thus 

more difficult to learn compared to adjacent dependencies. Some conditions that highlight the 

nonadjacent dependencies are usually required for learning them. For example, an infinite set 

of intervening elements that fill the distance between the same beginning and ending 

elements of a nonadjacent dependency (e.g., “is [jump]ing,” “the boys [on the right side] are 

great”) is one well-known condition. Under this condition, the transitional probability 

between the beginning element and a particular intervening element is thus very low, making 

the remote dependency between the nonadjacent elements more salient for learning (Gómez, 

2002). Using a large set of intervening elements, several studies showed that adults, children, 

and infants can track and learn the dependencies between nonadjacent elements in different 

domains with different types of measures (Gómez, 2002; Gómez & Maye, 2005; Iao, Ng, 

Wong, & Lee, 2017; Lammertink et al., 2019; Misyak, Christiansen, & Tomblin, 2010). 

Remillard (2008, 2010) also showed that adults can implicitly learn long-distance, 

nonadjacent dependencies. It is thus clear that both adjacent and nonadjacent dependency 

learning are not restricted by age groups, measure types, and stimulus domains. However, the 

two types of dependency learning may be in competition given that the adjacent relationship 

between nonadjacent elements and intervening elements may influence the acquisition of the 

dependency between nonadjacent elements (e.g., the transitional probability between the 

beginning element of a nonadjacent dependency and intervening elements is not low enough 
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for the dependency between the nonadjacent elements to be salient for learning; Creel et al., 

2004; Gebhart, Newport, & Aslin, 2009; Gómez, 2002; Gómez & Maye, 2005; Grama, 

Kerkhoff, & Wijnen, 2016; Newport & Aslin, 2004; Onnis, Monaghan, Richmond, & Chater, 

2005). This could be due to an adjacency bias that learners tend to focus on adjacent 

relationships unless these adjacent relationships are too weak (Gómez, 2002). In this sense, 

concurrent learning of both dependency types could be difficult. 

So far, to our knowledge, there have only been five studies examining concurrent 

learning of both adjacent and nonadjacent dependencies, all testing adults only. Two of the 

five studies used a direct offline measure (i.e., the 2-alternative forced-choice test) to assess 

participants’ learning outcome by explicitly asking them to use their knowledge obtained 

from a previous learning session to identify trained items in sets of two choices (Creel et al., 

2004; Romberg & Saffran, 2013). Both studies reported concurrent learning of both adjacent 

and nonadjacent dependencies in both audio-musical and audio-verbal domains when 

adjacent relationships were weakened to an extent that the adjacency bias could be reduced 

but not overridden completely. In addition to direct offline measures, Vuong et al. (2016) also 

used an indirect online measure (i.e., a modified SRT task) to reveal both learning process 

and outcome by requiring participants to make responses on a matrix of written pseudowords 

according to a sequence of spoken pseudowords as quickly and accurately as possible rather 

than directly assessing their knowledge. The modified SRT task was thus similar to the 

aforementioned SRT task that learning was inferred if participants responded more quickly to 

the ending elements of the dependencies as the training trials proceeded and slowed down for 

the violation trials in which the ending elements no longer followed the beginning elements 

of the dependencies. Their results demonstrated concurrent adjacent and nonadjacent 

dependency learning in the verbal domain in both types of measures despite no weakening of 

the dependencies between adjacent elements. However, a reaction time change from training 
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to violation trials may reflect familiarity versus unfamiliarity of the trials rather than the 

dependencies per se that were embedded in the trials. Moreover, the study involved extended 

and multiple learning sessions.  

The last two of the five studies used an indirect offline measure (i.e., a memory-based 

reproduction task) to assess participants’ learning outcome by requiring them to recall each 

sequence without directly testing their knowledge of the dependencies embedded in the 

sequences (Conway et al., 2020; Deocampo, King, & Conway (2019). Both studies showed 

concurrent adjacent and nonadjacent dependency learning in visuo-verbal domain with a 

single 20-minute session. Deocampo et al. (2019) also showed concurrent adjacent and 

nonadjacent dependency learning in visuo-spatial domain using the same paradigm. The fact 

that the five studies used different measures and tested different domains suggests that 

concurrent learning of both adjacent and nonadjacent dependencies may not be restricted by 

measure types and stimulus domains. What is still unknown, compared to the previous 

literature on dependency learning, is whether concurrent learning of both adjacent and 

nonadjacent dependencies is restricted to adults only. The extent to which children may 

concurrently learn both adjacent and nonadjacent dependencies like adults is essential for 

understanding the acquisition and development of language and various skills across 

domains. 

There have been three developmental models relating to adjacent and nonadjacent 

dependency learning (for a review, see Zwart, Vissers, Kessels, & Maes, 2019). One is the 

age invariance model, suggesting that children and adults do not differ. However, it is based 

on findings from studies that examined adjacent dependency learning only with both indirect 

and direct measures (e.g., Ferdinand & Kray, 2017; Meulemans et al., 1998). Previous 

findings that learning of adjacent or nonadjacent dependencies via indirect measures may not 

be demonstrated in direct measures were also age invariant (Lammertink et al., 2019; 
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Meulemans et al., 1998; Thomas & Nelson, 2001; van Witteloostuijn et al., 2019). The 

second model suggests that adults or older individuals learn better than younger individuals. 

It is based on findings from studies that tested either adjacent or nonadjacent dependency 

learning using either indirect or direct measures (e.g., Arciuli & Simpson, 2011; Gómez & 

Maye, 2005; Thomas et al., 2004). The last model suggests a gradual decline in learning 

nonadjacent dependencies across the lifespan using an indirect measure (Janacsek, Fiser, & 

Nemeth, 2012; Juhasz, Nemeth, & Janacsek, 2019; Nemeth, Janacsek, & Fiser, 2013). The 

difference between the models could be due to the complexity of the sequences tested in the 

studies according to Thomas et al. (2004), Janacsek et al. (2012), and Ferdinand and Kray 

(2017). For example, Thomas et al.’s to-be-learned sequence included two ambiguous items 

that were followed equally often by all other items whereas Meulemans et al.’s (1998) 

included only one. Thus, Thomas et al. suggested that their to-be-learned sequence was more 

complex than Meulemans et al.’s and that this increase in sequence complexity elicited the 

developmental effect found in their study but not Meulemans et al.’s. So far, there has not yet 

been a study examining how concurrent adjacent and nonadjacent dependency learning may 

or may not differ depending on age despite its importance in continuous lifelong learning and 

developing proficiency in natural languages and various skills across domains. The current 

study therefore sought to be the first to fill this gap by investigating concurrent learning of 

both adjacent and nonadjacent dependencies in both adults and children.  

To understand how adults and children concurrently learn both adjacent and 

nonadjacent dependencies during exposure and whether their knowledge can be used 

intentionally after exposure, the current study developed a new paradigm that involved an 

indirect online measure and a direct offline measure. This paradigm is very brief and can be 

easily adapted into a child-friendly version. It was first used in Experiment 1 to examine 

whether dependency-specific learning occurred for both types of dependencies concurrently 
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in adults and whether their knowledge could then be used intentionally after a very brief 

exposure. As such, Experiment 1 extended previous studies in two aspects. One was a full-

range online measure of dependency-specific learning for both types of dependencies 

throughout the indirect online measure. This measure was crucial when dependencies were 

embedded in sequences/trials in an indirect online measure that relied on a reaction time 

change from training to violation sequences/trials to infer learning such as the SRT task. It is 

because a reaction time change from training to violation sequences/trials in this case may 

reflect a familiarity effect of the sequences/trials or a learning effect of the dependencies 

embedded in the sequences/trials (i.e., dependency-specific learning) or both. To avoid this 

uncertainty, which occurred in Vuong et al. (2016), a full-range online measure of 

dependency-specific learning was achieved by including a baseline of reaction times that did 

not concern the dependencies and comparing it against the reaction times for the 

dependencies throughout the indirect online measure. If participants showed a familiarity 

effect of the training sequences rather than dependency-specific learning, the reaction times 

for the dependencies should get faster to the same extent as the baseline as exposure 

proceeded and then slower to the same extent as the baseline when the dependencies were 

disrupted. If participants showed dependency-specific learning for both types of 

dependencies concurrently, the reaction times for both dependency types should be faster 

than the baseline during exposure and then slower specifically for the dependencies but not 

the baseline when the dependencies were disrupted. This dependency-specific learning would 

thus be independent of sequence learning as well as confounding effects due to fatigue and 

task requirement of mapping stimuli to response keys given that these effects would be 

consistent across stimuli that were part of the dependences and stimuli that were not part of 

the dependences (i.e., the baseline). As such, it could be considered as ‘pure statistical 

learning’ (Kóbor et al., 2018; Nemeth et al., 2013; Simor et al., 2019; Toth-Faber, Janacsek, 
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Szollosi, Keri, & Nemeth, 2020). The other extension from previous studies was an 

examination of concurrent adjacent and nonadjacent dependency learning with a much briefer 

exposure than those in Vuong et al.’s, Deocampo et al.’s (2019) and Conway et al.’s (2020) 

studies.  

The same paradigm as in Experiment 1 was then adapted into a child-friendly version 

in Experiment 2 to investigate the same questions in children. The two experiments together 

provided insights on whether concurrent learning of both adjacent and nonadjacent 

dependencies was age invariant. If it was age invariant, children should show a similar 

pattern of findings across both indirect online and direct offline measures as the adults did in 

Experiment 1. If it developed and changed from childhood to adulthood, children should 

show a different pattern of findings, whether in the indirect online measure or the direct 

offline measure or both, compared to that shown in the adults from Experiment 1. Further 

analysis was conducted to compare the findings across adults and children. Ethical approval 

for this study “Concurrent Visual Learning of Adjacent and Nonadjacent Dependencies in 

Adults and Children” was obtained from the Business, Law, and Social Sciences College 

Research Ethics Committee of Nottingham Trent University (No. 2016/24). 

Experiment 1 

Experiment 1 first examined whether dependency-specific learning occurred for both 

adjacent and nonadjacent dependencies concurrently in adults using a SRT task. It also tested 

whether adults’ knowledge of the dependencies obtained in the SRT task could then be used 

intentionally. This was assessed by a familiarity task as the direct offline measure.  

Method  

Participants. Seventy adults (40 females, 30 males) aged 18 to 64 years with a mean 

age of 29.84 years (SD = 12.57) were recruited within Nottinghamshire, United Kingdom and 
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volunteered to participate in the experiment after providing informed consents. All 

participants spoke English as their native language.  

Materials and Design. Nine black and white visual shapes, adapted from Fiser and 

Aslin (2001; Figure 1), were used. Four of the nine shapes were randomly assigned to form 

the dependencies (e.g., Sign A, B, C and D). The remainders (e.g., Sign e, f, g, h and i) were 

used as intervening elements. Two sets of dependencies were constructed. Set 1 consisted of 

AB as the adjacent dependency and C-D as the nonadjacent dependency whereas Set 2 

consisted of AD as the adjacent dependency and C-B as the nonadjacent dependency. Each 

participant was randomly assigned to one of the two sets. The ending elements of the 

dependencies (i.e., B and D) always appeared in the 4th and 8th positions of a 9-element 

sequence (e.g., efABgChDi or iChDgfABe; see example sequences in Figure 1) in the SRT 

task. Each element was presented one by one and stayed on screen until a key response was 

recorded. 

 

Figure 1 
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Stimuli, each approximately 3 x 3 cm, are presented one by one on screen in 9-element 

sequences (e.g., efABgChDi). For demonstration, AB as adjacent dependency is marked by 

orange (light grey) boxes, C-D as nonadjacent dependency is marked by blue (dark grey) 

boxes, and ef--g-h-i as intervening elements are marked by black boxes. Arrows between 

stimuli in a sequence represent stimuli’s presentation order. The first two sequences are 

example sequences in Block 1. The third sequence is an example sequence in Block 2, in 

which the presentation order of the dependency types is counterbalanced. The last sequence 

is an example sequence in Block 7, in which the dependencies are disrupted. Disruption of 

adjacent dependency is highlighted by orange (light grey) arrows whereas disruption of 

nonadjacent dependency is highlighted by blue (dark grey) arrows. Note that neither boxes 

nor arrows are presented in the actual task. See the colour version of this figure online. 

Stimuli were adapted with permission from “Unsupervised statistical learning of higher-

order spatial structures from visual scenes,” by J. Fiser, R. N. Aslin, 2001, Psychological 

Science, 12, p. 500. Copyright 2001 by Sage. 

 

The SRT task consisted of seven blocks in total. Each block was composed of five 9-

element sequences. Blocks 1 to 6 were learning blocks in which the same adjacent and 

nonadjacent dependencies were repeated in each sequence so that the transitional probability 

between the beginning element (e.g., A) and the ending element (e.g., B) of a dependency 

was always 1.0. The presentation order of the dependency types in a sequence was 

counterbalanced across blocks. For example, if the adjacent dependency appeared in the 3rd 

and 4th positions and the nonadjacent dependency appeared in the 6th and 8th positions of the 

sequences in Block 1, the adjacent dependency would appear in the 7th and 8th positions and 

the nonadjacent dependency would appear in the 2nd and 4th positions of the sequences in 

Block 2. The five intervening elements randomly appeared in the rest of the positions of a 
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sequence without re-appearing in the same position within the same block so that the 

transitional probability between the intervening elements (e.g., f or g) and a dependency (e.g., 

AB) was always .20. Block 7 was a transfer block in which the nine elements appeared in 

random positions for each of the five sequences with a restriction that the dependencies must 

be disrupted. Nine keys in the middle of a laptop keyboard (i.e., R, T, Y, F, G, H, V, B, N) 

were used as response keys to the nine elements in random assignment with a restriction that 

R and N were for the beginning elements of the dependencies versus Y and V for the ending 

elements of the dependencies for all participants. Each key was indicated by its 

corresponding element rather than its original letter. A cardboard cut-out was also used to 

cover the rest of the keyboard, exposing only the nine response keys. 

The familiarity task consisted of 20 trials of 3-element sequences (e.g., fAB and ChB): 

5 involved the adjacent dependency and 5 involved the nonadjacent dependency from each of 

the two sets. The order of the trials was randomized for each participant. Participants were 

asked whether they had encountered the sequence previously. Two keys on the keyboard (i.e., 

K and L) were used as ‘Yes’ and ‘No’ response keys to each of the trials. Another cardboard 

cut-out was used to cover the rest of the keyboard, exposing the ‘Yes’ and ‘No’ response 

keys only.  

The two tasks were presented on a computer using OpenSesame (version 3.0.5). In the 

SRT task, participants had to press the key associated with its shape as quickly and accurately 

as possible. An example file of the task (child-friendly version used in Experiment 2) can be 

found on https://osf.io/bcyvr/ (Iao, Roeser, Justice, & Jones, 2020, December 29). In the 

familiarity task, participants were asked to identify the patterns in which the shapes appeared.  

Procedure. Participants were tested individually in a laboratory by an experimenter. 

They first completed the SRT task in which they were trained on materials comprising both 

adjacent and nonadjacent dependencies. Depending on reaction time, this task lasted 
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approximately 5 minutes. Before starting the task, the principles of the task were explained 

verbally and visually. Participants were told to press a corresponding key as fast and 

accurately as possible using their preferred hand when a shape appeared on screen. Therefore, 

the shapes were presented one at a time and each stayed on screen until a key response was 

recorded from any of the corresponding keys. A brief practice phase, comprising 3 examples 

that appeared in random order for 3 times, was performed to ensure understanding. The task 

then started, running from Block 1 to 7. No feedback was given. An encouraging slide saying 

“Good job! Keep going!” was presented after each block which allowed a break when 

necessary. Note that participants were not told about the regularities presented in the 

sequences throughout the task.  

The familiarity task asked participants to identify the patterns in which the shapes 

appeared. Each shape was shown for 1250 milliseconds in groups of three and participants 

were required to determine whether they had seen the shape sequence before by pressing a 

‘Yes’ or ‘No’ key. Feedback (i.e., “Good job! Keep going!”) was given after each response, 

no matter if the response was correct or not. At the end of the task, participants were thanked 

and were given the opportunity to ask questions. 

Results  

Participant’s median response accuracy was 99% (IQR = 1.70, range = 91%-100%) in 

the SRT task, suggesting that responses to each element were made with high accuracy. For 

the analysis of the data obtained from the SRT task, we removed incorrect responses (1.46%). 

Based on previous SRT studies (e.g., Thomas & Nelson, 2001), responses that were faster 

than 100 msecs and slower than 10,000 msecs (0.05%) were considered to be outliers and 

were also removed. Reaction times for the beginning elements of the dependencies were not 

included in the analysis because they were neither considered as baseline nor index of 

learning (as in Vuong et al., 2016; 24%). Finally, we excluded G-key responses where 
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participants tended to rest their hands (11%). This key was not involved in any of the 

dependencies. 

Data were analysed in Bayesian linear mixed effects models (Gelman et al., 2014; 

Kruschke, 2014; McElreath, 2016). The R package brms (Bürkner, 2017, 2018) was used to 

model the data using the probabilistic programming language Stan (Carpenter et al., 2016; 

Hoffman & Gelman, 2014; Stan Development Team, 2015).  

Our statistical inference was based on the modelled parameter distributions expressed 

as the most probable posterior parameter values µ as well as their 95% Highest Posterior 

Density Interval (henceforth, HPDI) – the shortest interval containing 95% of the posterior 

probability mass (Kruschke, Aguinis, & Joo, 2012; Sorensen, Hohenstein, & Vasishth, 2016). 

These modelled data allow for direct statistical inference of patterns in the data and 

differences between conditions after accounting for sample specific variance.1  

Data and R scripts for the model fits of the study can be found on https://osf.io/bcyvr/ 

(Iao et al., 2020, December 29). 

Serial Reaction Time. The reaction times for the responses to the ending elements of 

the dependencies were extracted for Block 1 to 7 and modelled in Bayesian linear mixed 

effects models. The reaction times for elements that were not part of an adjacent or 

nonadjacent dependency were included in the model and treated as baseline. Model 

predictors were Dependency (levels: dependency, baseline), Adjacency (levels: adjacent, 

nonadjacent), Block (levels: 1-7) and all by-Block 2-way interactions of Dependency and 

Adjacency.  

Reaction time data were fitted with shifted-lognormal distributions as frequently used in 

modelling literature (Heathcote, Brown, & Cousineau, 2004; Heathcote, Popiel, & Mewhort, 

 
1 Models were fitted with weakly informative priors (see McElreath, 2016) and run with 8,000 iterations on 3 

chains with a warm-up of 4,000 iterations and no thinning. Model convergence was confirmed by the Rubin-

Gelman statistic (Gelman & Rubin, 1992) and inspection of the Markov chain Monte Carlo chains. 
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1991; Wagenmakers & Brown, 2007). All models were fitted with random intercepts for 

participants and random intercepts for each stimulus image (Barr, Levy, Scheepers, & Tily, 

2013; Bates, Kliegl, Vasishth, & Baayen, 2015) to account for random variance associated 

with individual differences between participants and image-specific variation. Partially 

pooled by-participant slope adjustments were included for all model predictors and trial order 

within blocks to account for the variance associated with repetitions within block.2 This type 

of analysis differs from previous SRT studies which used aggregated response times (i.e., 

median reaction times; e.g., Meulemans et al., 1998; Thomas & Nelson, 2001). The inference 

based on aggregated data reported in these studies is problematic. This is because aggregating 

data artificially removes the within-block variance, reduces the natural skew of reaction time 

values, and therefore biases the inferential outcome. Instead we specified our model such that 

it accounted for both random error variance and the natural skew found in response time data.   

The Bayesian model was used to infer the parameter distributions for each Dependency 

and by Block after accounting variance attributed to participants, stimulus image and 

repetitions. These statistically derived parameter values can be found in Figure 2. 

 

 
2 In brms syntax: RT ~ Block * Dependency * Adjacency + repetition + (Block * Dependency * Adjacency + 

repetition | participant) + (1 | stimulus). 
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Figure 2 

Summary of posterior reaction time data inferred from the Bayesian mixed effects model. 

Dots indicate the most probable a posteriori parameter μ̂, and error bars show 95% HPDIs. 

 

Figure 2 shows that reaction times speeded up from Block 1 to 4, remained relatively 

stable until they slowed down from Block 6 to 7. From Block 1 to 6, reaction times were 

consistently faster for nonadjacent dependencies (μ̂ = -48 msecs, 95% HPDI[-104, 0]) but not 

for adjacent dependencies (μ̂ = -28 msecs, 95% HPDI[-77, 22]) compared to the baseline. 

This is evident as the HPDI for nonadjacent dependencies compared to the baseline does not 

include a difference of 0 msecs (thus, the absence of a difference) as a possible parameter 

value, while the HPDI for adjacent dependencies compared to the baseline does indeed 

include 0 msecs. 

Only in Block 5, reaction times were found to be faster for adjacent dependencies 

compared to the baseline (μ̂ = -39 msecs, 95% HPDI[-78, 0]). This early adaptation to 
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nonadjacent dependencies and late adaptation to adjacent dependencies was supported by an 

interaction of Adjacency and Block 4-5 (μ̂ = -15 msecs, 95% HPDI[-28, -2]). 

Importantly we found evidence for an interaction of Dependency and Block 6-7 (μ̂ = 22 

msecs, 95% HPDI[-47, 4]) with a posterior probability of P(μ̂ < 0) = .95. The latter statement 

indicates the probability that the true parameter value of μ̂ is smaller than 0. In other words, 

there was a 95% probability that there was indeed a negative interaction between adjacent 

and nonadjacent dependencies versus baseline and the transition from Block 6 to 7. In the 

transfer Block 7 we found a slow-down of 50 msecs (95% HPDI[-7, 101]) for adjacent 

dependencies and 43 msecs (95% HPDI[-6, 92]) for nonadjacent dependencies, but for the 

baseline the slow-down was only 5 msecs (95% HPDI[-17, 29]) and thus virtually absent. 

From the posterior estimates we calculated the probability to observe longer values (i.e., a 

positive difference) in Block 7 compared to Block 6. The slow-down in Block 7 was found 

with a probability of P(∆μ̂ > 0) = .97 for adjacent dependencies, a probability of P(∆μ̂ > 0) 

= .96 for nonadjacent dependencies, and a probability of P(∆μ̂ > 0) = .68 for baseline. 

These results suggest that although nonadjacent dependencies were learnt faster than 

adjacent dependencies, the disruption of the dependencies in the transfer block affected 

responses to both types of the dependencies to the same extent while having almost no effect 

to the baseline stimuli. A summary of the model’s fixed effects can be found in Appendix A1. 

Explicit judgement. Participants’ explicit judgements on trained and untrained trials in 

the familiarity task, based on accuracy, revealed chance-level responses for both adjacent (M 

= .51, SD = 0.5) and nonadjacent dependencies (M = .53, SD = 0.5). We evaluated chance-

level performance in the context of equal variance Gaussian signal detection theory 

(EVSDT). Bayesian generalised linear mixed effects models (probit link function) provide a 

statistical tool to infer the EVSDT model’s parameters (DeCarlo, 1998, 2010; Rouder & Lu, 

2005; Rouder et al., 2007). Model parameters are the response criterion c representing the 
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threshold for responding target present, and d’ indicating the signal strength (i.e., the 

difference between signal and noise). Adjacency (levels: adjacent, nonadjacent) was included 

as fixed effect. Models were fitted with random intercepts for participants and stimulus with 

by-participant and by-stimulus slope adjustments for Adjacency. Table 1 shows the results of 

the EVSDT model. The d’ parameter indicates that the inferred distance between noise and 

signal was non-different from zero. Further d’ of adjacent compared to nonadjacent 

dependencies was negligibly different from zero. These results show that there was no 

evidence for explicit knowledge of both adjacent and nonadjacent dependencies. 

 

Table 1  

Bayesian estimates of the signal detection analysis. Criterion c and d’ indicates the distance 

between the signal and the inferred noise distribution (i.e., the signal strength). The 

difference between adjacent and nonadjacent dependencies are shown for the criterion 

variable c and d’. The posterior distribution of the model parameters is indicated by the most 

probable inferred value μ̂ and 95% HPDIs. 

Predictor μ̂ HPDI[2.5% 97.5%] 

-c -0.04 -0.25 0.18 

d’ 0.04 -0.18 0.26 

c (adjacent-nonadjacent) 0.15 -0.09 0.37 

d’ (adjacent-nonadjacent) 0.14 -0.17 0.45 

 

Discussion 

Experiment 1 tested whether adults showed dependency-specific learning for both types 

of dependencies concurrently and whether their knowledge could then be used intentionally. 

Our findings indicate that there was dependency-specific learning for both types of 
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dependencies concurrently throughout the SRT task given that the reaction times for both 

dependency types were faster than the baseline during exposure and then slower specifically 

for the dependencies but not the baseline when the dependencies were disrupted. There was 

however no evidence for the knowledge obtained from the SRT task to be used intentionally 

after exposure. In the familiarity task, adults were not able to explicitly discriminate trained 

dependencies from untrained dependencies. Given that there was a dissociation between the 

indirect online and direct offline measures, we concluded that adults developed implicit but 

not explicit knowledge of both dependency types concurrently over a very brief exposure. 

Experiment 2 extended Experiment 1’s investigation from adults to primary school-aged 

children. 

Experiment 2 

Experiment 2 investigated the same questions as Experiment 1 but in a sample of 

primary school-aged children. It used the same SRT task and the same familiarity task as 

Experiment 1. The only difference between Experiment 1 and 2 was that the two tasks were 

packaged as one coherent ‘monster-catching’ game to make the experiment child-friendly.  

Method 

Participants. Sixty-four children (40 girls, 24 boys) aged 10 to 11 years with a mean 

age of 131.15 months (SD = 3.30) took part. They were recruited from two different schools 

within Nottinghamshire, United Kingdom and volunteered after obtaining parental consents. 

All children spoke English as their native language, and none were reported as having special 

educational needs.  

Materials and Design. The setup followed Experiment 1, except that the SRT task and 

the familiarity task were packaged and presented as one coherent ‘monster-catching’ game on 

a laptop computer using OpenSesame (version 3.0.5). That is, all shapes, response keys and 

other aspects of the experiment were exactly the same as Experiment 1. The only difference 



21 
 

was that the beginning and end of the two tasks were edited to incorporate a ‘monster-

catching’ theme. In the beginning of the SRT task, each shape was described as representing 

a monster by simultaneously presenting nine pairs of shapes and monsters on screen (for a 

link to an example file of the task, see Experiment 1; the monsters were adapted from Arciuli 

& Simpson, 2011). However, children were not asked to remember the correspondences 

between the shapes and the monsters. In fact, the monsters were irrelevant to task demands 

and were not presented on screen and keyboard during the task. The monsters were only 

shown on screen again at the end of the task to indicate they were all caught and kept in 

prison. In the familiarity task, the monsters were not shown at all.  

Procedure. Children were tested individually in a room within their own school by an 

experimenter. They first completed the SRT task which lasted 6 - 8 minutes depending on 

reaction time. Same as the adults in Experiment 1, the principles of the task were explained 

verbally and visually before the tasked. However, children were told to catch each monster 

when its shape appeared on screen by pressing the corresponding key as fast and accurately 

as possible using their preferred hand. Everything else were exactly the same as Experiment 1 

until the end of the task where children were praised for catching all the monsters and were 

verbally and visually informed that the monsters were kept at prison.  

The familiarity task started by telling children that some monsters tended to appear in 

patterns and they were asked to help the police identify the patterns so that the police could 

catch them as soon as they broke out from the prison. Everything else were exactly the same 

as Experiment 1 until the end of the task where children were thanked for helping the police 

and were given the opportunity to ask questions. 

Results 

Children’s median response accuracy was 98% (IQR = 2.14, range = 92%-100%) in the 

SRT task, suggesting that responses to each element by pressing the corresponding key were 
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made with high accuracy. For the analysis of the data obtained from the SRT task, we 

removed incorrect responses (2.25%). Based on previous SRT studies, we also removed 

responses that were faster than 100 msecs and slower than 10,000 msecs (0.18%). Reaction 

times for the beginning elements of the dependencies were not included in the analysis 

(24%). Finally we excluded G-key responses where children tended to rest their hands (11%). 

This key was not involved in any of the dependencies. We used the same analysis tools as 

described in Experiment 1. For a link to the OSF repository see Experiment 1. 

Serial Reaction Time. Reaction times were extracted and modelled in Bayesian linear 

mixed effects models in the exact same way as described in Experiment 1. Model predictors 

were Dependency, Adjacency, Block and all by-Block interactions of Dependency and 

Adjacency. The model was used to infer the parameter distributions for each Dependency and 

by Block after accounting variance attributed to participants, stimulus images and repetitions 

as described for Experiment 1. These statistically derived parameter values can be found in 

Figure 3. 

 

 



23 
 

Figure 3  

Summary of posterior reaction time data inferred from the Bayesian mixed effects model. 

Dots indicate the most probable a posteriori parameter μ̂, and error bars show 95% HPDIs. 

 

Figure 3 shows that reaction times speeded up from Block 1 to 2, remained relatively 

stable until they slowed down from Block 6 to 7. Importantly in the transfer Block 7 we 

observed a slow-down of 83 msecs (95% HPDI[1, 176]) for adjacent dependencies, a slow-

down of 87 msecs (95% HPDI[0, 171]) for nonadjacent dependencies, and a slow-down of 46 

msecs (95% HPDI[2, 88]) for the baseline stimuli. Note that the slow-down observed for 

baseline stimuli was only half as large as the slow-down for both adjacent and non-adjacent 

dependencies. This larger slow-down for dependencies compared to baseline stimuli was 

weakly supported by evidence for an interaction of Dependency and Block 6-7 (μ̂ = -22 

msecs, 95% HPDI[-55, 21]) with a posterior probability of P(μ̂ < 0) = .84. This slow-down in 

Block 7 was found with a probability of P(∆μ̂ > 0) = .98 for adjacent dependencies, a 

probability of P(∆μ̂ > 0) = .97 for nonadjacent dependencies, and a probability of P(∆μ̂ > 0) 

= .98 for baseline stimuli. 

These results indicate that the disruption of dependencies in the transfer block affected 

responses to all stimulus images but had a larger effect on the reaction times for both types of 

the dependencies compared to baseline stimuli. A summary of the model’s fixed effects can 

be found in Appendix A1. 

Explicit judgement. Children’s explicit judgements on trained and untrained trials in 

the familiarity task, based on accuracy, revealed chance-level responses for both adjacent (M 

= .51, SD = 0.5) and nonadjacent dependencies (M = .51, SD = 0.5). We evaluated chance-

level performance in an EVSDT model (see Results section of Experiment 1). The results of 

the EVSDT model are shown in Table 2. The d’ parameter indicates that the inferred distance 
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between noise and signal was non-different from zero. Further d’ of adjacent compared to 

nonadjacent dependencies showed a negligible difference. These results show that there was 

no evidence for explicit knowledge of both adjacent and nonadjacent dependencies.  

 

Table 2 

Bayesian estimates of the signal detection analysis. Criterion c and d’ indicates the distance 

between the signal and the inferred noise distribution (i.e., the signal strength). The 

difference between adjacent and nonadjacent dependencies are shown for the criterion 

variable c and d’. The posterior distribution of the model parameters is indicated by the most 

probable inferred value μ̂ and 95% HPDIs. 

Predictor μ̂ HPDI[2.5% 97.5%] 

-c -0.07 -0.38 0.27 

d’ 0.09 -0.16 0.34 

c (adjacent-nonadjacent) 0.15 -0.13 0.46 

d’ (adjacent-nonadjacent) -0.04 -0.39 0.32 

 

Discussion 

Experiment 2 investigated whether children showed dependency-specific learning for 

both types of dependencies concurrently and whether their knowledge could then be used 

intentionally. Our findings indicate that children demonstrated concurrent sensitivity to both 

types of dependencies given that children’s reaction times for both types of the dependencies 

decreased during exposure and increased when the dependencies were disrupted. However, 

whether this sensitivity was dependency-specific was not clearly reflected in the results. It 

was dependency-specific because the reaction times for both dependency types got slower 

specifically for the dependencies but not the baseline when the dependencies were disrupted. 



25 
 

It was also not dependency-specific because the reaction times for both dependency types got 

faster to the same extent as the baseline during exposure.  

It is possible that the general reduction of reaction times during exposure was due to a 

practice effect that children were learning the mapping between shapes on screen and keys on 

keyboard rather than the dependencies per se. However, the slow-down observed for 

dependencies was two times larger than the slow-down observed for the baseline when the 

dependencies were disrupted. This can only be explained by a violation of the expectation 

regarding the ending elements of the dependencies specifically rather than the sequences in 

general. The slow-down for the baseline might only be a spillover effect from the dependency 

violations. That is, the disruptions in the dependencies may lead children to make cautious 

responses to other stimuli. Therefore, we argue that there was some level of dependency-

specific learning evidenced for both adjacent and nonadjacent dependencies concurrently in 

children.  

There was no evidence for children’s knowledge obtained from the SRT task to be used 

intentionally after exposure. In the familiarity task, children were not able to explicitly 

discriminate trained dependencies from untrained dependencies. Given that there was a 

dissociation between the indirect online and direct offline measures, we concluded that 

children developed implicit but not explicit knowledge of both dependency types 

concurrently over a very brief exposure.  

As such, there were similarities and differences between the findings in adults and 

children. Although both adults and children showed implicit but not explicit knowledge of 

both adjacent and nonadjacent dependencies, they performed differently throughout the SRT 

task.  Further analyses were conducted to assess differences across adults and children on the 

SRT task. 

Comparisons Between Adults and Children on Serial Reaction Time 
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Differences between adults (Experiment 1) and children (Experiment 2) observed in the 

SRT task were further evaluated, focusing on the dependency-specific learning effect 

indicated by faster reaction times for the two dependency types than the baseline during 

exposure and slower reaction times specifically for the dependencies but not the baseline 

when the dependencies were disrupted. We pooled the SRT data from both experiments and 

extracted the data from Blocks 1, 6 and 7.  

This analysis was largely similar to the reaction-time models reported earlier. Reaction 

times were modelled in Bayesian linear mixed-effects models. Model predictors were Age 

Group (levels: adults, children), Dependency (levels: dependency, baseline), Adjacency 

(levels: adjacent, nonadjacent), Learning Block (levels: 1, 6), Transfer Block (levels: 6, 7), 

and all by-Dependency and by-Adjacency interactions with Group and Block. All predictors 

were sum-coded following Schad et al. (2020). Reaction time data were fitted with a shifted-

lognormal distribution, random intercepts for each stimulus image, and participants with by-

participant slope adjustments for all main effects and interactions. 

In addition to the parameter estimates as in the previous results sections, we used the 

posterior to calculate the standardised effect sizes δ, defined as δ = 
𝜇

𝜎
, where μ is the 

parameter value of the effect of interest and σ is the standard deviation. The effect size was 

calculated to allow comparisons across age groups (Wagenmakers et al., 2010). Because the 

standard deviation is necessary to calculate the effect size, we specified the model with two 

different variance components, one for the child group and one for the adult group as the 

population standard deviation is likely to be different for each group (Baguley, 2009). 

For the effect sizes, we determined the region of practical equivalence (henceforth, 

ROPE) to assess the uncertainty of the effect size (Makowski et al., 2019). The ROPE is the 

range of values that are practically equivalent to a null effect (e.g., Kruschke, 2010, 2011). 

We set the ROPE to be -0.1 and 0.1 (Kruschke, 2018) which is the range of negligible effect 
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sizes (Cohn, 1988). The value returned is the proportion of posterior samples (of the effect 

size) that fall inside the ROPE. In other words, the ROPE value indicates the extent to which 

the posterior cannot rule out a negligible effect. A meaningful effect size should have a small 

proportion of posterior samples within the ROPE. 

Table 3 summaries the modeling outcome. We found compelling evidence for longer 

reaction times for children compared to adults. Overall, adjacent dependencies were 

responded to faster than nonadjacent dependencies. Reaction times for Block 6 were shorter 

than Block 1; and reaction times for Block 7 were longer than for Block 6. Further evidence 

was found for two-way interactions of Age Group and Dependency, and Age Group and 

Learning Block. Importantly, we found evidence for a three-way interaction of Dependency 

by Transfer Block and Age Group. The variance estimate for the child group (σ̂ = 0.37, 95% 

HPDI[0.36, 0.38]) was larger than the variance estimate for the adult group (σ̂ = 0.32, 95% 

HPDI[0.31, 0.32]).  

 

Table 3 

Age-group comparison for SRT data. Estimated parameter values (in msecs) for main effects 

and interactions of Learning Block (levels: 1, 6) and Transfer Block (levels: 6, 7), Age Group 

(levels: adults, children), Dependency (levels: dependency, baseline), Adjacency (levels: 

adjacent, nonadjacent). 

Predictor μ̂ 95% HPDI P(μ̂ < 0) 

Main effects    

Age Group -327 [-383, -270] >.999 

Dependency 3 [-30, 34] .447 

Adjacency -23 [-41, 0] .977 

Learning Block 217 [189, 243] <.001 
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Transfer Block -35 [-54, -19] >.999 

Two-way interactions    

Age * Dependency  -64 [-88, 41] >.999 

Age * Adjacency  -12 [-30, 8] .877 

Age * Learning Block 69 [49, 92] <.001 

Age * Transfer Block -2 [-18, 13] .616 

Dependency * Learning Block 4 [-11, 22] .278 

Dependency * Transfer Block -16 [-40, 5] .928 

Adjacency * Learning Block -6 [-19, 8] .757 

Adjacency * Transfer Block -2 [-14, 19] .415 

Three-way interactions    

Dependency * Learning Block * Age -3 [-19, 14] .618 

Dependency * Transfer Block * Age -25 [-41, -7] .997 

Adjacency * Learning Block * Age 3 [-11, 17] .327 

Adjacency * Transfer Block * Age -1 [-14, 15] .499 

Note. μ̂ indicates the most probable parameter value; 95% HPDI is the range containing 95% 

of the posterior probability mass; P(μ̂ < 0) is the probability of the true parameter value being 

smaller than 0; ‘*’ indicates interactions.  

 

Figure 4 illustrates the modeled data illustrating the speedup from Block 1 to 6 and the 

slowdown from Block 6 to 7 for the adult and child groups. The slowdown from Block 6 to 7 

was tested within Age Group and Dependency to gain further insight into the source of the 

three-way interactions. Reported are the effect sizes for each comparison. 
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Figure 4 

Modeled SRT data (group comparison). Reaction-time data are shown by age group for 

Block 1 compared to Block 6 and Block 6 compared to Block 7. Shown are the modelled 

reaction-time data with 95% HPDI (in msecs) for both dependencies (adjacent, nonadjacent) 

and the baseline. 

 
We observed an interaction of Dependency, Transfer Block, and Age Group. For the 

adult group, we observed a small effect for a slowdown from Block 6 to 7 for the 

dependencies (δ̂ = 0.26, 95% HPDI[0.11, 0.39], ROPE = 0) but negligible evidence for a 

slowdown for the baseline (δ̂ = -0.01, 95% HPDI[-0.08, 0.07], ROPE = 100%). For the child 

group, we observed negligible to small slowdown effects for both types of dependencies (δ̂ = 

0.11, 95% HPDI[-0.02, 0.25], ROPE = 42%) and for the baseline (δ̂ = 0.14, 95% HPDI[0.07, 

0.23], ROPE = 6%). Therefore, when we compared across the two groups adults showed a 

dependency-specific learning effect after exposure while children did not. 

General Discussion 
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The present study is the first to investigate concurrent learning of adjacent and 

nonadjacent dependencies in both adults and children, using both indirect online and direct 

offline measures. Our findings suggested that both adults and children developed implicit but 

not explicit knowledge of both adjacent and nonadjacent dependencies over a very brief 

exposure. Moreover, both adjacent and nonadjacent dependencies were learnt implicitly and 

concurrently to the same extent. However, adults showed a rapid, sustainable and 

dependency-specific sensitivity throughout the indirect online measure while children only 

showed a dependency-specific sensitivity to violations of expectations after exposure. When 

the two groups were statistically compared, only adults showed a dependency-specific 

learning effect after exposure. Therefore, our results revealed an age-related difference in 

implicit concurrent learning of both adjacent and nonadjacent dependencies. 

First, adults showed faster reaction times for both dependencies compared to those for 

the baseline during exposure. However, children’s reaction times for the dependencies were 

getting faster to the same extent as the baseline as exposure proceeded. Second, adults 

showed slower reaction times for both dependency types but not for the baseline when the 

dependencies were disrupted after exposure. Children, in contrast, showed a slow-down for 

the baseline that was half the magnitude of the slow-down observed for both dependency 

types when the dependencies were disrupted after exposure. These findings corresponded to 

Thomas et al.’s (2004) findings that adults showed significant dependency-specific learning 

for adjacent dependencies throughout exposure whereas children did not show the same until 

later part of the exposure, in which the magnitude of their learning effect was still 

significantly smaller than adults’. Both studies suggest that adults implicitly and concurrently 

learnt dependencies quicker and better than children. This is in line with the age-related 

improvement model and other evidence that suggests dependency learning improves with age 

(e.g., Arciuli & Simpson, 2011; Gómez & Maye, 2005). In addition to the consistency with 
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previous literature, the current study importantly extended previous literature by providing 

the first evidence for an age-related improvement in implicit concurrent learning of adjacent 

and nonadjacent dependencies.  

The age-related improvement observed in the current study was however inconsistent 

with the age invariance model (e.g., Ferdinand & Kray, 2017; Meulemans et al., 1998) and 

the age-related decline model (e.g., Janacsek et al., 2012; Juhasz et al., 2019). This 

inconsistency may be explained by the difference between the paradigms used in these 

studies. For example, the use of indirect online measures that assess dependency-specific 

learning could be one possible factor that captured age-related differences in dependency 

learning. This possibility was suggested based on the fact that both Thomas et al. (2004) and 

the current study used indirect online measures that measure sequence- or dependency-

specific learning and identified similar age-related improvement during exposure. By 

comparing reaction times for training sequence or dependencies against those for random 

sequences or baseline stimuli, both studies suggested that children may take longer than 

adults to practice the mapping between response keys and stimuli before their reaction times 

for training sequence or dependencies may become faster than those for random sequences or 

baseline stimuli to indicate sequence-/dependency-specific learning during exposure. The 

same comparison of reaction times further allowed the current study to reveal an age-related 

improvement in dependency-specific learning after exposure. That is, the disruption of the 

dependencies affected children’s reaction time to baseline stimuli but not adults’. Without a 

baseline of reaction times, Ferdinand and Kray (2017)’s indirect online measure did not 

examine sequence- or dependency-specific learning so they were not able to capture the age 

differences in sequence- or dependency-specific learning that took place during and after 

exposure.  
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Moreover, a SRT task that aggregates reaction times across training trials (earlier part 

of the task) versus violation trials (later part of the task) and compares the aggregations, such 

as the one in Ferdinand and Kray’s (2017) study, lacks reliability (Stark-Inbar, Raza, Taylor, 

& Ivry, 2017; West, Vadillo, Shanks, & Hulme, 2018). In contrast, the Alternating SRT task 

that compares high-frequency triplets (i.e., the third element was highly predictable from the 

first element, e.g., 1 frequently followed 2x where x represented a random element) versus 

low-frequency triplets (i.e., the third element was rarely predictable from the first element, 

e.g., 3 infrequently followed 2x) on a continuous basis throughout the task, such as the one in 

Janacsek et al. (2012), has good reliability (Stark-Inbar et al., 2017). Given that our measure 

of dependency-specific learning was a continuous comparison between dependency and 

baseline throughout the task and our data were not aggregated, it may not have a similar 

reliability issue as the traditional SRT task. These contrasts between the studies highlighted 

the importance of including a measure of sequence- or dependency-specific learning 

throughout a task to understand how individuals across ages learn dependencies over time, 

supporting the recent emphases proposed by Janacsek et al., Lammertink et al. (2019) and 

van Witteloostuijn et al. (2019). 

Using the Alternating SRT task which claimed to reveal ‘pure’ sequence-specific 

learning if reaction times for high-frequency triplets were faster than low-frequency triplets 

(Song, Howard, & Howard, 2007), Janacsek et al. (2012), Juhasz et al. (2019) and Nemeth et 

al. (2013) reported an age-related decline in their findings. However, the sequence-specific 

learning (or ‘maximised learning’ and ‘pure statistical learning’ in Nemeth et al., 2013) they 

observed confounded with reactive inhibition which was defined as accumulative 

performance deterioration during a continuous task (Hull, 1943; Pan & Pickard, 2015; Török, 

Janacsek, Nagy, Orbán, & Nemeth, 2017). Given that fatigue would have been controlled by 

comparing reaction times for high- versus low-frequency triplets, reactive inhibition may not 
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be simply equivalent to fatigue. It is also an inhibition that occurs after a response set has 

been initiated (for a review, see Meyer & Bucci, 2016). This inhibition of a response set 

should have a larger effect on the reaction times for low- than high-frequency triplets given 

that the third elements in the low-frequency triplets are unexpected (e.g., 3 is unexpected 

after 2x). Therefore, reactive inhibition may affect the magnitude of the sequence-specific 

learning reported in Janacsek et al.’s, Juhasz et al.’s and Nemeth et al.’s studies. Moreover, 

reactive inhibition is known to improve with age (e.g., Shen et al., 2020; van de Laar et al., 

2011; Williams et al., 1999). Adults are more capable in response inhibition such that their 

reaction times for low-frequency triplets may not be affected as much as children’s, leading 

to a larger magnitude of sequence-specific learning reported in children than adults in their 

studies. In contrast, reactive inhibition may not have a larger effect on the reaction times for 

the baseline stimuli than those for the dependencies in the current study given that the 

baseline stimuli and the dependencies were of different sets of stimuli (i.e., the predictability 

of the stimuli involved in the dependencies did not affect the reaction times for the baseline 

stimuli). Thus, if there was reactive inhibition, it may have been controlled by comparing the 

reaction times for the baseline stimuli against those for the dependencies in the current study. 

However, further investigation is required to verify this speculation.  

Sequence complexity, as mentioned earlier, could be another possible factor in 

explaining why age-related differences emerged in some studies but not others. Given that the 

sequence used in the current study concurrently included both adjacent and nonadjacent 

dependencies as well as five intervening elements, it could arguably be the most complex 

compared to previous studies. In this sense, however, it is not clear whether the age-related 

improvement revealed in the current study was an effect of sequence complexity or 

concurrent adjacent and nonadjacent dependency learning or both. This uncertainty could be 

a limitation of the current study and may require further research to clarify although sequence 
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complexity may inevitably confound in concurrent adjacent and nonadjacent dependency 

learning. Given that sequences in natural languages and various skills across domains are 

very likely to be complex and involving both adjacent and nonadjacent dependencies 

concurrently, we suggest that the sequences used and the age-related improvement reported 

in the current study were ecologically consistent. It is likely that individuals may become 

more rapidly sensitive to both adjacent and nonadjacent dependencies in a given sequence 

and their concurrent learning effect for both dependency types may become larger and more 

specific as they develop from childhood to adulthood. However, this developmental 

improvement may be related to other perceptual, motor and/or cognitive development such as 

stimulus-response mapping which has been suggested to elicit similar age-related changes in 

brain activity as dependency learning (Casey, Thomas, Davidson, Kunz, & Franzen, 2002; 

Thomas et al., 2004). This possibility and the nature of the developmental improvement 

shown in the current study were not tested and could be considered as further limitations of 

the study.  

Findings of the current study also showed that both adults and children implicitly and 

concurrently learnt both adjacent and nonadjacent dependencies to the same extent. This is in 

line with Vuong et al.’s (2016) findings that nonadjacent dependencies were learnt as well as 

adjacent dependencies in adults. Both studies thus reported findings that are inconsistent with 

Deocampo et al.’s (2019) findings that adjacent dependencies were learnt better than 

nonadjacent dependencies. They also go against previous suggestions that there is a default of 

tracking adjacent over nonadjacent dependencies (i.e., the adjacency bias; Gómez, 2002) and 

that the two types of dependency learning were in competition (e.g., Creel et al., 2004; 

Gebhart et al., 2009; Grama et al., 2016; Newport & Aslin, 2004). A possible explanation for 

this inconsistency is that the two sets of studies used different ways to create their adjacent 

and nonadjacent dependencies. Both Vuong et al.’s study and the current study used two 
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different sets of stimuli to form their adjacent and nonadjacent dependencies, allowing for an 

observation of nonadjacent dependency learning that is independent of the observation of 

adjacent dependency learning. Other studies such as Deocampo et al.’s used the same set of 

stimuli for both types of dependencies so that the two dependency types shared the same 

beginning element or the same ending element, leading to an inevitable competition between 

the two types of dependency learning. Given the inherent advantage of the adjacent 

dependencies, they were more easily learnt than the nonadjacent dependencies and their 

learning mediated the learning of the nonadjacent dependencies. Therefore, the nonadjacent 

dependency learning observed may be a less clear-cut observation than those in Vuong et 

al.’s study and the current study. However, it was more ecologically consistent according to 

Deocampo et al. Taken together, it is likely that, in principle, both adjacent and nonadjacent 

dependencies can be concurrently learnt to the same extent, but in practice when the two 

dependency types are intertwined, adjacent dependencies are learnt better than nonadjacent 

dependencies.  

The current study also tested whether adults and children could intentionally use their 

concurrent knowledge of both adjacent and nonadjacent dependencies after exposure. There 

was no evidence for both adults’ and children’s knowledge obtained from the indirect online 

measure to be shown in the direct offline measure. This is consistent with previous findings 

that learning of adjacent or nonadjacent dependencies via indirect online measures may not 

be demonstrated in direct offline measures in both adults and children (Lammertink et al., 

2019; Meulemans et al., 1998; Thomas & Nelson, 2001; van Witteloostuijn et al., 2019). 

However, this is inconsistent with Vuong et al.’s (2016) finding that adults showed 

concurrent learning of both adjacent and nonadjacent dependencies in both indirect online 

and direct offline measures. This inconsistency could be due to the difference in exposure 

length between the studies. According to Cleeremans’ (2006) model of unconscious 
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cognition, learning a sequence from exposure may first be implicit and then become explicit 

when the strength of the relevant representation gradually emerges into a high-quality 

representation over time through practice. Therefore, it is possible that Vuong et al.’s 

extended and multiple learning sessions allowed concurrent adjacent and nonadjacent 

dependency learning to be observed via direct offline measures whereas the current brief 

learning session did not. However, further investigation on the effect of exposure length on 

concurrent adjacent and nonadjacent dependency learning via both indirect online and direct 

offline measures is needed to test this explanation and further verify Cleeremans’ model.  

It is also possible that the direct offline measure used in the current study, that is, the 

familiarity task, might not be sensitive to the knowledge adults and children obtained via 

indirect online measures although it has been widely used in this area of research (Conway & 

Christiansen, 2005; Ferdinand & Kray, 2017; Gómez, 2002; Iao et al., 2017; Meulemans et 

al., 1998; Misyak et al., 2010; Vuong et al., 2016). There is evidence indicating that 

recognition of sequence fragments may not be as sensitive as other measures, such as free 

recall, in assessing the explicit knowledge obtained in the context of the SRT task in adults 

(Rauch et al., 1995; for reviews, see Cleeremans, Destrebecqz, & Boyer, 1998; Destrebecqz 

& Peigneux 2005). Other studies, using non-SRT tasks and different direct offline measures, 

such as forced-choice completion, found that adjacent dependency learning was accessible 

via both indirect and direct measures in both adults and children after relatively short 

exposure (Batterink, Reber, Neville, & Paller, 2015; Bertels et al., 2015). However, there are 

also evidence of dissociations found between non-SRT tasks and different direct offline 

measures when examining either adjacent or nonadjacent dependency learning, suggesting 

implicit knowledge only, in both adults and children (Kim, Seitz, Feenstra, & Shams, 2009; 

Lammertink et al., 2019; van Witteloostuijn et al., 2019). Therefore, the tasks per se may not 

sufficiently explain the findings. Rather, it is still crucial to understand how individuals 
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across the lifespan learn both adjacent and nonadjacent dependencies during exposure and 

how their knowledge can be used intentionally after exposure.  

To conclude, this study provides the first evidence that shows dependency-specific 

learning for both adjacent and nonadjacent dependencies concurrently in both adults as well 

as children. Both groups demonstrated implicit but not explicit knowledge of the 

dependencies. Children may become more rapidly sensitive to both dependency types in a 

given sequence and their concurrent learning effect may become larger and more specific as 

they develop into adulthood. Although further cross-sectional and longitudinal investigations 

across ages are warranted to address the limitations of the current study, the current findings 

contribute to our understanding of statistical learning in terms of its development and 

generality across indirect and direct measures. This broader view of statistical learning may 

help in explaining language acquisition and various skill learning as well as proficiency 

development across domains and the lifespan.  
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Appendix 

Table A1 

Fixed effects summary of the models fitted for the reaction-time data of Experiment 1 

and Experiment 2. Shown are the estimated effects for Adjacency (levels: adjacent, 

nonadjacent), Dependency (levels: dependency, baseline), Block (levels: 1-7), and all 

by-Block 2-way interactions with Dependency and Adjacency. Effects summarised as 

the most probable parameter value μ̂ with 95% HPDIs are shown in msecs. 

 Experiment 1: Adults  Experiment 2: Children 

Predictor μ̂ 95% HPDI P(μ̂ < 0)  μ̂ 95% HPDI P(μ̂ < 0) 

Main effects        

Dependency -101 [-181, -19] .992  76 [-65, 211] .148 

Adjacency -43 [-83, -10] .989  -4 [-84, 77] .548 

Block 1-2 147 [122, 167] <.001  140 [109, 170] <.001 

Block 2-3 32 [18, 49] <.001  29 [3, 55] .015 

Block 3-4 33 [18, 50] <.001  -38 [-61, -12] .998 

Block 4-5 9 [-7, 25] .151  21 [-5, 47] .057 

Block 5-6 9 [-7, 23] .168  2 [-23, 31] .369 

Block 6-7 -27 [-46, -4] .991  -53 [-86, -21] .998 

Interactions        

Dependency * Block 1-2 47 [32, 62] <.001  48 [23, 72] <.001 

Adjacency * Block 1-2 0 [-16, 14] .547  -16 [-40, 9] .89 

Dependency * Block 2-3 3 [-14, 18] .416  3 [-25, 30] .406 

Adjacency * Block 2-3 -6 [-21, 8] .799  6 [-18, 30] .323 

Dependency * Block 3-4 0 [-18, 15] .548  -10 [-40, 14] .807 

Adjacency * Block 3-4 9 [-4, 23] .094  4 [-21, 24] .453 

Dependency * Block 4-5 -1 [-17, 15] .564  17 [-11, 46] .102 

Adjacency * Block 4-5 -15 [-28, -2] .984  3 [-18, 26] .37 

Dependency * Block 5-6 1 [-16, 17] .444  -3 [-33, 23] .656 

Adjacency * Block 5-6 10 [-2, 24] .052  -4 [-26, 19] .641 

Dependency * Block 6-7 -22 [-47, 4] .954  -22 [-55, 21] .836 

Adjacency * Block 6-7 0 [-15, 20] .423  -1 [-26, 30] .464 
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Note. μ̂ indicates the most probable a posteriori parameter value; 95% HPDI is the range 

containing 95% of the posterior probability mass; P(μ̂ < 0) is the posterior probability that the 

true parameter value is smaller than 0; ‘*’ indicates interactions.  

 


