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Abstract
District heating (DH) provides a gateway for the integration of low carbon

technologies and renewable energy sources to achieve a sustainable carbon

neural future. The low temperature district heating (LTDH), in particular,

is the latest and most efficient technology which enables the possibility of

combining multi-vector heat sources to the network such as, renewable energy

sources, heat-pumps and waste heat from the industry. This thesis considers

REMOURBAN project to investigate the implementation of low-temperature

district heating in existing boiler based buildings in Nottingham. This LTDH

(60/30) network intervention is first of it’s kind in the UK and utilises return

pipe to heat 94 flats. The study is comprised in three main parts, i.e. thermal

performance modelling of buildings, hydraulic modelling of the district heating

network and predictive modelling of monitored data.

The results from the first part show that retrofitting increases the energy per-

formance of buildings by almost 50%, and the relation between the building

regulations and thermal performance analysis show that with current regu-

lations in the UK, it is unlikely to achieve the target of net-zero emission

buildings (NZEB) by the year 2050. The second part of the study investi-

gates the design and operation of an energy efficient LTDH network (from

REMOURBEN). The results from the hydraulic modelling suggest that the

networks should be designed with variable speed pumping, and supply wa-

ter temperature should be kept constant from the plant room. This leads to

the lowest energy consumption in the network. It is concluded that the en-

ergy efficiency and ∆t in REMOURBAN project can be improved by reducing

flow-rates both in the network and circulation pump inside the plant room.

Moreover, the techno-economic analysis for the de-carbonised district heating

network shows that 100% decarbonisation depends on selling excess electricity
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and heat to the private consumers.

Finally, the predictive modelling suggests classical stochastic SARIMA method

is good for short-horizon forecasts while modern machine learning (MLP and

SVR neural networks) are best for medium and long-horizon forecasts. The

GIS mapping shows that the decentralised LTDH network with multiple en-

ergy centres is the optimum strategy owing to the cost of network pipe-works

and heat-losses in the network.

The overall conclusion of the study is that the implementation of low temper-

ature district heating in existing building is possible and optimisation as well

as control of flow-rates are the key factors in achieving energy efficiency in the

network. The novelty of this study is that a live LTDH network intervention

has been as a case study which provides a energy efficient solution for the UK.

The learning from this study can be replicated to the future LTDH network

project anywhere in the UK or elsewhere.
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Chapter 1

Introduction

With introduction of the Climate Change Act 2008, the UK is liable to re-

duce greenhouse gas (GHG) emissions by at least 80% until 2050 to the levels

recorded in the year 1990 (Committee on Climate Change 2010). This has

made the UK a pioneer to recognise the importance of climate change and

become a part of the 2016 climate change Paris agreement. To achieve these

targets, the UK has introduced several clean growth measures and initiatives

including; installation of wind, solar and nuclear power plants across the coun-

try, decommissioning of conventional fossil fuel power plants, and reduction of

building sector emissions by improving thermal performance and efficiency of

the heat network.

The UK has the largest offshore wind power capacity installed in the world

and it has commissioned world’s largest off-shore wind power plant which gen-

erates the record amounts of renewable electricity. This green energy invest-

ment has made UK world leader in renewable energy technologies. In 2016,

the electricity came from low carbon sources has been almost twice the level in

2010. Since 1990, the average domestic energy consumption has decreased by

17% which is due to the energy efficiency measures. Currently, the government
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plans to upgrade the thermal performance of existing domestic buildings and

increase the energy efficiency of non-domestic building by atleast 20% until

2030. There are further plans to end the sale of new conventional petrol and

diesel cars and vans by 2040 (UKERC 2009, BEIS UK 2018a).

The UK low carbon economy is predicted to grow by an estimated 11 per

cent per year between 2015 and 2030, which is four times faster than the rest

of the economy. This means that the low carbon economy would increase from

around 2% of the UK’s total output to around 8% by 2030 (BEIS UK 2018b).

In a recent study, it is discussed that the carbon emissions to heat our

buildings alone contribute almost one third of total emissions, and the share

of UK’s heat demand is second highest in the European Union. The heat

demand of the buildings is mostly provided by the natural gas-boilers and

the proportion of district heating network is merely 2%. The UK has the

potential to reduce these carbon emissions by readily increasing the share of

district heating network to 14% especially in the central and south-eastern

regions (Ashfaq & Ianakiev 2018b). This will provide UK with the increased

flexibility, long-term security of supply and environmental benefits.

In principle, the district heating is mainly feasible in areas of high heat

demand density. This is due to major capital cost and reduction in heat losses

through the pipes of district heating network. The heat demand density is

higher in areas with larger population usually around the city centres. There-

fore, heat mapping provides invaluable information for the identification of

high density areas in order to assess the feasibility of district heating imple-

mentation. The spatial heat demand distribution in the UK is shown in Figure

1.1 and is a vital resource for the future planning of district heating network.
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Figure 1.1: Figure shows the heat demand distribution in the UK spatial resolution
of 40 x 40 km2 for the year (2011) adapted from (Ashfaq & Ianakiev 2018b). The
middle and eastern regions in the UK have higher heat demand compared to other
regions. This highlights the importance of district heating in Nottingham and the
case study used in this thesis.

Though, there are several small-scale district heating networks in the UK, the

examples of large scale district heating networks are Westminster (London),

Birmingham, Sheffield, Southampton, Woking, Aberdeen and Nottingham.

1.1 District heating

District heating is a network for the transmission and distribution of heat from

source to the residential and commercial users using pre-insulated pipes. In

modern district heating networks, the heat for space and hot water demand is

supplied from a combination of centralised or decentralised sources.

Historically, the district heating was developed by the former soviet union

where it was used as a heating source in east-European countries and Russia.

This initial technology of district heating used water as steam (with tempera-

ture ≥ 200oC) for the space heating in buildings located in densely populated

areas. This is also known as first generation district heating. But it did not
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last long due to inefficient systems and lack of safety because of steam (Woods

& Overgaard 2016). Later on, the same technology was adopted and revolu-

tionised by Scandinavian countries. They introduced new techniques and used

pressurised water as a heating medium instead of steam. This lowered the wa-

ter temperature (≥ 100oC) and reduced the losses and gave birth to the second

generation of district heating. This incredibly reduced the heat losses and led

to further lowering of water temperatures to utilise heat from other processes

such as co-generation, waste heat and renewable energy sources. The third

generation of district heating uses water temperature < 100oC, and the fourth

generation is ≤ 60 oC. In summary, the four generations of district heating

are differentiated on the basis of supply water temperature from ≥ 200oC to

< 60oC (Lund et al. 2014).

1.2 Low temperature district heating system
The 4th generation (4GDH) district heating is also referred as low temperature

district heating (LTDH). It’s main parameter is to decrease the supply water

temperature and maintain high delta t (∆ t), i.e. the difference between the

supply and return water temperature in the network. In contrary to the con-

ventional district heating network, the supply and return water temperatures

are reduced from 80/40 oC to 50/20 oC. This reduces the heat-losses and pro-

vides with an opportunity for the integration of low-grade heat from renewable

energy sources, waste heat from the industry into the district heating network.

As described above, the low temperature district heating system is a heat

supply, transmission and distribution network with specific supply and return

water temperatures in the network. According to the recommend guidelines,

the operational design supply and return temperatures should be in the range



Chapter 1. Introduction 5

Figure 1.2: The range of design supply and return temperature of low temperature
district heating according to the recommended guidelines (Olsen et al. 2014).

of 55-70oC and 25-40oC during winters, and 50-60oC and 25-40oC during sum-

mers as shown in Figure 1.2. Such a network should be able to meet consumer

space heating and domestic hot water demand while maintaining optimum

indoor thermal comfort as well.

The LTDH can be implemented in several ways to both new and exist-

ing buildings. The new developments can either be connected directly to the

existing district heating or new standalone network. Likewise, the existing

developments can also be connected to the existing network with or without

the refurbishment of district heating network. These different network config-

urations have been shown in Figure 1.3.

1.2.1 Benefits of low temperature district heating

With recent carbon emissions reduction targets, the focus has shifted to in-

crease the energy efficiency of the systems and reduce heat demand of build-

ings. These measures alone will increase the heat losses in the existing district

heating network. The LTDH overcomes the heat losses issue by decreasing net-
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Figure 1.3: Implementaion of LTDH network in different situations (Olsen et al.
2014).

work temperatures and hence, this increases its competitiveness for low energy

buildings in low energy density areas.

The district heating is commonly implemented using cogeneration. The

cogeneration, also termed as combined heat and power (CHP), generates heat

and electricity (power) simultaneously from a single fuel source with minimum

losses. The conventional heat boilers and electricity power plants have com-

bined losses of more than 44%. In comparison, the CHP has 20% losses for

the same amount of electricity and heat generation. Figure 1.4 presents the

energy flow using Sankey diagram.

The LTDH makes the possibility of using diverse low-grade heat sources

to satisfy the base load heat demand such as, renewable energy sources, heat-

pumps and waste heat from the industry. This makes it vital for long term

resilience and security of heat supply, hence environmentally friendly. The
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Figure 1.4: Sankey diagram illustrates CHP as more energy efficient compared to
separate heat and power production (Wiltshire et al. 2014).

low water temperature in LTDH reduces the thermal stress on the pipes and

ensures safety from pipe leakage, and its maintenance as well as enhances

lifetime of the district heating network. The LTDH also helps space saving at

the building level along with other benefits.

1.2.2 Challenges in implementation of LTDH

Even though, the low temperature district heating offers several benefits, there

are still challenges associated with its application especially its implementation

in existing buildings. The most important is the access to the real monitored

data collection of the low temperature district heating. This provides insights

to the operation of the district heating network and different parameters to

maintain high delta t (∆ t), i.e. the difference between the supply and return

water temperature in the network. The delta t (∆ t) also defines efficiency

and heat losses from the district heating network.

Another challenge is controlling the temperature degradation across the

low temperature district heating network. Its optimisation is important as the

legionella growth and thermal comfort inside the buildings strongly depends
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on it. Furthermore, the challenges associated with the correct thermal heat de-

mand estimation, pipe sizing and network design define the issues of hydraulic

performance and operation of the demand driven district heating network.

Finally, the economical and financial aspects of the low temperature dis-

trict heating may impact the feasibility of the entire network. There are few

other challenges, such as type of buildings, consumers, occupant behaviour

and the stake holders involved, but in our view the above discussed four chal-

lenges are the most important and act as a barrier towards the transition to

low temperature district heating.

1.3 Research aim and objectives
The aim of this research is;

‘to investigate the implementation of low-temperature district heating in

existing boiler based buildings’

The research question of this research are:

• To explore the impact of building regulations and investigate the thermal

performance of existing and new buildings in order to achieve net-zero

emission buildings (NZEB) in the UK.

• To investigate delta T for improving the energy efficiency and reduced

heat losses in low temperature district heating network.

• To study the economic feasibility of renewable energy powered district

heating network.

• To explore different machine learning and forecasting methods and ap-

plication of most suitable technique for district heating network analysis.
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• To determine the utility of GIS modelling for early stage planning and

design of an optimum district heating network.

1.4 Research plan and research methods
The following diagram summarises the structure of this thesis. This thesis is

split into three parts i.e. thermal performance modelling of buildings, hydraulic

modelling of the district heating network and data analysis of monitored dis-

trict heating network data. The underlying theory of different methods used

in this thesis along with REMOURBAN LTDH project will be discussed in

Chapter 2. Then, the building regulations and thermal performance calcula-

tions will be performed using the IDA-ICE and IES-VE software in Chapter 3.

Subsequently, the hydraulic model of the REMOURBAN low temperature dis-

trict heating network is developed and analysed in Dymola software in Chapter

4. The economic feasibility for a future fully renewable energy powered decar-

bonised district heating network will be examined in Chapter 5. Later, the

machine learning and classical forecasting methods will be used to find the

suitable method for forecasting district heating time series in Chapter 6. The

role of GIS modelling in early stage planning and design of DH network will be

elaborated in Chapter 7. Finally, the discussion on results and contributions

to the knowledge will be discussed in Chapter 8.
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Chapter 2

Theoretical Background

Overview

In this chapter, theoretical background of energy modelling techniques stud-

ied in this thesis is discussed. The overview of district heating progress in

the UK and state of the art low temperature district heating intervention in

Nottingham has been described. It is anticipated that this will be a gate-

way to achieve the UK’s 2050 carbon emission targets. Later, the underlying

thermal-hydraulic and economic modelling implemented in this thesis has been

elaborated. This is followed by the theory of several classical stochastic and

modern machine learning approaches for forecasting time-series data.

2.1 District heating in the UK

In EU, the heat demand of buildings represents 79% (192.5 Mtoe) of final en-

ergy consumption and United Kingdom has the second highest heat demand

compared to other European countries (Ashfaq et al. 2017). The share of build-

ings’ heat demand in the UK is almost 50% of the total energy consumption

and the district heating is considered as central towards carbon neutral future
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with zero emissions. In contrast to other European countries where heat is

supplied by district heating, the building heat demand in the UK is usually

supplied by individual gas-boilers, and the share of district heating is limited

to only 2%. As per the Department of Energy and Climate Change (DECC),

there are currently approximately 2000 district heating networks distributed

across the UK, which supply approximately 5.5 TWh heat annually to almost

210,000 dwellings and 1,700 commercial buildings (BuroHappold Engineering

2016). Figure 2.1 shows the spatial distribution of district heating networks in

the UK.

Figure 2.1: Spatial distribution of existing heat networks in Great Britain (Buro-
Happold Engineering 2016).
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Historically the implementation of district heating in the UK can be traced

back to 1901 when the Bloom Street power plant in Manchester (UK) was built

to supply steam in order to heat nearby warehouses and factories in the radius

of 1.5 km (Woods & Overgaard 2016). This led to the gradual origination of

several district heating networks such as, Westminster (Pimlico), Birmingham,

Southampton, Sheffield, Nottingham, Woking and Aberdeen (Wiltshire et al.

2014).

The local authorities in the UK have always initiated the district heating

network schemes with the aim to alleviate fuel poverty but not to generate heat

for the entire district. Therefore, they have always transferred the operation

to the private energy services companies (ESCO) for successful delivery. In

1986, the first large scale district heating network, Southampton District En-

ergy Scheme, was established by Southampton City Council (SCC). It utilises

geothermal energy from a deep aquifer with a heat pump together with a CHP

plant and conventional boilers. Currently, this district heating network is 14

km of pipe length and generates over 40 GWh of heat, 26 GWh of electricity

and 7 GWh of chilled water annually. Similarly, the Sheffield and Nottingham

district heating network emerged in 1987 and 1989 as citywide district heating

schemes with the main heat source as the municipal waste incineration. These

two networks are still considered as the largest district energy network in the

UK. Later, the city of Llanwddyn in Wales, established a biomass-fuelled dis-

trict heating network to serves a variety of buildings. The brief time line for

district heating network establishment in the UK has been shown in Figure

2.2.
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Figure 2.2: Timeline representing evolution of district heating in the UK (BEIS UK
2018a).
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As discussed above that the UK has always considered combination of heat

sources and technologies over the period of time. More specifically, these dif-

ferent heat sources include CHP (combined heat and power), deep geothermal,

water for heat pumps, industrial waste heat, energy from waste incineration,

renewable heat and urban recovered heat (London underground). Where the

first district heating networks (such as Bloom Street Manchester) used steam

as a heat source with an operating temperatures of over 200oC. On the other

hand, the operating temperatures in recent district heating networks are lower

than 40oC using low grade renewable energy as a heat source. This on-going

evolution in the actual district heating technologies has led to the classifica-

tion into different generations on the basis of network operating temperatures

explained below and the difference among each generation is shown in Figure

2.3.

• 1st generation district heating > 200oC.

• 2nd generation district heating > 100oC.

• 3rd generation district heating < 100oC.

• 4th generation district heating < 60oC.

• 5th generation district heating < 40oC.

Among the above five generations, the 4th generation of district heating

is currently popular in the UK. It is also know as low-temperature district

heating and 4GDH.
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Figure 2.3: Illustration of the development in district heating technology and
concept of 4th generation district heating compared to previous generations (Lund
et al. 2014).

2.2 Decarbonisation of energy system path-

ways

The decarbonisation of heating sector and other energy system is crucial to

address increasing environmental and sustainability concerns. The broad ac-

ceptance of carbon dioxide (CO2) and other greenhouse gas (GHG) emissions

for climate change has made decarbonisation an international policy priority.

As part of wider international efforts, the UK Government recently set out a

legal binding framework for the decarbonisation of economy from now to 2050

with substantial progress expected over the next decade. To this end, the

government has published following three stage pathways in order to enhance

the integration of low carbon technologies such as, renewable energy (marine,
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bio-energy, wind and solar PV), carbon capture and storage (CCS), nuclear

power and fuel cells (UKERC 2009).

1. Firstly, in the short term 2010-2030, the coal-fired plants will have carbon

capture storage (CCS) implemented and electrical grid is decarbonarised

by 80%.

2. Secondly, over the medium term to 2035, the focus will be on the de-

carbonisation of power, heating, transport and residential sector. The

bio-energy technologies will have significant impact on energy mix.

3. Thirdly, in the longer run to 2050, the proportion of low carbon technolo-

gies will have a significant impact on our society. The share of energy

from marine, solar PV and especially offshore wind power generation

will increase, and fuel cells will have impact on the decarbonisation of

transport sector.

The absolute decarbonisation is an immense challenge as our societies

are built around carbon-based fossil fuels since many decades. In summary,

the overall impact of accelerated development of low carbon technologies is

not simple and straight forward, because of continuous changes in low carbon

supply options and high ambitions to achieve overall decarbonisation. The en-

ergy system decarbonisation involves a complex interaction between changing

patterns of production, distribution and consumption. It may offer signifi-

cant long-term benefits such as, alternative and affordable solution, diversity,

security and sustainability.
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2.3 District heating in Nottingham
Nottingham is the seventh largest metropolitan economy and ninth largest

city of the UK. It has a population of around 321,550 and located in the east-

ern region of England known as East-Midlands. In 1989, the district heating

network was initiated by British Coal Authority and currently managed by En-

viroenergy Limited, owned by Nottingham City Council. The Nottingham’s

district heating network is considered as the largest in entire UK. The waste

incinerator is used as heat source for the 68 Km of well-insulated pipe network

which connects approximately 4,900 domestic and commercial users (Ianakiev

et al. 2017).

The Eastcroft waste incinerator burns municipal waste to generate 52

tonnes per hour of steam at 371oC. It generates around 442 - 476 GWh of

heat annually and provides steam to the Enviroenergy London Road combined

heat and power (CHP) plant, where it generates electricity and transforms

to medium temperature hot water. This pressurised hot water is used as a

medium in the district heating network and distributed to consumers at a rated

pressure of 11 bars and supply water temperature of between 85 - 120oC with

seasonal variations. The district heating network has the installed capacity of

80 MW of heat and 14.4 MW of electricity. The current network operates with

following priority:

1. Burning of waste in waste-incinerator.

2. Electricity generation.

3. Heat for the district heating network.

The heat generation and distribution in Nottingham has immense amount
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of heat losses. Though, the waste incinerator generates around 442 - 476

GWh of heat annually, only 144 GWh of this heat is distributed through the

district heating network and 60 GWh of heat is used for electricity generation.

Recently, the (Ianakiev et al. 2017) has calculated that almost 21% of heat is

wasted during heat transmission from waste-incinerator to the CHP plant and

36% is wasted as flue-gases during electricity generation at the CHP plant. The

use of combined and heat power plant makes electricity and district heating

network inter-related. It is anticipated that reduction in these heat losses will

help in improving the efficiency of the entire network.

The recent climate targets has inspired Nottingham to be a pioneer in

carbon-neutral city by the year 2028 and the district heating network is central

to achieve city’s ambitious targets. The short-term targets for the year 2020

includes 20% of energy from renewable energy and 26% reduction in carbon

emissions. The waste incinerator burns around 170,000 tonnes of waste and the

district heating scheme offsets approximately 27,000 tonnes of CO2 emissions

annually (Ianakiev et al. 2017).

2.3.1 Low temperature district heating intervention in

Nottingham

The climate targets and heat losses in Nottingham district heating network

motivates to search for alternatives. The high return water temperature of the

existing district heating network provides the possibility of LTDH intervention

to the surrounding regions, rather than extending high temperature network.

Therefore, as part of the REMOURBAN project, the return water pipe (60oC)

of the existing district heating network passes through the heat-exchanger and

used as a source for new secondary LTDH network with heat interface units
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(HIUs) installed in each property. This LTDH network serves 94 residential

properties located in four block of flats with the supply and return water

temperature of 60oC and 30oC, respectively. Figure 2.4 shows block of flat for

the LTDH implementation in existing boiler-based buildings.

Figure 2.4: Left figure shows the basic concept of low temperature district heating
intervention in REMOURBAN project - Nottingham. Right figure shows the 68 Km
of Nottingham district heating network map.

The existing properties were installed with traditional natural gas boiler-

based heating system and electrical heaters. As a pre-condition for the imple-

mentation of LTDH the building needs to have a good thermal performance.

Since the buildings from the REMOURBAN project belongs to the Council

estate, the building envelope needed to retrofit in order to achieve energy effi-

ciency. The retrofitting included the improvement in building fabric, windows,

doors, infiltration and ventilation. In addition to this, a private-wire electric

supply powered by roof–mounted PV panels with battery storage has also been

installed on each block of flats.

The REMOURBAN (REgeneration MOdel for accelerating the smart UR-

BAN transformation) is a major Future Cities demonstrator project. This EU

Horizon 2020 project is EU funded for five years (2014-2019) to tackle issues

related to energy, transport and ICT. This project has provided a gateway
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to Nottingham for efficiency improvement and extension of existing district

heating network. It is anticipated that heat losses of this secondary LTDH are

75% lower compared to the existing district heating systems. In this thesis,

this first of it’s kind LTDH network in the UK is investigated with following

objectives.

• Reducing network’s supply water temperature

• Increasing the difference between supply and return temperatures i.e.

high delta t (∆ t).

2.4 LTDH network modelling methodology

The LTDH differentiates itself with utilisation of lower supply temperature

and flow-rates which leads to lower pumping energy and energy consumption

across the network.

Thermal demand modelling

The first step in designing and modelling a district heating begins with heat de-

mand estimation. This is performed either by calculating energy consumption

of the building (from SAP and SBEM method) along with degree day method

for seasonal heat load variations, or simply implementing thermal modelling

software for dynamic energy performance calculations such as, EnergyPlus,

IDA-ICE, IES-VE, DesignBuilder etc.

The Standard Assessment Procedure (SAP) and SBEM (Simplified Build-

ing Energy Model) are standard methods for energy efficiency of the buildings

calculations. The degree day method Equation (2.1) is commonly used for

heat-load calculations (Küçüka 2007) and considers outdoor air (dry-bulb)
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temperature for seasonal variations. On the other hand, the energy demand

calculations from dynamic thermal modelling software are more accurate and

the entire building has to be modelled using building parameters such as (orien-

tation, exposed perimeters, U values of brick cavity walls and glass windows).

Q=Q0

(
Tin−Tout
Tin−Tout,0

)
(2.1)

here Tin = indoor temperature(oC), Tout = outdoor temperature(oC) and

Tout,0 = outdoor temperature(oC) for design conditions.

The next step is the estimation of domestic hot water demand in designing

district heating network.

Domestic hot water demand modelling

The diversity factor provides the instantaneous hot water demand of a dwelling

and particularly useful to limit heat losses from the over-sizing of pipes. The

domestic hot water demand is calculated using diversity factor from the Dan-

ish standard DS 439:2009 (Danish standard 469 2013) which is equivalent of

the British standard BS 8558:2011 (Wiltshire et al. 2014) but with compara-

tively lower diversity factors. The expression for instantaneous domestic hot

water demand calculations is given in Equation (2.2) and the diversity factor

calculated from the DS 439:2009 standard with respect to number of dwellings

is also shown in Figure 2.5.

Pmax = 1.19∗N + 18.8∗N0.5 + 17.6 (2.2)

where, Pmax(kW ) is the maximum domestic hot water demand for the set of

dwellings and N is the number of dwellings. According to the Equation (2.2)
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Figure 2.5: Diversity factors for the calculation of instantaneous domestic hot
water demand in dwellings (Wiltshire et al. 2014).

the demand reduces with increase in number of dwellings and its 37.5 KW

for a single dwelling. Once the number of dwellings increases beyond 200 the

diversity factor is taken as 0.07. The hydraulic design and modelling is the

next step after instantaneous domestic hot water demand calculations.

Hydraulic modelling

The hydraulic modelling is important for the operation and optimisation of

the district heating network. The heat-losses in the network are reduced once

the water-flow of entire network is balanced, also known as hydraulic balance,

where the flow-rate and delta t (∆t) is according to the consumers heat de-

mand. The hydraulic balance is pre-condition for achieving high delta t (∆t)

in a well-functioning district heating heating network and problems with in-

correct hydraulic balance leads to, low delta t (∆t) across the network, high

hot-water supply temperature, higher flow-rate and heat-losses across the net-

work as well as higher pumping cost and energy losses.

The network’s design flow-rate and pipe sizes to fulfil the consumer heat

demand are calculated from Equation (2.3) and the detailed methodology for

pipe sizing is given later in Chapter 4 Section 4.2.2.
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Q= ṁρC(Ts−Tr) (2.3)

where, Q = heat load (KW), Ts = network’s supply temperature, Tr = net-

work’s return temperature, ṁ = flow-rate (m3/s), ρ = density (kg/m3) and C

= specific heat (kJ/kgoC) of circulated hot-water. The Equation (2.3) is used

to calculate the flow-rate in network with variations in heat demand and the

delta t (∆t) i.e. supply and return temperature of heating network.

ṁ=Kv

√
∆Pv (2.4)

Kv is the regulation capacity of a control or balancing value and ∆Pv

(bar) is the controlled differential pressure across the value.

Economic modelling

The economic feasibility is determined using concept of levelised cost of energy

(LCOE). The LCOE is the net present value of the unit cost from the energy

generation technology over its lifetime. In comparison to other economic fea-

sibility methods, it is more robust and provides a holistic comparison between

different technologies. The (Rodriguez et al. 2015) used same method for the

economic feasibility calculation of the pan-European electrical grid.

V = CapEx+
T∑
t=1

OpExt
(1 + r)t (2.5)

LCOE = Vsys∑T
t=1

Lt+Ht
(1+r)t

(2.6)
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where, V is the net-present value of future expenses by the capacities required

to fulfil the energy demand, r is the discount rate. L is the total generation in

a year.

2.5 Time series prediction and forecasting

Over the recent years, several new machine learning methods have been de-

veloped to forecast time series data. These algorithms can be classified into

pure machine learning and classical stochastic methods. In this thesis, both

of these approaches will be applied on time series data to evaluate the best

forecasting method for district heating network.

2.5.1 Machine learning methods

Traditionally, machine learning methods are categoried into three types; super-

vised learning, unsupervised learning and reinforced learning. Among these,

supervised learning is the most common type of machine learning approach

where predictions are made on known data. There are two kinds of supervised

learning problems, which include classification and regression. Classification

aims to predict a class label from a predefined set of possibilities. In contrast,

regression tries to make predictions as a real or a continuous number. In this

thesis, only regression based supervised learning methods have been explored.

This is due to the nature of time series data where prediction is required as a

real number.

2.5.1.1 K-nearest neighbors

K-nearest neighbors is the simplest machine learning method used for both

classification and regression problem. In early 1970’s, this method had nu-

merous applications related to statistical analysis and pattern recognition.
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The K-nearest neighbor method remembers the training dataset and com-

putes the mean of K-nearest neighbors for prediction. In theory, the K-NN

method requires optimisation of two parameters, the number of neighbors and

the method for measuring distance between two data points in the training

dataset. The Euclidean distance method is frequently used in regression prob-

lems, which is defined as,

d(X,Y ) =

√√√√ k∑
i=1

(xi−yi)2 (2.7)

The strength of K-NN method lies in its convenience, straightforward

tuning and adjustment of parameters. But, it lacks the ability to handle large

datasets with sparse dataset.

2.5.1.2 Linear models

The linear models are the oldest and largely studied machine learning models.

In past decade these models have been further developed into multiple linear

models. Due to their simple mathematical structure and ability to handle large

and high-dimensional data-sets, they are considered as the first steps towards

machine learning applications.

Ordinary linear regression

The ordinary linear regression (OLS) or simply linear regression is the oldest

linear regression model with its origination dates back to over a century ago,

even before the computers. The linear regression model expects the linear

relation between the variables for parameters calculation and represented as,

f(X) = β0 +
p∑
i=1

Xjβj (2.8)
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where, the variable Xj is an independent input vector, βj are the unknown co-

efficients or weights are calculated by the model itself to reducing mean squared

error between the actual values and predictions. The OLS method derives its

name from the estimation method, where the coefficients β = (β0,β1, ...,βp)

which minimise the residual sum of squares (RSS) are calculated (Müller et al.

2016).

RSS(β) =
N∑
i=1

(yi−f(xi))2 (2.9)

RSS(β) =
N∑
i=1

(yi−β0−
p∑
i=1

Xijβj)
2

(2.10)

The linear regression model has no parameters to control over-fitting.

The mean fitting error of the model is calculated from the residual sum of

squares (RSS). Therefore, the below models employ shrinkage method to im-

prove model fitting and prediction error.

Ridge regression

The ridge regression uses ordinary linear regression as base and applies penalty

to the coefficient β to minimise residual sum of squares, also known as L2

regularisation. The ridge regression in equivalent Lagrangian form is written

as,

β̂ridge = argminβ

1
2

N∑
i=1

(yi−β0−
p∑
j=1

xijβj)2 +λ
p∑
j=1

β2
j

 (2.11)
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where, λ is a penalty parameter and defines the amount of penalty on coef-

ficients. With increase in λ, the coefficients are shrunk towards zero (Hastie

et al. 2009). The ridge method can also be mathematically explained as,

subject to
p∑
j=1

β2
j ≤ t (2.12)

β̂ridge = argminβ
N∑
i=1

(yi−β0−
p∑
j=1

xijβj)2 (2.13)

The above equation uses L2 penalty to regularize the parameters.

Lasso regression

The lasso (least absolute shrinkage and selection operator) regression works

on the same principle as ridge regression with minor but crucial differences. It

controls the over-fitting of the model by implementing L1 regularisation, which

uses subset selection of the data for prediction. This reduces the prediction

error of the model compared to ordinary least square regression. In lasso the L1

penalties provides automatic feature selection. The coefficients are estimated

with the addition of the penalty term (λ) to minimise the residual sum of

squares (RSS) (Hastie et al. 2009). This is implemented using L1 regularisation

i.e. λ∑p
j=1 |βj | and reduces variance in the model at the expense of bias. The

Equation (2.14) is expanded in the Lagrangian form in Equation (2.16).

β̂lasso = argminβ


N∑
i=1

(yi−β0−
p∑
j=1

xijβj)2 +λ
p∑
j=1
|βj |

 (2.14)
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subject to
p∑
j=1
|βj | ≤ t (2.15)

β̂lasso = argminβ
N∑
i=1

(yi−β0−
p∑
j=1

xijβj)2 (2.16)

where y is the target, xj is the predictor, βj is the regression coefficient, N

is the total steps in the time series and p is the total predictors. The tuning

of model depends on multiplier λ for regularisation (Müller et al. 2016) which

controls the effect of coefficient used in the model. When λ is near 0 the

model behaves similar to OLS regression and once the λ is high, the effect of

coefficient is limited. Though ridge and lasso regression are quite similar, there

are key differences as ridge uses L2 penalty ∑p
1β

2
j and lasso uses L1 penalty∑p

1 |βj | (Géron 2019). The L1 penalty makes the solution non-linear.

Elastic net regression

The Elastic net regression provides middle ground between the ridge and lasso

regression. It introduces elastic penalty for variables selection as lasso and

shrinks the correlated coefficient as ridge regression. The elastic net penalty

can be represented as Equation (2.17),

λ
p∑
j=1

(αβ2
j + (1 +α)|βj |) (2.17)

where, α controls the mixing ratio between the ridge and lasso’s penalties.

When α = 0, the Elastic Net behaves as ridge regression and α = 1 makes it

equal to Lasso Regression (Hastie et al. 2009). In Equation (2.17) the term

(1+α)|βj | averages the highly correlated features and the term αβ2
j promotes

the sparse solution of these averaged features.
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Stochastic gradient decent regression

The stochastic gradient decent regression is a type of linear method which

calculates the gradient at every step by picking random instances from training

data-set. Due to its stochastic (random) nature, this method tends to be

irregular and instead of gradually decreasing to reach minima, the loss (cost)

function come into play which decreases the calculated averages by bouncing up

and down (shown in Figure 2.6a). This approach helps to avoid local minima

and achieves the global minima for the solution (shown in Figure 2.6b).

Figure 2.6: Stochastic gradient descent regression methodology to avoid local
minima and achieves the global minima (Géron 2019).

During the process of reaching global minima, the algorithm struggles to

settle at the minimum due to randomness. The solution to this problem lies in

reducing learning rate. The learning rate defines larger steps in the beginning

of calculations which decreases gradually and allows the algorithm to settle at

the global minimum. This entire process is also referred as simulated annealing.

The loss (cost) function is computed using the Equation (2.18), which is used

in Equation (2.19) to calculate the weights in the model.

L= (ŷ−y)2 (2.18)
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wij(t+ 1) = wij(t) +η
∂L

∂wij
(2.19)

where, wij is the weight of the linear equation, η is the learning rate and L is

the loss (cost) function for which a smaller value of L is preferred. The choice

of loss (cost) function depends on the type of supervised learning method.

2.5.1.3 Decision trees

Decision trees is a well known predictive model for its wide application in clas-

sification and regression problems on time series data. The regression decision

trees use real numbers as a prediction outcome, compared to the classification

decision trees where the outcome represents a class to which the data belongs.

The outcome from the decision trees methods depends on a hierarchy of if and

else questions which can be represented in a form of a tree. The tree grows

using training data by greedy recursive binary splitting (Müller et al. 2016).

Each node in a tree either contains a question to be asked or a terminal node

(also known as a leaf). The edges of a tree links the answers to a questions

(Géron 2019). One such example tree with two features X1 and X2 is shown

in Figure 2.7.

In this example, the feature Xi and split cutting point tj is selected at

each node to minimise the prediction error. The prediction score in leaf nodes

(R1-R5) represents the mean output from set of training data splits stepping

down the tree. Hence, overall predictions of a tree depends on the the values

from the leaf nodes. The stopping point of a tree is where the node does not

split any further and turns into a leaf node. This is when the reduction in

prediction error is less than the user-defined tolerance.
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Figure 2.7: The concept of decision tree method with two input features.

Pruning

Pruning is a process to control the size of a tree, which prevent over-fitting of

the model. This can be done in 2 ways; pre-pruning (or pruning) and post-

pruning. In pre-pruning, tree growth is stopped at an earlier stage whereas

in post-pruning a large tree is built, but less informative nodes are collapsed

or merged to reduce the tree size and complexity. In principle, a large tree

provides good results on the training data but the model tends to overfit on

test data, and pruning prevents it by minimising variance at the cost of a slight

biasness, similar to regularisation. Most common ways of performing pruning

are restricting the depth of tree and limiting number of terminal nodes (leaf).

The pruning is also used to fine tune the model.

2.5.1.4 Ensemble Method

Historically, the aggregate predictions using a group of prediction methods

often provides a better answer than the individual predictor. The ensemble

methods are examples of such grouped predictors.
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Random forests

Random forest is an ensemble method which combines decision tree with bag-

ging. In bagging method, the training data is split into multiple subsets and

multiple predictions are made using same algorithm. The individual predictor

methods tend to have a higher bias and variance, which can be reduced by

aggregating multiple predictions (Géron 2019, Poutiainen 2019). This is the

key property of bagging. Each tree is not pruned individually rather allowed

to grow deeper, this results into high variance which is reduced by averaging

predictions (in regression) from each tree. The predictions using bagging on

bootstrapped training set on trees is calculated by:

f̂bag(x) = 1
B

B∑
b=1

f̂b(x) (2.20)

where f̂b(x) represents the prediction of each tree b. The most important

parameters of random forest is the tree depth (number of features) and the

number of trees (no. of estimators), which are helpful in fine tuning the model.

The predictions from random forest are always better compared to the decision

trees due to bagging, but this also increases the model complexity and makes

the results interrogation difficult.

Gradient boosted regression trees

Gradient boosted regression tree (GBRT) is an ensemble method which com-

bines decision trees with boosting method. The trees are built in a series

and each tree corrects the errors of the previous tree. Generally, the boosting

method trains predictors sequentially, each reducing the prediction error by
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correcting mistakes of its predecessor. The length of these trees tend to be

shallow with a depth of one to five, and controlled by strong pre-pruning.

In gradient boosting, each tree performs good predictions on a part of the

data, therefore more trees are iteratively added. The combined predictions of

shallow but more number of trees help to improve the overall performance.

Adding more trees in the ensemble will increase model complexity, but at the

same time there are more chances of error correction on training data. In

addition to pre-pruning and number of trees, a third parameter of prime im-

portance is learning rate, which controls the ability of trees to correct the

mistakes identified in the previous trees. A higher learning rate increases the

complexity of model and therefore this parameter requires careful optimisa-

tion. The GBRT models are sensitive to the parameters and tuning model

to optimum parameters is the key for prediction. The accuracy is better if

parameters are set correctly. Therefore, the first preference in industrial appli-

cations is given to the decision trees and random forest methods, then gradient

boosted regression trees.

2.5.1.5 Support vector machines

The support vector machines (SVM) are commonly used in supervised machine

learning for both classification (SVC) and regression (SVR) problems. The idea

in SVM is to create a hyper-plane (virtual boundary) to distinguish between

different clusters of data based on their characteristics. The SVM algorithms

determines the hyper-plane parameters to keep the maximum virtual boundary

between the different sample of data points.

In this thesis, the support vector regression (SVR) models are used.

Therefore, the theoretical background of support vector regression is discussed.
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The SVR model determines the optimum parameters for function to predict

the actual time-series observations with an error tolerance. The concept of

SVR is evolved from the multiple linear regression function:

f(x) = xTβ+ b (2.21)

where, xT is collection of independent variables for set of samples, β is the

vector weights (regression coefficients) and b defines the vector of constants.

The β and b are calculated to keep the ε-insensitive residuals to minimum.

This is computed from the empirical risk (Remp) given by (Agrawal & Adhikari

2013), (Poutiainen 2019),

Remp(β,b) = 1
N

N∑
i=1

Vε(yi−f(xi)) + λ

2 ||β||
2 (2.22)

where, yi is target observation i, λ
2 ||β||

2 is L2 norm penalty and Vε is the

insensitive loss function of ε with following constraints,

Vε(r) =


0 if |r|< ε

|r|− ε otherwise

(2.23)

This elaborates that the insensitive loss function Vε is 0 once the absolute

residual value r is smaller than ε and this relation is shown in Figure 2.8. In

practical applications the data is mostly not linearly separable. Therefore, the

SVR constructs a ‘Soft Margin Hyper-plane’ to allow feasible constraints. The

values of β and b to minimise the empirical risk are found through the following

parameters optimisation (Agrawal & Adhikari 2013), (Poutiainen 2019),
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Figure 2.8: The relation between insensitive loss function (Vε) and absolute residual
value (r) for SVR method (Poutiainen 2019).

minβ,b,ξi,ξ
∗
i

= 1
2 ||β||

2 +C
N∑
i=1

(ξi+ ξ∗i ) (2.24)

subject to:

yi−f(xi)≤ ε+ ξi, ∀i

f(xi)−yi ≤ ε+ ξ∗i , ∀i

ξ,ξ∗ ≥ 0, ∀i

(2.25)

where C is a regularisation constant used as penalty of mis-classification,

ξi, ξ∗i are slack variables to relax the hard-margin constraints. The above

optimisation problem is know as the primal formulation and can be solved

computationally efficient in terms of support vectors αi, α∗i . The support

vectors are found from the dual formulation optimisation problem given by

(Poutiainen 2019):

The two set of Lagrange multipliers are used which are

α = (α1,α2, ...,αN )T and α∗ = (α∗1,α∗2, ...,α∗N )T , where 0 ≤ αi,α
∗
i ≤ C. For
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support vectors 0 < αi,α
∗
i ≤ C. Finally, the optimum decision hyperplane is

obtained as (Agrawal & Adhikari 2013):

f̂(x) =
N∑
i=1

(αi−α∗i )K(x,xi) + b (2.26)

The kernel function K(x,xi) is used for the so called kernel trick and

different kernel functions are presented in Table 2.1.

Table 2.1: List of Kernel functions for support vector machines
Kernel Function
Linear K(x,z) = xT z

Gaussian (RBF) K(x,z) = e−||x−z||
2

Polynomial K(x,z) = (1 +xT z)q, q ∈N

2.5.1.6 Neural networks

In 1943, neurophysiologist Warren McCulloch and the mathematician Walter

Pitts introduced the concept of neural networks. They presented a compu-

tational model for biological neurons to perform complex computations using

propositional logic. Since then, neural network have developed several methods

for classification and regression problems. Recently, they are referred as “deep

learning” as well. In this analysis, the Multilayer perceptrons (MLPs) method

of neural networks is discussed and also known as (vanilla) feed-forward neural

networks.

Multilayer perceptrons (MLPs)

The neural networks or multilayer perceptrons (MLP) are the combination of

multiple layers of sigmoid perceptrons, where nodes of perceptrons are con-

nected with each others. The limitations in traditional neural networks are re-

moved by implementing multiple hidden layers of perceptrons in MLP method.
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The neural network with more than two hidden layers is known as deep neural

network (DNN). The MLP has several hidden layers which contains weight and

bias neurons, except the output layer. This method is a feed-forward neural

network (FNN) in which the predictions are made from the input to output

direction.

Figure 2.9: Feed forward, fully connected neural network with 7 input features, 2
hidden layers with 5 hidden units each and 1 output (Poutiainen 2019).

This is explained in Figure (2.9), where a MLP based neural network is

shown, X is the input, Ŷ is the output, and the weight w and bias b values are

represented by connections between the nodes of perceptrons. The network

has two hidden layers Z and T with units M and N , respectively.

Z̄ = [Z1,Z2,Z3, ...,ZM ] (2.27)

T̄ = [T1,T2,T3, ...,TN ] (2.28)
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Zm = σ(b0,m+wT0,mX),m= 1,2,3, ...,M (2.29)

Tn = σ(b1,n+wT1,nZ̄),n= 1,2,3, ...,N (2.30)

where, b0,m is the bias and wT0,m is the weight between the input and hidden

layer Z with units m, the b1,n is the bias and wT1,n is the weight between

the hidden layers Z and T with units n. The percepton activation function σ

controls the bias value and output from the node. The hyperbolic tangent σtanh

and Rectified Linear Unit (ReLU) σReLU are two commonly used activation

functions and given below Equations (2.31) and (2.32).

σtanh = 2
1 + e−2x −1 (2.31)

σReLU = 1
1 + e−x

(2.32)

The final outputs from the model is given by:

Ŷ = g(b̄2 +wT2 T̄ ) (2.33)

where, b̄2 and wT2 is the bias and weight between the hidden layer T and output,

g is the output layer function. The neural networks are trained by using back-

propagation method to estimate the optimum values for weight and bias. In

back-propagation method the model first assumes random weight values for

prediction and calculates prediction error from each node. Then, increases the

weight and bias of each node to reduce the mean squared error (MSE) of the
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final prediction. This is commonly referred as Gradient Descent method. The

mathematical expression for increasing the weight of each node is given as,

wi,j(t+ 1) = wi,j(t) +η(Yj− Ŷj)Xi (2.34)

where, wi,j is the node weight between the ith input neuron and the jth output

neuron, t is the training instance in the time-series, Xi is the ith input value

of the current training instance, Ŷj is the output of the jth output neuron for

the current training instance, Yj is the target output of the jth output neuron

for the current training instance and η is the learning rate.

The tuning of neural network hyper-parameters is crucial to the model’s

prediction performance. The complexity of the neural network generally de-

pends on number of hidden layers and neurons. This makes the training of

model bit slow, particularly for large datasets. Therefore, techniques such as

cross-validation and early stopping is used to control model’s complexity and

over-fitting (Géron 2019), (Poutiainen 2019). The following hyper-parameters

are required to be tuned for optimum neural network model.

• Number of hidden layers

• Number of neurons per hidden layer

• Activation functions

• Learning rate

• Learning algorithm

• Regularisation
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2.5.2 Stochastic methods

In forecasting the historical data is used for future time series predictions. A

time-series is a sequence of real time observations (integer or floating point)

with respect to time. Generally, there are two main types of time-series, uni-

variate and multi-variate. In uni-variate, there is only one variable in the

time-series whereas, there can be multiple variables or features in multi-variate

time-series. The classical time-series forecasting methods assumes linear re-

lationships between model parameters, but interestingly their performance

on ordinary uni-variate is better as compared to other sophisticated machine

learning methods.

In this analysis, classical stochastic forecasting methods are used on uni-

variate time-series data, which includes Autoregressive (AR), Moving Average

(MA), and Autoregressive Integrated Moving Average (ARIMA). Before dis-

cussing forecasting models, it is necessary to describe the steps involved for

dataset preparation.

Stationarity of time-series Data

A time-series is termed as stationary when its statistical properties (mean,

variance and standard deviation) remains constant over time. In other words,

there should be no trend or seasonality. Before implementing the autoregres-

sive methods (AR, MA, ARMA and ARIMA models), it is necessary to have

the time-series as stationary and checked using ‘Dickey-Fuller Test’. The sta-

tionary of timeseries enables to extract the hidden patterns in the underlying

data and helps to make correct statistical assumptions for forecasting. There-

fore, the non-stationary time-series should be first transformed into stationary

using methods such as aggregation, smoothing, polynomial fitting and differ-
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encing. In ARIMA method, the differencing is used to effectively transform

the time-series into stationary, and the SARIMA additionally incorporates sea-

sonal differencing into ARIMA to model time-series data with periodic char-

acteristics.

Dickey-Fuller Test

The Dicky-Fuller test is used to evaluate stationarity of the data. It assumes

that the time-series is non-stationary and compares ‘Test Statistic’ results

and ‘Critical Value’ at several confidence levels. The time-series is said to be

stationary if the ‘Test Statistic’ is less than the ‘Critical Value’.

2.5.2.1 Autoregressive models (AR)

The autoregression (AR) models forecasts the next step in the sequence by

using number of lagged observations and dependencies between observation.

The autoregression (AR) considers the linear relation between parameters and

its lagged values (Jacob et al. 2020).

The autoregressive model is denoted as AR(p), where p represents the

order of the ‘Auto Regressive’ (AR) term and refers to the number of lags of

time-series considered by the model for prediction. The Equation (2.35) shows

a basic form of AR model with an order p where AR(p) is represented as a

linear process.

yt = a+
p∑
i=1

φiyt−i+ εt (2.35)

where, yt is stationary variable, a is constant, p is number of lag measurements,

φi is autocorrelation coefficient used in estimation and εt is Gaussian white

noise series with zero mean and variance σ2
ε (Jacob et al. 2020).
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2.5.2.2 Moving average models (MA)

The moving average (MA) models forecasts the next step in the sequence by

using linear combination of number of previous errors (residual), the expected

value and a random noise (Jacob et al. 2020). The moving average model is

denoted as MA(q), where q represents the order of the ‘Moving Average’ (MA)

term and refers to the number of lagged residual error considered by the model

for prediction. The Equation (2.36) shows a basic form of MA model with an

order p where MA(q) is represented as a linear process.

yt = µ+
q∑
i=1

θiεt−i+ εt (2.36)

where, µ is expected value of yt, the θi is weights, q is the number of historical

error values and εt is Gaussian white noise series with with zero mean and

variance σ2
ε (Jacob et al. 2020).

2.5.2.3 Autoregressive integrated moving average (ARIMA)

The Autoregressive Integrated Moving Average (ARIMA), also known as

Box and Jenkins forecasting, is the most widely used forecasting method.

The acronym ARIMA originates from Autoregression AR(p), Moving Aver-

age MA(q) models and integration I(d) for differencing. The ARIMA models

forecasts the next step in the time-series as a linear function of previous ob-

servations (lags) and residual errors. It is combination of autoregressive and

moving average models with differencing. The mathematical representation of

the model is denoted as,

yt = a+
p∑
i=1

φiyt−i+µ+
q∑
i=1

θiεt−i+ εt (2.37)
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The behaviour of model is defined by the order of AR, MA, I terms in

the following notation Equation (2.38), the model can work either as AR, MA,

ARMA or ARIMA.

ARIMA(p,d,q) (2.38)

where;

• p : the autoregressive order. It defines the number of previous observa-

tions.

• d : the difference order. It defines the number of differences in order to

make time-series stationary.

• q : moving average order. It defines the number of previous forecast

errors for moving average.

The order of AR, MA, I terms is selected by either using auto-correlation

(ACF) and partial auto-correlation (PACF) plots or dedicated grid search al-

gorithms for fine tuning of hyper-parameters such as, Pyramid Arima library

in Python.

Autocorrelation and partial autocorrelation plots

The Autocorrelation (ACF) and Partial Autocorrelation (PCAF) plots helps

to identify p and q values based on correlation of previous time steps. More

specifically, the ACF is an estimation of linear dependence between time step

observations that are represented by a lag p, whereas the PACF determines

number of autoregressive terms q. The Pearson’s correlation coefficient is used

to access the relationship between two variables, and this is represented as a
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number between 1 and -1 describing positive and negative correlation, respec-

tively.

The ARIMA modelling has a limitation to perform well on seasonal data.

So, if the time-series has a repeating pattern (seasonality), ARIMA will not

be a good choice. For a time-series with seasonal element, SARIMA is used

which is a extension of ARIMA.

2.5.2.4 Seasonal autoregressive integrated moving average

(SARIMA)

The Seasonal Autoregressive Integrated Moving Average (SARIMA) model

uses ARIMA model as base and extends the results with the inclusion of sea-

sonal autoregression, differencing, and moving average. This extension makes

the model notation as,

SARIMA(p,d,q)(P,D,Q)m (2.39)

where, the order for the AR(p), I(d), and MA(q) is same as in ARIMA, and

the order for AR(P), I(D), MA(Q) and m are at the seasonal level which are

as follows:

• P: Seasonal autoregressive order.

• D: Seasonal difference order.

• Q: Seasonal moving average order.

• m: The number of time steps of the seasonal period.

The order of these seasonal parameters are difficult to calculate manu-
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ally, therefore the dedicated grid search algorithms are used (Pyramid SArima

library in Python).

2.6 Model optimisation and evaluation

2.6.1 Generalization, over-fitting and under-fitting

In supervised learning, a model is developed using training data in order to

make precise predictions on unseen data with similar properties. The model’s

performance has to be generalised to make accurate predictions on new data.

The main goal is to build a model which is generalised enough to make as

accurate predictions as possible. The future performance of a model is assessed

on a unseen testing data. Therefore, training and testing datasets are two key

components of model building.

Theoretically, simple models tend to generalise better on new data. Hence,

it is best practice to start with building a simplest model. This is because

building a model which is too complex for the available information can lead

to over-fitting of model. In this situation, the model fits (generalised) too

closely to the characteristics of training data and works entirely well on the

training dataset, but is unable to work on unseen testing dataset. On the other

hand, if a model is too simple to learn all the different aspects in the data, it

will not perform well on the training data. Selecting such a simplistic model

can lead to under-fitting. However, there is an optimum position (also called

sweet spot) where model can have its best performance (generalisation). This

is shown in Figure 2.10. This is most important step of model building and

optimisation which is achieved with the help of fine tuning of parameter. In

supervised learning, a large number of data is important for model building.
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This is because it can help in building a fairly complex model. Sometimes,

having access to more data can work better than tweaking the parameters to

fine tune the model.

Figure 2.10: Trade-off of model complexity against training and test accuracy
(Müller et al. 2016).

2.6.2 Grid search and Cross-validation

A model’s generalisation performance can be increased by fine tuning key

parameters. The grid search method explores all possible combinations of

parameters and creates a table containing model’s performance with different

settings of parameters. This helps to select the most suitable parameters

effectively as well as quickly and shown in Figure 2.11.

In order to assess the generalisation performance of a model, a statistical

re-sampling method, cross-validation, is used which repeatedly split the entire

dataset into a training and testing data. Using this method multiple models

are trained. The k-fold cross-validation is the best known and commonly used

type of cross-validation, where k represents number of times the data will be

split and mostly selected 5 or 10. In case of 5-fold cross-validation, the data

is split into five sets (folds) of nearly equal sizes. Among five folds, two to
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Figure 2.11: Heatmap representing example of a Grid search method to find opti-
mum model parameters

five folds (training sets) are used to build and train the model while first fold

(testing set) is used to evaluate the model’s accuracy. The next model is built

using fold 2 as the testing set and remaining folds (1, 3, 4, 5) as the training

set. This procedure is repeated using folds 1, 3, 4 and 5 as testing sets. The

accuracy is computed five times separately for each simulation of the model.

This process is shown in Figure 2.12.

Figure 2.12: Data splitting with five-fold cross-validation (Müller et al. 2016).

The cross-validation and grid search are commonly used together as this

provides a better estimation of the generalisation performance as compared to

using a single split into training and a validation set. In this hybrid approach,

cross-validation evaluates the performance with each parameters combination

and helps in adjustment of model parameters.
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One of the major benefit of cross-validation lies in its random nature of

splitting the data. By having multiple splits of same data enables to assess

the sensitivity of model towards selection of the training dataset. This also

make the usage of data more effectively. However, no method comes without

a disadvantage. The major disadvantage of cross-validation is higher compu-

tational cost and slow efficiency in comparison to using a single split of the

data.

2.6.3 Model evaluation metrics

The regression based machine learning models can be evaluated using different

scoring metrics. Most commonly used scoring metrics are; mean absolute error

(MAE), mean absolute percentage error (MAPE), mean squared error (MSE),

mean square percentage error (MSPE), root mean square error (RMSE) and

R2. In this thesis, only R2, MAE, MAPE and RMSE have been used.

2.6.3.1 Mean absolute error (MAE)

The mean absolute error (MAE) provides the estimation of error in predicted

values by calculating average of the absolute differences between the actual

and predicted value. It calculates the error as an absolute value which is of

linear nature because average of all absolute differences obtain an equal weight.

This measure does not provide information about over or under prediction.

Mathematically, it is computed as:

MAE = 1
N

N∑
t=1

∣∣∣Yt− Ŷt∣∣∣ (2.40)
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where, N is the total number of sample values, Yt is the actual expected value

and Ŷt is the model’s predicted value. This score has the ability to penalise

huge errors, however, it is not sensitive to outliers value in data itself.

2.6.3.2 Mean absolute percentage error (MAPE)

The mean absolute percentage error (MAPE) is a relative error and obtained

by dividing absolute error by actual value. This is considered as weighted

version of MAE, therefore the optimal constant predictions for MAPE are

assumed as weighted median of actual values. The MAPE is very useful in

evaluation of forecasting performance. Mathematically, MAPE is computed

as:

MAPE = 1
N

N∑
t=1

∣∣∣∣∣Yt− ŶtYt

∣∣∣∣∣∗100 (2.41)

where, N is the total number of sample values, Yt is the actual expected value

and Ŷt is the model’s predicted value. The weight of actual sample is inversely

proportional to it’s predicted value. For a very small outlier value in data,

MAPE would have a high biasness due to larger weight.

2.6.3.3 R-squared (R2)

The R2 metric is also called as the coefficient of determination. It provides

an estimation of goodness of fit between fitted values by the model and actual

expected values in dataset. This measure is scale free, and is not biased to the

very large or small values in the dataset. This is because R2 value between

0 and 1 determines whether the model fit is poorest or excellent fit. The

Equation (2.42) is used to compute R2.
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R2 =
∑N
t=1 (Ŷt− Ȳt)

2

∑N
t=1 (Yt− Ȳt)

2 (2.42)

where, N is the total number of sample values, Yt represents actual expected

values, Ȳt as its mean, and Ŷt is the predicated values.

2.6.3.4 Root mean square error (RMSE)

The accuracy of a model’s prediction can be calculated by root mean square

error (RMSE). It computes the differences between actual expected and pred-

icated values and useful for comparing prediction errors of different models.

The expression used to calculate RMSE is:

RMSE =

√√√√ 1
N

N∑
t=1

(Yt− Ŷt)
2 =
√
MSE (2.43)

where, N is the total number of sample values, Yt is the actual expected value,

Ŷt is the predicted value. The scale of errors is converted to the same scale

as of actual expected values by taking the square root of mean squared error

(MSE). The RMSE tends to penalise large errors and scales results in same

units.



Chapter 3

Thermal modelling of the

buildings

Overview

This chapter outlines building regulations which both domestic and non-

domestic buildings must comply for the conservation of fuel and power in

England/Wales. These building regulations are the minimum energy efficiency

standards for the buildings. Therefore, three buildings have been considered

for thermal modelling using two separate software as a case study. The ther-

mal performance models for both domestic and non-domestic buildings are

modelled using IDA-ICE and IES-VE software, respectively. Later, a Python

model has been developed and implemented in IES-VE software to facilitate

the users to demonstrate compliance with building regulations. Finally, the

results are discussed with limitations of current building regulations.
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3.1 Building regulations in United Kingdom

In 2008, the UK became first country to introduce “The Climate Change Act”

to reduce 80% of greenhouse gas emissions (GHG) by 2050 to the level recorded

in 1990 (Committee on Climate Change 2010). The carbon dioxide emissions

from built environment sector accounts for 46% of the UK’s total carbon emis-

sions (Kelly et al. 2012). The UK’s future clean growth strategy is to reduce

the emissions created by heating our homes and businesses. These account for

almost a third of UK building emissions. The government has further plans to

upgrade the thermal performance of all homes to Energy Performance Certifi-

cate (EPC) Band C by 2030 and develop measures to support businesses and

improve their energy productivity by at least 20 percent.

In the UK, the share of residential buildings is 27% with 50% of these

emissions consist of space heating and hot water demand (Centre for Sus-

tainable Energy Association for the Conservation of Energy & Moore 2008).

The UK government has published certain set of building regulations for both

new and existing, domestic and non-domestic buildings which ensures that the

government policies are being met according to the standards. The building

regulations in England and Wales are categorised into sixteen groups covering

several aspects of requirements. Of these, Part L (conservation of fuel and

power) and Part F (ventilation) in England and Wales focuses on the energy

efficiency and carbon emission requirements.

The buildings regulation (Part L for England and Wales, Section 6 for

Scotland and Part F for Northern Ireland) provide guidelines for increas-

ing energy efficiency and performance of buildings. It set limits on energy

consumption of building components, building fabric, lights and solar gain.
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The Part L regulations in England and Wales is further divided for domestic

buildings (L1A and L1B) and non-domestic buildings (L2A and L2B), where

L1A,L2A apply to new buildings and L1B, L2B are for existing buildings. The

Part L is also used for the energy demand estimation and used as a stepping

down for the generation of energy performance certificates (EPC). The valid

EPC is a legal requirement which the owner must posses whenever a build-

ing is sold, rented or constructed. This mandatory requirement is enforced

by the European Union in legislation ‘European performance of buildings di-

rective’(EPBD) (European-Commission 2002). The EPC certificate generation

methodology for existing and new buildings and its relation with Part-L build-

ings regulations is shown with the flow-diagram in Figure 3.1.

3.1.1 Regulations for domestic buildings

The current energy estimation methodology for the UK’s domestic building

is based on set of Building Research Establishment Domestic Energy Model

(BREDEM) models developed and maintain by Building Research Establish-

ment (BRE) institute. Moreover, regulations for the energy performance re-

quirements of new domestic buildings are covered in Part L1A and existing

buildings in Part L1B (Building Regulations 2010a,d). These regulations set

limits on energy efficiency and carbon dioxide emissions which the building

needs to achieve in order to demonstrate compliance. These performances

are calculated using standard assessment procedure (SAP) tool for new do-

mestic buildings and reduced standard assessment procedure (RdSAP) tool

for old and existing domestic buildings. These assessment procedures are in-

agreement with the EU energy performance of building directive (EPBD) and



Chapter 3. Thermal modelling of the buildings 55
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CIBSE Guide A
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Figure 3.1: The methodology of EPC certificate generation of existing and new
buildings and its relation with Part-L buildings regulations in England/Wales

hence used to generate energy performance certificates (EPCs) (Ministry of

Housing & Government 2015).

Historically, the SAP was developed in 1993 as an independent calcula-

tion methodology by department for the environment (DOE) and Building

research establishment (BRE). The initial version of SAP was based on BRE-

DEM model 9 which integrated the Part L of building regulations and estab-
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lished SAP itself as a national rating scheme for buildings performance eval-

uation (Anderson et al. 2015). The SAP was originally developed to address

following issues:

1. Optimise the energy efficiency of all buildings.

2. Initiate improvement in energy performance of new buildings based on

the SAP rating

3. Replace other duplicate energy rating schemes from the private-sector .

The application of SAP on existing buildings was limited as it was intro-

duced for new buildings and requires enormous amount of input data, therefore

a reduced version of SAP known as RdSAP was introduced. The RdSAP re-

duces the input data requirements and assumes typical building characteristics

as well as minimises the assessment processing time. In principle, this means

that any existing building with incomplete physical characteristics can be as-

sessed and provided with an EPC certificate.

Though, these tools originate from BREDEM, there are several key differ-

ences among BREDEM, SAP and RdSAP. The BREDEM is an energy demand

estimation tool and requires building’s physical characteristics for calculation,

but ignores several important factors such as, location specific weather data,

temperature set points, space heating, hot water demand and internal gains

profiles (occupancy, equipment gain, lighting and efficiency) (Kelly et al. 2012).

On the other hand, SAP provides energy performance using energy de-

mand estimation from BREDEM and calculates economic efficiency of the

building. It provides relative economical energy performance of building in

the form of £/m2 as an energy efficiency index (ranging from 1—100) which
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is also known as SAP rate (Kelly 2011). Since RdSAP originates from SAP

therefore it has the same methodology but assumes default standard parame-

ters and set data for existing building’s energy performance. In conclusion, the

energy demand is estimated using BREDEM, whereas the energy performance

is estimated using SAP and RdSAP.

3.1.2 Regulations for non-domestic buildings

The building regulations Part L2 applies to non-domestic buildings in Eng-

land/Wales, where Part L2A covers regulations regarding the conservation of

fuel and power for new non-domestic buildings and Part L2B is for the exist-

ing non-domestic buildings. The Part L2 sets limit on certain characteristics

of building and provides energy performance guidelines that can be achieved

using any method, but the carbon dioxide emissions from the building should

be lower than the target emissions (Building Regulations 2010b,c).

The minimum carbon dioxide emissions to demonstrate compliance with

Part L2 can either be calculated using BRE’s Simplified Building Energy Model

(SBEM) or the detailed dynamic simulation model (DSM) (SBEM 2010). The

results are then fed into the compliance calculation software, BRUKL (Building

Regulations UK, Part L), which evaluates various aspects of building according

to regulations. Finally, the Energy Performance Certificate (EPC) is generated

based on the results.

These are several criteria mentioned in Part L2 regulations, but the Cri-

terion 1 directly addresses the requirements for carbon emissions. The criteria

which needs to evaluate are as follows (IES Virtual Environment 2014):

• Building carbon emission rate (BER) should be lower than the target

carbon emissions rate (TER).



Chapter 3. Thermal modelling of the buildings 58

• Limitations on the minimum building fabric and efficiency of building

services.

• Limitations on solar gains.

• The constructed building should be in-line with calculated building CO2

emission rate.

• Provision of information for the energy efficient functioning of building.

3.2 Thermal comfort assessment
Thermal comfort is defined as a state of satisfaction with thermal conditions in

the surrounded environment. In the UK, it is correlated with well-being of oc-

cupants and assessed by CIBSE adaptive thermal comfort methodology set out

in TM-52 and TM-59.These has been undertaken in-line with methodologies

set out in the CIBSE guidance documents, including:

• The Limits of Thermal Comfort: Avoiding Overheating in European

Buildings (TM-52)

• Technical Memorandum 59 Design Methodology for the Assessment of

Overheating Risk in Homes (TM-59)

Compliance with these guides are widely perceived as a benchmark for

assessing if overheating is likely to occur within buildings. TM-52 can be used

to assess any type of building whereas TM-59 has been tailored to target over-

heating risks in homes. There are no mandatory building regulations that state

overheating assessment is required, but directly related to design parameters of

the building. It is a best practice to achieve thermal comfort with overheating

assessment.
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3.2.1 CIBSE TM-52

The CIBSE TM-52 thermal comfort analysis is commonly used to assess the

risk of overheating in non-domestic buildings. It predicts the indoor operative

temperature using methodology for adaptive thermal comfort calculation. In

adaptive thermal comfort, the threshold for overheating temperature varies

with respect to mean outdoor air temperature, as suggested in BS EN:15251

standard (BSI 2008). The TM-52 sets out three criteria, where 2 of the 3

criteria should be satisfied in order to pass the overheating assessment.

1. Criterion 01: The total number of occupied hours during which the dif-

ference between the operative temperature (∆T) and set-point is greater

or equal to one degree (oC) shall not be more than 3% during summer

season (May — September).

2. Criterion 02: The weighted average of exceeding over-heated indoor op-

erative temperature hours shall not be more than 6 in a day.

3. Criterion 03: The maximum daily indoor operative temperature shall

not be more than 4oC

The CIBSE recommends using category II for TM-52 thermal comfort

analysis for newly built buildings. The maximum acceptable temperature is

calculated from following three types of building category given in Table 3.1.

The adaptive thermal comfort at thermal bands for different building category

are shown in Figure 3.2.

3.2.2 CIBSE TM-59

CIBSE TM-59 is a standardised approach to predict risk of overheating in

domestic buildings designs using dynamic thermal analysis. The methodology
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Figure 3.2: Thermal comfort bands from BS EN:15251 (BSI 2008). Research
has shown that comfortable room temperatures vary with external air temperature.
Occupants are generally more accepting of warmer room temperatures if the weather
is also warm outside.

Table 3.1: Building categories from the standard BS:EN-15251
Category Description Acceptable range

Category I High expectation level - spaces occupied by
elderly and sensitive person 2

Category II Normal expectation level - new and renovation
buildings 3

Category III Moderate expectation level – existing buildings 4

is usually applied on residential apartments but can also be extended to other

residential spaces. The TM-59 methodology restricts the user by providing

pre-set occupancy, internal gains, equipment and lighting profiles for the anal-

ysis. These profiles are more stringent compared to TM-52 methodology. The

compliance with TM-59 is only achieved once following criteria are met:

• For living rooms, kitchens and bedrooms – The total number of occupied

hours during which the difference between the operative temperature

(∆T) and set-point is greater or equal to one degree (oC) shall not be

more than 3% during summer season (May — September). It is same as

in CIBSE TM-52 Criterion 1.

• For bedrooms only – the operative temperature during 22:00–7:00 hrs

should not exceed beyond 26oC for more than 1% of annual hours, where

32 hours make 1% of annual hours.
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3.3 Case study - domestic building thermal

analysis

A domestic building from the REMOURBAN project is modelled in IDA-

ICE 4.6.2 software and real monitored weather data is used for heat demand

estimation. The monitored weather data is first discussed in Section 3.3.1

and results from thermal modelling with retrofitting are elaborated below in

Section 3.3.2.

3.3.1 Monitored weather data

Three years (2014–2016) of high resolution meteorological data with temporal

resolution of 15 min is obtained from the nearby weather station located at

53°3′41.62′′ N, 0°57′49.75′′ W and converted into one year of hourly data.

This filters out extreme events and provides robust time-series of data. The

meteorological weather data contains outdoor dry air temperature, pressure,

relative humidity, incoming solar radiations, wind speed and direction. This

weather data is converted into EnergyPlus format (.epw) climate file and then

imported into IDA-ICE software for simulations.

The results show that the incoming solar radiations are reasonably high

in Nottingham during months of April to September and reach up to 900

W/m2 per hour. This shows the significance of incoming solar radiations for

heat demand estimation. The outdoor air temperature varies between 2–25oC

throughout the year and is never below 0oC. On the other hand, the behaviour

of wind speed data is quite opposite. During summers, the hourly wind speed

stays constant but fluctuates during winters with wind storms between months

of December to February. These results are shown below in Figure 3.3.
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Figure 3.3: Monitored weather data from Nottingham weather station located at
53°3′41.62′′ N, 0°57′49.75′′ W. This data is used for thermal performance analysis
and adapted from (Ashfaq & Ianakiev 2018b)

The data for soil temperature in Figure 3.4 is useful for heat loss estima-

tion due to temperature difference with ground temperature. It is observed

that the soil temperature fluctuates between 8–16oC and 4–8oC during sum-

mers and winters, respectively. These monitored weather time-series data are

used for thermal modelling in IDA-ICE model and shown in Figures 3.3 and

3.4.
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Figure 3.4: Monitored soil temperature (15 cm depth) data from Nottingham
weather station located at 53°3′41.62′′ N, 0°57′49.75′′ W. This data is used for ther-
mal calculations and adapted from (Ashfaq & Ianakiev 2018b)

3.3.2 Heat demand after retrofitting of buildings

In the UK almost 80% of existing building stock will still be operational by the

year 2050 and therefore, increasing energy performance of existing buildings is

vital for achieving future carbon emission targets (Ianakiev et al. 2017). Re-

duction of energy demand by retrofitting of existing building is fundamental

for the utilisation of low carbon fuels as well as to address the issue of cli-

mate change. To this end, 94 flats (from REMOURBAN Project) have been

retrofitted for the implementation of low temperature district heating. These

flats were originally part of social housing, constructed from 1960’s and are in

four blocks. To continue with analysis, only one of the building is used for pre

and post-retrofit heat demand calculations. Since, being part of social housing

the construction plans were unavailable, therefore information from surveys

has been used for geometry (walls, roof, windows, and floor), orientation, fab-

ric (U-value) and glazing parameters.

The IDA-ICE software is dynamic multi-zone heat demand calculation
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software and accredited to the standard DS/EN 15265 (EQUA Simulation AB

2010). It is commonly used by researchers and energy consultants in Scandina-

vian countries for energy performance of the buildings (EQUA Simulation AB

2013). The building is first modelled using its characteristics such as geometry,

orientation, construction materials, fabrics, exposed parameters and glazing

values. The natural ventilation is taken as 0.94 ac/hr which is in agreement of

CIBSE Building Code (CIBSE Jul 2015). Then, the domestic internal gains for

the occupancy and equipment are taken as 0.81 and 1.55 W/m2, respectively

(Tunzi et al. 2016), (Domestic Building Regulations 2013) and gain profiles

are shown in Figure 3.5.

Figure 3.5: Internal gains and occupancy profiles assumed for the domestic building
in case study

The design outdoor temperature is taken as -8oC for extreme conditions

(Frederiksen & Werner 2013) and given in standard (Danish standard 469

2013). The weather data is an important element of heat demand estimation,

therefore real monitored weather data of Nottingham is used for the dynamic

thermal simulation.

The pre-retrofit buildings were built with brick cavity walls, concrete

floors, roof with tiles, single glazed windows and raft-foundations. These flats
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are retrofitted to attain thermal performance according to the ‘UK Building

Regulation - Part L1B’ standard (Building Regulations 2010a). The post-

retrofit building has shown an improvement in U-value for brick cavity walls,

windows and roof to 0.3, 1.8 and 0.123 W/m2K, respectively. This deep-

retrofit building provides similar energy performance to the usual practice of

retrofitting. The comparison between the U-value for pre and post-retrofit

buildings is provided in Table 3.2.

Table 3.2: Main fabric and glazing properties of flat before and after retrofitting
building envelope. (Ashfaq & Ianakiev 2018b).

Component Before retrofit After retrofit
U- value (W/m2K) U- value (W/m2K)

Wall 2.1 0.3
Glazing 2.727 1.8
Roof 0.346 0.123
Floor 2.128 2.128
Overhang 2.128 2.128
Heat demand (KWh) 23,897 11,253

Figure 3.6: Retrofitting of flats from REMOURBAN project.

The dynamic thermal simulation results show there is significant increase

in operative air temperature to 19oC for all rooms in building, except the

entrance hallway which can be explained due to entrance door opening schedule

and air infiltration. The overall air infiltration in post-retrofit building has

decreased to the passive house standard, i.e. 0.6 ac/hr under 50 Pascal (Cui

et al. 2017).
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It is observed that retrofitting has reduced the energy demand by almost

52% for each flat, i.e. 23,897 to 11,253 KWh. The noticeable reduction in

heat demand is at the ground floor where operative air temperature is in-

creased by 2oC (17o–19oC). This explains that the improvement in thermal

efficiency of wall and roof insulation, and conversion of windows to double

glaze significantly increases the energy performance. These room specific pre

and post-retrofit operative air temperature simulation results are further shown

in Figure 3.7.

Figure 3.7: Thermal performance simulation results from the IDA-ICE software
before and after the retrofitting. Figures (a,b) show the minimum operative tem-
perature before the retrofit and Figures (c,d) show minimum operative temperature
after the retrofit. These results are adapted from (Ashfaq & Ianakiev 2018b)
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Figure 3.8: View of multi-zone thermal model in IES-VE software.

3.3.3 TM-52 thermal comfort assessments - domestic

buildings

The TM-52 thermal comfort assessments analysis has been performed on the

proposed 55 floor residential development site located in north-west region of

England. The 55 floor residential tower will have basement of 2 floors, amenity

areas and flexible-use commercial units in the ground and 1st floor, and residen-

tial apartments from 2nd to 55 floor. The dynamic thermal model simulation

has been carried out using IES Virtual Environment (IES-VE) software, ver-

sion 2019.1.0 and shown in Figure 3.8. Of theses 55 floors, only floor 02, 03,
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14, 15 and 49 have been analysed as representative examples for over-heating

assessment. This is due to computational limitations of IES-VE software and

it is completely reasonable to select these floor, owing to the similarity among

their orientations and structural layout.

As discussed above, the over-heating assessment depends on the Part L

SAP calculations and building construction materials (fabric, glazing, etc).

Therefore, the thermal model is created considering parameters from the initial

Part L SAP results given below.

Weather data

It is a mandatory requirement for TM-59 thermal comfort methodology to

use CIBSE future Design Summer Year (DSY) weather file for over-heating

assessment. Therefore, the Manchester DSY1 2020 high emissions scenario 50th

percentile weather data has been used in the assessment. Although using DSY

weather data is not required by TM-52 methodology as it is more onerous than

the minimum requirements, it has been employed to show good design practice

and assist in mitigating potential future climate change. The Manchester

DSY1 2020 high emissions scenario 50th percentile air temperature profile is

shown in Figure 3.9.

Thermal modelling parameters

The thermal model considers several constant input parameters (building fab-

ric standards and glazing properties) for over-heating assessment (TM-52 and

TM-59). These parameters are summarised in Tables 3.3 and 3.4.

Moreover, the occupancy and internal gain profiles (people, equipment

and lighting) for domestic building are generated and passed into the model.

The internal gains for TM-52 overheating assessments are given in Table 3.5.
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Figure 3.9: The figure shows the CIBSE future Design Summer Year (DSY) 2020
- 50th percentile high emissions scenario air temperature profile used for overheating
assessment. The DSY weather data is a single year continuous data compared to
Test Reference Year (TRY) data (which is a monthly averaged data).

Table 3.3: Fabric parameters
Building fabric U-value (W/m2 K) Notes

Curtain wall 1.10 Curtain wall including transparent,opaque
and purge panels (area weighted average)

Roof 0.12 Uninsulated – Heat loss to below zones
Ground floor 0.14 Flat roof

Air permeability The infiltration rate has been calculated based
on design air permeability of 2.75 m3/hr/m2 at 50 Pa

Table 3.4: Glazing properties
Criterion Light transmission G value Internal shading applied
External glazing 0.71 Varies in every iteration Yes

Table 3.5: Internal gains used for TM-52 over-heating assessment
Parameter Internal gain profile

Occupancy

70W sensible and 45W latent per person
Single bedroom – 1 person from 22:00 – 07:00
Master bedroom – 2 people from 22:00 – 07:00
2 Bed living – 2 people from 06:00 – 08:00 and 19:00 – 22:00
3 Bed living – 3 people from 06:00 – 08:00 and 19:00 – 22:00
4 Bed living – 4 people from 06:00 – 08:00 and 19:00 – 22:00

Equipment 115W from 06:00 – 08:00 and 19:00 – 23:00
450W cooking load from 07:00 – 08:00 and 19:00 – 21:00

Lighting 2W/m2 from 06:00 – 07:00 and 20:00 – 22:00

The overall apartment ventilation strategy is proposed to be a combina-

tion of mechanical and natural ventilation. Mechanical Ventilation Heat Re-
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covery (MVHR) units are included in the apartments and natural ventilation

is provided through restricted opening windows for “purge” ventilation. The

building has fixed external windows and natural ventilation is provided with

louvers on all floors for “purge” ventilation. The floor 2 has an exception where

one tower has patio doors in living room. The louvers and equivalent openable

free area are modelled from the dimensions given in architecture drawings.

Table 3.6 outlines the parameter used for modelling ventilation panels.

Table 3.6: Ventilation panel parameters
Parameter Louvre Patio door
Free area 52% 90%
Coefficient discharge 0.40 -
Max opening angle - 90o
Opening type louvre window/door – side hung

The shading has considerable effect on over-heating assessment and quan-

tified by shading coefficient (SC). It is a measure of thermal performance of

glass (panel or window) in a building and described as the proportion of sun-

light passing across the glass surface to the direct incoming solar radiations.

It depends on the transparency of glass (colour) and degree of reflection. Ta-

ble 3.7 outlines the shading coefficient for various shading devices used in this

analysis.

Table 3.7: Shading coefficient of various blinds and curtains
Shading device Shading coefficient
Net curtain (fine) 0.76
White cotton curtain 0.54
Linen blinds (cream holland) 0.40
Blackout blinds 0.05-0.10

The acoustic restrictions have been included in internal conditions applied

to the thermal model assessments. These includes number of hours during
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which ventilation panels will be required to remain open in living spaces. The

following criteria are considered for acoustic requirements.

• The opening of windows should be avoided between 11 pm and 7 am.

• The bedroom windows can remain open during the day to provide tem-

perature control.

• The opening of windows in living areas during the day should be limited

to short periods of time.

3.3.3.1 Iteration 1

The first iteration for over-heating assessment uses parameters outlined above

and assumes no shading devices in thermal model. Moreover, the glazing’s

g-value used in the thermal simulation is given in Table 3.8.

Table 3.8: Iteration 1 glazing and shading parameters
Parameter Value
Glazing g value 0.40
Blinds None

The results in Figure 3.10 show that 15% of rooms in the selected floors

fail Criteria 1 & 2 for over-heating assessment. This due to high effect of

incident solar radiations on windows and curtain wall (external wall) which

increases the indoor temperature of rooms. The curtain wall are external walls

made of large metal-framed sheets of glass and commonly used by architects to

create modern outlook. The next iteration assumes the installation of internal

shading devices such as, curtains and linen roller blinds.

3.3.3.2 Iteration 2

This iteration uses same parameters as in Iteration 1 and white curtains are

modelled as shading devices. Their parameters are outlined in Table 3.9.
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Figure 3.10: Figure show results from TM-52 Iteration 1. The zones shown in red
illustrate rooms found to overheat on all levels throughout the selected floors.

Table 3.9: Iteration 2 glazing and shading parameters
Parameter Value
Glazing g value 0.40

Blinds
Lightweight white curtains in
all living spaces and bedrooms
Shading coefficient = 0.54

Figure 3.11: Figure show results from TM-52 Iteration 2. The zone shown in red
illustrate rooms found to overheat on Floor 14, 49.

The results in Figure 3.11 show that the installation of shading devices

improves the results and only 2 rooms (1.5%) of rooms in selected floors are

unable to demonstrate thermal comfort with over-heating assessment. The
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worst performing space during summer is ‘3 Bed living room’ on floor 49 which

fails to achieve compliance with both Criteria 1 & 2. This is due to high internal

gains from the equipment and incoming incident solar radiations. The in-depth

analysis in Figures 3.12 and 3.13 shows that the operative temperature in 3

Bed living room on Floor 49 rises during unoccupied hours. This is due to

equipment gains which results in mildly uncomfortable conditions between

18:00 -21:00 hours during month of August.

Figure 3.12: Figure shows the peak operative comfort temperature (oC) result in
the failing zone (3 Bed living room on Floor 49) from TM-52 Iteration 2.

Figure 3.13: Figure shows the operative comfort temperature (oC) result in the
failing zone (3 Bed living room on Floor 49) throughout the year from TM-52 Iter-
ation 2.

The thermal comfort can be achieved by providing mechanical cooling to

these two failed rooms, however the next iteration considers another type of
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shading devices and provides an option for mitigating the need for mechanical

cooling for all apartments.

3.3.3.3 Iteration 3

This iteration assumes same parameters as in Iteration 2 and linen blinds are

used as a shading devices with parameter outlined in Table 3.10.

Table 3.10: Iteration 3 glazing and shading parameters
Parameter Value
Glazing g value 0.40

Blinds
linen blinds (cream holland) in
all living spaces and bedrooms
Shading coefficient = 0.40

The results show the thermal comfort is achieved for TM-52 overheating

assessment and it is recommended to use linen blinds (cream holland) or shad-

ing devices with similar shading coefficient to reduce the effect of incoming

solar radiations and mitigating risk of over-heating.

3.3.4 TM-59 thermal comfort assessment - domestic

buildings

As discussed earlier, the TM-59 over-heating assessment methodology

restricts the user to implement pre-set internal gain profiles (occupancy,

equipment and lighting) and CIBSE future Design Summer Year (DSY)

weather data files. The air temperature profile used in this assessment is

provided in Figure 3.9 and the mandatory internal gain profiles from TM-59

are given in Figure 3.14.

Moreover, in TM-59, blinds and shading devices can be used only, if specif-

ically included in the design and are not obstructive to the natural ventilation.
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Figure 3.14: Heat gains and thermal environmental conditions for human occu-
pancy taken from TM-59 methodology and based on CIBSE Guide A. A full break
down of these gains with descriptions can be found in the TM-59 over-heating as-
sessment guide.

The curtain wall and external glazing are part of fixed façade with no open-

ing capabilities. Hence, blinds and other shading devices are not obtrusive

to natural ventilation required to achieve compliance with TM-59 overheating

assessment. The natural ventilation is provided with louvers in each room

which are controlled separately and only open, once the internal dry bulb

temperature is above 22oC and the room is occupied.

3.3.4.1 Iteration 4

This iteration uses same parameters as in Iteration 3 but with additional

mandatory parameters of TM-59 methodology given in Table 3.11. The glazing

g-value and other parameters used in this iteration is given in Table 3.8.

Table 3.11: Iteration 4 glazing and shading parameters
Parameter Value
Glazing g value 0.40

Blinds
Linen blinds in
all living spaces and bedrooms
Shading coefficient = 0.40

The results in Figure 3.15 show that 93% of rooms in selected floors are un-

able to demonstrate thermal comfort with over-heating assessment and failure

of all Criteria is evident in most rooms on each floor. These unexpected results
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Figure 3.15: Figure show results from TM-59 Iteration 4. The zones shown in red
illustrate rooms which are found to overheat in selected floors.

compared to TM-52 iteration 3 can be explained by the mandatory internal

gain profiles (occupancy, equipment and lighting) in TM-59 methodology.

This issue can be resolved by either using shading devices with lower shad-

ing coefficient or installing mechanical cooling during summers. Alternatively,

the glazing with lower g-value can be used which will reflect back the incom-

ing incident solar radiations. However, this might not be the most optimum

solution as the building may require more heating during winters and might

not comply with Part L SAP regulations. Therefore, a sweet-spot needs to be

determined for g-value. The next iteration assumes using blinds with lower

shading coefficient (black out blinds) and reduced glazing g-value.

3.3.4.2 Iteration 5

This iteration uses all parameters as in Iteration 4 and glazing g-value is re-

duced along with shading devices with lower shading coefficient. These pa-

rameters are outlined in Table 3.12.



Chapter 3. Thermal modelling of the buildings 77

Table 3.12: Iteration 5 glazing and shading parameters
Parameter Value
Glazing g value 0.35

Blinds
Blackout blinds in
all living spaces and bedrooms
Shading coefficient = 0.05

Figure 3.16: Figure show results from TM-59 Iteration 5. The zones shown in red
illustrate rooms which are found to overheat on floors 49.

The results in Figure 3.16 show that only 0.77% of rooms in the selected

floors are unable to achieve thermal comfort with over-heating assessment. The

only failed room is 3 bed apartment’s living room on Floor 49, which is the

same room failed over-heating assessment in several iteration. As mentioned

earlier, this room experiences high internal gains from the equipment and fails

to achieve compliance with both Criteria 1 & 2. It is recommended that this

room should be installed with mechanical cooling during summer season, rather

than applying alternate solutions on the entire building (such as improving g-

values). The Table 3.13 enlists number of hours during which ventilation panels

are expected to remain open for natural ventilation.
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Table 3.13: Acoustic analysis for the building
Louvre Average hours / day Percentage time - windows

during summer open during summer
Occupied spaces 4.33 18%
Bedrooms Only 7.20 30%

3.4 Case study - non domestic building ther-

mal analysis

The second case study considers a stadium as a non-domestic building for

thermal performance and compliance analysis in IES-VE software. This sta-

dium is currently under construction in North-West of the UK. The IES-VE

(Integrated Environmental Solutions Virtual Environment) software contains

several applications that are all linked together with a single interface for the

simulation. The software contains module for building geometry, solar radia-

tions analysis, thermal modelling analysis, daylight analysis, heating, ventila-

tion and air conditioning (HVAC) systems analysis.

The entire building is modelled in IES-VE software and dynamic thermal

simulation is performed for the Part-L building regulations compliance analy-

sis. The software provides flexibility to run compliance analysis using SBEM

or dynamic thermal simulations and uses BRUKL software for carbon emis-

sions calculations. The thermal modelling calculations for building regulation

compliance are like a black box, but an innovative model has been developed

in Python to calculate the amount of PV generation (power and area) required

to demonstrate compliance for any project. This model along with results are

discussed below.
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Figure 3.17: The left figure presents the aerial view of the non-domestic building
(stadium) considered as a case study, and the right figure presents wind rose graph
from the Manchester climate file recommended by CIBSE.

3.4.1 Part L compliance assessment

The IES-VE software creates three type of models for each building i.e. real,

actual and notional model. The real building model is created with geometry,

construction materials, operational parameters, set-points, occupancy profiles

and all other parameters given by the user for thermal simulations. The ac-

tual building model is based on real building model, but considers UK NCM

methodology parameters (operational parameters, set-points, internal gains

and ventilation rate) for thermal simulations. The user has the flexibility to

alter only few parameters in actual building model i.e. lighting, construction

materials, and auxiliary systems fan power. The software automatically gener-

ates the notional building model from the actual building model and it doesn’t

allow user to modify its properties. The notional building has the standard

default values for all parameters (construction materials, fabric, glazing area,

operational parameters, set-points, internal gains and ventilation rate). The

notional buildings model is used as a benchmark for carbon emissions against

actual building model and calculations from the BRUKL calculator. The build-

ing passes the Part-L compliance regulations only if the carbon emissions from
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the actual building are lower or equal than the carbon emissions of the notional

building (target carbon emissions).

First the building is modelled using its construction properties and build-

ing service equipment parameters such as, geometry, orientation, construction

materials, insulation, HVAC and domestic hot water systems (Non-Domestic

Building Regulations 2013). Then, the internal gain profiles (lighting, people

and equipment), ventilation rates, heating and cooling set-points are set as

per building/room usage, and parameters given in NCM guidelines, CIBSE

Part-F and CIBSE Part A (National Calculation Methodology 2013). Finally,

the dynamic thermal simulation is performed using recommended weather files

provided by CIBSE, which leads to carbon emission calculation. The building

fabric thermal resistance (U-values) used in the thermal model are given in

Table.3.14.

Table 3.14: Building parameters for thermal performance simulation in IES-VE
software

Component Units Value
Building Fabric U-values

External wall W/m2K 0.15
Ground floor and exposed floor W/m2K 0.22
Roof W/m2K 0.18
General glazing W/m2K 1.5
Glazing Properties

Light transmission 0.6
G-value 0.3
Air Permeability and Thermal Bridge Properties

Air permeability 10
Thermal bridge 10% of U-value

A model has been developed in Python programming language, which

first performs thermal simulation, runs Part-L compliance and then analyses

the carbon emission from both actual and notional building. If the building

emissions rating (BER) is greater than target emissions rating (TER), then it
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Figure 3.18: Figure represents the methodology of developed Python based PV
generation model for calculating required amount of PV power generation in IES-VE
software.

calculates the PV generation required for getting under compliance regulations

and net-zero carbon emissions. The Part-L allows the use of renewable energy

sources to reduce the building carbon emissions. The calculation methodology

of the Python based model is shown in Figure 3.18.

The developed model provides the possibility to investigate the energy,

power and carbon emission time-series as well as the breakdown of carbon
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Table 3.15: The solar panel parameters used in simulation
Properties Value PV types Value
Area 1–15000 Degradation factor 0.990
Azimuth 180.0 Electrical conversion efficiency 0.949
Shading factor 1.0 Module nominal efficiency 0.174
Inclination 15.0 Normal Operating Cell Temperature 45.0
Type of model Parametric panel Reflected irradiance 1000
Technology Monocrystalline Silicon Temperature coefficient 0.0040

emissions by end use for both actual and notional buildings. It also calculates

the minimum PV area required to demonstrate compliance and ultimately, net

zero emissions. In addition, this provides flexibility to change or adjust PV

solar cell parameters given in Table 3.15.

Figure 3.19: Sankey diagram illustrates energy from source to consumption in
thermal performance of simulated non-domestic building.

The above generated model is applied to the non-domestic building and

the data shows that the current building emissions (BER) are higher than the
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Figure 3.20: The barplot shows comparison of carbon emission between the actual
building carbon emissions (BER) and notional building carbon emissions (TER).

target building emissions (TER), and the PV solar generation of 260 MWh is

required in order to demonstrate Building Regulation Part L compliance. This

reduces the building emissions (BER) and the building passes compliance re-

quirements with BER being 2.57% lower than the TER. Moreover, the share of

domestic hot water and auxiliary energy in the actual building (BER) is higher

than the notional building (TER) and the share of carbon emissions from the

HVAC system’s auxiliary energy is highest among other emissions. This is

due to the hot water circulation heat-losses and high energy consumption of

the HVAC’s fan system. It is very common issue in non-domestic buildings

and mostly compensated by PV solar generation or other renewable energy

sources. These results are further shown in Figure 3.20.

Figure 3.21: The figures shows breakdown of carbon emissions by end use among
the actual building carbon emissions (BER) and the notional building carbon emis-
sions (TER), and the reduction in carbon emission required with renewable energy
generation to demonstrate building regulation compliance

The Figure 3.21 demonstrates the breakdown of carbon emissions by end

use and shows the renewable energy generation and reduction of carbon emis-
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sions required to achieve compliance. The results further explain that the

260 MWh of PV solar generation can be achieved with the solar panel array

of 2000 m2 to demonstrate Part L compliance and this will remove around

110,000 kgCO2/m2 of carbon emission from the atmosphere. These results are

further shown below in Figure 3.22 and the breakdown of seasonal monthly

solar (PV) electricity generation is shown in Figure 3.23.

Figure 3.22: Results from the Python based developed model in IES-VE software.
The left figure represents the relation between carbon emissions and PV area. The
right figure represents the corresponding amount of PV generation. These figures
show that PV solar generation of 260 MWh is required in order to demonstrate Part
L compliance, and generation of 2326 MWh is required in order to achieve net-zero
emissions for the non-domestic building being used as a case-study.

Figure 3.23: The left figure represents the seasonal monthly electricity generation
by the 2000 m2 of PV solar panel required to demonstrate Part L compliance.
The right figure quantities the relation between carbon emissions to the increase in
renewable energy generation from PV panels. It represents the amount of carbon
emissions which needs to be mitigated for the performance beyond target carbon
emissions.

3.4.2 Net-zero carbon emissions assessment

As the government is committed to climate change targets, the developed

model is extended to quantify the improvement where non-domestic building

will achieve net-zero emissions. The aim in this section is to calculate the
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minimum amount of solar (PV) generation required to achieve net-zero carbon

emissions. This will highlight the significance of an energy efficient and low

carbon building design.

As shown in Figures 3.22 and 3.23, the renewable energy generation of

2326 MWh is required in order to achieve net-zero emissions for the non-

domestic building used as a case-study. This will offset almost 11 million

kgCO2/m2 of carbon emissions to make it net-zero emission building (NZEB).

This can be demonstrated with the PV solar panel array of almost 15000 m2.

These calculations assumes that mono-crystalline silicon solar cells with an

inclination of 15o facing south direction and parameters given in Table 3.15.

The Python model provides flexibility to change any of these parameters. The

Figure 3.24 shows the breakdown of end use carbon emissions for a net-zero

emission building (NZEB).

Figure 3.24: The figures shows breakdown of carbon emissions by end use among
the actual building carbon emissions (BER) and the notional building carbon emis-
sions (TER), and the reduction in carbon emission required with renewable energy
generation to achieve net-zero emissions

3.4.3 TM-52 thermal comfort assessment - non domes-

tic buildings

In this section, the TM-52 thermal comfort assessment has been performed

for non-domestic buildings using IES-VE dynamic thermal modelling software

which is in-agreement with CIBSE AM-11. The CIBSE TM-52 suggests using

Predicted Mean Vote (PMV) to assess the risk of over-heating in conditioned
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space connected with HVAC (Heating, ventilation, and air conditioning) sys-

tem which is usually in the case of non-domestic buildings.

The Predicted Mean Vote (PMV) is a thermal scale originally developed

by Fanger in 1970’s which predicts the thermal comfort (experienced by occu-

pants) within the scale of Cold (-3) to Hot (+3). It considers air temperature,

mean radiant temperature, air velocity, relative humidity, occupant’s activity

and clothing insulation. The CIBSE Guide A recommends using Predicted

Mean Vote (PMV) to assess the annual thermal comfort and should be main-

tained above -0.5 in winters and below +0.5 in summers, which is similar to

the PMV range given in ASHRAE 55. The PMV values with corresponding

comfort bands are given in Table 3.16.

Table 3.16: Predicted Mean Vote (PMV) standard comfort bands.
PMV Value Corresponding sensation
-3 Cold
-2 Cool
-1 Slightly cool
0 Neutral
1 Slightly warm
2 Warm
3 Hot

The IES-VE software provides PMV for over-heating analysis and pro-

vides capability to use Python for detailed analysis. Therefore, a Python

based model has been used for the detailed analysis which provides result for

the recommended air velocity to achieve thermal comfort with over-heating

assessment. This Python model looks at all occupied spaces and runs CIBSE

TM-52 thermal comfort analysis method to determine whether those spaces

show a risk of overheating. In addition, an air movement velocity is calculated

for spaces which fail this assessment to indicate where movement of air could
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help meet passing requirements. The method used for comfortable tempera-

ture estimation is from the standard BS:EN-15251.

(a) Operative air temperature time-series throughout the year

(b) Heatmap of comfort temperature (c) Heatmap of PMV
Figure 3.25: Results from TM-52 risk of over-heating assessment for the office at
ground floor in non-domestic building. These results are from the Python model
developed in IES-VE software. As per TM-52 guidelines, the over-heating criteria
are assessed between 9:00–17:00 hours during summers (May–September).

The occupied spaces in the non-domestic building are assessed against

the temperature set-points given in Table 1.5 of the CIBSE Guide A and a

high level of internal occupancy and equipment gains are assumed. There-

fore, providing accurate thermal comfort during the worst possible condition

is necessary. The steady state simulation is used to calculate the maximum

heating and cooling loads in order to size heating, cooling and ventilation sys-

tem. The dynamic thermal simulation provides hourly results for the in-depth

analysis through out the year. Hence, the HVAC system (air delivery) is sized

using steady state simulation and considering the supply of pre-conditioned

cooled air at design flow rates and temperatures determined by the set-point
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(a) Operative air temperature time-series throughout the year

(b) Heatmap of comfort temperature (c) Heatmap of PMV
Figure 3.26: Results from TM-52 risk of over-heating assessment for the office
second floor in non-domestic building. These results are from the Python model
developed in IES-VE software. As per TM-52 guidelines, the over-heating criteria
are assessed between 9:00–17:00 hours during summers (May–September).

of between 16oC–26oC. The supply air volume is varied according to the inter-

nal room temperature and CO2 concentration. The clothing level is assumed

for the summer and outdoor activities (clo=1) and the activity level is taken

as ‘seated at rest’ for the offices and restaurants, and ‘sedentary work and

standing’ for the changing rooms and kitchen.

The results in Figures 3.25, 3.26 show that overall 85% (81/95) of the

spaces in non-domestic building have passed TM-52 risk of over-heating as-

sessment, where 83% (79/95) meet criterion I, 92% (87/95) and 85% (81/95)

pass criterion 2 and 3, respectively. It is found that all important spaces attain

the thermal comfort, except the toilets and few offices on the ground and sec-

ond floor. This suggests that it is due to the low air ventilation (fresh incoming

air velocity). The restaurants on each floor are observed to pass the TM-52
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criteria and the PMV value observed by the occupants remains in the range

between (-0.8–+0.8). On the other hand, offices on the second floor fail almost

all criteria and minimum of 0.72m/s incoming fresh air velocity is required to

overcome the risk of over-heating during the summer season (May–September).

3.5 Discussion and recommendations
The building regulations Part L1A and L1B apply on domestic buildings for

the conservation of fuel and energy. The energy consumption for newly built

domestic buildings is estimated using SAP software and for existing domestic

buildings it is estimated using RdSAP software. In-spite of common per-

ception, the SAP and RdSAP does not calculates the energy efficiency of a

building but provides the cost-effective performance of a building by estimat-

ing the relative cost of energy. It is due to fact that both SAP and RdSAP

are based on the BREDEM model, which does not consider several important

parameters for calculations such as, occupancy behaviour, variations in inter-

nal gains, room air temperature, weather data and energy prices and forecasts.

Therefore, it leads to the incorrect economic results for the energy efficiency

and carbon emission calculations. This inherent flaw of SAP and RdSAP ef-

fects the underlying EPC estimates and forecasting of end-use energy savings.

Hence, this presents with large variations between the estimated and actual

energy performance of the domestic buildings and limits the application of en-

ergy efficiency techniques. This difference between the estimated energy and

actual energy consumption of the buildings is also known as the performance

gap.

The SAP and BREDEM methodology is outdated as it has never been

validated for low energy buildings. Moreover, there is also profound need for
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experimentation and validation on newly built houses to accurately measure

the impact of energy efficiency measures. Since, a handful of newly built

houses have failed to demonstrate minimum criteria for the compliance. The

government has plans to update and introduce the latest version of SAP10 by

2020, which might overcome some of the limitations of current SAP2012.

While, looking at the building regulations Part L2A and L2B for the non-

domestic building, the dynamic simulation modelling is well developed and

robust compared to SBEM and BREDEM methodology. The NCM method-

ology is more detailed and apply strict limitations on the building services

system. This leads to better energy performance outcome compared to the

SAP and RdSAP. But, NCM methodology has few limitations for the design-

ers, for example it always assumes the supply of hot water to toilets and in few

scenarios leads to the pretty higher and unrealistic share of hot water demand.

Moreover, there are no templates for certain building usage such as car-parks

and needs to be modelled as a buffer space to demonstrate compliance.

Furthermore, the TM-52 over-heating assessment for thermal comfort is

very well written standard with significant applications. However, there are

certain things which needs to be added into it. It should be necessary for the

designers to provide the hourly operative temperature comfort analysis to the

owner. Moreover, the TM-52 standard must be extended to calculate the risk

of over-heating for the entire year, instead of during the summer season i.e.

May to September only.

In addition, the performance gap should be considered seriously and TM-

54 (Evaluating Operational Energy Performance of Buildings at the Design

Stage) should be integrated into the building regulations Part L in the UK.
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Similarly, the Leadership in Energy and Environmental Design (LEED) for the

buildings green certification in the US receives same recommendation regard-

ing the estimated building energy performance and carbon emissions, and the

need for liable testing and validation was proposed in the study conducted by

Wedding and Brown (Wedding & Crawford-Brown 2007, 2008). The buildings

should be made with the aim of design to perform instead for the sake to

demonstrate building regulations compliance. The Australian buildings regu-

lation NABERS (National Australian Built Environment Rating System) is a

plausible example of how future buildings should be designed and regulated.

In conclusion, the building regulation methodologies are central to the

UK government policy for estimation and improvement of the building stock.

Though, SBEM, BREDEM, SAP and RdSAP are currently used methodolo-

gies, there is considerable performance gap which needs to be addressed to

meet energy efficiency and future climate change targets.

3.6 Summary
In this chapter, the relationship between the building regulations and ther-

mal performance of domestic and non-domestic buildings has been discussed

along with significant contributions regarding the improvement of building

regulations in the UK. Firstly, the energy performance of an existing domestic

building has been studied before and after retrofit. The results show that the

energy consumption reduces by almost 50% after the retrofit and the risk of

over-heating is determined by the type of glazing being selected. Moreover,

a non-domestic building, yet newly built is considered and a novel Python

model has been implemented to analyse energy efficiency using dynamic sim-

ulations. The Python model quantifies the building carbon emissions (BER)
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and calculates the renewable energy generation required to demonstrate build-

ing regulations compliance and ultimately net-zero emissions. Consequently,

it is concluded that with current building regulations in the UK, which forms

the basis for a building design, it is unlikely to achieve the target of net-zero

emission buildings (NZEB) in existing domestic and newly built non-domestic

buildings by the year 2050.



Chapter 4

Hydraulic modelling of the

district heating network

Overview

This chapter discusses the design and operation of an energy efficient LTDH

network and uses a real LTDH network (REMOURBAN project) as a case

study. Firstly, the monitored data from the space heating systems of existing

boiler based buildings is used to investigate hydraulic imbalance. Then, a novel

hydraulic model developed in Python programming language is implemented

to explore four different control scenarios in order to identify the optimum

pumping strategy with least amount of pumping power, energy consumption

and heat-losses in the low temperature district heating (LTDH) network. Sec-

ondly, the analysis is extended to the physical component based modelling

using Dymola programming language, where the energy efficient operation of

the network is discussed with optimum design flow-rates parameters, pump

control strategies and integration of multiple heat sources in the network. Fi-

nally, the results are validated using monitored data from the REMOURBAN
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project and recommendations for the energy efficient design and operation of

the LTDH network have been made.

4.1 Project description
The LTDH has evolved to be the most energy efficient district heating tech-

nology and its design and operation requires careful consideration. The high

return water temperature in Nottingham district heating network shows suffi-

cient capacity for a secondary LTDH network intervention to the nearby areas

using return pipe of the network, rather than extending the existing high tem-

perature district heating network and discussed in Section 2.3.1.

This secondary LTDH intervention for 94 flat consumers is first of it’s kind

in the UK to utilise return water pipe of the district heating network. This

will provide a gateway to Nottingham in efficiency improvement and extension

of existing district heating network. It is anticipated that lowering supply

water temperatures will further reduce energy losses in the network by almost

75% compared to the existing district heating networks. The overall aim is to

reduce energy losses and evaluate hydraulic performance of this LTDH network

(60/30) with integration of multiple heat sources.

In this study, a real time LTDH network (REMOURBAN project) has

been used as a case-study and the design and operation of this LTDH network

has been investigated for 94 flats in four blocks i.e. Byron, Keswick, Haywood

and Morley court. The solution for improving its energy efficiency have been

discussed in two parts. The first part explores the effect of supply water tem-

peratures with variations in flow-rates and optimum pumping strategy from

the plant room. This analysis for the optimum pumping strategy is performed

on the Byron court (31 out of 94 flats). Then, the second part uses Dymola
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software and investigates energy efficiency of the network with various design

flow-rates parameters, pump control strategies and integration of multiple heat

sources in the network.

4.2 Python programming based model
The methodology for Python programming based hydraulic model is divided

into two section namely, heat demand modelling and hydraulic modelling.

The heat demand for each flat is calculated in IDA-ICE software using real

monitored weather data for Nottingham. Then, the hydraulic modelling is per-

formed using a mathematical hydraulic model developed in Python program-

ming language which provides flexibility to integrate several thermal models

in the analysis. This methodology is shown graphically in Figure 4.1.

4.2.1 Heat demand modelling of the buildings

The heat demand is calculated using dynamic thermal modelling in IDA-ICE

4.6.2 software. This software is a powerful design tool and commonly used

to optimise building’s energy usage and thermal comfort of occupants. This

is performed by creating a model of the proposed building considering its

geometry, geographical location, orientation and weather data, building fabric

properties, building services such as heating, cooling and equipment gains, and

building usage (heating and cooling set-points) and occupancy profiles. Then,

the model is simulated with results as mentioned in Section 3.3.

4.2.2 Hydraulic modelling of the LTDH network

The developed hydraulic model takes into account a number of assumptions

in order to minimise the computation processing time without compromising

accuracy. These include; a) the medium (water) is in-compressible, b) no
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Figure 4.1: The methodology of the hydraulic model developed in Python pro-
gramming language

leakage from the pipes and c) the district heating pipes (supply and return)

are symmetrical.

The first step in Python based model is to calculate the flow velocity (v)

and flow-rate (q) in each pipe at the design supply (Ts) and return (Tr) water

temperature across the district heating network. This is done by first taking

the heat demand (Q) calculated earlier in Section 4.2.1. The specific heat of

water (Cp) and density (ρ) decreases with the increase in water temperature

and are calculated using Equations (4.2, 4.3). This leads us to accurately

calculate the mass-flow rate (m) using Equation (4.4).

Q=mCp(Ts−Tr) (4.1)
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Cp = 4209.1− (132.8∗10−2 ∗Twater) + (143.2∗10−4 ∗T 2
water) (4.2)

ρ= 1000.6− (0.0128∗T 1.76
water) (4.3)

m= Q

Cp(Ts−Tr)
(4.4)

where, the relation between flow-velocity (v) and mass-flow rate (m) with area

(A) is given as,

m= ρ.A.v (4.5)

v = m

ρ.π4 .d
2 (4.6)

The diameter (d) of pipes is taken from the project documents and the

Equation (4.6) is used to calculate flow-velocity with the constraint to limit

the maximum allowable flow-velocity of less than or equal to 2 m/s, as per

recommendations from the design standards (CIBSE Jul 2015). Similarly, the

relation between volumetric flow-rate or simply flow-rate (q) and flow-velocity

(v) is

q = A.v (4.7)
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q = π

4d
2.v (4.8)

The Equation (4.8) is used to calculate the flow-rate (q) in pipes. In dis-

trict heating network the flow of water is limited to the design values with

control valves. The flow-rate across the control valve for the given flow regu-

lation capacity (Kv) and differential pressure across the valve (∆ P) is given

by

q =Kv

√
∆P (4.9)

Pressure-loss calculation

The pressure-loss in pipes depends on the friction factor, flow-rate, diameter

and length of each pipe. The friction factor (f) is further influenced by the

dimensionless Reynold’s number of flow (Re), flow-rate (q), kinematic viscos-

ity (ν), dynamic viscosity (µ), and roughness of inner pipe surface (e) (Çen-

gel 2007). The district heating pipes are commonly made of steel with the

roughness of 0.05mm and the friction factor (f) is calculated using following

equations from the principles of fluid dynamics.

ν = µ

ρ
(4.10)

Re = 4.q
π.d.ν

(4.11)

if Re is ≤ 2000 then,

f = 64
Re

(4.12)
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otherwise, the f is calculated using Swamee-Jain Equation (Çengel et al.

2012),

f = 0.25[
log e/D3.7 + 5.74

Re0.9

]2 (4.13)

the head-loss (∆hf ) and pressure-loss (∆P ) in pipes is estimated by Darcy

equation as,

∆hf = f.l.v2

2.g.d = 8.f.l.q2

π2.d5.g
(4.14)

∆P = ρ.g.∆hf (4.15)

Pumping power and energy consumption calculation

The shaft pumping power (Pa) and electricity consumption (E) in the district

heating network are estimated using following equations,

Pa = ∆P.q = ρ.g.∆hf .q
η

(4.16)

E = S ∗Pa
ηm

(4.17)

where, S is the security factor assumed as 1.1, g is the gravitational constant, η

and ηm are the efficiency of pump (0.85) and electric motor (0.70), respectively.

Thermal resistance and heat-loss calculation

The district heating pipes experience thermal resistance which impacts the

outlet water temperature and heat-losses in the network. Its calculation is
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important in low temperature heating systems as the supply temperatures are

already at the threshold to fulfill consumers demand. The thermal resistance

relies upon composition material of pipes and temperature difference between

the ground surface and water inside the pipes.

The thermal resistance model implemented in this analysis, calculates

heat-losses of each pipe in network by taking into account the effect of in-

dividual components in pipes. It ignores the resistance of steel pipe mantle

due to its insignificant effect, but considers the resistance from insulation (Ri)

and ground surface (Rg) with respect to the thermal conductivity of their

composition materials (Palsson 1997). The model also takes into account the

effect of thermal resistance (Rh) due to heat transfer between the supply and

return temperature pipes of the district heating network. These thermal re-

sistances have been modelled in the Python based developed model and the

mathematical expressions to define them are,

Ri = 1
2πλi

∗ ln

Dm

Do

 (4.18)

λi = 0.0196734 + 0.000080747303∗Twater (4.19)

where, λi is the thermal conductivity for insulation PEX foam and determined

by temperature, wetness levels and aging of the insulation (Lund & Moham-

madi 2016). Its value varies between 0.024 - 0.026 W/moC and is calculated

using expression given in Equation (4.19) to consider variations in water tem-

perature, and validated from experimental results (Gabrielaitiene et al. 2010).
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Rg = 1
2πλg

∗ ln
( 2H
Dm

+
√( 2H

Dm

)2
−1

)
(4.20)

H = Sd+ 0.0685∗λg (4.21)

The Sd is the depth of pipe from the surface soil level, λg is the thermal

conductivity of ground and assumed constant. H is the effective burial depth

and the resistance due to convective and radiation heat transfer between the

air and ground surface (Palsson 1997, Bøhm 2010).

Rh = 1
2πλg

∗ ln
(√(2H

Sc

)2
+ 1

)
(4.22)

Sc = Lc+Dm (4.23)

The Lc is distance between the supply and return water pipe, Dm is the

pipe diameter. Several other thermal resistances between different elements

inside the pipe are modelled using following equations from the principles of

fluid dynamics (Palsson 1997). These include water-insulation (Rwi), ground-

surroundings (Rgu) and insulation-ground (Rig) as shown in Figure 4.2).

Rwi = 1
2πλi

∗ ln

1 + Dm
Do

2

 (4.24)

Rgu = 1
2πλg

∗ ln
( 4H
Dm+Dg

+

√√√√( 4H
Dm+Dg

)2
−1

)
(4.25)

Rig =Ri+Rg−Rwi−Rgu (4.26)
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Figure 4.2: Cross section of a pair of supply are return district heating pipes buried
in ground (Palsson 1997).

The scaling factor (θ) is then calculated using above thermal resistances

to find the true steady state heat-loss (Palsson 1997).

γsupply = ∆Tr
∆Ts

= Trp−Tu
Tsp−Tu

(4.27)

γreturn = ∆Ts
∆Tr

= Tsp−Tu
Trp−Tu

(4.28)

θ = (Ri+Rg)
(Ri+Rg)−γRh
(Ri+Rg)2−R2

h

(4.29)

The Tu is the soil temperature and the factor γsupply for supply pipe, is the

proportion of temperature difference between the return and the supply water.

Similarly, γreturn for the return pipes, is the opposite of γsupply. Moreover, the

total heat transmission resistance (Rtotal) and overall heat transfer coefficient

(U) are computed by adding all thermal resistances between different elements

of the pipe
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Rtotal =Rwi+Rgu+Rig (4.30)

U = 1
Rtotal

θ (4.31)

Finally, the distribution heat-loss (Qloss) and outlet water temperature

(Toutlet) per pipe calculated from thermal resistance model is given by,

Qloss =
8760∑
t

U ∗ l ∗ (Tsupply−Tu) (4.32)

Toutlet = (Tinlet−Tu)exp−
U.L

Cp.m +Tu (4.33)

where, the outlet water temperature (Toutlet) is inlet water temperature (Tinlet)

for the next pipe in the network and depends on the soil temperature (Tu),

mass flow-rate (m) and heat-loss from the pipe. Equation (4.33) is adapted

from the (Liu et al. 2016) and explains that, the outlet temperature is directly

proportional to the mass flow-rate and indirectly proportional to the length as

well as the overall heat transfer coefficient of pipe.

4.3 Monitored space-heating - data analysis

The existing boiler based heating systems in the UK operates at constant

flow-rate and the hydraulic balance is achieved by controlling supply water

temperature with heat consumption variations. This strategy maintains the

hydraulic balance, but reduces the delta t (∆t) and system’s energy efficiency.

In the REMOURBAN project, there has been no changes in the previously

installed space-heating system inside the flats, but only gas-boilers are replaced
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Table 4.1: List of radiators installed in a flat from REOMRBAN project (Ashfaq
& Ianakiev 2018b).
No. Room Radiator size Radiator type Power

output (W)
1 Hallway 1100 x 600 Single panel, single convector 1,100
2 Lounge 1600 x 600 Double panel, double convector 2,845
3 Bathroom 500 x 600 Double panel, double convector 889
4 Kitchen 400 x 600 Double panel, double convector 711
5 Bedroom - 1 1400 x 600 Single panel, single convector 1,400
6 Bedroom - 2 1000 x 600 Single panel, single convector 1,000
7 Bedroom - 3 400 x 600 Double panel, double convector 711

with the heat interface units (HIU) which is connected to the district heating

network. Therefore, the space-heating system data (heat demand, supply and

return water temperature data) is monitored from one of the flat to understand

thermal comfort and current operation of system before the implementation of

LTDH. The schematic illustration of space-heating system loop inside the flat

is shown in Figure 4.3 and the detailed description of the installed hydronic

radiators is given in Table 4.1.

Figure 4.3: Schematic of the space-heating system loop inside the flat from RE-
MORBAN project. The space-heating system is double string system with ther-
mostatic radiator valves (TRVs) installed on plate radiators (Ashfaq & Ianakiev
2018b).

The existing flat contains individual gas-boiler where the room temper-

ature is maintained by TRVs installed on radiators. The monitored supply

and return water temperature data has been plotted against the outdoor air

temperature as shown in Figure 4.4. It is observed that the supply water tem-
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Figure 4.4: Hourly monitored supply and return water temperature data of space-
heating system from an existing boiler based building. The scatter plot depicts the
relationship between network temperatures and outdoor air temperature. The best
line of fit for the hourly monitored supply and return water temperature depicts
negative correlation between the water temperature and outside air temperature
(Ashfaq & Ianakiev 2018b).

perature decreases rapidly with increase in outside temperature compared to

the return water temperature. The ∆t of space-heating system is highest when

the outside temperature is 0oC and lowest around 23oC, respectively. How-

ever, the average ∆t throughout the year remains around 11 oC. The best line

of fit for the hourly monitored supply and return water temperature depicts

negative correlation between the water temperature and outside air temper-

ature. This methodology for the hydraulic imbalance evaluation is adapted

from Zhang et al. (Zhang et al. 2016) and the results are in agreement with

these findings.

It is concluded that in order to maintain high ∆t, the regulation of re-

turn water temperature with respect to outside temperature is more important

compared to the supply water temperature. Moreover, the variations in return
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water temperature compared to supply water temperature, at the same out-

door temperature, is due to the hydraulic imbalance in space-heating system.

This hydraulic imbalance issue can be explained due to the over-sizing of room

radiators and other control equipment inside the building. It is commonly as-

sumed that the installation of TRVs on radiators automatically regulates the

flow-rate with respect to indoor temperature and improves the ∆t, but the

hourly monitored space-heating system data suggests that it is not the case

and the ∆t still remains relatively low.

Figure 4.5: The network layout of low temperature district heating network from
REMOURBAN Project in Nottingham, UK (Ashfaq & Ianakiev 2018b).

4.4 Results and analysis

4.4.1 Hydraulic modelling using Python

Initially, one of the buiding (Byron court) consisting of 31 flats is selected

for modelling and all parameters are taken from the REMOURBAN project.

The schematic of building network is shown in Figure 4.5. The hydraulic

model from Section 4.2 is used for four different scenarios to evaluate the most

appropriate pumping strategy. The scenarios 1 and 2 assumes constant flow-

rate, whereas scenarios 3 and 4 are with variable flow-rate. The flow-rates,
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pumping power, energy consumption and heat-losses are compared among all

scenarios and the optimum scenario is concluded.

4.4.1.1 Scenario 1 and 3 - constant supply water temperature

The scenarios 1 and 3 assume constant supply water temperature of 60oC from

the plant room. The flow-rates are kept constant in scenario 1 and variable in

scenario 3 using variable speed pumps.

The results show that variable flow-rates in scenario 3 reduces energy

consumption of the LTDH network compared to the scenario 1 by 63% (from

964 KWh to 360 KWh). This reduction suggests that variable speed pump

increases energy efficiency of the network during partial heat consumption.

Similarly, the head-loss at each flat in scenario 3 is comparatively lower than

in scenario 1. The comparison between energy consumption and head-loss

among different operational scenarios is shown in Figures 4.6, 4.7, 4.8 and

elaborated in Table 4.2.

While comparing heat-losses it is found that in scenario 3, the heat-losses

in LTDH network decreases from 62% to 47%. This reduction by almost 14%

shows the heat-losses have strong dependence on the supply water temperature

than flow-rate variations. On the other hand, the flow-rate and pumping power

are comparatively higher in summer. This is due to low ∆t and shown in Figure

4.9.

4.4.1.2 Scenario 2 and 4 - variable supply water temperature

The scenarios 2 and 4 consider situation where the supply water temperature

varies with respect to outdoor air temperature from the plant room. The flow-

rates are constant in scenario 2 and variable in scenario 4 using variable speed

pumps and weather compensation control valves in the LTDH network.
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Figure 4.6: Head-loss comparison to each flat in different operational scenarios
(Ashfaq & Ianakiev 2018b).

Figure 4.7: Figure represents the maximum and minimum flow-rate restricted to
each flat in the LTDH network (Ashfaq & Ianakiev 2018b).

Table 4.2: Comparison between different operational scenarios for the LTDH net-
work (Ashfaq & Ianakiev 2018b).

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Flow-rate constant constant variable variable
Supply water temperature constant variable constant variable
Maximum flow-rate 5.34 5.87 5.31 11.71
from plant room (m3/hr)
Minimum flow-rate 5.34 5.87 0.82 0.05
from plant room (m3/hr)
Heat-loss from district 14.86 9.34 14.85 9.34
heating pipes (MWh)
Maximum pumping power (KW) 70 92.68 68.82 734.07
Energy consumption (KWh) 964 1261 360 1189
Heat-losses in 62.25% 9.6% 47.66% 11.13%
LTDH network (MWh)

The results show that variation in supply water temperature increases

the energy consumption of the network. The energy consumption increases to

1261 KWh in scenario 2 and 1189 KWh in scenario 4. This increase in energy
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Figure 4.8: Comparison of results between different operational scenarios. First
row represents maximum flow-rate from the plant room and heat-loss from district
heating pipes in the ground during heat transmission. The second row represents
pumping power and energy consumption of the LTDH network(Ashfaq & Ianakiev
2018b).

consumption can be explained by the increase in required flow-rates due to

the variations in supply water temperature from the plant room. Similarly,

the flow-rates and head-loss in scenario 2 and 4 are higher compared to the

scenarios with constant supply temperature. These energy consumption and

head-loss results are shown in Figures 4.6, 4.8 and elaborated in Table 4.2.

It is observed that the heat-loss from district heating pipes in both sce-

narios reduces by 37%. Though, the flow-rate and pumping power are com-

paratively higher in scenario 4, the heat-loss in scenario 4 is even lower than

scenario 3. These results are shown in Figures 4.9 and 4.10. It is concluded

that reducing supply water temperature is more effective compared to flow-

rate variations for reduction in heat-losses in the LTDH network. The overall

heat-losses in LTDH network in scenarios 2 and 4 are reduced to just 9% and
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11%, respectively. These heat-losses are minimal compared to other scenarios.

These results along with comparison are further elaborated in Table 4.2.

Figure 4.9: Comparison of pumping power and flow-rates between different oper-
ational scenarios for the LTDH network. Left figure compares result for scenarios 1
and 3, whereas right figure compares result for scenarios 2 and 4 (Ashfaq & Ianakiev
2018b).

Figure 4.10: Comparison between the operational scenario 3 and 4. First and
second row represents hourly flow-rate and pumping power from the plant room,
whereas the third row represents hourly heat-loss from district heating pipes in the
ground during heat transmission (Ashfaq & Ianakiev 2018b).

4.4.2 Hydraulic modelling using Dymola

The results from previous Section 4.4.1 provide basis for the pumping strategy

to be implemented in the low temperature district heating network. The anal-

ysis is further extended on the entire LTDH network of 94 flats (four blocks
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shown in Figure 2.4, 4.11) and the detailed physical component based thermo-

hydraulic model is developed in Dymola software version 2019. The Dymola

(DYnamic MOdelling LAboratory) is a user interface and uses Modelica lan-

guage compiler owned and maintained by Dassault Systemes. The Modelica

programming language itself is an open source language. In this analysis, the

licensed HVAC library (for Heating Ventilation and Air Conditioning) is used

to investigate the effect of different parameters on the energy efficiency of the

network. To this end, all flats in the LTDH network are simulated for differ-

ent set of parameters and for the sake of convenience the term iteration will

be used in rest of the chapter. The baseline iteration refers to the existing

network and used as a benchmark for comparing against other iterations.

Figure 4.11: Aerial view of 94 flats from the REMOURBAN project site

The entire LTDH network is divided into several modules where each

module represents a separate building in the network i.e. main plant room,

Byron court, Keswick court, Haywood court and Morley court. The LTDH

network modules modelled in Dymola are shown in Figures 4.12, 4.13, 4.14.

The actual LTDH network uses heat from the return pipe of existing district

heating network (primary network) as a heat source to the secondary LTDH

network from the heat-exchanger and shown in Figure 2.4. For the sake of
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simplicity, the heat source of this secondary LTDH network is assumed as gas-

boiler in the simulations. In the plant room, a control loop is also modelled

on the circulation pump which switches it off once the outside air temperature

becomes equal or greater than 14oC. The plant room also contains a thermal

heat storage and assumes the direction of inside flow as counterflow. This

increases the heat transfer inside thermal heat storage.

Figure 4.12: LTDH network model in Dymola split into several separate modules

The LTDH network contains three types of flats i.e one bedroom, two

bedroom and three bedroom. Each building has different topology among

Byron, Keswick, Haywood and Morley courts. Therefore, each building is

modelled separately depending on the type and location of each flat, pipe sizes

and parameters (such as, construction, heat demand profiles, heat-losses and

internal gains). The model of different flats along with the internal gain profile

considered in simulations is shown in Figure 4.14.
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Figure 4.13: Modules for Byron, Keswick, Haywood and Morley court of the RE-
MOURBAN LTDH modelled in Dymola software. Where, green boxes represent
three bedroom flat, yellow boxes represents two bedroom flat and blue boxes repre-
sent one bedroom flat. The red box shows the integration of outside weather data
for heat demand estimation of the each flat.

The simulation uses exact parameters from the REMOURBAN project

(also given in Appendix) and weather data (outside air temperature, solar

radiations, relative humidity and soil temperature) as discussed in Section

3.3.1. These simulations replicate the operation of existing district heating

network and are performed at hourly intervals for the month of highest heat

demand i.e. January. This provides a meaningful comparison among different

iterations.
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Figure 4.14: Sub-modules showing one, two and three bedroom flats along with
their respective internal gains modelled in Dymola software.

4.4.2.1 Baseline iteration

The baseline iteration is the representation of existing low temperature district

heating network. The network is simulated with its default parameters to

understand the operation, energy consumption and heat losses of the network.
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Figure 4.15: Results from the baseline iteration simulation depicting the perfor-
mance of existing REMOURBAN LTDH network

The simulation in Figure 4.15 shows that the network has huge amount of

energy demand and the network’s supply water temperature degradation is not

an issue. Due to the transmission heat-losses, the temperature of supply water

decreases to 58oC once it reaches to the Byron court and remains consistent

for all the buildings, even for the Morley court which is the furthest building in

the network. Moreover, there are significant heat losses in the plant room, es-

pecially, from the circulation pump and thermal heat storage. The circulation

pump is designed to operate at reasonably high flow-rate and responsible for

the high water temperature inside the thermal heat storage. It works as buffer

in the network and the water temperature varies between 50 – 60oC between

upper/middle and lower sections of the thermal heat storage.

The comparison between supply and return water temperature for differ-

ent buildings in the network and indoor air temperatures of flats is shown in

Figure 4.16. This variation in return water temperature in the network and
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Figure 4.16: Results from baseline model simulation. Comparison between supply
and return water temperature for different buildings in the network and indoor air
temperature in flats

indoor air temperature can be explained due to the heat demand profiles of

different flats.
Table 4.3: Overview of flow-rates and other parameters in baseline model of LTDH
network
Location Pipe size Pipe length Flow-rate Serving

(mm) (m) (kg/s)
Main plant room 90 71 5.14 Entire network
Byron court under-croft 90 5 1.45 31 flats
Keswick court under-croft 75 56.5 0.65 14 flats
Haywood court under-croft 75 22 1.36 29 flats
Morley court under-croft 76 63 1.68 20 flats
Circulation pump - - 4.08 Plant room

The simulation results show that the ∆t is very low (2oC) in the network

and the return water temperature is 49.11oC in the plant room. This high

return water temperature can be explained due to the high flow-rates in the

network. The flow-rates considered in LTDH network simulations for different

buildings are given in Table 4.3.

The simulation predicts that the overall CO2 emissions for the month of

January are around 37,513 kg. The energy statistic results in Figure 4.17 shows

that the share of electricity utilised for pumping the pressurised hot water in

the network is 31% (21,607 KWh) and the gas used as a fuel for heat generation
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Figure 4.17: Energy statistics results from baseline low temperature district heat-
ing network modelled in Dymola software depicting the performance of existing
network

through the boiler is 69% (174,243 KWh) in the total energy consumption. The

network generates approximately 151,347 KWh and consumes 145,561 KWh of

heat. This difference of approximately 5,900 KWh between the generated and

consumed heat in the network reflects the high amount of heat being wasted

in the district heating network.

4.4.2.2 Iteration 1

The Iteration 1 is the optimisation of existing low temperature district heat-

ing network. The flow-rates in the network are reduced and the operation

and energy consumption of the network is investigated. A PID (proportional

integral derivative) controllers based feedback loop is also implemented to reg-

ulate mass flow-rate of the circulation pump with respect to the return water

temperature of the network.

The simulation results in Figure 4.18 shows that the ∆t of network in-

creases to the designed parameters and the operational energy demand de-



Chapter 4. Hydraulic modelling of the district heating network 118

Figure 4.18: Results from the Iteration 1 simulation depicting the performance of
optimised LTDH network

Table 4.4: Overview of flow-rates and other parameters in Iteration 1 of LTDH
network
Location Pipe size Pipe length Flow-rate Serving

(mm) (m) (kg/s)
Main plant room 90 71 2.4 Entire network
Byron court under-croft 90 5 0.8 31 flats
Keswick court under-croft 75 56.5 0.36 14 flats
Haywood court under-croft 75 22 0.75 29 flats
Morley court under-croft 76 63 0.49 20 flats
Circulation pump - - 3.08 Plant room

creases significantly. In comparison to the baseline model, this decrease in

energy demand and return water temperature is attributed to the reduction in

flow-rates in the network. These reduced flow-rates considered in the LTDH

network for different buildings are given in Table 4.4.

The temperature of supply water degrades slightly and it enters the net-

work at around 56oC which remains consistent for all the buildings. Moreover,

the return water temperature is reduced to 29oC in the plant room. This is

due to the installation of PID controller which regulates flow-rate of the cir-
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culation pump and maintains water temperature in the thermal heat storage.

The upper section of thermal heat storage has the water temperature of 50oC

and drops in the lowest sections having temperature of 10oC. The comparison

between supply and return water temperature for different buildings in the

network and indoor air temperature in flats is shown in Figure 4.19.

Figure 4.19: Results from iteration 1 simulation. Comparison between supply
and return water temperature for different buildings in the network and indoor air
temperature in flats

Figure 4.20: Energy statistics results from iteration 1 low temperature district
heating network modelled in Dymola software with optimum parameters.

The simulation predicts that the overall CO2 emissions are reduced to

around 24,124 kg for the month of January. The energy statistics results in
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Figure 4.20 show that the percentage share of electricity and gas remains at

31% and 69%, but in comparison to the baseline model, the total energy con-

sumption is reduced to just 13,820 KWh and 112,157 KWh, respectively. The

district heating network generates approximately 98,789 KWh and consumes

95,908 KWh of heat. The difference between the generation and consumption

is reduced to around approximately 2,881 KWh.

4.4.2.3 Iteration 2

The iteration 2 investigates operation of the network with integration of solar

thermal power plant as a heat-source. The flow-rate of inlet water to the solar

thermal plant is controlled using a sophisticated control loop, which regulates

the pump’s speed with respect to the outlet temperature and the water tem-

perature inside thermal heat storage. The solar thermal plant uses water with

47% propylene glycol as a working medium and transfers the heat into the

thermal heat storage with one heating coil and shown in Figure 4.21.

The simulation results show that the ∆t of the network remains very

low even with the optimisation of flow-rates. The maximum achievable outlet

temperature from the solar thermal plant is 9oC and owing to the distribu-

tion heat-losses in thermal heat storage the supply water temperature in the

network is limited to 8.86oC. Moreover, the average return water temperature

in the network is calculated as 8.60oC. The comparison between supply and

return water temperature for different buildings in the network and indoor air

temperature in flats is shown in Figure 4.22.

In comparison to the baseline model, the heat from solar thermal plants is

not enough to fulfill the space heat demand and not feasible to use as a main

heat source especially during winter months (January). The solar thermal
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Figure 4.21: Results from the Iteration 2 simulation depicting the network’s per-
formance with integration of solar thermal power plant as a heat-source to the LTDH
network

Figure 4.22: Results from iteration 2 simulation. Comparison between supply
and return water temperature for different buildings in the network and indoor air
temperature in flats

plants operate at low flow-rates and therefore can be used as a secondary heat

source for underfloor heating purposes.

The simulation predicts the overall CO2 emissions are reduced to just

5,460 kg, but at the expense of limited amount of heat generation. The energy

statistics results in Figure 4.23 shows that the percentage share of electricity
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Figure 4.23: Energy statistics results from iteration 2 low temperature district
heating network modelled in Dymola software with integration of solar thermal
power plant.

is 100% and the network consumes approximately 21,535 KWh of electricity

and 1,134 KWh of heat for the month of January.

4.4.2.4 Iteration 3

The iteration 3 investigates the optimised LTDH network (from iteration 1)

with the integration of solar thermal power plant. In other words, it evaluates

the operation and energy consumption once both iteration 1 and iteration 2

networks are combined together. This provides an opportunity to analyse a

multi-vector network supplied with heat from multiple energy sources.

The simulation results in Figure 4.24 shows that the network uses thermal

heat storage with two heating coils as the network uses two mediums i.e (in-

compressible water and water with 47% propylene glycol in the solar thermal

plant thermal plant). The solar thermal plant preheats the return water from

the network before feeding it into the boiler. The network also contains two

separate control loops to regulate the return water temperature in the network,
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Figure 4.24: Results from the Iteration 3 simulation depicting performance of
optimised LTDH network (from iteration 1) with the integration of solar thermal
power plant

i.e. a PID (proportional integral derivative) based feedback controller on the

circulation pump before the boiler and the pumping speed control loop on the

solar thermal plant.

It is observed in Figure 4.24 that even the output water temperature from

the boiler and solar thermal plant is around 65oC and 30.26oC, the supply wa-

ter temperature decreases to 50oC. This is due to the transmission heat losses

in thermal heat storage and LTDH network. The ∆t of network is maintained

to designed parameters using a PID controller (similar to iteration 1). This

regulates the heat output from the boiler with respect to the return water

temperature. The comparison between supply and return water temperature

for different buildings in the network and indoor air temperature in flats as

shown in Figure 4.25.

The simulation predicts the overall CO2 emissions are increased to 35,946
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Figure 4.25: Results from iteration 3 simulation. Comparison between supply
and return water temperature for different buildings in the network and indoor air
temperature in flats

Figure 4.26: Energy statistics results from iteration 3 low temperature district
heating network modelled in Dymola software.

kg for the month of January. The energy statistics results in Figure 4.26 show

that the percentage share of electricity and gas is increased to 33% and 67%,

and the electricity and heat consumed by the network is approximately 13,820

KWh and 112,157 KWh, respectively.

4.4.2.5 Iteration 4

The iteration 4 is another configuration of iteration 3 where the solar thermal

plant pre-heats the water inside the thermal heat storage, before feeding it
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into the gas-boiler which is directly connected to the LTDH network. The

parameters in iteration 4 are same as in iteration 3, and evaluates the energy

consumption with reliable heat source connected directly to the network.

Figure 4.27: Results from the Iteration 4 simulation, where the solar thermal
plant pre-heats the water inside the thermal heat storage, before feeding it into the
gas-boiler directly connected to the LTDH network.

The simulation results in Figure 4.27 show that the solar thermal plant

pre-heats the supply water and increases its temperature to 31.35oC. This is

then heated in boiler for upto 60oC and then feed to the LTDH network, where

its temperature degrades to 56oC outside the Byron court due to transmission

heat-losses. The ∆t of network remains inline with the designed parameters as

the return water temperature of network is maintained from the PID controller.

The comparison between supply and return water temperature for different

buildings in the network and indoor air temperature in flats is shown in Figure

4.28.

The simulation predicts the overall CO2 emissions are increased to 36,004
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Figure 4.28: Results from iteration 4 simulation. Comparison between supply
and return water temperature for different buildings in the network and indoor air
temperature in flats

Figure 4.29: Energy statistics results from iteration 4 low temperature district
heating network modelled in Dymola software.

kg for the month of January. The energy statistics results in Figure 4.29 show

that the percentage share of electricity and gas remains at 30% and 70%, and

the electricity and heat consumed by the network is approximately 19,582

KWh and 145,259 KWh, respectively.
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4.4.3 Validation of results using real monitored data

The validation of developed LTDH model is necessary for the credibility of

simulation results. Therefore, the hourly monitored data for the month of

January is obtained from the REMOURBAN LTDH network project. The

data is from 4th to 28th January and used for the model validation. It should

be noted that this project is still operational in the testing phase and several

parameters are changing on daily basis. Thus, acquiring meaningful and con-

sistent hourly monitored data has been a real challenge. Moreover, a few flats

from the Byron court had not been connected during this time.

A boxplot is a statistical method for data representation and informs

whether the data is symmetrical, grouped, skewed or contains outliers. The

data distribution is based on five parameters; minimum, first quartile (Q1),

median, third quartile (Q3), and maximum and shown in Figure 4.30.

Figure 4.30: Graphical representation of the boxplot.

In Remourban project several meters are installed both in the network

and inside the flats. Since the aim is to perform validation and operation of

LTDH network, therefore the data from meters installed only in the network

is used (i.e. main plant room, Byron, Keswick, Haywood and Morley courts).

The Figure 4.31 shows the box plot for comparison of different parameters in

the monitored from the REMOURBAN LTDH network.

On analysing the monitored data in Figure 4.31, it is evident that the

supply water temperature remains relatively similar for different meters in the
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Figure 4.31: Boxplot representing comparison of different parameters in the mon-
itored from the REMOURBAN LTDH network

Figure 4.32: Boxplot representing days of the week comparison in monitored data
from the main plant room

network compared to the return water temperature which varies throughout

the network. The median of supply and return water temperature is found

to be between 58-60oC and 52–56oC, respectively. Moreover, the return water

temperature data contains several outliers. While analysing the flow-rate and

power, it is observed that surprisingly the Haywood and Morley court receives

reasonably high flow-rate but less power is consumed. Specifically for the
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Morley court which receives water with high flow-rate and returns this to the

plant room through the bypass valve in the network. This explains that the

network needs to be balanced either by reducing flow-rate from the main plant

room or by optimising control valves installed in the network.

Figure 4.33: Boxplot representing days of the week comparison in monitored data
from Byron, Keswick, Haywood and Morley courts

The weekday analysis in Figure 4.32 shows that both supply and return

water temperature from the main plant room is found to remain constant

throughout the week except on Sunday, where the trend shows deviation.
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Likewise, the court data in Figure 4.33 shows similar trend and deviation

is prominent on Sunday.

Figure 4.34: Validation of the baseline model by comparison with monitored from
4th to 28th January. The left panel compares supply water temperature whereas the
right panel compares return water temperature.

The above monitored data is used for validation of the LTDH model simu-

lated in Dymola model. The Figure 4.34 plots the simulated supply and return

water temperature calculated from the baseline LTDH model developed in Dy-

mola with the hourly monitored data from the REMOURBAN project. It is

observed that both simulated supply and return water temperature matches

perfectly with the monitored data. There few mismatches in the simulated re-

turn water temperature of Keswick and Morley court which can be explained

due to the thermal performance of existing radiators installed inside the flats.

This validates the developed Dymola model and simulation results (discussed

in previous Section) as well as highlights the significance on flow-rates optimi-

sation for the energy efficienct operation of LTDH network.
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4.5 Discussion and recommendations

In the UK, the traditional district heating networks are designed to operate

on high supply water temperature with constant flow-rates. This common

practice impacts the energy efficiency due to high transmission heat-losses in

the network. However, increasing the delta t (∆t) and reducing return water

temperature improves the energy efficiency of the network.

The results from the first part of the hydraulic modelling analysis suggest

that the LTDH network should be designed with variable speed pumping,

and supply water temperature should be kept constant from the plant room.

This leads to the lowest energy consumption in the network as elaborated in

Section 4.4.1.1 (scenario 3). On the other hand, the constant speed pumping

is a predominant strategy for the district heating networks in the UK. The

heat-losses in the existing district heating network operating on constant flow-

rate can be reduced significantly once the weather compensation valves are

installed for the regulation of supply water temperatures according to the

outside temperature. Additionally, reduction in supply water temperature

enables the use of heat from renewable energy resources and other low-grade

waste heat sources.

The monitored supply and return water temperature data of an existing

boiler based space-heating system inside the flat suggests that their conver-

sion to LTDH is technically feasible as a supply temperature are already below

60oC. Owing to very high return temperature, these systems need to be hy-

draulically balanced first. This is because hydraulic imbalance in existing

boiler based space-heating systems causes enormous heat losses. The regula-

tion of return temperature is vital for achieving high ∆t and energy efficiency.
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This can be easily achieved by installation of TRVs on low temperature hy-

dronic radiators. The function of TRV’s is to control the flow through each

radiator with respect to the room temperature and make sure that it never

exceeds the maximum limit.

These results suggest that alongside the importance of flow-rates and pipe

sizing in the LTDH network, the focus should be given to the installation of

thermostatic radiator valves on radiators. In the case of high-rise buildings,

the TRVs alone are unable to maintain the hydraulic balance in existing space-

heating system in buildings. Therefore, either pressure independent thermo-

static radiator valves should be used or the pre-setting function of TRV’s on

radiator with balancing valves and differential pressure controller should be

employed (Zhang et al. 2016). The pre-setting function controls the amount

of water passing through the radiator.

This is a common perception that the entire heating network is prone to

a low ∆t. However, the monitored data shows that it is hydraulic imbalance

issue inside the buildings which leads to high return water temperatures in

the district heating network. The hydraulic imbalance impacts the ∆t and is

necessary to maintain high ∆t across the network. Its imbalance makes the

district heating networks to operate at high supply temperatures with high

flow-rates and large pumping capacities are needed in the network. This also

leads to lower efficiency, low ∆t, high return water temperature and uneven

distribution of heat in the district heating network. The district heating net-

work is hydraulically balanced when the flow-rate and the ∆t are in accordance

to the consumers demand (Boysen & Thorsen 2007).
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Radiator inlet water connection

The hydraulic imbalance and low delta t (∆t) issue inside the buildings can

also be attributed to the conventional radiator connection practice still be-

ing used. In the UK, the hydronic radiators are frequently connected in the

BBOE (bottom, bottom, opposite end) configuration as per the BS-3521 stan-

dard (BS EN 442-1 2014) which leads to high flow-rate and low delta t (∆t)

across the heating network. This standard provides guideline for the hydronic

radiator connections in the conventional heating network with high supply wa-

ter temperature. Though, the recent focus has been on the reduction supply

water temperatures and improving ∆t of the heating networks, the hydronic

radiators are still being installed in the same configuration.

Figure 4.35: Thermo-graphic images show comparison between different radia-
tor connections from the same building. Left figure show results for the radiator
connected with bottom, bottom, opposite end (BBOE) connection. Right figure
show results for the radiator connected with top, bottom, opposite end (TBOE)
configuration.

Therefore, two radiators with different connection configurations (BBOE

- bottom, bottom, opposite end and TBOE - top, bottom opposite end), from

the same building, have been taken as a case study. As shown in thermo-

graphic images in Figure 4.35 a considerable difference is observed in the ac-

tual operation of BBOE configuration radiator in the buildings compared to
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experimental results in (Calisir et al. 2017). In BBOE configuration, the bot-

tom end of radiator has higher temperature than the top and delta t (∆t)

across the radiator is found to be even less than 1%. The installation of TRVs

is found to be ineffective in this type of configuration, as it can not improve

delta t (∆t) across the radiator and operates like a shut on/off valve. This can

be understood due to high amount of scaling and fouling effect due to radiator

connections in BBOE configuration and causes most of the heat to be lost in

pipes or outside the building. On the other hand, when radiators are con-

nected in the TBOE configuration the delta t (∆ t) is found to be around 12.

These findings are similar to discussed in (McIntyre 1986, Ward 1991) and the

heat-losses are increased by almost 30% with radiators connected with BBOE

than the TBOE configuration.

Recommendations

The efficiency of LTDH heating networks depends on the correct design of net-

work parameters and optimisation of space heating systems inside the build-

ings. Once the heating network is imbalanced, it impacts the ∆t and energy

losses. The network operates at high supply temperatures with high flow-rates

and large pumping capacities. The network can also be hydraulic imbalance

because of the erroneous heat demand estimations, wrong flow-rates calcula-

tions, over-sized and unnecessary valves, pumps or even flow-limiters in the

main district heating network. It can also be due to lack of balancing, flow-

limiters and other flow control equipment (Boysen & Thorsen 2007). In sum-

mary, the heating network needs to be balanced for energy efficient operation

at design parameters.
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It is recommended that following measures will help in increasing efficiency

of the heating networks in the UK.

1. District heaing pipes must not be over-sized deliberately for reducing

flow-rate in the network. This is because it leads to higher heat-losses,

head-loss, pumping power and energy consumption.

2. Installation of TRV on hydronic radiators and pressure independent ther-

mostatic radiator valves (TRVs) in the case of high rise buildings.

3. Hydronic radiators installation in TBOE (top bottom opposite end) con-

figuration against the existing practice of BBOE (bottom bottom oppo-

site end) configuration.

Furthermore, the correct space heating demand estimation and guidelines

for the domestic hot water demand calculation needs to be updated in the UK.

If above discussed recommendations are implemented in the LTDH networks,

then considerable energy consumption savings along with positive environmen-

tal impact are expected to achieve.

4.6 Summary
The results from this chapter show that in order to maintain high delta t (∆t),

the regulation of return water temperature with respect to the outside temper-

ature is more important compared to the supply water temperature. Moreover,

the hydraulic modelling is performed in two parts, and the results from the first

part of LTDH modelling analysis suggest that the LTDH network should be

designed with variable speed pumping, and supply water temperature should

be kept constant from the plant room. This leads to the lowest energy con-

sumption in the network. On the other hand, the heat-losses in the the existing



Chapter 4. Hydraulic modelling of the district heating network 136

district heating networks, which predominantly operate at constant flow-rate

in the UK, can be reduced by installation of weather compensation valves

(regulation of supply water temperature according to the outside tempera-

ture). Furthermore, in the second part, the energy efficiency and ∆t from all

iterations are compared against the baseline model and the results show that

both energy efficiency and ∆t in iteration 1 is higher than the baseline model.

For all other iterations ∆t appears to be less than the baseline model. These

data suggests that the LTDH network in REMOURBAN project can be im-

proved by reducing flow-rates both in the network and circulation pump inside

the plant room (i.e. iteration 1).



Chapter 5

Cost minimised decarbonised

district heating network

Overview

In this chapter the cost minimised design of the de-carbonised district heat

network is discussed. The city of Aarhus, Denmark is taken as a case study,

where its hourly heat demand and heat generation cost data is used for the

analysis. The heat network is coupled to the fully renewable based electrical

grid and excess generation is used by the heat-pump and thermal heat storage.

The optimum solution is suggested for the entire network with least amount of

backup generation capacity, thermal heat storage capacity, natural gas boiler

capacity and levelised cost of energy. Finally, the economic feasibility for

the optimum network design is suggested and compared with the actual heat

generation costs for the existing fossil-fuel based district heat network. The

rationale behind using Aarhus district heating network instead of Nottingham

was due to the availability of high quality heat demand and cost time-series

data which was not available for Nottingham at that time. Additionally, the
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Aarhus has similar population as of Nottingham with 300,000 inhabitants and

it’s district heating network is considered as among five most energy efficient

and modern network in the world.

5.1 Background
With increased concerns of climate change and global trend to sustainability,

the focus has shifted towards mitigation of carbon emissions with low cost

energy systems and this has been the main subject of Paris (COP21) agree-

ment (IEA & IRENA 2017). Not long ago, the contribution of CO2 from US,

European Union (EU-28), China and India was reported around 61% of global

emissions (Olivier et al. 2015). In response to this, the EU is willing to take

initiative to control greenhouse gas emissions mainly with the transformation

of heating sector by the year 2050 (McKinsey et al. 2010). Moreover, several

other studies have also emphasised the de-carbonisation of heating sector in-

stead of electrical grid for achieving carbon neutral future (Lund et al. 2015,

2016), and a roadmap has been provided for obtaining energy efficiency in the

heating sector in the EU (Hansen et al. 2016).

To support this, few studies have identified the spatial distribution of heat

demand scattered around Europe. This has resulted into detailed analysis of

the district heating network and heat consumption by the buildings as well as

the availability of surplus heat resources in the EU countries (Persson et al.

2014, Möller & Nielsen 2014). Moreover, the future of district heating in

Europe is found promising (Connolly et al. 2014), and the potential savings

from using heat pumps for the conversion of excess energy into heat to feed

into district heating network has also been explored (Ashfaq et al. 2017).This

leads to a consideration that the future expansion of district heating networks
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is only economic feasible with the addition of waste heat sources (Grundahl

et al. 2016, Dominković et al. 2017). The geographical distribution of heat

demand in Denmark and renewable energy power generation time-series is

shown in Figure 5.1.

Figure 5.1: Figure (a) shows the heat demand distribution in the Denmark at
spatial resolution of 40 x 40 km2 for the year (2011). Figure (b) shows the renewable
energy time series for the city of Aarhus, Denmark. These results are adapted from
(Ashfaq & Ianakiev 2018a).

The existing district heating networks in Europe are mostly supplied by

the combined heat and power plants (CHP) and fuel based boilers. If these

have to be replaced then their holistic impact need to be addressed by taking

into account technical and economic aspects. There are studies on the decar-

bonisation of EU’s electrical grid using 100% renewable energy (Connolly et al.

2016, Rodríguez et al. 2014) and recommendations for the interconnection of

multiple energy sources to achieve least cost solution. (Mathiesen et al. 2015,

Thellufsen & Lund 2017, 2015). Though, the techno-economic feasibility for

the electrification of heating sector in US is studied by coupling both networks

together (electrical grid and heat networks) (Pensini et al. 2014), it needs to

be explored in the EU.
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Therefore, this chapter outlines the energy saving benefits with the syn-

ergy of both electrical and heating networks and addresses following questions:

• Is the integration of electric grid and heating sector technically and eco-

nomically feasible?

• How intra-day demand profiles effects the electrified district heating net-

work?

• Is a comparison between electrified and the existing district heating net-

work, with variation in renewable energy penetration (γ) and wind/solar

mix (αW ), cost-effective?

• What is the viability of heating network decarbonisation using electrifi-

cation?

5.2 Energy system modelling
This analysis considers a futuristic highly renewable energy-based network,

where the wind and solar (PV) generation are taken as renewable energy

sources and other sources are assumed as instantaneous backup power gen-

eration sources (conventional energy generation, hydro-electric storage lakes,

biomass). The modelling has been divided into two parts: technical modelling

and the economic modelling for the analysis. The modelling is graphically

represented from the flowchart in Figure 5.2.

5.2.1 Electrical grid modelling

The electrical grid is modelled as Direct Current (DC) grid with unconstrained

power sources from wind and solar (PV) power generation at hourly intervals

i.e.t. The transmission and distribution losses are not considered, which is
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Figure 5.2: The methodology of cost minimised design of a decarbonised district
heating network analysis
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an acceptable assumption and helpful to identify barriers in the DC electrical

grid. Therefore, 8 years (2000-2007) of Denmark’s renewable power generation

(wind and solar) and electrical demand data is obtained from the ISET data-

set (Bofinger et al. November, 2008). First, Aarhus electrical demand hourly

time-series is generated by scaling Denmark’s electrical demand time series to

match the annual electricity demand (1,603 GWh) given in (Rasmussen 2012).

Then, the hourly wind, solar (PV) generation and electrical demand time-

series are normalised to their average value, represented by symbol 〈.〉. This

methodology of electrical grid modelling is adapted from (Becker, Rodriguez,

Andresen, Schramm & Greiner 2014, Rodríguez et al. 2014, Schlachtberger

et al. 2016).

The wind/solar mix (αW ) determines the amount of wind and solar PV

generation (GW and GS) in the total power generation (G). The renewable

energy penetration factor (γ) defines the total renewable power generation

(wind and solar) to the electrical demand, where the (γ) value of 1 and 1.5

represents the renewable power generation is equal and 50% more than the

electrical demand, respectively. This modelling is shown by the equations

below:

G(t) =GW (t) +GS(t) (5.1)

αW =

〈
GW

〉
〈G〉

(5.2)

γ = 〈G〉
〈LE〉

(5.3)

G(t) = γ.〈LE〉 [αW .GW (t) + (1−αW )GS(t)] (5.4)
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The excess generation (P ex) and backup generation (B) is calculated from

the difference between power generation and electrical demand, known as the

electrical mismatch (∆E). The hourly excess generation and backup generation

time-series are computed from the amount of power generation greater than

the electricity demand and vice versa i.e. (|∆E |+ and |∆E |−).

∆E(t) =G(t)−LE(t) (5.5)

P ex(t) = |∆E(t)|+ (5.6)

B(t) = |∆E(t)|− (5.7)

In this modelling, the excess generation time-series is directly used by

the heat-pump for the heating and required backup storage capacity (KB)

is calculated from the average of backup storage time-series. This capacity

estimation method is adapted from the studies in (Becker, Frew, Andresen,

Zeyer, Schramm, Greiner & Jacobson 2014, Becker et al. 2015, Dahl 2015).

KB =
〈8760∑
t=1

B(t)
〉

(5.8)

5.2.2 Heat network modelling

The heat demand (LH) is comprised of space heating demand (Qsh) and do-

mestic hot water demand (Qdhw). The heat network is coupled with the electri-

cal grid and the excess electricity is used to fulfil the heat demand. Therefore,

the calculation of heat mismatch is vital to this research. The heat mismatch
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Figure 5.3: Figures compares the electrical load demand, heat demand and excess
renewable energy generation time-series for the city of Aarhus, Denmark. These
results are adapted from (Ashfaq & Ianakiev 2018a).

(∆H) is the difference between the heat demand (LH), and the product of

excess generation (P ex) with heat pump coefficient of performance (COP).

The hourly heat demand and generation cost time-series data (2011-2015) is

collected from the Aarhus Municipality and the annual figures of heat demand

are compared with those given in (Rasmussen 2012) for validation.

LH(t) =Qsh(t) +Qdhw(t) (5.9)

∆H(t) = P ex(t)∗COP−LH(t) (5.10)

Similar to Section 5.2.1, the excess heat energy and heat deficit energy in

the coupled network is calculated from the hours with positive heat mismatch

and negative heat mismatch (|∆H |+, |∆H |−), respectively. The thermal heat

storage (E) can be used to store this excess heat energy, and natural gas-boilers

(N) to cover the heat deficit energy

E(t) = |∆H(t)|+ (5.11)



Chapter 5. Cost minimised decarbonised district heating network 145

N(t) = |∆H(t)|− (5.12)

The 99% quantiles of the thermal heat storage energy time-series distribu-

tion p(E) is used to calculate the required thermal heat storage capacity (KE).

This is done to mitigate the effects of severe conditions. On the other hand,

the average of heat deficit energy time-series is used to calculate the required

natural gas-boiler capacity (KN ) . These required backup capacities depend

upon the share of wind and solar (PV) generation and the amount of renew-

able energy generation in the network. This method for capacity estimation is

used in studies (Rodriguez et al. 2015, Rodríguez et al. 2014).

q =
∫ E

0
p(E)dE (5.13)

KE = E99% (5.14)

KN =
〈8760∑
t=1

N(t)
〉

(5.15)

Heat-pump coupling

The heat pump is used for the conversion of excess renewable energy generation

into heat for the district heating network. The working principle of the heat-

pump based coupling is divided into three following steps as shown in the

Figure 5.4.

1. The excess renewable energy generation is converted into heat by the

heat pump and supplied to the district heating network with consumers.

2. In case of positive heat-mismatch, the excess amount of heat is stored into
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Figure 5.4: Process flow diagram of heat-pump based coupling

the centralised thermal heat storage and utilised by the district heating

network upon its need by the consumers.

3. Finally, the on-site natural gas-boilers are available for the consumers as

backup, when there is no thermal heat energy in the network.

The heat coupling assumes several efficiencies such as; heat pump with

COP of 3, thermal heat storage, district heating network and natural gas boiler

with the efficiency of 90%, 90% and 100%, respectively. These efficiencies have

been considered in different studies (Pensini et al. 2014), (Ashfaq et al. 2017)

The following figures compare the electrical load demand, heat demand

and excess renewable energy generation time-series for the city of Aarhus,

Denmark.

5.2.3 Coupled network analysis

The hourly analysis is vital for the optimum demand forecasting and operation

of the coupled energy network. Therefore, the heat demand, excess generation,

thermal heat storage energy and natural gas-boiler energy profiles are analysed

during the course of a day as well as throughout the year.

The daily heat demand profile is found to match people commute pattern,

which is highest at 9 hrs and gradually decrease afterwards with an average
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Figure 5.5: The left panels represents the hourly comparison between different
components of heat-pump based coupling assumed for the city of Aarhus. The
right panels represent the averaged profiles at each hour. The digit 0 in colour bar
depicts the 1st January and 365 depicts 31st December. These results are adapted
from (Ashfaq & Ianakiev 2018a).
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daily variation between 310–380 MWh. The excess renewable energy genera-

tion and thermal heat storage energy profiles show a completely different trend.

Both of these are minimum in the morning and rises quickly to the highest

level around the afternoon, and abruptly decrease to their lowest levels dur-

ing off-peak hours. This opposite behaviour provides the possibility of using

thermal heat storage energy for the heating purposes. The average daily vari-

ation of excess renewable energy and thermal heat storage has been observed

between 30–90 MWh and 220–470 MWh, respectively.

On the other hand, the natural gas-boiler energy profile shows similar

trend to the daily heat demand. It is highest in the morning, due to absence

of heat from the thermal heat storage and lowers in the afternoon with an

increase in off-peak hours. The natural gas-boiler shows the average daily

variation of 170–280 MWh. These profiles are shown are shown in Figure 5.5.

Furthermore, the time-series is analysed for the in-depth hourly investi-

gation of the heat coupling in the network. It is observed that the excess heat

is stored into thermal heat storage during summer season, and backup heat

from the natural gas-boiler is used throughout the year with maximum during

winter season.

Moreover, the natural gas boiler capacity reduces considerably by de-

signing thermal heat storage capacity at 99% quantile compared to the 90%.

In addition, the natural gas-boiler capacity reduces dramatically beyond the

renewable energy generation (γ) of 140% and wind/solar mix (αW ) of 0.6,

respectively as compared in Figure 5.6(c,d). These finding are in agreement

with some other studies ((Ashfaq et al. 2017), (Pensini et al. 2014).

The middle column in Figure 5.7 depicts scenario, when the renewable
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Figure 5.6: The left panels illustrates the capacity of thermal heat storage required
in the network, whereas the right panels illustrates the capacity of gas-boiler. These
results are adapted from (Ashfaq & Ianakiev 2018a).

energy penetration is equal to electrical load demand (γ=1). It is observed that

both backup generation capacity and thermal heat storage capacity reduces

with the increase in wind/solar mix and found to be minimum at αW = 0.8.

Whereas, the natural gas boiler capacity initially increases with wind/solar mix

and then starts decreasing after the wind/solar mix αW ≥ 0.6. The natural

gas boiler capacity is minimum at wind only mix (αW = 1). This behaviour

of capacities is similar to that observed by (Ashfaq et al. 2017).

Minimum backup and storage capacity

Three different scenarios are considered in order to find the minimum backup

and thermal heat storage capacity. It is found that the backup generation and

natural gas-boiler capacity depends on the renewable energy generation (γ),
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Figure 5.7: The required energy capacities for the decarbonised district heating
network for different levels of renewable energy generation. The first row illustrates
the capacity of gas-boiler and backup generation required in the network, whereas
the second row illustrates the capacity of thermal heat storage. The columns rep-
resents the renewable energy penetration factor (γ) i.e. scaling of the total renew-
able power generation (wind and solar) to the electrical demand. These results are
adapted from (Ashfaq & Ianakiev 2018a)

while thermal heat storage capacity depends on the wind/solar mix (αW ) in

the network.

It is observed that at (γ=1) in the middle column of Figure 5.7, both

backup energy and thermal heat storage capacity are minimum at wind/solar

mix of 0.8 whereas, the natural gas-boiler capacity is minimum at wind/solar

(αW = 1.0). The scenario with (γ=0.5) shows that both backup energy and

natural gas-boiler capacity are at maximum levels and the thermal heat storage

capacity is merely absent. On the other hand, at (γ=1.5) in the right column,

the backup generation and natural gas-boiler capacity reduces considerably
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due to increase in supply of heat from the thermal heat storage, and minimum

at wind/solar mix (αW=0.8).

Hence, in conclusion, the renewable energy penetration (γ ≥1.5) with

wind/solar mix (αW=0.8) is the most suitable option for the heat coupling

of the electrical grid with excess renewable energy. The detailed economic

modelling of the above three scenarios is described in the next section.

5.3 Economic modelling and analysis
The economic feasibility for the optimum configuration of renewable energy

generation with the wind/solar mix is determined using concept of levelised

cost of energy (LCOE). The LCOE is the net present value of the unit cost

from the energy generation technology over its lifetime. In comparison to other

economic feasibility methods, it is more robust and provides a holistic com-

parison between different technologies. (Rodriguez et al. 2015) used the same

method for the economic feasibility calculation of the pan-European electrical

grid.

There are two main categories of costs for any power generation tech-

nology. The initial capital investment (CapEx) costs and the operation and

maintenance (OpEx) costs. The CapEx cost is an initial investment of the

project whereas, OpEX costs are recurring monthly or annual costs during

the technology’s lifetime. The OpEx costs are further sub-divided into fixed

monthly or annual operation and maintenance expenses, and variable fuel ex-

penses.

The CapEx and OpEx costs considered for several renewable energy tech-

nologies have been adapted from the study on pan-European electrical grid

by (Rodriguez et al. 2015). Additionally, the costs for the heating network
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Table 5.1: Cost and other parameters assumed for different technologies for the
levelised cost of energy calculations. This table is adapted from (Ashfaq & Ianakiev
2018a).
Technologies CapEx OpEx Lifetime Transmission

Fixed Fixed Variable & distribution
[e/W] [e/KW/year] [e/MWh] [years] efficiency [%]

Wind turbines - 1.0 15.0 - 30 100
onshore
Solar photo- 1.5 8.5 - 30 100
voltaic (PV)
CCGT turbines 0.90 4.5 56 30 100
Heat pump 0.61 4.3 - 20 COP=3
Thermal heat 0.0027 0.03 - 35 90
storage
DH network - 2 - 30 90
Natural gas boiler 0.18 9.5 17.0 16 100

technologies have been taken from study on the United States by (Pensini

et al. 2014). The backup generation is provided using Combined Cycle Gas

Turbines (CCGT), and excess generation costs in the electrical grid is com-

puted from the excess amount of wind and solar PV power generation costs.

In calculations, the discount rate (r) is used as 4% and CapEx cost for the

district heating network is not included due the existing network is already

in-place at Aarhus, Denmark. The variable OpEx fossil fuel costs are assumed

to remain unchanged in next 30 years for the CCGT (56 e/MWh) and natu-

ral gas-boilers (17 e/MWh). Table 5.1 enlists the cost used in this study for

different technologies.

Coste/t = PowerMWh/t.Coste/MWh (5.16)

The costs for all technologies consider the net-present value (V ) of future

expenses by the capacities required to fulfill the energy demand. The following

equation computes net-present value (V) with the discount rate (r) of 4%.
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V = CapEx+
T∑
t=1

OpExt
(1 + r)t (5.17)

Velec = VGW +VGS +VB (5.18)

Vheat = VHP +VE +VDH +VN (5.19)

where, T denotes the lifetime of technology. Velec represents the net-present

value for the wind turbines-onshore (GW ), solar PV (GS) and CCGT turbines

(B). The Vheat represents the net-present value for the heat pump (HP),

thermal heat storage (E), district heating network (DH) and natural gas boiler

(N). Then, the LCOE is calculated as,

Vsys = Velec+Vheat (5.20)

LCOE = Vsys∑T
t=1

Lt+Ht
(1+r)t

(5.21)

The LCOE divides total energy generation expenses to the sum of total

energy demand during the lifespan of network (Rodriguez et al. 2015). In

Equation (5.21), the sum of discounted energy generation costs is divided by

the discounted future energy demand. It is important to note that the wind

and solar (PV) generation are two main power generation sources. Whereas,

the combined cycle gas turbines (CCGT), thermal heat storage and natural

gas-boilers are only for backup power and heat sources.
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5.3.1 Economic optimal network

The economic feasibility for both renewable based standalone (electrical and

heating) and coupled networks is calculated using LCOE from the Equa-

tion(5.21). The capacities and costs used for the analysis are taken from the

Section 5.2.3 and Table 5.1. First, the current heat generation cost from the

existing district heating network is discussed and then, the economically opti-

mum configuration for each network with the breakdown of costs is discussed

by considering three scenarios. Where, each scenario for different amount of

renewable energy generation (γ) is represented in separate columns, and net-

works are represented by rows. The first and second rows represents the fully

renewable energy based electrical grid and heating network with heat-coupling,

and the third row elaborates coupled networks (electrical and heating).

The analysis of heat generation cost for the existing district heating net-

work shows that the heat demand for the city of Aarhus is 2.9 TWh which is

5% of the Denmark’s heat demand. This heat is generated with an average

of 40 e/MWh per hour and approximately 2.2 million e worth of heat can

be supplied from the thermal heat storage with the installation of heat-pump

based coupling. These results are shown in Figure 5.8.

The LCOE results show that when renewable energy generation (γ=1)

is equal to the electrical load demand, then the cost for the fully renewable

based electrical grid, district heating network and coupled networks varies

between 120 - 170, 28 – 35 and 65 - 80 e/MWh, respectively. The results

further confirm that the energy costs are decreased to 45 e/MWh for the

coupled network, as compared to the existing district heating network costs

of 40 e/MWh alone. The LCOE for each network decreases with increase in
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Figure 5.8: Figure (a) illustrates the hourly heat-production costs in Aarhus dis-
trict heating network and Figure (b) illustrates the cost of heat savings with the
implemenation of heat pump based coupling. These results are adapted from (Ash-
faq & Ianakiev 2018a)

wind power generation, and minimum at wind power generation of 85% and

solar power generation of 15%.

Furthermore, when renewable energy penetration (gamma >= 1.5), then

the cost for the fully renewable based electrical grid, district heating network

and coupled networks varies between 180 - 260, 18 - 28 and 45 – 65 e/MWh,

respectively. This increase is due to increase in renewable energy generation

costs at heat-pump costs in the network. The LCOE is minimum at wind

power generation of 80% and solar power generation of 20%. Finally, the last

scenario, when renewable energy penetration (γ ≤ 0.5) then, the increase in the

cost of backup generation and natural gas-boiler is observed, and the LCOE

is minimum at wind power generation of 100%. The breakdown of LCOE cost

is shown in Figure 5.9.

In conclusion, the coupling of networks results into a minimum LCOE

cost and the optimum solution for the de-carbonised future heating network

can be achieved with renewable energy penetration (γ ≥ 1.5), and wind power

generation of 80% and solar power generation of 20%.

The above economic analysis would be more valuable with the inclusion of
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Figure 5.9: Levelised cost of energy for the decarbonised district heating network
for different levels of renewable energy generation. The first and second rows il-
lustrate the costs of different technologies in the decarbonised electrical grid and
district heating network. The third row illustrates the costs once both networks are
coupled together. The columns represents the renewable energy penetration factor
(γ) i.e. scaling of the total renewable power generation (wind and solar) to the
electrical demand. These results are adapted from (Ashfaq & Ianakiev 2018a).

sensitivity analysis. Therefore, the sensitivity analysis is explored to analyse

the effect of different parameters with variations in cost assumption. Then,

the LCOE of different technologies is studied with the increase in renewable

energy penetration (γ) and selling of excess generation.

5.3.2 Effect of cost-variations

This section considers six scenarios to analysis the LCOE with variations

in cost assumption for different technologies. As the focus is on the de-

carbonisation of the heating network therefore the cost assumptions for the
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Figure 5.10: Effect of cost-variations on levelised cost of energy for the decar-
bonised district heating network. Panel (a) represents LCOE from the initial cost
assumptions, Panels (b) and (c) represents LCOE with 50% reduction in costs as-
sumed for the electrical grid and district heating network, Panel (d) assumes once
both electrical grid and district heating network costs are reduced by 50%. Finally
panels (e) and (e) assumes once the cost are increased by 50% for the heat pumps
and natural gas boiler, respectively. The dark dot represents the optimum solution.
These results are adapted from (Ashfaq & Ianakiev 2018a).

heating network are varied in four scenarios and the optimum cost-minimum

solution is calculated from high-low scenarios in order to determine the opti-

mum renewable energy penetration (γ) and wind/solar mix (αW ). The capac-

ities, CapEX and OpEX expenses, and other assumptions are taken from the

Section.5.2.3 and Table 5.1.

The first scenario in Figure 5.10 is for the comparison and considers the

coupled network with cost assumptions given in Table 5.1 and the optimum

LCOE is 45 e/MWh. The second and third scenario in Figure 5.10(b),(c)

investigated the LCOE when cost assumptions are decreased by 50% for the
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electrical grid and heat network, and the optimum LCOE is reduced to 28

and 39 euro/MWh, respectively. It is observed that the decrease in heating

network cost assumptions increases the renewable energy generation (γ) for

the optimum LCOE.

The fourth scenario in Figure 5.10(d), is opposite to the third scenario

and investigated LCOE when cost assumptions are increased by 50% for the

electrical grid and heat network. The optimum LCOE is 41 e/MWh, but

the renewable energy generation (γ) is decreased to 0.8. The fifth and sixth

scenarios in Figure 5.10(e),(f) evaluates LCOE when cost assumptions for the

heat-pump and natural gas-boilers are increased by 50% in the heat network,

and the optimum LCOE is increase to 50 and 52 e/MWh, respectively. It

is observed that the increase in heat-pump cost assumptions has significant

impact on the renewable energy generation (γ = 0.8) for the optimum LCOE,

compared to the natural gas-boiler.

In summary, the renewable energy generation (γ) of the coupled network

depends on the cost assumed for the heat-pump and natural gas-boiler in the

heat network, and lowest LCOE is determined from the costs assumed for the

wind and solar(PV) power generation.

5.3.3 Effect of renewable energy penetration

This section investigates the impact of renewable energy penetration (γ) on

the LCOE for each component. It is observed that the LCOE for excess gen-

eration is greater than backup energy generation after the renewable energy

penetration (γ = 0.9). The excess generation costs increase sharply after re-

newable energy penetration (γ ≥ 0.6), and the wind and solar(PV) power

generation increases to the maximum of 45 e/MWh and 130 e/MWh, respec-
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tively. Moreover, the major share of costs in the coupled network is initially

from the backup energy and back-up heat generation, but once the renewable

energy penetration (γ) increases beyond 0.6, the cost of backup generation

and natural gas-boiler begins to decrease from 18 to 4 e/MWh and 60 to 5

e/MWh, respectively. The LCOE costs for the heat-pump increases from 2 to

26 e/MWh, and thermal heat storage and district heating network increases

to up to 2 e/MWh. These results are further shown in Figure 5.11.

In summary, the LCOE for the fully renewable energy based electrical

grid, heat network and coupled network with variations in renewable energy

generation is between 60 to 260, 18 to 34 and 45 to 80 e/MWh, respectively.

The LCOE in coupled network is reduced by 50%, and LCOE for heat-pump

is greater than the natural gas-boiler beyond the renewable energy penetration

(γ ≥1.3).

5.3.4 Effect of selling excess generation

Recently, there has been a great push towards the increase penetration of

renewable energy and using excess generation in the electric grid or de-

carbonisation of the heat network. Therefore, the effect on LCOE with selling

excess generation to the electrical grid (private wire) is discussed in this sec-

tion.

It is found that when the cost of supplying excess generation is zero,

then the LCOE of supplying excess generation in the coupled network is 45

e/MWh and the LCOE is minimum at renewable energy penetration (γ =

1) and wind and solar PV power generation of 85% and 15%, respectively.

However, when the cost of excess generation is increased to 54 e/MWh, then

the LCOE is 48.3 e/MWh whereas, the renewable energy penetration (γ =
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Figure 5.11: Effect of renewable energy generation to the LCOE of decarbonised
energy networks. First and second panels illustrates effects on the decarbonised
electrical grid and district heating network costs, and the third panel illustrates the
effect once both networks are coupled. These results are adapted from (Ashfaq &
Ianakiev 2018a).
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Figure 5.12: Effect of selling excess renewable energy generation of decarbonisa-
tion of district heating network. The left panel represents LCOE when the excess
generation is sold free. Middle and right panels represent LCOE once the excess
generation is sold at 54 and 108 e/MWh, respectively. The dark dot represents the
optimum solution. These results are adapted from (Ashfaq & Ianakiev 2018a).

0.7) is decreased. Moreover, when the excess generation is increased twice to

108 e/MWh, then the LCOE is 49 e/MWh whereas, the wind and solar(PV)

power generation are reduced to 80% and 20%, respectively. These results are

shown in Figure 5.12.

It is concluded that selling excess generation from the coupled network

does not have a strong effect on the LCOE, unless the renewable energy pen-

etration increases to twice the amount of current electrical load. This can be

vital for the de-carbonised fossil free future.

5.4 Discussion and conclusion

In this chapter, the real heat demand and heat generation cost data for the

city of Aarhus, Denmark is used to analyse the cost-minimised design for the
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decarbonisation of heat network. It adapts the idea of fully renewable pan-

European electricity grid from earlier study by (Rodriguez et al. 2015) and

incorporates heat network into it. Moreover, this methodology is quite robust

and has already been used in several studies including; calculation of optimum

wind and solar power generation (Heide et al. 2010, Andresen et al. 2014), the

battery storage in electrical grid (Rasmussen et al. 2012, Heide et al. 2011),

transition to pan-European renewable electrical grid (Becker, Rodriguez, An-

dresen, Schramm & Greiner 2014, Rodríguez et al. 2014, Dahl 2015), inter-

connected fully renewable based US electrical grid (Becker, Frew, Andresen,

Zeyer, Schramm, Greiner & Jacobson 2014, Becker et al. 2015) and backup en-

ergy storage flexibility in large-scale renewable systems (Schlachtberger et al.

2016).

The analysis for the optimum network explains that the heat demand

profile throughout the day is in agreement with people commuting to work

and designing thermal heat storage capacity to the 99% quantiles of the energy

usage time-series is beneficial in reducing the amount of capacities required in

the network. Moreover, the data described in Section 5.2.3 reveals that the

coupled networks (electrical grid and heating network) can be useful in avoiding

demand variations.

The economic feasibility analysis suggests that the renewable energy based

electrical grid, heat network and coupled networks are found to be minimum at

120, 35 and 45 e/MWh respectively. This further explains that the coupled

networks with the wind power generation (85%) and solar (PV) generation

(15%) have the LCOE of 45 e/MWh, in comparison to the heat generation

cost from the existing district heating network alone is 40 e/MWh. In-future,
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the costs for fully renewable energy based stand-alone electrical grid will be

increased beyond 260 e/MWh, which will limit the future renewable energy

penetration into the electrical grid. Therefore, the sector coupling of the elec-

trical and heat network is necessary, as the energy costs will be decreased by

around 50%.

There has been a considerable variation in cost assumptions in differ-

ent studies and makes the LCOE comparison slightly challenging. The costs

assumed in (Jacobson & Delucchi 2011) is approximately 50% lower than as-

sumptions in (Arup & Ltd 2011). Furthermore, the CapEx, OpEx expenses,

capacity factors and the technology lifetimes are different in studies, (EIA, U.S.

Energy Information Administration 2015, Steward et al. 2009, Schaber et al.

2012, Fürsch et al. 2010), respectively. Therefore, the CapEx and OpEX costs,

capacity factors and technology lifetime assumptions are taken from previous

studies and sensitivity analysis has been performed.

The sensitivity analysis results reveal the dependence of LCOE on the cost

assumed for wind and solar (PV) power generation. It is observed that the

reduction in wind and solar (PV) power generation costs directly impact the

optimum renewable energy penetration (γ). However, the renewable energy

penetration (γ) depends on the cost assumed for the heat-pump and natural

gas-boiler in the heat network. Furthermore, the LCOE for heat-pump is found

to be greater than natural gas-boiler beyond the renewable energy penetration

of 130%.

In summary, the carbon-neutral future with fully renewable based elec-

trical grid and heat network is achievable, but this will lead to fluctuations in

heat demand compared to the existing district heat network, unless demand
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side management, energy from waste and other sources is utilised. Finally, the

excess generation can be sold up to 108 e/MWh without significant impact

on LCOE of the coupled network, and the de-carbonised fossil free future is

possible. This can be instrumental towards economic viability of the fossil-free

future heat network.

5.5 Summary
This chapter provides an insight into the techno-economic analysis for the de-

carbonised district heat network and the results show that the futuristic fully

renewable powered electrical grid and heating network is not economically

feasible, unless both networks are coupled together which reduces the energy

costs by almost 50%. Additionally, the per unit decarbonisation cost depends

on wind and solar (PV) power generation cost. The amount of excess renewable

energy generation from the electrical grid is determined by per unit cost of

heat-pumps and backup energy technologies (thermal heat storage and natural

gas-boiler). Finally, the 100% decarbonisation of the district heat network is

possible but depends on usage of private wire (i.e. selling excess electricity

and heat to the private consumers).



Chapter 6

Machine learning and

forecasting

Overview

In this chapter, the aim is to investigate various forecasting and prediction

methods on the time-series data. The forecast error and accuracy of each

method is compared to determine the robustness and limitations of each

method. The performance of regression based supervised machine learning

methods have been compared against classical stochastic methods for time-

series forecasting.

6.1 Forecasting in district heating networks

The district heating is a network of heat generation source, hot water supply,

cold return transmission pipes and heat distribution equipment. The heat

generation source can be combined heat and power (CHP), heat pumps, heat

boilers, geothermal and solar thermal plants. In a traditional district heating

network, the heat is transferred to buildings with the circulation of supply hot
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water of 70-120oC and the return cold water is around 40-65oC (Frederiksen

& Werner 2013), which is then heated and re-circulated.

The district heating network contains complex dynamics, and the energy

efficient operation of district heating network depends on the optimum balance

between the pressure, flow-rate and temperature difference between the supply

and return water temperature in pipes. The variations in pressure and flow-

rate travels through the network with speed of light, whereas the variations

in temperature difference are slower and can take hours to show their effect

(Gabrielaitiene et al. 2010). The heat required by the consumers can be fulfilled

by regulating either the flow-rate or temperature difference between the supply

and return water temperature in the network, as shown in Equation (2.3).

Therefore, the correct short-term forecasting is crucial for the energy efficient

operation of the district heating network.

Forecasting in district heating network is vital for its operation. There are

three types of forecast horizons depending on their purpose, i.e. short (24-168

hrs), medium (<1 month) and long-term (>1 year) forecasts (Poutiainen 2019).

The short-term forecast is of peculiar importance when it comes to energy

efficiency and optimisation. The accurate short-term forecasts are useful to

minimise the peaks, demand side management and imbalance in the network.

6.2 Time-series data analysis
The time-series data analysis aims to analyse and extract the hidden pat-

terns inside the data before implementation of machine learning and classical

forecasting methods. The continuous variations in high-resolution data makes

time-series predictions challenging. Therefore, the time-series data analysis is

helpful in identifying the correct forecasting method to be used.
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The time-series data being used in this research is from the REMOUR-

BAN Project, where 1 year (8760 timsteps) of data is monitored from one

block of flats. The aim here is to effectively forecast the supply and return

water temperature using several machine learning and forecasting methods.

Figure 6.1: Univariate kernel density estimate plot of the supply and return water
temperature time-series data

To this end, the 1 year raw data has been plotted to gain insights into the

existing trends. Figure 6.1 shows that once the supply water temperature is

between 45-55oC then the return water temperature varies between 25-40oC.

Figure 6.2 shows distribution of supply and return water temperature using

a histogram. The data informs that the supply water temperature tends to

remain in the range of 45-50oC whereas the return water temperature is mostly

in the range of 25-40oC. Figure 6.3 shows the hourly comparison between sup-

ply and return water temperature throughout the year using a heatmap. The

data shows that both supply and return water temperatures are lower in sum-

mer which is an expected behaviour. However, the return water temperature
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is observed higher than expected during months of November and December

especially during 10:00-24:00 hrs, which is an abnormal fluctuation.

Figure 6.2: Histogram of the supply and return temperature time-series data

Figure 6.3: Heat-map representing hourly comparison between supply and return
water temperature throughout the year

6.2.1 Dataset processing

The dataset is initially normalised using MinMax scaling method and the data

is split into two (i.e. train and test data set) with a ratio of 75/25. The training

data set is used for creating the model, and the test data set is for evaluating

model’s performance. This splitting of data helps in creating a robust model

which generalises well and works good on unseen new data.

The dataset contains several dependent and independent feature and their

correlation has been shown in the Figure 6.4. The data show that the corre-

lation between supply and return water temperature is found to be greater
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Figure 6.4: Heatmap representing the correlation between different features in the
dataset

than the outside air temperature data. This explains that the weather data

(outside air temperature, solar insolation, humidity and wind data) alone is

not enough for forecasting using machine learning methods, and the accuracy

of machine learning methods improve once the return water temperature is

used to forecast the supply water temperature, and vice versa. The intention

here is to use the above described monitored data to build a machine learning

model, which can forecast the supply and return water temperature of the

district heating network in future.

It should be noted that one should be very careful with the input dataset

preparation for machine learning models, and the final model must not have

a random walk. The random walk behaviour makes the user believe that the

model is working and predicting but in-reality, the model is just following the

input data. In this thesis, this fact has been careful considered by first creating

two separate training datasets (supply and return), and then removing the
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corresponding known temperature dataset i.e. 8760 timesteps of the known

supply and return water temperature. This leads to two final training datasets

each with nine features (9x8760 timesteps).

6.3 Supervised machine learning methods
In this section, the supervised machine learning methods are implemented for

the prediction analysis over the time-series data-set explained above. The

results are evaluated and optimum parameters are selected.

In supervised learning the prediction model is built using a known input

and output datasets. The supervised machine learning methods are used to

train the model to generate predictions on new unknown datasets. The su-

pervised machine learning methods are available for both classification and re-

gression prediction problems. The supervised learning methods include linear

regression, logistic regression, neural networks, decision tree, Support Vector

Machine (SVM), random forest, naive Bayes, and k-nearest neighbor.

The regression based supervised machine learning methods are particu-

larly powerful in extracting relation and patterns in time-series data for fore-

casting and prediction. To this end, several machine learning models are de-

veloped and the time-series dataset of nine features is split into two parts i.e.

training and testing data. Where the machine learning models are developed

on the training data and future predictions are evaluated using unseen testing

data.
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The following supervised machine learning regression methods from the

Python’s scikit-learn library are used for the analysis:

• k-Nearest Neighbors

• linear regression (LR)

– Ordinary least square regression

– Lasso regression

– Ridge regression

– Elastic net (EN)

– Stochastic gradient descent (SGD)

• Decision trees

• Ensemble methods

– Random forest

– Gradient boosted decision trees

• Support vector machines (SVM)

– Radial bais regression (RBF)

– Linear regression

– Polynominal regression

• Neural networks

In this thesis, the regression methods are used as the aim is to predict

continuous values from the data-set and classification methods (such as Naive

Bayes) are not useful. The cross-validation is applied on the data before fitting
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the models. This is to remove biasedness in the machine learning model. The

models are carefully tuned for the generalised conditions using Grid Search

method and the accuracy metrics are applied on both training and testing

datasets to investigate the possibility of over-fitting and under-fitting.

6.3.1 K-nearest neighbors (K-NN)

The K-Nearest neighbors is one of the simplest method among other pre-

dictive methods. This is because it considers only two parameters, which

includes number of neighbors and distance between two data points (Müller

et al. 2016). The K-NN method does not require a lot of parameter adjustment

and it is highly recommended to use as a baseline method before embarking

into advanced methods. On the current dataset, the predictions are initially

performed by selecting small number of neighbours and Euclidean distance is

selected as the measure of distance between two data points.

The quality of prediction is evaluated using R2 score metric (coefficient

of determination). The R2 score varies between 0 to 1, where 1 represents

the predicted dataset values from the model are prefect, and 0 represents the

predicted values are not good enough. This R2 score is calculated for both

training and predicted datasets.

The results show that the prediction score depends on the number of

neighbours considered in the K-NN model. The R2 score for the predicted

supply water temperature dataset with 1 neighbour increases from 0.42 to

0.56 with 9 neighbours. Moreover, the training dataset score elaborates that

the model’s performance increases with the number of neighbours but upto a

certain limit. The training dataset score is initially 1 which represents over-

fitting of the model, but the over-fitting decreases to 0.9 once the neighbours
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Figure 6.5: Predictions using K-NN machine learning method. Three panels in
the first row compares the model’s prediction performance results with different
parameters on supply water temperature data, whereas the three panels in second
row compares results on return water temperature data. The hourly data in Cyan
colour represents testing data and Red colour represents prediction on testing data
from 3rdto 5th October.

are increased. The training and predicted dataset scores for the supply and

return water temperature are shown in Figure 6.5. The optimum prediction

score of 0.56 (i.e 56%) has been achieved with 9 neighbours in the model, which

is reasonable performance for a simple prediction method.

In conclusion, the K-NN model is good for small datasets, easy to imple-

ment and provides reasonable performance without fine tuning or adjustments.

On the other hand, predictions become slow and inefficient on large dataset

with several features. The model also doesn’t perform on sparse data (where

most of the values are 0), which makes it not preferred for practical problems.

Nevertheless, it is good algorithm for baseline analysis before embarking to

advanced methods.
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6.3.2 Linear models

Linear models are primarily based on basic linear equation principle and their

predictions are based on linear function of the input features. Over the period

of time, these have been developed and evolved into several sub methods which

have been used here. These are considered good for very large datasets with

high dimensions.

6.3.2.1 Ordinary least squares regression

Ordinary least squares (OLS) also known as linear regression is the most classic

and easy method for regression. The model automatically calculates the slope

(w) and offset (b) parameters from the training dataset to minimise the mean

squared error between the training data and predictions. It also considers all

features from the data for predictions.

Figure 6.6: Predictions using ordinary least square regression method. The top
panel shows the predictions on supply water temperature data and lower panel shows
the predictions on return water temperature data. The data in figure presents the
hourly prediction results from January to December. Where the Purple and Cyan
colour represent actual training and testing data, whereas Green and Red colour
represent predictions on the training and testing data.
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Figure 6.6 show results using OLS method and the R2 for supply and

return water temperature appears to be 0.63 (i.e 63 %) and 0.40 (i.e 40 %)

respectively. These predictions are clearly better than the previously used k-

NN method and implies that the OLS model provides better predictions on

larger datasets. In OLS method, the user can not control the model parame-

ters which leads to the limited flexibility in controlling model’s complexity for

reducing over or under-fitting of the model.

6.3.2.2 Ridge regression

Ridge regression is an enhanced version of OLS method and provides the ability

to control model complexity as well as over or under-fitting by introducing

additional constraints known as L2 regularisation. In Ridge regression model,

the L2 regularisation is controlled using parameter alpha (α) which explicitly

restricts over-fitting of the model. In principle, the coefficients of slope (w)

should be closer to zero.

Figure 6.7: Grid Search for parameter optimisation - ridge regression method. The
left panel shows parameter grid for supply water temperature data and right panel
shows for return water temperature data.

Theoretically, increasing alpha to a certain level reduces the value of slope
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coefficient closer to 0. The grid search method is used to find the best value

of alpha. The entire process is repeated for different values of alpha (i.e, 0,

10, 100, 1000, 1000) and maximum iterations (i.e, 0, 1, 10, 100, 1000, 10000).

As shown in Figure 6.7, the optimum value of alpha for supply and return

water temperature is found to be 100 and 10,000 respectively. The number

of iterations does not effect the predictions and increasing alpha beyond 1000

effects the model’s prediction ability. This model takes into account all features

from the data for predictions.

Figure 6.8: Predictions using ridge regression method. The top panel shows the
predictions on supply water temperature data and lower panel shows the predictions
on return water temperature data. The data in figure presents the hourly prediction
results from January to December. Where the Purple and Cyan colour represent
actual training and testing data, whereas Green and Red colour represent predictions
on the training and testing data.

The Figures 6.8 and 6.9 show that Ridge regression method (alpha=10)

provides slightly better predictions compared to OLS method. The R2 score

for supply and return water temperature is found to be 0.67 (i.e 67 %) and 0.43

(i.e 43 %) respectively. This suggest that the regularisation of slope coefficients

improves the model accuracy.
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Figure 6.9: 72 hours predictions using ridge regression method. The hourly data in
Cyan colour represents testing data and Red colour represents prediction on testing
data from 3rdto 5th October. The left panel shows the predictions on supply water
temperature data and right panel shows the predictions on return water temperature
data.

6.3.2.3 Lasso regression

Lasso (Least absolute shrinkage and selection operator) regression is similar

to Ridge method, but uses L1 regularisation (instead of L2) and considers

only limited features from the training dataset. These features are selected

automatically with the coefficients of slope (w) being set closer to zero. The

remaining unselected features are entirely ignored. Similar to Ridge regression,

Lasso regression takes into account alpha and maximum iterations where max-

imum iterations is a key contributing factor to find the optimum predictions.

Figure 6.10: Grid Search for parameter optimisation - lasso regression method.
The left panel shows parameter grid for supply water temperature data and right
panel shows for return water temperature data.

As show in Figure 6.10, the grid search method is implemented to find the
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optimum combination of alpha and maximum iterations. The results suggest

that alpha ( α > 1 and < 0.001 ) leads to over-fitting of the model and the

number of iterations greater than 10 are necessary to achieve better predictions.

Figure 6.11: Predictions using lasso regression method. The top panel shows the
predictions on supply water temperature data and lower panel shows the predictions
on return water temperature data. The data in figure presents the hourly prediction
results from January to December. Where the Purple and Cyan colour represent
actual training and testing data, whereas Green and Red colour represent predictions
on the training and testing data.

Figure 6.12: 72 hours predictions using lasso regression method. The hourly
data in Cyan colour represents testing data and Red colour represents prediction
on testing data from 3rdto 5th October. The left panel shows the predictions on
supply water temperature data and right panel shows the predictions on return
water temperature data.

The Figures 6.11 and 6.12 show that Lasso regression method (alpha=0.1,

max iter=10) provides similar predictions compared to Ridge method. How-

ever, it is only selecting 5 features out of 10 for our dataset. The R2 score

for supply and return water temperature is found to be 0.67 (i.e 67 %) and
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0.62 (i.e 62 %) respectively. This suggests that if the dataset is larger and

contains several features then Lasso provides simpler model compared to the

Ridge regression.

6.3.2.4 ElasticNet regression

The ElasticNet regression method is a combination of both Lasso and Ridge

regression methods and therefore, has both L1 and L2 regularisations. The

regularisation parameter L1 ratio regulates the mix between Lasso and Ridge

regression, and it varies between 0 and 1. When L1 = 0, the elastic net

regression model behaves similar to Ridge regression and considers all features

of the dataset. On the other hand, when L1 = 1 the model considers limited

features and acts similar to Lasso regression.

Figure 6.13: Grid Search for parameter optimisation - ElasticNet regression
method. The left panel shows parameter grid for supply water temperature data
and right panel shows for return water temperature data.

In ElasticNet regression, three parameters needs to be optimised. These

three parameters include; alpha, maximum iterations and regularisation pa-

rameter L1 ratio. Firstly, the grid search is performed to find the optimum

maximum number of iterations. Then, the second grid search was performed
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to find the optimum combination of alpha and L1 ratio, while keeping the max-

imum number iterations constant chosen at first grid search. In our dataset,

the maximum number of iterations of 10 leads to the optimum R2 score, this

was used to find L1 ratio and alpha. It is found that the elastic net model se-

lects 6 features with optimum parameters as compared to the Lasso in previous

Section, which selected only 5 features to perform predictions.

Figure 6.14: Predictions using ElasticNet regression method. The top panel shows
the predictions on supply water temperature data and lower panel shows the pre-
dictions on return water temperature data. The data in figure presents the hourly
prediction results from January to December. Where the Purple and Cyan colour
represent actual training and testing data, whereas Green and Red colour represent
predictions on the training and testing data.

Figure 6.15: 72 hours predictions using ElasticNet regression method. The hourly
data in Cyan colour represents testing data and Red colour represents prediction
on testing data from 3rdto 5th October. The left panel shows the predictions on
supply water temperature data and right panel shows the predictions on return
water temperature data.

As shown in Figure 6.13, the results for supply water temperature suggest
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that the alpha ( α > 1) leads to over-fitting of the model and the L1 factor of

0.8 with 6 features in dataset leads to the highest R2 score for the predictions.

The Figures 6.14 and 6.15 show that the R2 score for supply and return water

temperature is found to be 0.67 (i.e 67 %) and 0.45 (i.e 45 %), respectively.

6.3.2.5 Stochastic gradient descent regression

Stochastic Gradient Descent (SGD) regression is a stochastic method which

randomly picks the chunks of training data and computes coefficient slopes for

the optimum prediction. This versatile model is unique as it uses different loss

functions and penalties to implement different linear models. Using L1 and L2

penalties, it can work either as Lasso or Ridge method respectively. SGD is

different from other linear models because it uses stochastic approach to stop

iterations on the training data as soon as training error reaches minimum.

This is known as early stopping and makes its simulations on large datasets

faster compared to other linear methods.

The SGD regression model depends on the learning rate defined in the

parameters. SGD regression model considers all features from the data and

does not solely depend on the number of iterations or L1 ratio as in Lasso and

Ridge regression methods. The results show that increasing in learning rate

makes the model to learn more from the training data which results into an

improvement in R2 score on predictions. However, after a while the prediction

score (R2) starts decreasing which is due to the over-fitting of the model. This

is where early stopping comes into play and the optimum parameters for the

model are obtained.

As show in Figure 6.16, the results for supply water temperature suggests

that the learning rate (eta = 0.01) and alpha ( α = 0.01) provides the best R2
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Figure 6.16: Grid Search for parameter optimisation - stochastic gradient descent
regression method. The left panel shows parameter grid for supply water tempera-
ture data and right panel shows for return water temperature data.

Figure 6.17: Predictions using stochastic gradient descent regression method. The
top panel shows the predictions on supply water temperature data and lower panel
shows the predictions on return water temperature data. The data in figure presents
the hourly prediction results from January to December. Where the Purple and
Cyan colour represent actual training and testing data, whereas Green and Red
colour represent predictions on the training and testing data.

score of 0.67 (i.e 67 %). Similarly, for return water temperature the learning

rate (eta = 1) and alpha ( α = 0.001) provides the best R2 score of 0.61 (i.e

61 %). The model loses its accuracy as soon as the learning rate goes below
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Figure 6.18: 72 hours predictions using stochastic gradient descent regression
method. The hourly data in Cyan colour represents testing data and Red colour
represents prediction on testing data from 3rdto 5th October. The left panel shows
the predictions on supply water temperature data and right panel shows the predic-
tions on return water temperature data.

1e-6. The time-series of these results are further compared in Figures 6.17 and

6.18.

6.3.3 Decision trees

Decision trees are very powerful with the capability of extracting information

from a complex non linear data. This is the reason they are widely used in

machine learning and forms the basis of several ensemble methods. They work

on the principle of a tree where nodes represent questions and leaves contains

the answers (predictions). Just like other machine learning methods, decisions

trees may also over-fit the data. This can be controlled by either pre-pruning

or post-pruning of the tree (more details in Section 2.5.1.3).

In this thesis decision trees are implemented using scikit-learn library and

pre-pruning is performed by limiting the maximum depth of a tree. If the tree

depth is not fixed, it can grow arbitrarily deep and complex, therefore, in this

analysis the tree depth is explored from 1 to 10, and random state from 1 to

500. The number of random state is used by the random generator as a seed

value for predictions.

Figure 6.19 shows that the R2 score of the model depends on the maxi-

mum tree depth and not the random state considered in the model. For supply
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Figure 6.19: Grid Search for parameter optimisation - decision trees regression
method. The left panel shows parameter grid for supply water temperature data
and right panel shows for return water temperature data.

Figure 6.20: Predictions using decision trees regression method. The top panel
shows the predictions on supply water temperature data and lower panel shows the
predictions on return water temperature data. The data in figure presents the hourly
prediction results from January to December. Where the Purple and Cyan colour
represent actual training and testing data, whereas Green and Red colour represent
predictions on the training and testing data.

water temperature, the optimum R2 score of 0.70 (i.e 70 %) is obtained with

tree depth of 6, and stays constant with varying random states. It appears

the R2 score increases with tree depth up to a certain limit which is due to

under-fitting at lower values of tree depth and over-fitting at higher values.
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Figure 6.21: 72 hours predictions using decision trees regression method. The
hourly data in Cyan colour represents testing data and Red colour represents pre-
diction on testing data from 3rdto 5th October. The left panel shows the predictions
on supply water temperature data and right panel shows the predictions on return
water temperature data.

For return water temperature, optimum R2 score of 0.69 (i.e 69 %) is obtained

with same tree depth. The R2 score is unaffected by different values of random

state. It appears that the tree depth of 4 is suitable for return water temper-

ature data with 10 features and helps in tuning the model. In conclusion, the

prediction from decision tree models are computationally less intensive and

easy to understand because of their simplicity. The time-series of these results

are further compared in Figures 6.20 and 6.21.

6.3.4 Ensemble methods

The predictions of different regressors can be aggregated to achieve better

results as compared to the individual regressor method. This technique is

referred as Ensemble (group) learning, and the algorithm is called Ensemble

method. All ensemble methods uses decision trees as building blocks. Among

other ensemble methods, the random forest and gradient boosted decision trees

are considered to have effective performance on wide range of datasets.

6.3.4.1 Random forests

The random forest is an ensemble method which originates by combining de-

cision trees with bagging method (details in Section 2.5.1.4). Therefore, it
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contains parameters for both regressors and always perform better than deci-

sion trees on its own.

A random forest model is built by defining the number of tree to create,

which is also known as n-estimator parameter and one of the key parameter

required for tuning the model. The significance of each feature in the dataset

is evaluated by plotting mean feature importance graph in the Scikit learn,this

represents the most commonly used features by these trees and varies between

0 and 1, where 0 means that feature information is not utilised by the trees

and 1 means the relative feature is used.

Figure 6.22: Grid Search for parameter optimisation - random forests regression
method. The left panel shows parameter grid for supply water temperature data
and right panel shows for return water temperature data.

Figure 6.22 shows that the R2 score of the model depends on the maximum

depth of tree and number of trees (i.e n-estimator). The model is initially

under-fitted at lower tree depth but once it reaches at the depth of 4 and

number of trees to 10, then the R2 score considerably improves. For supply

water temperature, the optimum R2 score of 0.72 (i.e 72 %) is obtained with

number of trees 25 and tree depth of 6. For return temperature, the R2 score

of 0.74 (i.e 74 %) is achieved with same number of trees but with the tree



Chapter 6. Machine learning and forecasting 187

Figure 6.23: Predictions using random forests regression method. The top panel
shows the predictions on supply water temperature data and lower panel shows the
predictions on return water temperature data. The data in figure presents the hourly
prediction results from January to December. Where the Purple and Cyan colour
represent actual training and testing data, whereas Green and Red colour represent
predictions on the training and testing data.

Figure 6.24: 72 hours predictions using random forests regression method. The
hourly data in Cyan colour represents testing data and Red colour represents pre-
diction on testing data from 3rdto 5th October. The left panel shows the predictions
on supply water temperature data and right panel shows the predictions on return
water temperature data.

depth of 8. It appears that the estimator of 25 is suitable for our dataset with

10 features, and a key parameter in tuning the model. The time-series of these

results are further compared in Figures 6.23 and 6.24.

In summary, random forests are very robust and powerful methods. In

particular, they are useful for understanding the important features and helps

in narrowing down the feature selection from high-dimensional sparse data.
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6.3.4.2 Gradient boosting regression trees

Gradient Boosting Regression Trees (GBRT) is a type of ensemble method

which works by constructing trees in a sequential manner, where residual error

from the predecessor tree is used to minimise the prediction error. In addition

to the parameter for number of trees (n-estimator) and tree depth in random

forest, the GBRT method uses the learning rate for accurate predictions. The

learning rate is a key parameter which controls the correction of errors from

the previous trees.

Figure 6.25 shows that the R2 score of the model depends on the learning

rate and number of trees (i.e n-estimator). The model is initially under-fitted

at lower learning rate compared to the number of trees, but once it reaches at

0.1, then the optimum R2 score is achieved.

Figure 6.25: Grid Search for parameter optimisation - gradient boosting regression
trees method. The left panel shows parameter grid for supply water temperature
data and right panel shows for return water temperature data.

For supply water temperature, the optimum R2 score of 0.74 (i.e 74 %) is

obtained with leaning rate of 0.1 and number of trees of 75. For return tem-

perature, similar R2 score is achieved with same learning rate but 50 number

of trees. It appears that the learning rate of 0.1 is suitable for our dataset and



Chapter 6. Machine learning and forecasting 189

Figure 6.26: Predictions using gradient boosting regression trees method. The top
panel shows the predictions on supply water temperature data and lower panel shows
the predictions on return water temperature data. The data in figure presents the
hourly prediction results from January to December. Where the Purple and Cyan
colour represent actual training and testing data, whereas Green and Red colour
represent predictions on the training and testing data.

Figure 6.27: 72 hours predictions using gradient boosting regression trees method.
The hourly data in Cyan colour represents testing data and Red colour represents
prediction on testing data from 3rdto 5th October. The left panel shows the predic-
tions on supply water temperature data and right panel shows the predictions on
return water temperature data.

a key parameter in tuning the model. It is observed that the learning rate and

number of trees are interconnected as higher learning rate with higher number

of trees leads to over-fitting and vice versa. The time-series of these results

are further compared in Figures 6.26 and 6.27.

In summary, gradient boosted methods tend to be more accurate than

random forest and other ensemble methods, due to the sensitive parameter
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tuning and optimisation. Their predictions are mostly better with low learning

rate, number of trees and tree depth.

6.3.5 Support vector machines

The Support Vector Machines (SVM) also known as kernelized support vector

machines are extended methods which construct a set of hyperplanes in a high

dimensional space for more complex models (not defined in the input space).

A simple SVM model represents data examples in space as 2D points where

different classes of data are separated by a clear gap. New data are then

mapped into that gap and predictions are made on the basis of class they fall

on.

These are very powerful and versatile machine learning methods which

are well suited for regression and classification of complex but medium sized

datasets. There are several variation of SVM depending on different types of

kernels. These include linear, polynomial and RBF (Gaussian) kernels.

6.3.5.1 Linear kernel

The SVM linear kernel creates a linear margin to separate the data with the

goal to create a widest margin between the decision boundaries. The width

of this margin is controlled by tuning hyperparameter C of the linear kernel,

where higher values of C calculates smaller width.

The Figure 6.28 shows that the results depends on the regularisation pa-

rameter C and the R2 score increases with an increase in the value of C. Once

the optimum R2 score is reached and model starts to over-fit and under-fit at

higher values of C. The optimum R2 scores of 0.74 (74 %) and 0.68 (68 %)

for supply and return water temperature are obtained with a C of 10 and 1,
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Figure 6.28: Grid Search for parameter optimisation - support vector regression
- linear kernel method. The left panel shows parameter grid for supply water tem-
perature data and right panel shows for return water temperature data.

respectively. The time-series of these results are further compared in Figures

6.29 and 6.30.

Figure 6.29: Predictions using support vector regression - linear kernel method.
The top panel shows the predictions on supply water temperature data and lower
panel shows the predictions on return water temperature data. The data in figure
presents the hourly prediction results from January to December. Where the Purple
and Cyan colour represent actual training and testing data, whereas Green and Red
colour represent predictions on the training and testing data.

Due to their linear nature, the application of these models in low-

dimensional spaces is limited. Compared to linear models the SVM linear
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Figure 6.30: 72 hours predictions using support vector regression - linear kernel
method. The hourly data in Cyan colour represents testing data and Red colour rep-
resents prediction on testing data from 3rdto 5th October. The left panel shows the
predictions on supply water temperature data and right panel shows the predictions
on return water temperature data.

models are slower, computationally more expensive, sensitive to data scaling

and parameters.

6.3.5.2 Polynomial kernel

The polynominal kernel is a type of non-linear model for solving the non-

separable datasets. It generates huge number of features using parameter

degree of the kernel. This is also referred as the kernel trick in SVM. This

enables to achieve the same performance of the model as if many polynomial

features were added without actually having to add them. Since these features

were not added at the first place, therefore they do not cause any combinatorial

explosion. All possible polynomials up to a certain degree of original features

are calculated by this kernel.

The Figure 6.31 shows that results depend on the regularisation parameter

C and degree of the polynomial kernel. The model is initially under-fitted

but, once the regularisation parameter C and degree exceeds 1, then R2 score

increases tremendously. The optimum R2 scores of 0.87 (87 %) and 0.84 (84

%) for supply and return water temperature are obtained with a C of 10,000

and degree of 3, respectively.

It appears that the high regularisation parameter C and the degree are
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Figure 6.31: Grid Search for parameter optimisation - support vector regression
- polynomial kernel method. The left panel shows parameter grid for supply water
temperature data and right panel shows for return water temperature data.

Figure 6.32: Predictions using support vector regression - polynomial kernel
method. The top panel shows the predictions on supply water temperature data
and lower panel shows the predictions on return water temperature data. The data
in figure presents the hourly prediction results from January to December. Where
the Purple and Cyan colour represent actual training and testing data, whereas
Green and Red colour represent predictions on the training and testing data.

the key parameter in tuning of the model. The time-series of these results are

further compared in Figures 6.32 and 6.33.
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Figure 6.33: 72 hours predictions using support vector regression - polynomial
kernel method. The hourly data in Cyan colour represents testing data and Red
colour represents prediction on testing data from 3rdto 5th October. The left panel
shows the predictions on supply water temperature data and right panel shows the
predictions on return water temperature data.

6.3.5.3 Radial basis function kernel

The Gaussian or radial basis function (RBF) kernel finds the relation by

calculating the Euclidean distance between two data points in an infinite-

dimensional feature space. The different values of hyperparameters C and

gamma controls the shape and width of the decision boundary of the Gaussian

kernel. The smaller values of the gamma causes the decision boundary curve

wider and vice versa. On the other hand, the regularisation hyperparameters

C regulates the over and under-fitting of the model.

Figure 6.34: Grid Search for parameter optimisation - support vector regression -
radial basis function kernel method. The left panel shows parameter grid for supply
water temperature data and right panel shows for return water temperature data.
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The Figure 6.34 shows that results depend on the regularisation parameter

C and gamma. The model is initially under-fitted but once the regularisation

parameter C and gamma increases, the R2 score also starts increasing. The

optimum R2 scores of 0.84 (84%) and 0.79 (79%) for supply and return water

temperature are obtained with a C of 1000 and gamma of 0.01, respectively.

Figure 6.35: Predictions using support vector regression - radial basis function ker-
nel method. The top panel shows the predictions on supply water temperature data
and lower panel shows the predictions on return water temperature data. The data
in figure presents the hourly prediction results from January to December. Where
the Purple and Cyan colour represent actual training and testing data, whereas
Green and Red colour represent predictions on the training and testing data.

Figure 6.36: 72 hours predictions using support vector regression - radial basis
function kernel method. The hourly data in Cyan colour represents testing data
and Red colour represents prediction on testing data from 3rdto 5th October. The
left panel shows the predictions on supply water temperature data and right panel
shows the predictions on return water temperature data.

It appears that the higher regularisation parameter C and the gamma
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values have considerable impact in tuning of the model. The time-series of

these results are further compared in Figures 6.35 and 6.36.

6.3.6 Neural networks - multi-layer perceptron

The Multi-layer Perceptron (MLP) class of neural networks can be viewed as

generalisations of linear models that collects information from multiple stages

to reach at a decision. The model has to learn several coefficients or weights

across three layers i.e. input, hidden and output layer.

The neural networks can be optimised by tuning several different parame-

ters. This offers flexibility as well as difficulty to choose the correct parameters.

However, most commonly tuned parameters are; the number of hidden layers,

number of nodes in the hidden layer and the regularisation parameter (alpha).

In order to compute weighted sum for each of hidden layer, an activa-

tion function (relu or tanh) is used which contributes in the final weight or

score. These functions enable neural networks to perform better than a simple

learning method by learning more. It is observed that relu activation function

works better on current time-series data.

The Figure 6.37 shows that the model’s complexity increases with increase

in number of hidden layers and results depends on the regularisation parameter

(alpha) and maximum number of iterations. It is observed that the MLP

neural network model under-fits at higher value of alpha parameters for both

supply and return water temperature analysis. The analysis is performed using

‘adam’ solver with maximum number of iterations for the supply and return

water temperature are fixed at 1000 and 100, respectively. The optimum R2

scores of 0.80 (80%) and 0.78 (78%) for supply and return water temperature
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are obtained at hidden layers of 100 and alpha of 0.01 and 10, respectively.

The time-series of these results are further compared in Figures 6.38 and 6.39.

Figure 6.37: Grid Search for parameter optimisation - neural networks - multi-
layer perceptron method. The left panel shows parameter grid for supply water
temperature data and right panel shows for return water temperature data.

Figure 6.38: Predictions using neural networks - multi-layer perceptron method.
The top panel shows the predictions on supply water temperature data and lower
panel shows the predictions on return water temperature data. The data in figure
presents the hourly prediction results from January to December. Where the Purple
and Cyan colour represent actual training and testing data, whereas Green and Red
colour represent predictions on the training and testing data.

In summary, MLP neural network models perform better compared to

other supervised learning models, but they can be very complex specially for
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Figure 6.39: 72 hours predictions using neural networks - multi-layer perceptron
method. The hourly data in Cyan colour represents testing data and Red colour rep-
resents prediction on testing data from 3rdto 5th October. The left panel shows the
predictions on supply water temperature data and right panel shows the predictions
on return water temperature data.

large datasets, with more number of hidden layers. Though, the computational

time of neural networks is smaller than the support vector machine models,

the optimisation of parameters for different solvers is challenging. This takes

large amount of time to train new models with large datasets.
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6.4 Time-series forecasting

In this section, the classical stochastic method, Auto-Regressive Integrated

Moving Average (ARIMA) is discussed for time-series forecasting analysis. It

is a widely used forecasting method which is combination of Auto-Regressive

(AR) and Moving Average (MA) models.

Figure 6.40: 1 year of hourly monitored supply and return water temperature
time-series data used for forecasting

6.4.0.1 Stationarity of time-series data

As discussed in Section 2.5.2, it is a pre-condition that the time-series should

be stationary before the implementation of forecasting methods. A time-series

is stationary once its trend and seasonality has been removed. To check this,

Augmented Dickey Fuller (ADF) test is used. There are two main criteria

used to evaluate the results predicted from ADF test. Firstly, the P-value

should be less than 0.05, and secondly the test statistic should be less than

the 10% critical value. If both of these conditions are met then this confirms

that time-series is stationary.

In order to determine the stationarity of the time-series data (shown

in Figure 6.40), the Augmented Dickey Fuller (ADF) test from Python’s

statsmodel library has been used. Its results for the supply and return water

temperature data shows that the P-value is less than 0.05 but test statistic is
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not less than the 10% critical value, which confirmed that our time-series data

is not stationary and have trend and seasonality which needs to be removed.

There are two main methods used to investigate seasonality from complex

datasets. These include decomposition and differencing methods.

Figure 6.41: Results from seasonal decompose function on supply water temper-
ature data. First row represents the observed time series, second and third rows
represent the hidden trend and seasonality in the data. The last row represents the
residual data before and after removal of trend and seasonality. This residual data
is used by forecasting methods for model development.

Figure 6.42: Results from seasonal decompose function on return water temper-
ature data. First row represents the observed time series, second and third rows
represent the hidden trend and seasonality in the data. The last row represents the
residual data before and after removal of trend and seasonality. This residual data
is used by forecasting methods for model development.
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Firstly, in this analysis, seasonal decompose function, from Python’s

Statsmodels library, is used to extract trend, seasonality and residuals from

time-series of the supply and return water temperature data (as shown in Fig-

ures 6.41 and 6.42). It is observed that the mean and standard deviation of the

supply and return water temperature data varies throughout the year. Their

trend is high in winter but low in summer, and contain high amount of constant

seasonality. The residual data is used by the forecasting models, as it is the

original data once the trend and seasonality has been removed. These results

have helped to decide that which method (ARIMA or SARIMA) should be

fitted to the data. Since, the data contains seasonality, the SARIMA method

should be used.

Figure 6.43: Results from Autocorrelation (ACF) and partial autocorrelation func-
tion (PACF) plots on supply water temperature data. The ACF and PACF plots are
used to investigate the transformed data after differencing. The blue shaded area
represents the significance interval and the lagged correlation coefficients located
within this region are not critical for the analysis.

Figure 6.44: Results from Autocorrelation (ACF) and partial autocorrelation func-
tion (PACF) plots on return water temperature data. The ACF and PACF plots are
used to investigate the transformed data after differencing. The blue shaded area
represents the significance interval and the lagged correlation coefficients located
within this region are not critical for the analysis.
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Secondly, the differencing method is used to remove the seasonality form

the data. The autocorrelation (ACF) and partial autocorrelation function

(PACF) plots are used to investigate the transformed data after differencing.

The blue shaded area (in ACF and PACF plots) represents the significance

interval and the lagged correlation coefficients located within this region are

not critical for the analysis. The ACF plot shows that both supply and re-

turn water temperature time-series are highly correlated at the lag = 24 i.e.

correlation(yt, yt− 24), which explains that the hourly data is correlated at

the same hour every day (Figure 6.43 and 6.44).

Figure 6.45: Results from Autocorrelation (ACF) and partial autocorrelation func-
tion (PACF) plots on supply water temperature data after 1st differencing.

Figure 6.46: Results from Autocorrelation (ACF) and partial autocorrelation func-
tion (PACF) plots on return water temperature data after 1st differencing.

The PACF calculates the partial correlation between time-series and its

own lag values, and is unaffected by any other lags. The PACF plot shows

that lag = 1 is highly correlated, and 1st-order differencing will be sufficient to

remove the seasonality from these time-series. Considering these results, 1st-

order differencing is performed, and the autocorrelation (ACF) at lag =1 is

found to be negative or lies around the significant interval, as shown in Figures
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6.45 and 6.46. This confirms that PACF results discussed above and the data

is not over-differenced.

Table 6.1: Results from Augmented Dickey Fuller (ADF) test
Component No differencing 1st differencing 2nd differencing
Supply water temperature
ADF test statistic -2.16 -12.64 -16.86
P-value 0.219949 0 0
Number of lag used 120 120 120
Number of observations used 8639 8639 8639
Critical value (1%) -3.43 -3.43 -3.43
Critical value (5%) -2.86 -2.86 -2.86
Critical value (10%) -2.56 -2.56 -2.56
Outcome - Time Series is Non-Stationary Stationary Stationary
Return water temperature
ADF test statistic -2.81 -12.68 -17.01
P-value 0.05 0 0
Number of lag used 120 120 120
Number of observations used 8639 8639 8639
Critical value (1%) -3.43 -3.43 -3.43
Critical value (5%) -2.86 -2.86 -2.86
Critical value (10%) -2.56 -2.56 -2.56
Outcome Non-Stationary Stationary Stationary

After the application of differencing method, the ADF test is performed

again to confirm if trend and seasonality has been removed from the time-

series. This time, both the conditions are fulfilled and the dataset is found to

be stationary, as shown in table 6.1. In this analysis, the differencing is used

in SARIMA method to forecast the time-series.

6.4.1 Autoregressive integrated moving average

(ARIMA)

ARIMA is a linear regression based forecasting method which integrates both

autoregressive (AR) and moving average (MA). The term I represents the

order of differencing, which provides the capability to capture temporal effects

of the time-series data. The ARIMA model with hyperparameters can be
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represented as ARIMA(p,d,q), where p is the number of lag observations

(past time values); d is number of differencing order; and q is size of moving

average window.

In summary, the ARIMA is a versatile method, where a model can be-

have either as AR, ARI, IMA, MA, ARMA, or ARIMA based on the selected

hyperparameters p,d and q. Despite this flexibility, ARIMA has limitations

to handle data with seasonality, and the method discussed below is used to

overcome this limitation.

6.4.2 Seasonal autoregressive integrated moving aver-

age (SARIMA)

The Seasonal Autoregressive Integrated Moving Average (SARIMA) is an ex-

tension to ARIMA, which can handle both trend and seasonal component of a

time-series. This method has hyperparameters (p,d,q)(P,D,Q)m, where p,d

and q are same as for the ARIMA, while P is the number of seasonal lag obser-

vations; D is seasonal differencing order; Q is size of seasonal moving average

window, and m is time interval of repeating seasonal pattern. The seasonal

terms are similar to the other terms and repeating of past seasonal values.

6.4.2.1 Forecasting using SARIMA method

The SARIMA model is implemented using the Python’s Statsmodels library.

The seasonal parameter m has been set to constant and rest of the param-

eters are tuned by using auto.arima function from the Python’s Pypyramid

library, instead of using ACF and PCAF plots for tuning of individual hyper-

parameters. The function iterates using several combinations of hyperparam-

eters and provides the optimum parameters with lowest Akaike Information
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Criterion (AIC) value for the SARIMA model, as shown in Figure 6.47. The

AIC provides an estimate for the goodness of the statistical model for given

data and used for the comparison for model selection (Chen et al. 2018).

Figure 6.47: The optimum parameters with lowest Akaike information criterion
(AIC) value for the SARIMAmodel. The top panel represent results for supply water
temperature, whereas the lower panel represent results for return water temperature.

It is found that the for supply water temperature the SARIMA model

(1,0,1)(1,1,2)24) is optimum with AIC of 2853, and for return water tem-

perature the SARIMA model (2,0,1)(0,1,1)24) is with AIC of 3054. The

comparison between other parameters for forecasting is shown in Figure 6.47.

The above optimum parameters for SARIMA are used to perform one

week forecast. The data for the last week of December is selected to test the

forecasting on supply and return water temperature. For both, Figure 6.48
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Figure 6.48: Results from SARIMA forecasting model with one week forecast
(25th and 31th December). The results compares the actual and the forecasted data
with grey region showing the confidence interval. The top right panel represents
supply water temperature and the bottom right panel represents the return water
temperature data.

shows that the forecast follows the trend of actual data except on few hours

of 25th and 29th December. This change in the trend of actual data could be

due to holiday season around Christmas time when the occupant’s behaviour

is expected to vary. The SARIMA also model provides the confidence interval

along with predicted time-series, which is shown as the grey region around

the forecast. This represents the 95% likelihood of the upper and lower range

of possible prediction values from the model. The 95% of prediction inter-

val is useful in evaluating model’s capability, and varies between 36.6 – 54.8

for the supply water temperature data and 23.9 – 38.8 for the return water

temperature data.

In order to evaluate the fitness of model, there are certain tests which

needs to be performed. If these tests meet the passing criteria, only then we

can have a complete confidence on our model. To this end, four statistical

tests are performed on residual data for model evaluation. Figures 6.49 and

6.50 show the results for supply and return water temperature. The top left

plot shows the standardised residual, where the normalised residual error is
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plotted against the time. For an ideal model, there should be no obvious

pattern in the residuals with a uniform variance. Similar observation has been

made in supply and return water temperature models as their plots show that

the residual errors are scattered around a mean of zero without any noticeable

trends over time which seems adequate for our model performance. The top

right plots show KDE (kernel density estimation) curve for supply and return

water temperature. For optimum model, the KDE curve should resemble to

the normal distribution. The top right plots in Figure 6.49 and 6.50 suggest

that residual (orange curve) follow a normal distribution (green curve) with

mean equal to 0.

Figure 6.49: SARIMA model diagnostics for supply water temperature. The top
left and top right panels show the standardised residual plot and KDE (kernel density
estimation) curve. The bottom left and bottom right panels show the quantile-
quantile (Q-Q) plot and correlogram (autocorrelation of the residual error).

The bottom left plot shows quantile-quantile (Q-Q) plot. For a perfect

model, the residual errors should fall on a straight line to show that they are

normally distributed. The bottom right plots in Figures 6.49 and 6.50 are the

autocorrelation (ACF) of the residual error and also called Correlogram. The

correlogram is of particular significance.In an ideal model, there should not be

any autocorrelation because that could indicate a remaining trend in residual
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Figure 6.50: SARIMA model diagnostics for return water temperature. The top
left and top right panels show the standardised residual plot and KDE (kernel density
estimation) curve. The bottom left and bottom right panels show the quantile-
quantile (Q-Q) plot and correlogram (autocorrelation of the residual error).

error, which needs to be explained by the model. In correlogram, the 95% of

correlations for lag should be in blue area. The results show that almost 80% of

data points lie on a straight line (red), and enough to accurately forecast. The

residuals are found to be fairly flat and located in blue shaded region, which

shows 95% of confidence interval. All these statistical tests conclude that these

model are good fit to the data and can confidently be used for forecasting of

supply and return water temperature.

To test the robustness of the SARIMA forecasting model, the supply and

return water temperatures forecasting analysis is extended up to 3 weeks. More

specifically, forecasting results are compared for one-day, one week, two weeks

and three weeks. Table 6.2 and 6.3 shows different evaluation metrics for the

supply and return water temperatures. It is observed that error dramatically

decreases when the forecasting window size is reduced. For the supply water

temperature, the mean absolute percentage error (MAPE) is found to be 4.05%

for the 3 weeks forecast, which decreases to 2.71% and 2.14% for the 2-week

and 1-week forecast, respectively. The MAPE for the 1-day (24-hr) forecast is
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Figure 6.51: Results from SARIMA forecasting model with 24 hour forecast (31th

December). The results compares the actual and the forecasted data with grey
region showing the confidence interval. The top right panel represents supply water
temperature and the bottom right panel represents the return water temperature
data.

found to be 1.55% and Mean absolute error (MAE) is reduced to 0.768, which

means the model is able to predict the supply water temperature with an error

of just 0.7 oC. Moreover, the RMSE is almost reduced by almost 60% once the

forecast window is reduced from 3-weeks to 1-day (24-hr).

Table 6.2: Prediction accuracy comparison at different forecasting horizons for
supply water temperature
Metric 24 hours 1 week 2 weeks 3 weeks
Mean absolute error (MAE) 0.768 1.096 1.331 1.860

Mean absolute percentage 1.555% 2.148% 2.714% 4.056%
error (MAPE)
Root mean 1.022 1.693 2.175 3.134
square error (RMSE)
95% Prediction Interval 37.4 – 54.8 36.6 – 54.8 35.8 – 54.8 35.1 – 54.8

Similarly, the return water temperature forecast represents the same

trend. The mean absolute percentage error (MAPE) is found to be 8.5%

for the 3 weeks forecast, which decreases to 7.3% and 6.49% for the 2-week

and 1-week forecast, respectively. The MAPE for the 1-day (24-hr) forecast is

found to be 3.16% and Mean absolute error (MAE) is reduced to 0.768, which

means the model is able to predict the return water temperature with an error



Chapter 6. Machine learning and forecasting 210

Table 6.3: Prediction accuracy comparison at different forecasting horizons for
return water temperature
Metric 24 hours 1 week 2 weeks 3 weeks
Mean absolute error (MAE) 1.209 2.795 3.021 3.303

Mean absolute percentage 3.169% 6.498% 7.317% 8.527%
error (MAPE)
Root mean square 1.6098 4.413 4.383 4.458
error (RMSE)
95% Prediction Interval 24.4 – 38.8 23.9 – 38.8 23.4 – 38.8 23 – 38.8

of just 1.2oC. Moreover, the RMSE is almost reduced by almost 40% once the

forecast window is reduced from 3-weeks to 1-day. The 1-day (24-hr) forecast

results for the supply and return water temperature is shown in Figure 6.51.

6.5 Discussion on results

In recent years, there has been a significant development in machine learning

methods for time-series data forecasting. There has been a continuous debate

regarding the application of machine learning methods in district heating net-

work over the classical statistical forecasting methods. Therefore, in above

Sections, various supervised machine learning methods and classical forecast-

ing methods have been applied to attain the best forecasting method, which

offer best predictions with respect to lowest forecast error and higher accuracy

on the time-series data of district heating network. Moreover, the results from

the best supervised machine learning method are compared against the classi-

cal stochastic forecasting method to determine the robustness and limitations

of each method.

Generally, the machine learning methods can be categorised into three:

supervised learning, unsupervised learning and reinforced learning. The super-

vised machine learning is the most common type of machine learning approach
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Figure 6.52: The barplot shows comparison between different machine learning
methods. The results show that the support vector regression (SVR) and multi-
layer perceptron (MLP) method have the best forecasting performance compared to
others. Though, the accuracy of SVR-rbf kernel is higher, the computation duration
of MLP based neural network algorithm is way less and the forecasting accuracy is
comparable.

where predictions are made on the known data. There are two kind of super-

vised learning problems i.e. classification and regression. Classification aims

to predict a class label from a predefined set of possibilities. In contrast,

regression tries to make predictions as a real or continuous number. Here,

only regression based supervised learning methods have been explored, as real

number is required to forecast the supply and return water temperature in the

district heating network.

The results from machine learning methods suggest that the support vec-

tor regression (SVR) and multi-layer perceptron (MLP) method have the best

forecasting performance compared to others. Though, the accuracy of SVR-

rbf kernel is higher, the computation duration of MLP based neural network

algorithm is way less and the forecasting accuracy is comparable. Moreover,

the ensemble methods (random forest and gradient based random trees) are

computationally efficient (less expensive) and the forecasting accuracy is rea-

sonably well. As expected the forecasting accuracy of K-NN and linear models



Chapter 6. Machine learning and forecasting 212

(ordinary least square, ridge, lasso, elastic net and stochastic gradient descent)

is comparatively lower in the case of return water temperature.

Another point to discuss is which linear method should be used for ma-

chine learning. The results from the above Sections suggest that ElasticNet

regression method is the best. Though, Stochastic Gradient Descent (SGD)

methods is good, the ElasticNet is more reliable method. The ElasticNet

method is also superior to the Lasso, as it provides flexibility to control model

complexity from features selection and the model can even be reduced to lin-

ear kernel-based support vector regression. The Ridge and Lasso methods can

be used for early stage predictions but ordinary least square (OLS) method

should always be avoided.

The results further elaborate that correlation between supply and return

water temperature data is found to be greater than the outside air temperature

data. This explains that the weather data (outside air temperature, solar

insolation, humidity and wind data) alone is not enough for forecasting using

machine learning methods, and the accuracy of machine learning methods

improves significantly once the return water temperature is used to forecast

the supply water temperature, and vice versa. This explains that it is vital to

use the supply and return water temperature of the district heating network

for forecasting. Figure 6.52 shows the barplot for the comparison between

different supervised machine learning methods.

Additionally, the traditional stochastic forecasting method, Seasonal

Auto-Regressive Integrated Moving Average (SARIMA) is used and the results

are better compared than linear and other low performance machine learning

models. SARIMA is a variant of ARIMA method. It is the combination of
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Auto-Regressive (AR) and Moving Average (MA) models and considers the

seasonality in input data.

The results from fine-tuned SARIMA model on hourly data explains that

the accuracy is very good for short-term forecasts (24 -168 hrs), and the fore-

cast accuracy decreases as soon as the forecast horizon increases i.e. medium

(<1 month) and long-term (>1 year). Once the forecasting horizon reduces

from 168 to 24 hrs, the Mean absolute percentage error (MAPE) for supply

water temperature decrease from 4% to 1.5% for the supply water temperature

and 8.5% to 3.1% for the return water temperature, respectively.

6.5.1 Time-series forecasting versus machine learning

prediction

The time-series forecasting is usually associated in financial and economic sec-

tors by ARIMA modelling or Box–Jenkins method. Though, ARIMA methods

is widely being used in the industry along its several variations (ARIMAX,

SARIMA, SARIMAX), it has inherent issues and limitations which restrict its

application, for example, the model assumes linear relation among variables

and constant standard deviation in errors. This issue can be overcome by

modelling the change in variance over time with the integration of ARCH or

GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model

into ARIMA model, but it makes the parameters optimisation challenging and

computationally expensive (Siami-Namini & Namin 2018). Therefore, machine

learning and other techniques are preferred over ARIMA models.

The best performing MLP machine learning model and SARIMA fore-

casting method are compared in order to determine each one’s performance at

different forecasting horizons. To this end, the MAE, MAPE and RMSE are
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Figure 6.53: Barplot comparing the SARIMA and MLP forecast for supply water
temperature at different forecasting horizons.

Figure 6.54: Barplot comparing the SARIMA and MLP forecast for return water
temperature at different forecasting horizons.

evaluated for supply and return water temperature at 24 hours, 1 week, 2 weeks

and 3 weeks forecasting horizons as shown in Figures 6.53 and 6.54. The results

suggest that the traditional stochastic SARIMA method out-performs com-

pared to MLP machine learning method for short-term forecasts (24 hours),

but once the forecast horizon (2 and 3 weeks) increases the MLP neural net-

works out-performs SARIMA in terms of precision and accuracy. This data is

also shown in Table 6.4. The forecasting time-series for both supply and return
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water temperature at 24 hours and 2 weeks forecasting horizons is shown in

Figures 6.55 and 6.56.

Figure 6.55: Comparison between SARIMA and MLP forecast for 24 Hours.

Figure 6.56: Comparison between SARIMA and MLP forecast for 2 Weeks data.

There has always been a debate which forecasting, and machine learning

method should be used on the district heating networks and in conclusion, the

traditional statistical methods are best for short-term time-series forecasts, and

machine learning methods for medium- and long-term forecasts. It is foreseen

that a hybrid model using autoregressive (SARIMA) modelling for short-term

time-series forecast and unsupervised machine learning for the medium- and

long forecasts as well as prediction of extreme events will be practical and

another avenue to drive the research for energy modelling in district heating

systems. Moreover, this behaviour of several algorithm methods for short-

term forecasts is also discussed in (Makridakis et al. 2018, Siami-Namini &

Namin 2018) and Figure 6.57 represents the performance of several algorithmic

methods.
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Figure 6.57: The short-term forecasting performance comparison among all algo-
rithmic models available for time-series. The ARIMA models especially (SARIMA)
performs as best overall (Makridakis et al. 2018).

It is imperative to discuss the latest advancements in the field of unsuper-

vised machine learning for time-series forecasting. In recent years, the machine

learning regression models (Support Vector Regression (SVR), Random Forests

(RF)) and unsupervised machine learning models (deep learning) have been

developed to overcome the limitations of traditional forecasting methods and

quite popular both in the industry and researchers.

The deep learning methods (Recurrent Neural Network (RNN), and Long

Short-Term Memory (LSTM)) can identify the structure and patterns hid-

den inside of dataset and models the statistical relation between variables in

several deep hierarchy layers. The deep learning neural network model have

the capability to learn nonlinear relationships and determine complexity in

noisy time-series inputs data. Though, this makes these deep learning models

complicated and difficult to train, the results are remarkable compared than

traditional stochastic methods.

The RNN and LSTM deep learning methods are good to learn patterns in

substantial dataset of multi-variate sequences of time-series without the need
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to specify prediction time window, and therefore found applications in many

disciplines including computer science, natural language processing, handwrit-

ing recognition, speech recognition, measuring impact of a certain news, as well

as applications in economics and finance data such as, time-series prediction

and volatility prediction.
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6.6 Summary
Time-series prediction and forecasting has number of applications in our lives

and the main objective in this chapter has been to investigate which methods

offers the best predictions with lower forecast errors and higher prediction ac-

curacy for the DH network. The machine learning can be applied on time-series

data for forecasting and prediction, however finding the best method remains

a challenge as this depends on inherent characteristics of the data. Therefore,

multiple machine learning and classical statistical methods have been explored

to find the most suitable method for the supply and return water temperature

of the district heating network. The results show that the correlation between

supply and return water temperature data is found to be greater than the

outside air temperature data. This explains that the weather data (outside air

temperature, solar insolation, humidity and wind data) alone is not enough

for forecasting using machine learning methods, and the accuracy of machine

learning methods improves significantly once the return water temperature is

used to forecast the supply water temperature, and vice versa. Therefore, it is

vital to use the supply and return water temperature from the district heat-

ing network along with outside air temperature for forecasting. In conclusion,

the traditional statistical models provide better results for short-term fore-

casts and machine learning model are more appropriate for long-term forecasts

modelling. It is foreseen that a hybrid model using autoregressive (SARIMA)

modelling for short-term time-series forecast and unsupervised machine learn-

ing for the medium- and long forecasts. Additionally the prediction of extreme

events will be practical and another avenue to drive the research for energy

modelling in district heating systems.



Chapter 7

GIS mapping for district

heating network planning

Overview

This chapter discusses application of GIS mapping tools in the domain of

district heating network. The technical and economical feasibility of a potential

district heating network is assessed using GIS based model developed in FME

software, which first calculates shortest path for the district heat network,

pipe sizes, hydraulic analysis and then maps results on GIS interface. As

this chapter focuses on early planning of district heating network, therefore

it needed a site with unexplored potential of district heating network and

alternate sources. The city of Nottingham has already got a well-established

district heating network and therefore was not suitable for this study.

7.1 Introduction

In the beginning of 2019, a potential district heating network site for a univer-

sity was identified in the North of England. The university campus consists of
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a combination of new state-of-the-art facilities alongside older buildings. The

masterplan is currently evolving with some buildings currently under construc-

tion or under design stage, and the university has long term aspirations which

are in-line with the development of a heat network. To this end, the energy

masterplanning is performed and its outcome suggested to explore the feasi-

bility of setting up a district heating network. This would lead to an effective

reduction of carbon emissions, operating costs and increased resilience of the

entire development site.

The aim of this feasibility study is assessment of spatial distribution of

energy demand in the campus and appraisal of the most appropriate heat tech-

nology for a district heating network to maximise the economic viability and

carbon emission reduction. Moreover, the feasibility study is part of govern-

ment’s strategy for decarbonising heat supply and supporting growth of a low

carbon economy in the UK.

Figure 7.1: The university campus is divided into four clusters, namely: Lower
Mountjoy, East Hill Colleges, West Hill Collesges and Howlands Farm.
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The precise planning and design of the district heating network is very

important therefore, the campus is divided into four clusters, namely: Lower

Mountjoy, East Hill Colleges, Howlands Farm and West Hill Colleges as shown

in Figure 7.1.

7.2 Methodology

The GIS mapping is of foremost importance for the feasibility analysis of a

potential district heating network. Therefore, a GIS based model has been

developed using FME software, which first takes geographical location of the

buildings along with their corresponding heat demand as an input and then:

a) calculates the shortest path for district heat network, b) performs hydraulic

modelling and, c) finally maps results on GIS interface. The hydraulic mod-

elling calculates the pipe length and sizes, flow-rates and pressure gradient for

each pipe segment of the district heating network.

The analysis is performed in two steps which includes: 1) identification

of the buildings and their electricity and heat demand mapping, 2) district

heating network design, pipe sizing and hydraulic calculations.

7.3 Results and Discussion

7.3.1 Electricity and Heat Demand Mapping

In order to get a better understanding of energy demand, the residential and

non-residential buildings are identified across all four clusters described above.

This identification has been shown in Figure 7.2. The residential buildings

are shown in blue colour whereas non-residential buildings are coloured in red.

This helps to visualise the distribution of the heat demand across the campus.
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Figure 7.2: Types of buildings in university’s DH network where residential and
non-residential buildings are shown in blue and red respectively.

Figure 7.3: The refurbishment plan shows location of buildings to be retained,
demolished, new and unknown types represented in deep purple, red, yellow and
green respectively.

Additionally, Figure 7.3 shows the refurbishment and up-gradation plan of

the area and clearly represents the location of existing, new buildings, to be
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retained and demolished buildings. For the areas to be demolished, there will

be new buildings built in their place, thus the demand is assumed to remain

same.

Figure 7.4 shows the annual electricity demand geographically distributed

around the area. It is observed that the electricity demand of non-domestic

buildings is three to four times greater than the residential buildings, and

the non-residential buildings in the Lower Mountjoy (northern cluster) have

the highest electricity demand. The data elaborates that the Howlands Farm

(southern cluster) has mostly residential buildings with electricity demand

up to 500 MWh, which is around four times lower than the non-residential

buildings.

Figure 7.4: Annual electricity demand, of buildings in university’s DH network,
shown as blue circles of varying size depending on the amount of electricity demand.

Figure 7.5 shows the heat demand of the entire campus. The heat de-

mand shows similar trend to electricity demand and the heat demand being

twice in non-residential buildings compared to the residential buildings. Both
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Figure 7.5: Annual heat demand shown as red circles of varying size reflecting
heat demand.

figures show the maximum load of the site is located at the Lower Mountjoy

(northern cluster). These electricity and heat demands are obtained from the

meters located at the buildings and used for district heating network network

modelling.

7.3.2 Hydraulic modelling of the district heating net-

work

The hydraulic modelling of the district heating network is carried out using

hydraulic model developed in FME software. It calculates the shortest path

of pipes from the energy centre to the consumers, pipe sizes and the pressure

gradient (Pa/m) for each segment of the network. The pipe sizes (for main

trunk and distribution pipes) are calculated using flow-rate calculations for

each section of the district heating network. The flow-rate calculations takes

into account constraints such as; maximum permissible pressure drop and flow
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velocity, peak thermal demand, delta t (∆t) and other parameters given in

Table 7.1. The hydraulic modelling is performed to investigate two scenarios

of the district heat network, i.e 1) centralised network 2) decentralised (stand-

alone) network. Table 7.2 shows the capacity of individual energy center for

each cluster.

Table 7.1: Description of key parameters for the potential district heating network
Parameter Value Unit
DH delta t (∆t) 20 oC
Water specific heat capacity 4.181 KJ/Kg/K
Water density 1000 Kg/m3
Pipe roughness factor 0.05 mm
Max pressure drop, connection pipes 300 Pa/m
Max pressure drop, trunk mains 150 Pa/m
Max velocity, connection pipes 1.5 m/s
Max velocity, trunk mains 3 m/s

Table 7.2: Description of peak heat load for each cluster.
Name of cluster Peak heat load (MW) Peak heat load (MW)

Centralised network De-centralised network
Northern cluster - 5 6
Lower Mountjoy
Eastern cluster - 3 4
East Hill Colleges
Western cluster - 3 3
West Hill Colleges
Southern cluster - 2 2
Howlands Farm
Total 13 15

7.3.2.1 Scenario - 1: Centralised district heating network

In the centralised scenario, a single energy centre with the capacity of 19 MW

is assumed at the Lower Mountjoy (northern) cluster. Figure 7.6 shows the

result for optimum district heating network along with pipe sizes, length and

corresponding cost estimations for each pipe segment, are given in Table 7.3.

It appears that a cost of ≈ £8 millions is needed for a total length of 6517
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meters, comprising the entire district heating network. These results will be

used as a benchmark to compare against Scenario 2.

Figure 7.6: Scenario-1, centralised heat network with a single main heating plant
of 19 MW. The legend and pipe colours represents the pressure gradient (Pa/m)
and pipes are labeled with minimum required sizes.

Table 7.3: Description of pipe lengths and costs calculated from Scenario-1 - cen-
tralised heat network with a main heating plant of 13 MW.

Pipe Size Length (m) Cost (£),
includes civil trenching costs

DN-20 132 137,940
DN-25 63 65,835
DN-32 606 633,270
DN-40 475 496,375
DN-50 724 756,580
DN-65 1327 1,386,715
DN-80 650 685,750
DN-100 468 505,440
DN-125 367 466,090
DN-150 189 251,370
DN-200 753 1,069,260
DN-250 605 1,161,600
DN-350 93 232,500
DN-450 65 165,750
Total 6,517 8,014,475
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It can be noticed, that this centralised network uses several pipes with

higher diameter. The DN-200 pipe is used as main trunk pipe for heat trans-

mission between the clusters and DN-65 pipe is mostly used as connection pipe

for heat distribution to the buildings.

7.3.2.2 Scenario - 2: Decentralised district heating network

In the decentralised (standalone) scenario, separate energy centres are assumed

for each cluster. Figure 7.7 shows the result for optimum district heating

network along with pipe sizes, length and corresponding cost estimations for

each pipe segment. Table 7.4, 7.5, 7.6 and 7.7 show breakdown of pipe sizes,

lengths, and the cost estimations for each energy centre dedicated to single

cluster. The cumulative pipe cost of the network is calculated to be ≈ £ 6.3

millions for a total length of 5788 meters which is 21% less than in Scenario 1.

Figure 7.7: Scenario-2, decentralised (stand-alone) heat network with separate
heat plant for each cluster. The legend and pipe colours represents the pressure
gradient (Pa/m) and pipes are labeled with minimum required sizes.

It can be noticed in Table 7.8 that the decentralised network (Scenario 2)
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Table 7.4: Description of pipe lengths and costs calculated for Lower Mountjoy
cluster in Scenario-2, decentralised heat network of 6 MW.

Pipe Size Length (m) Cost (£),
includes civil trenching costs

DN-20 1 1,045
DN-40 4 4,180
DN-50 139 145,255
DN-65 343 358,435
DN-80 196 206,780
DN-100 355 383,400
DN-125 146 185,420
DN-150 185 246,050
DN-200 82 116,440
DN-250 93 178,560
DN-300 65 135,200
Total 1,609 1,960,765

Table 7.5: Description of pipe lengths and costs calculated for West Hill Colleges
cluster in Scenario-2, decentralised heat network of 3 MW.

Pipe Size Length (m) Cost (£),
includes civil trenching costs

DN-20 91 95,095
DN-25 1 1,045
DN-32 260 271,700
DN-40 547 571,615
DN-50 418 436,810
DN-65 249 260,205
DN-80 221 233,155
DN-100 32 34,560
Total 1,819 1,904,185

Table 7.6: Description of pipe lengths and costs calculated for East Hill Colleges
cluster in Scenario-2, decentralised heat network of 4 MW.

Pipe Size Length (m) Cost (£),
includes civil trenching costs

DN-25 38 39,710
DN-32 576 601,920
DN-40 46 48,070
DN-50 415 433,675
DN-65 227 237,215
DN-80 121 127,655
DN-100 30 32,400
Total 1,453 1,520,645
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Table 7.7: Description of pipe lengths and costs calculated for Howlands Farm
cluster in Scenario-2, decentralised heat network of 2 MW.

Pipe Size Length (m) Cost (£),
includes civil trenching costs

DN-20 72 75,240
DN-25 153 159,885
DN-32 214 223,630
DN-40 45 47,025
DN-50 15 15,675
DN-65 408 426,360
Total 907 947,815

Table 7.8: Cost comparison between the centralised and de-centralised (standalone)
district heating network

Pipe size (mm) Scenario 1 Scenario 2 Difference
DN-20 137940 171380 24.24%
DN-25 65835 200640 204.76%
DN-32 633270 1097250 73.27%
DN-40 496375 670890 35.16%
DN-50 756580 1031415 36.33%
DN-65 1386715 1282215 -7.54%
DN-80 685750 567590 -17.23%
DN-100 505440 450360 -10.90%
DN-125 466090 185420 -60.22%
DN-150 251370 246050 -2.12%
DN-200 1069260 116440 -89.11%
DN-250 1161600 178560 -84.63%
DN-300 - 135200 -
DN-350 232500 - -
DN-450 165750 - -
Total 8014475 6333410 20.98%

is economically feasible because of its lower costs and length of pipe required

as compared to the centralised network (Scenario 1). The is due to pipe sizes

with comparatively lower diameter. In scenario 1, the pipes greater than DN-

100 are mostly used as a trunk pipes for heat transmission which contributes

to excess cost of pipes. On the other hand, the scenario 2 uses pipes lower

than DN-65 as trunk pipes. In addition to this, the heat-losses will be more
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in Scenario 1 as the district heating network requires greater amount of pipe

length.

7.3.3 Abandoned coal mines mapping

In feasibility studies, another objective is to look for alternate natural resources

around the potential district heating site for improving the project’s outlook.

To this end, the area around the university was explored using resource maps

from British geological survey (BGS) UK. This is performed to ascertain the

location of different kind of coal mines, and possibility of water usage from the

flooded abandoned coal mines. This is a very common situation in northern

and eastern regions of England, since over the years these regions have been

heavily dependent on coal for power generation. Additionally, these abandoned

coal mines have sufficiently great amount of methane reserves which can be

drawn out to generate power and heat in combined heat and power plants.

Figure 7.8: The distribution of coal resources available around the university site

The results show that the university lies in the region of open cast min-
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ing and there are numerous abandoned coal mines. Moreover, the coal bed

methane (CBM) resources are far away from the university and the under-

ground coal gasification has limited potential in the sea. However, there

is a technical potential to obtain flooded water along with abandoned mine

methane (AMM) and coal bed methane (CBM), which can be a valuable fuel

resource for energy centre in a district heating network. The location of re-

sources is further shown in 7.8.

The abandoned mine methane (AMM) is fuel gas (mainly methane) which

can be removed and utilised following the closure of the coal mine (Jones et al.

2004). On the other hand, the coalbed methane is a methane-rich gas found

naturally within coal mines and can be explosive once mixes with air. It is

also known as firedamp in mining industry (Holloway et al. 2005, Environment

Agency UK July 2014).

Figure 7.9: The hydro-geological maps around the university site.

The hydro-geological maps provides valuable information about aquifer
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by providing hydrochemical characteristics of the underlying rocks and their

usefulness for supplying groundwater. This is particularly useful for the instal-

lation of water source heat pumps (WSHPs). The results show the university

is in the region of moderately productive aquifers and the highly productive

aquifers are nearby. This exemplifies the possibility of using underground wa-

ter for the district heating network, and shown by results in Figure 7.9.

7.4 Summary
In this chapter, the application of GIS based tools has been explored using a

self-developed model, and the feasibility of a real district heating network has

been discussed. The possibility of a centralised district heating network with

one energy centre has been investigated and compared with a decentralised

(standalone) network with multiple energy centres. The results supports the

decentralise network based on the cost of network to fulfill the demand and

reduction in heat losses in the network. Moreover, there is a strong evidence

to utilise water along with abandoned mine methane (AMM) and coal bed

methane (CBM) in the district heating network from the abandoned coal mines

as an alternate energy resource. It is suggested the water source heat pumps

(WSHPs) should be implemented for the utilisation of underground water in

the district heating network.



Chapter 8

Discussion and Conclusions

The main aim of the research in this thesis was to investigate the implemen-

tation of low-temperature district heating in existing boiler based buildings

using different energy modelling techniques. In order to achieve this, first the

thermal performance of buildings was studied followed by energy efficient de-

sign of a network in different operational scenarios. This was complemented

by economically optimal solution for the decarbonised heating network with

integration of fully renewable electrical grid. Then, the application of machine

learning and forecasting methods were explored using real monitored data from

the district heating network. Finally, the role of GIS mapping was studied on a

real case study project for the early stage planning and feasibility of an energy

efficient district heating network.

Nottingham has set the most ambitious targets compared to other cities

in the UK and aims to achieve net-zero carbon emissions by 2028. The district

heating is central for achieving these targets as the heat source of current

district heating is waste incineration and offsets approximately 27,000 tonnes

of CO2 emissions annually. The high return water temperature in this network

has shown sufficient capacity for a secondary LTDH network intervention to
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the nearby areas using return pipe. This has extended the district heating

network and made it more energy efficient and greener.

8.1 Achievement of research objectives
Before the implementation of LTDH, it is necessary to increase thermal perfor-

mance of the buildings. This is increased by improving its fabric, glazing and

building services and needs to be in line with the building regulation in the

UK. Therefore, the first research objective is addressed in Chapter 3, where

the relationship between the building regulations and thermal performance of

domestic and non-domestic buildings is evaluated. These building regulations

are the minimum energy efficiency standards for the conservation of fuel and

power in England/Wales, and forms the basis for a building design. To this

end, both domestic and non-domestic buildings have been considered as a case

study to investigate their thermal performance using two separate software

(i.e. IDA-ICE and IES-VE).

The existing domestic buildings from the REMOURBAN project are con-

sidered in the first part of the analysis and the energy performance has been

studied before and after retrofit. The results suggest that the retrofitting in-

creases the energy performance by almost 50% and the risk of over-heating is

determined by the type of glazing being selected.

In order to provide a comprehensive insight of thermal performance calcu-

lations, a non-domestic building has also been considered and the data suggests

that the methodology for hot water demand calculation in building regulations

is unrealistic and leads to the failure of compliance (i.e. high carbon emissions

than the target building emissions). These excess carbon emissions are usu-

ally compensated by installation of PV solar generation panel to demonstrate
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compliance by almost 15%. Finally, it is anticipated that with current building

regulations in the UK, it is unlikely to achieve the target of net-zero emission

buildings (NZEB) in existing domestic and newly built non-domestic buildings

by the year 2050.

The second research objective was achieved in Chapter 4 in which the de-

sign and operation of an energy efficient LTDH network from the REMOUR-

BAN project has been studied. This LTDH network is characterised by low

supply temperature and flow-rates and high ∆t i.e. the difference between

supply and return water temperature. To this end, the heat demand of the

buildings is used to calculate the flow-rates and hydraulic calculations.

Initially, the monitored data of an existing flat is used to investigate 25%

of the network with four different control scenarios in order to find the optimum

pumping strategy. This is performed using a novel hydraulic model developed

in Python programming language. The results suggest that variable pumping

with fixed supply water temperature from the sub-station is found to have

least amount of pumping power, energy consumption and heat-losses in the

network.

Then, the analysis is extended to the entire LTDH network which required

robust methodology. To achieve this, Claytex licensed HVAC (for Heating

Ventilation and Air Conditioning) modelling library in Dymola software is used

to develop a physical component based model to analyse the optimum design

flow-rates parameters, pump control strategies and integration of multiple heat

sources in the network. The Dymola model was created to imitates the real

LTDH network from the REMOURBAN project and referred as baseline model

in the analysis. Each component (including flats) is modelled separately with
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exact parameters from the network. The simulations have been performed

at hourly intervals for the month of highest heat demand i.e. January. This

baseline model is validated using real monitored data from the REMOURBAN

LTDH network and found to in agreement.

In order to improve the network performance, several iterations were intro-

duced in the baseline model using Dymola simulation. Each iteration involved

addition of different heat source, component and network parameters. Iter-

ation 1 optimises the efficiency of current LTDH network with reduction in

flow-rates and installation of PID (proportional integral derivative) controllers

based feedback loop on the circulation pump in the plant room. Iteration 2 as-

sumes installation of standalone solar thermal plant connected to the thermal

heat storage as the only heat-source to the LTDH network. Iteration 3 inves-

tigates the optimised LTDH network (from iteration 1) with the integration of

solar thermal power plant. In other words, iteration 3 is the combination of

both iteration 1 and iteration 2 networks. Iteration 4 considers another config-

uration as an extension of iteration 3, where the solar thermal plant pre-heats

the water inside the thermal heat storage before feeding it into the gas-boiler

connected directly to the LTDH network.

In conclusion, results from the first part of LTDH modelling analysis sug-

gest that the LTDH network should be designed with variable speed pumping,

and supply water temperature should be kept constant from the plant room.

This leads to the lowest energy consumption in the network. On the other

hand, the heat-losses in the existing district heating networks, which predomi-

nantly operate at constant flow-rate in the UK, can be reduced by installation

of weather compensation valves (regulation of supply water temperature ac-
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cording to the outside temperature). Furthermore, in the second part, the

energy efficiency and ∆t from all iterations are compared against the baseline

model and the results show that both energy efficiency and ∆t in iteration 1

is larger than the baseline model. For all other iterations ∆t appears to be

less than the baseline model. These results suggest that the LTDH network

in REMOURBAN project can be improved by reducing flow-rates both in the

network and circulation pump inside the plant room (i.e. iteration 1).

The novelty of this analysis has been to use a live LTDH network inter-

vention as a case study which provides a energy efficient solution for the UK.

The learning from this study can be replicated to the future LTDH network

project anywhere in the UK or elsewhere. Furthermore, the reduction in sup-

ply water temperature will enable the possibility of using heat from renewable

energy resources and other low-grade waste heat sources.

With recent environmental concerns, there is a debate regarding the elec-

trification of the heating and other energy networks (also known as sector

coupling). The research objective to investigate the economic feasibility of

100% renewable energy based district heating network is studied in Chapter

5. Where 1 year of hourly heat demand and heat generation cost data from

an existing district heating network (Aarhus, Denmark) is used to investigate

the economical aspects of fully excess renewable energy based heating network.

The district heating network is assumed to be connected to the fully renewable

based electrical grid and excess generation is used by heat-pumps and thermal

heat storage. The rationale behind using Aarhus district heating network as

a case study was that, the city has similar population as of Nottingham with
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300,000 inhabitants and considered as among five most energy efficient district

heating networks in the world.

The techno-economic analysis for the de-carbonised district heating net-

work shows that the futuristic fully renewable powered electrical grid and

heating network is not economically feasible, unless both networks are cou-

pled together which reduces the energy costs by almost 50%. Additionally, per

unit decarbonisation cost depends on wind and solar (PV) power generation

cost. The cost of excess renewable energy generation from the electrical grid

is determined by per unit cost of heat-pumps and backup energy technologies

(thermal heat storage and natural gas-boiler). Finally, the 100% decarbonisa-

tion of the district heat network is possible but depends on usage of private

wire (i.e. selling excess electricity and heat to the private consumers).

A district heating network consists of heat sources, hot water supply and

cold return transmission pipes and heat distribution equipment. This creates

a complex energy dynamics and the efficient operation depends on the correct

estimation of heat demand which is directly related to the pressure, flow-rate

and ∆t in the network. The heat required by the consumers can be fulfilled

by regulating either the flow-rate or temperature difference between the sup-

ply and return water temperature in the network. Therefore, forecasting of

heat demand in district heating network is vital for its operation. There are

three types of forecast horizons depending on their purpose, i.e. short (24-168

hrs), medium (<1 month) and long-term (>1 year) forecasts. The short-term

forecast is of peculiar importance when it comes to energy efficiency and opti-

misation. Therefore, the accurate short-term forecasts are useful to minimise

the peaks, demand side management and imbalance in the network.
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As REMOURBAN is a live LTDH project and it presents the opportunity

to obtain monitored data from several sensors. The fourth research objective

is attained in Chapter 6, where the application of machine learning and fore-

casting methods is explored in the context of district heating network. The 1

year (8760 timsteps) of monitored LTDH data used in this chapter is obtained

from one of the building in REMOURBAN project. This data is combined

with weather data and the monitored data consists of 9 different parameters

altogether. The aim is to build a model using this monitored data for the fu-

ture prediction of supply and return water temperature in the district heating

network. To this end, the application of several regression based supervised

machine learning and classical stochastic forecasting methods is explored and

results from the fine tuned models are compared to determine performance,

robustness and limitation of each method.

Generally, the machine learning methods can be categorised into three:

supervised learning, unsupervised learning and reinforced learning. In our

analysis the supervised machine learning is used to make real or continuous

number predictions on the known data. The machine learning can be applied

on time-series data for forecasting and prediction, however finding the best and

fine-tuned method is a challenge as this depends on inherent characteristics of

the data.

The results from machine learning methods suggest that, the support vec-

tor regression (SVR) and multi-layer perceptron (MLP) method have the best

forecasting performance compared to others. Though, the accuracy of SVR-

rbf kernel is higher, the computation duration of MLP based neural network

algorithm is way less and the forecasting accuracy is comparable. The forecast-
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ing accuracy of ensemble methods (random forest and gradient based random

trees) is reasonably well and are computationally efficient (less expensive). On

the other hand, K-nearest neighbor (K-NN) and linear methods (ordinary least

square, ridge, lasso, elastic net and stochastic gradient descent) do not perform

well for forecasting. Moreover, it is observed that the forecasting accuracy of

machine learning model using weather data improves greatly once the return

water temperature data is used to forecast the supply water temperature, and

vice versa. This explains that the weather data (outside air temperature, solar

insolation, humidity and wind data) alone is not enough for forecasting using

machine learning methods.

The classical stochastic Auto-Regressive Integrated Moving Average

(ARIMA) forecasting method is a widely used method, and is a combination

of Auto-Regressive (AR) and Moving Average (MA) models. As monitored

data from district heating network contains seasonality, an extension of

ARIMA known as Seasonal Autoregressive Integrated Moving Average

(SARIMA) is used. It can handle both trend and seasonal component in the

input time-series data. The results from fine-tuned SARIMA model on hourly

data explains that the forecasting accuracy depends on the forecast horizon.

The model has very good accuracy for short-term forecasts (24 -168 hrs), but

it decreases as soon as the forecast horizon increases i.e. medium (<1 month)

and long-term (>1 year). Still the overall accuracy of the SARIMA model

is better than the low performance machine learning models (i.e. K-nearest

neighbor and linear methods).

In conclusion, the performance comparison between modern machine

learning and classical stochastic models for time-series forecasting suggest that
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for short-horizon forecast, the traditional stochastic SARIMA method out-

performs all supervised machine learning models in terms of precision and

accuracy, but once the forecast horizon increases, the MLP and SVR neural

networks out-performs SARIMA model.

Since, the current focus is shifting towards the installation of low carbon

technologies, therefore, the GIS mapping tools can be helpful in designing

LTDH networks with heat pumps. In addition, the selection of district heating

network site and layout is crucial for the design and economic viability of any

LTDH project. The last research objective is achieved in Chapter 7 where

the application of GIS mapping tool is outlined. The early stage design and

planning of a real district heating project has been used as a case study. The

GIS based model has been developed in FME software which calculates shortest

path for the district heat network, pipe sizes, hydraulic analysis and then maps

results on GIS interface. The aim was to investigate the benefit of a centralised

district heating network with one energy centre compared to a decentralised

(standalone) network with multiple energy centres (such as heat pumps). The

results suggested that the decentralised LTDH network with multiple energy

centres is the optimum strategy owing to the cost of network pipe-works and

heat-losses in the network. This also helped to identify the location of nearby

heat sources and the distance between consumers.

8.2 Contribution to knowledge

This project has shown that the intervention of low temperature district heat-

ing in existing buildings can be implemented with success using the return

pipe of the existing district heating networks. This has been demonstrated
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by studying thermal performance of the buildings after retrofitting and energy

efficient operation of the LTDH network.

The first contribution to the knowledge is that the deep-retrofitting of

existing building reduces the energy consumption by almost 50% and should

be performed before the implementation of LTDH. Another novel finding is

that the existing boiler based buildings are already technically feasible for the

conversion to LTDH, and the ∆t of the REMOURBAN LTDH networks can

be improved by reducing flow-rates in the network as well as the circulation

pump (inside the plant room). This can be achieved by installation of PID con-

troller inside the plant room and demonstrated with DYMOLA simulations.

This knowledge should be applicable to any future LTDH networks. Another

contribution to the knowledge is that futuristic de-carbonisation of district

heating network is not economically feasible, unless both fully renewable pow-

ered electrical grid and heating networks are coupled together. Additionally,

100% decarbonisation of heating network depends on selling excess electricity

and heat to the private consumers.

Yet another interesting finding is that predictive modelling is applicable

on the LTDH network data. It has been concluded that the classical stochastic

SARIMA forecasting method performs better for short term forecasting and

the supervised machine learning models (SVR and MLP neural networks) are

more appropriate for long term forecasting. Finally, the practical contribution

of GIS mapping has shown that it can play an important role in early planning

to provide a quick overview, design, layout for a potential district heating site

as well as identification of alternate heat sources.
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8.3 Future work
As described in this chapter, the optimisation of flow-rates is the key in achiev-

ing the energy efficiency in the LTDH network. One thing which should be

explored is the use of ground source heat pumps as source of district heating

network and domestic hot water is provided by electric heating inside the flats.

In this way the risk of legionella will be removed and the network will be able

to operate at even lower temperatures. Moreover, the flow-rate and required

pipe sizes will be reduced. This will impact the heat-losses and capital cost of

the network.

Since the computation power was limited and the LTDH network was

simulated for only one month, but given that more computational resources

in terms of high performance computing (HPC) are available, data for whole

year could be simulated to extract the trends reflecting the varying demand

over different seasons.

It is foreseen that moving forward, a development of hybrid model is a way

to improve to forecasts the heat demand of the LTDH network. That specific

hybrid model should consider SARIMA modelling for short-term forecasting

and deep learning (Long short-term memory - LSTM) for medium and long

term forecasting. This can also be combined with Dymola model to predict

the extreme events, which is a practical avenue to drive the research for energy

modelling in district heating systems. Finally, a better coordination and access

to receive consistent monitored data directly from the sensors could improve

better data analysis.



Appendix A

REMOURBAN LTDH network

project parameters



Appendix A. REMOURBAN LTDH network project parameters 246



T

R
e

v
i
s
i
o

n
:

S
c
a

l
e

:
D

r
a

w
n

:

P
r
o
j
e
c
t
:

D
w

g
.
 
N

o
.

D
a

t
e

:

T
i
t
l
e
:

A
L

L
 
D

I
M

E
N

S
I
O

N
S

 
I
N

 
M

I
L

L
I
M

E
T

R
E

S
 
U

N
L

E
S

S
 
S

T
A

T
E

D
 
O

T
H

E
R

W
I
S

E
.

C
o

p
y
r
i
g

h
t
 
©

 
2
0

1
3

 

T
h

i
s
 
d

r
a
w

i
n

g
 
i
s

 
t
h

e
 
p

r
o

p
e
r
t
y
 
o

f
 
A

c
u

m
e
n

 
P

r
o

j
e

c
t
s
 
L

t
d

.

 
e
i
t
h

e
r
 
w

h
o

l
l
y

 
o

r
 
i
n

 
p

a
r
t
 
w

i
t
h

o
u

t
 
t
h

e
 
c
o

n
s

e
n

t
 
i
n

 
w

r
i
t
i
n

g
 
o

f
 
A

c
u

m
e
n

 
P

r
o

j
e

c
t
s

 
L

t
d

.
 

i
t
 
i
s
 
n

o
t
 
c

o
p

i
e

d
,
 
r
e
p

r
o

d
u

c
e

d
,
 
r
e
t
a

i
n

e
d

 
o

r
 
d

i
s
c
l
o

s
e
d

 
t
o

 
a
n

y
 
u

n
a
u

t
h

o
r
i
s
e
d

 
p

e
r
s
o

n
,

C
o

p
y

r
i
g

h
t
 
i
s
 
r
e

s
e
r
v
e

d
 
b

y
 
t
h

e
m

 
a
n

d
 
t
h

e
 
d

r
a
w

i
n

g
 
i
s
 
i
s
s
u

e
d

 
o

n
 
t
h

e
 
c
o

n
d

i
t
i
o

n
 
t
h

a
t

T
H

I
S

 
I
S

 
A

 
C

A
D

 
D

R
A

W
I
N

G
 
-
 
D

O
 
N

O
T

 
H

A
N

D
 
M

O
D

I
F

Y
 
-
 
D

O
 
N

O
T

 
S

C
A

L
E

 
-
 
P

H
O

T
O

C
O

P
Y

I
N

G
 
M

A
Y

 
D

I
S

T
O

R
T

.

Appendix A. REMOURBAN LTDH network project parameters 247



Appendix A. REMOURBAN LTDH network project parameters 248



Bibliography

Agrawal, R. & Adhikari, R. (2013), ‘An introductory study on time series

modeling and forecasting’, Nova York: CoRR .

Anderson, B., Chapman, P., Cutland, N., Dickson, C., Henderson, G., Hen-

derson, J., Iles, P., Kosmina, L. & Shorrock, L. (2015), ‘BREDEM 2012 -

A technical description of the BRE Domestic Energy Model’, https://www.

bre.co.uk/filelibrary/bredem/BREDEM-2012-specification.pdf.

Andresen, G. B., Rodriguez, R. A., Becker, S. & Greiner, M. (2014), ‘The

potential for arbitrage of wind and solar surplus power in denmark’, Energy

76(0), 49 – 58.

URL: http://www.sciencedirect.com/science/article/pii/S0360544214002977

Arup, O. & Ltd, P. (2011), ‘Review of the generation costs and deployment

potential of renewable electricity technologies in the UK ’, https://www.gov.

uk/government/collections/energy-generation-cost-projections.

Ashfaq, A. & Ianakiev, A. (2018a), ‘Cost-minimised design of a highly

renewable heating network for fossil-free future’, Energy 152, 613 – 626.

URL: http://www.sciencedirect.com/science/article/pii/S0360544218305644

Ashfaq, A. & Ianakiev, A. (2018b), ‘Investigation of hydraulic imbalance

https://www.bre.co.uk/filelibrary/bredem/BREDEM-2012-specification.pdf
https://www.bre.co.uk/filelibrary/bredem/BREDEM-2012-specification.pdf
https://www.gov.uk/government/collections/energy-generation-cost-projections
https://www.gov.uk/government/collections/energy-generation-cost-projections


Bibliography 250

for converting existing boiler based buildings to low temperature district

heating’, Energy 160, 200 – 212.

URL: http://www.sciencedirect.com/science/article/pii/S0360544218312891

Ashfaq, A., Kamali, Z. H., Agha, M. H. & Arshid, H. (2017), ‘Heat coupling of

the pan-European vs. regional electrical grid with excess renewable energy’,

Energy 122, 363 – 377.

Becker, S., Frew, B. A., Andresen, G. B., Jacobson, M. Z., Schramm, S. &

Greiner, M. (2015), ‘Renewable build-up pathways for the us: Generation

costs are not system costs’, Energy 81, 437 – 445.

URL: http://www.sciencedirect.com/science/article/pii/S0360544214014285

Becker, S., Frew, B. A., Andresen, G. B., Zeyer, T., Schramm, S., Greiner,

M. & Jacobson, M. Z. (2014), ‘Features of a fully renewable US electricity

system: Optimized mixes of wind and solar PV and transmission grid

extensions’, Energy 72, 443 – 458.

URL: http://www.sciencedirect.com/science/article/pii/S0360544214006343

Becker, S., Rodriguez, R., Andresen, G., Schramm, S. & Greiner, M. (2014),

‘Transmission grid extensions during the build-up of a fully renewable

pan-European electricity supply’, Energy 64, 404 – 418.

URL: http://www.sciencedirect.com/science/article/pii/S0360544213008438

BEIS UK, . (2018a), ‘Heat Network Investment Project (HNIP), a

case study brochure’, https://assets.publishing.service.gov.uk/

government/uploads/system/uploads/attachment_data/file/691643/

Heat_Network_Case_Study_Brochure.pdf. Accessed: 11 May 2020.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/691643/Heat_Network_Case_Study_Brochure.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/691643/Heat_Network_Case_Study_Brochure.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/691643/Heat_Network_Case_Study_Brochure.pdf


Bibliography 251

BEIS UK, . (2018b), ‘The Clean Growth Strategy: Leading the way to

a low carbon future’, https://assets.publishing.service.gov.uk/

government/uploads/system/uploads/attachment_data/file/700496/

clean-growth-strategy-correction-april-2018.pdf. Accessed: 11

May 2020.

Bofinger, S., von Bremen, L., knorr, K., lesch, K., Rohrig, K., Saint-

Drenan, Y.-M. & Speckmann, M. (November, 2008), ‘Raum-zeitliche Erzeu-

gungsmuster von Wind- und Solarenergie in der UCTE Region und deren

Einfluss auf elektrische Transportnetze’.

Boysen, H. & Thorsen, J. E. (2007), ‘Hydraulic balance in a district heating

system’, https://assets.danfoss.com/documents/DOC024186450916/

DOC024186450916.pdf.

BS EN 442-1, . (2014), ‘BS EN 442-1:2014 Radiators and convectors. Technical

specifications and requirements’.

BSI (2008), ‘BS EN 15251:2007 - Indoor environmental input parameters for

design and assessment of energy performance of buildings addressing indoor

air quality, thermal environment, lighting and acoustics’.

Building Regulations, . (2010a), ‘The buildings regulations 2010, Ap-

poved document Part-L1B Conservation of fuel and power in ex-

isting dwellings’, https://www.gov.uk/government/publications/

conservation-of-fuel-and-power-approved-document-l. Accessed: 30

April 2020.

Building Regulations, . (2010b), ‘The buildings regulations 2010, Appoved

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/700496/clean-growth-strategy-correction-april-2018.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/700496/clean-growth-strategy-correction-april-2018.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/700496/clean-growth-strategy-correction-april-2018.pdf
https://assets.danfoss.com/documents/DOC024186450916/DOC024186450916.pdf
https://assets.danfoss.com/documents/DOC024186450916/DOC024186450916.pdf
https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l
https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l


Bibliography 252

document Part-L2A Conservation of fuel and power in new buildings

other than dwellings’, https://www.gov.uk/government/publications/

conservation-of-fuel-and-power-approved-document-l. Accessed: 30

April 2020.

Building Regulations, . (2010c), ‘The buildings regulations 2010, Appoved

document Part-L2B Conservation of fuel and power in existing buildings

other than dwellings’, https://www.gov.uk/government/publications/

conservation-of-fuel-and-power-approved-document-l. Accessed: 30

April 2020.

Building Regulations, . (2010d), ‘The buildings regulations, Ap-

poved document Part-L1A Conservation of fuel and power in

new dwellings’, https://www.gov.uk/government/publications/

conservation-of-fuel-and-power-approved-document-l. Accessed: 30

April 2020.

BuroHappold Engineering, . (2016), ‘UK Spatial District Heat-

ing Analysis’, http://fes.nationalgrid.com/media/1215/

160712-national-grid-dh-summary-report.pdf. Accessed: 11 May

2020.

Bøhm, B. (2010), ‘Experimental determination of heat losses from buried dis-

trict heating pipes in normal operation’, Heat Transfer Engineering Vol.

22, pp. 41–51.

Calisir, T., Yazar, H. O. & Baskaya, S. (2017), ‘Determination of the effects of

different inlet-outlet locations and temperatures on pccp panel radiator heat

transfer and fluid flow characteristics’, International Journal of Thermal

https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l
https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l
https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l
https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l
https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l
https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l
http://fes.nationalgrid.com/media/1215/160712-national-grid-dh-summary-report.pdf
http://fes.nationalgrid.com/media/1215/160712-national-grid-dh-summary-report.pdf


Bibliography 253

Sciences 121(Supplement C), 322 – 335.

URL: http://www.sciencedirect.com/science/article/pii/S1290072917302545

Centre for Sustainable Energy Association for the Conservation of En-

ergy, . & Moore, D. R. (2008), ‘Achieving optimal carbon savings from

the UK’s existing housing stock’, https://www.cse.org.uk/downloads/

reports-and-publications/policy/how$_$low.pdf. Accessed: 30 April

2020.

Chen, P., Niu, A., Liu, D., Jiang, W. & Ma, B. (2018), Time series forecasting

of temperatures using sarima: An example from nanjing, in ‘IOP Confer-

ence Series: Materials Science and Engineering’, Vol. 394, IOP Publishing,

p. 052024.

CIBSE (Jul 2015), Heat Networks: Code of Practice for the UK, Chartered

Institution of Building Services Engineers (CIBSE).

URL: https://www.cibse.org/knowledge/knowledge-

items/detail?id=a0q200000090MYHAA2

Committee on Climate Change, . (2010), ‘The Fourth

Carbon Budget – reducing emissions through the

2020s’, https://www.theccc.org.uk/publication/

the-fourth-carbon-budget-reducing-emissions-through-the-2020s-2/.

Accessed: 30 April 2020.

Connolly, D., Lund, H. & Mathiesen, B. (2016), ‘Smart energy Europe: The

technical and economic impact of one potential 100% renewable energy

scenario for the European Union’, Renewable and Sustainable Energy

https://www.cse.org.uk/downloads/reports-and-publications/policy/how$_$low.pdf
https://www.cse.org.uk/downloads/reports-and-publications/policy/how$_$low.pdf
https://www.theccc.org.uk/publication/the-fourth-carbon-budget-reducing-emissions-through-the-2020s-2/
https://www.theccc.org.uk/publication/the-fourth-carbon-budget-reducing-emissions-through-the-2020s-2/


Bibliography 254

Reviews 60, 1634 – 1653.

URL: http://www.sciencedirect.com/science/article/pii/S1364032116002331

Connolly, D., Lund, H., Mathiesen, B., Werner, S., Möller, B., Persson, U.,

Boermans, T., Trier, D., Østergaard, P. & Nielsen, S. (2014), ‘Heat roadmap

Europe: Combining district heating with heat savings to decarbonise the

EU energy system’, Energy Policy 65, 475 – 489.

URL: http://www.sciencedirect.com/science/article/pii/S0301421513010574

Cui, J. M., Ianakiev, A. & Garcia-Fuentes, M. A. (2017), ‘To examine

appropriate deep-retrofit practice using simulation results in an EU-funded

urban regeneration project’, Energy Procedia 105(Supplement C), 2549 –

2556. 8th International Conference on Applied Energy, ICAE2016, 8-11

October 2016, Beijing, China.

URL: http://www.sciencedirect.com/science/article/pii/S1876610217307968

Dahl, M. (2015), Power-Flow Modeling in Complex Renewable Electricity Net-

works, Master’s thesis, Aarhus University, Denmark.

Danish standard 469, . (2013), ‘Danish standard, DS 469-Heating and cooling

systems in buildings, Denmark’.

Domestic Building Regulations, . (2013), ‘Domestic building services

compliance guide’, https://www.gov.uk/government/publications/

conservation-of-fuel-and-power-approved-document-l.

Dominković, D., Bačeković, I., Sveinbjörnsson, D., Pedersen, A. & Krajačić,

G. (2017), ‘On the way towards smart energy supply in cities: The impact

of interconnecting geographically distributed district heating grids on the

https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l
https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l


Bibliography 255

energy system’, Energy .

URL: http://www.sciencedirect.com/science/article/pii/S0360544217303456

EIA, U.S. Energy Information Administration (2015), ‘Levelized Cost and Lev-

elized Avoided Cost of New Generation Resources in the Annual Energy

Outlook 2015’. Accessed: 2015-09-10.

URL: http://www.eia.gov/forecasts/aeo/electricitygeneration.cfm

Environment Agency UK, . (July 2014), ‘An Environmental Risk Assessment

for coal bed methane, coal mine methane and abandoned mine methane op-

erations in England’.

EQUA Simulation AB, . (2010), ‘Validation of IDA Indoor climate and Energy

4.0 with respect to CEN Standards EN 15255-2007 and EN 15265-2007 ’.

EQUA Simulation AB, . (2013), ‘User Manual: IDA Indoor Climate and En-

ergy, Version 4.5 ’.

European-Commission (2002), ‘Directive 2002/91/EC of the European

parliament and of the council on the energy performance of build-

ings’, https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=

CONSLEG:2002L0091:20081211:EN:PDF. Accessed: 30 April 2020.

Frederiksen, S. & Werner, S. (2013), District Heating and Cooling, Studentlit-

teratur AB.

Fürsch, M., Golling, C., Nicolosi, M., Wissen, R. & Lindenberger, D. D.

(2010), ‘European RES-E Policy Analysis’, http://www.ewi.uni-koeln.

de/fileadmin/user_upload/Publikationen/Studien/Politik_und_

Gesellschaft/2010/EWI_2010-04-26_RES-E-Studie_Teil1.pdf.

https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2002L0091:20081211:EN:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2002L0091:20081211:EN:PDF
http://www.ewi.uni-koeln.de/fileadmin/user_upload/Publikationen/Studien/Politik_und_Gesellschaft/2010/EWI_2010-04-26_RES-E-Studie_Teil1.pdf
http://www.ewi.uni-koeln.de/fileadmin/user_upload/Publikationen/Studien/Politik_und_Gesellschaft/2010/EWI_2010-04-26_RES-E-Studie_Teil1.pdf
http://www.ewi.uni-koeln.de/fileadmin/user_upload/Publikationen/Studien/Politik_und_Gesellschaft/2010/EWI_2010-04-26_RES-E-Studie_Teil1.pdf


Bibliography 256

Gabrielaitiene, I., Bøhm, B. & Sunden, B. (2010), ‘Evaluation of approaches

for modeling temperature wave propagation in district heating pipelines’,

Heat Transfer Engineering 29(1), 45–56.

Géron, A. (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems,

O’Reilly Media.

Grundahl, L., Nielsen, S., Lund, H. & Möller, B. (2016), ‘Comparison

of district heating expansion potential based on consumer-economy or

socio-economy’, Energy 115, Part 3, 1771 – 1778.

URL: http://www.sciencedirect.com/science/article/pii/S0360544216307137

Hansen, K., Connolly, D., Lund, H., Drysdale, D. & Thellufsen, J. Z.

(2016), ‘Heat roadmap Europe: Identifying the balance between saving

heat and supplying heat’, Energy 115, Part 3, 1663 – 1671. Sustainable

Development of Energy, Water and Environment Systems.

URL: http://www.sciencedirect.com/science/article/pii/S0360544216308064

Hastie, T., Tibshirani, R. & Friedman, J. (2009), The elements of statistical

learning: data mining, inference, and prediction, Springer Science & Busi-

ness Media.

Heide, D., Greiner, M., von Bremen, L. & Hoffmann, C. (2011), ‘Reduced

storage and balancing needs in a fully renewable European power system

with excess wind and solar power generation’, Renewable Energy 36(9), 2515

– 2523.

Heide, D., von Bremen, L., Greiner, M., Hoffmann, C., Speckmann, M. &



Bibliography 257

Bofinger, S. (2010), ‘Seasonal optimal mix of wind and solar power in a

future, highly renewable Europe’, Renewable Energy 35(11), 2483 – 2489.

URL: http://www.sciencedirect.com/science/article/pii/S0960148110001291

Holloway, S., Jones, N., Creedy, D. & Garner, K. (2005), Can new technolo-

gies be used to exploit the coal resources in the yorkshire-nottinghamshire

coalfield?, in J. Collinson, D. Evans, D. Holliday & N. Jones, eds, ‘Car-

boniferous hydrocarbon geology : the southern North Sea and surrounding

onshore areas’, number 7, Yorkshire Geological Society, pp. 195–208.

URL: http://nora.nerc.ac.uk/id/eprint/15896/

Ianakiev, A., Cui, J. M., Garbett, S. & Filer, A. (2017), ‘Innovative system

for delivery of low temperature district heating’, International Journal of

Sustainable Energy Planning and Management 12(0), 19–28.

URL: https://journals.aau.dk/index.php/sepm/article/view/1633

IEA & IRENA (2017), ‘Perspectives for the Energy Transition: Investment

Needs for a Low-Carbon Energy System’.

URL: https://www.irena.org/publications/2017/Mar/Perspectives-for-the-

energy-transition-Investment-needs-for-a-low-carbon-energy-system

IES Virtual Environment, . (2014), ‘Building Regulations - Part L2 (2013)

ApacheSim (DSM) User Guide’.

Jacob, M., Neves, C. & Vukadinović Greetham, D. (2020), Forecasting and

Assessing Risk of Individual Electricity Peaks, Springer.

Jacobson, M. Z. & Delucchi, M. A. (2011), ‘Providing all global energy with

wind, water, and solar power, part i: Technologies, energy resources, quan-



Bibliography 258

tities and areas of infrastructure, and materials’, Energy Policy 39(3), 1154

– 1169.

URL: http://www.sciencedirect.com/science/article/pii/S0301421510008645

Jones, N., Holloway, S., Creedy, D., Garner, K., Smith, N. J. P., Browne, M. &

Durucan, S. (2004), ‘UK Coal Resource for New Exploitation Technologies

Final Report, Sustainable Energy & Geophysical Surveys Programme Com-

missioned Report CR/04/015N ’, http://nora.nerc.ac.uk/id/eprint/

509526/1/CR04015N.pdf.

Kelly, S. (2011), ‘Do homes that are more energy efficient consume less

energy?: A structural equation model of the english residential sector’,

Energy 36(9), 5610 – 5620.

URL: http://www.sciencedirect.com/science/article/pii/S0360544211004579

Kelly, S., Crawford-Brown, D. & Pollitt, M. G. (2012), ‘Building performance

evaluation and certification in the UK: Is SAP fit for purpose?’, Renewable

and Sustainable Energy Reviews 16(9), 6861 – 6878.

URL: http://www.sciencedirect.com/science/article/pii/S1364032112004595

Küçüka, S. (2007), ‘The thermal effects of some control logics used in GDHS’,

Applied Thermal Engineering 27(8–9), 1495 – 1500.

URL: http://www.sciencedirect.com/science/article/pii/S1359431106003401

Liu, X., Wu, J., Jenkins, N. & Bagdanavicius, A. (2016), ‘Combined analysis

of electricity and heat networks’, Applied Energy 162(Supplement C), 1238

– 1250.

URL: http://www.sciencedirect.com/science/article/pii/S0306261915001385

http://nora.nerc.ac.uk/id/eprint/509526/1/CR04015N.pdf
http://nora.nerc.ac.uk/id/eprint/509526/1/CR04015N.pdf


Bibliography 259

Lund, H., Thellufsen, J., Aggerholm, S., Wittchen, K., Nielsen, S., Mathiesen,

B. & Möller, B. (2015), ‘Heat saving strategies in sustainable smart energy

systems’, International Journal of Sustainable Energy Planning and Man-

agement 4(0), 3–16.

URL: https://journals.aau.dk/index.php/sepm/article/view/684

Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J. E., Hvelplund,

F. & Mathiesen, B. V. (2014), ‘4th generation district heating (4GDH):

Integrating smart thermal grids into future sustainable energy systems’,

Energy 68, 1 – 11.

URL: http://www.sciencedirect.com/science/article/pii/S0360544214002369

Lund, H., Østergaard, P., Connolly, D., Ridjan, I., Mathiesen, B., Hvelplund,

F., Thellufsen, J. & Sorknæs, P. (2016), ‘Energy storage and smart energy

systems’, International Journal of Sustainable Energy Planning and Man-

agement 11(0), 3–14.

URL: https://journals.aau.dk/index.php/sepm/article/view/1574

Lund, R. & Mohammadi, S. (2016), ‘Choice of insulation standard for pipe

networks in 4th generation district heating systems’, Applied Thermal

Engineering 98(Supplement C), 256 – 264.

URL: http://www.sciencedirect.com/science/article/pii/S135943111501385X

Makridakis, S., Spiliotis, E. & Assimakopoulos, V. (2018), ‘Statistical and

machine learning forecasting methods: Concerns and ways forward’, PloS

one 13(3).

URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194889

Mathiesen, B., Lund, H., Connolly, D., Wenzel, H., Østergaard, P., Möller,



Bibliography 260

B., Nielsen, S., Ridjan, I., Karnøe, P., Sperling, K. & Hvelplund, F. (2015),

‘Smart energy systems for coherent 100% renewable energy and transport

solutions’, Applied Energy 145, 139 – 154.

URL: http://www.sciencedirect.com/science/article/pii/S0306261915001117

McIntyre, D. A. (1986), ‘Output of radiators at reduced flow rate’, Building

Services Engineering Research and Technology 7(2), 92–95.

URL: https://doi.org/10.1177/014362448600700206

McKinsey, KEMA, at Imperial College London, T. E. F. L., Economics, O.

& ECF (2010), ‘ROADMAP 2050: A practical guide to a prosperous, low-

carbon Europe’.

Ministry of Housing, C. & Government, L. (2015), ‘Improving the energy effi-

ciency of our buildings’, https://www.gov.uk/government/collections/

energy-performance-certificates. Accessed: 30 April 2020.

Müller, A. C., Guido, S. et al. (2016), Introduction to machine learning with

Python: a guide for data scientists, " O’Reilly Media, Inc.".

Möller, B. & Nielsen, S. (2014), ‘High resolution heat atlases for demand and

supply mapping’, International Journal of Sustainable Energy Planning and

Management 1, 41–58.

URL: https://journals.aau.dk/index.php/sepm/article/view/548

National Calculation Methodology, . (2013), ‘National Calculation Methodol-

ogy (NCM) modelling guide (for buildings other than dwellings in England),

Department for Communities and Local Government: London’, https:

//www.uk-ncm.org.uk.

https://www.gov.uk/government/collections/energy-performance-certificates
https://www.gov.uk/government/collections/energy-performance-certificates
https://www.uk-ncm.org.uk
https://www.uk-ncm.org.uk


Bibliography 261

Non-Domestic Building Regulations, . (2013), ‘Non-domestic building services

compliance guide’, https://www.gov.uk/government/publications/

conservation-of-fuel-and-power-approved-document-l.

Olivier, J. G., (IES-JRC), G. J.-M., (IES-JRC), M. M. & (PBL), J.

A. P. (2015), ‘Trends in Global Co2 Emissions’, http://www.pbl.nl/en/

publications/trends-in-global-co2-emissions-2015-report.

Olsen, P. K., Christiansen, C. H., Hofmeister, M., Svendsen, S., Rosa, A. D.,

Thorsen, J.-E., Gudmundsson, O. & Brand, M. (2014), ‘Guidelines for Low-

Temperature District Heating’.

Palsson, H. (1997), Analysis of numerical methods for simulating temperature

dynamics in district heating pipes, in ‘Proceedings of the 6th International

symposium on district heating and cooling simulation’, University of Iceland,

Faculty of Engineering, pp. 1–20.

Pensini, A., Rasmussen, C. N. & Kempton, W. (2014), ‘Economic analysis of

using excess renewable electricity to displace heating fuels’, Applied Energy

131, 530 – 543.

URL: http://www.sciencedirect.com/science/article/pii/S0306261914004772

Persson, U., Möller, B. & Werner, S. (2014), ‘Heat roadmap Europe: Identi-

fying strategic heat synergy regions’, Energy Policy 74, 663 – 681.

URL: http://www.sciencedirect.com/science/article/pii/S0301421514004194

Poutiainen, Z. (2019), ‘Short-term heat load forecasting in district heating

systems: A comparative study of various forecasting methods’.

Rasmussen, M. G., Andresen, G. B. & Greiner, M. (2012), ‘Storage and

https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l
https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l
http://www.pbl.nl/en/publications/trends-in-global-co2-emissions-2015-report
http://www.pbl.nl/en/publications/trends-in-global-co2-emissions-2015-report


Bibliography 262

balancing synergies in a fully or highly renewable pan-European power

system’, Energy Policy 51, 642 – 651. Renewable Energy in China.

URL: http://www.sciencedirect.com/science/article/pii/S0301421512007677

Rasmussen, U. (2012), ‘Water consumption in the energy sector and energy

consumption in the water-sector in a danish municipality.’, Journal of Trans-

disciplinary Environmental Studies 11(1), 3 – 5.

Rodriguez, R. A., Becker, S. & Greiner, M. (2015), ‘Cost-optimal design of

a simplified, highly renewable pan-European electricity system’, Energy

83, 658 – 668.

URL: http://www.sciencedirect.com/science/article/pii/S0360544215002212

Rodríguez, R. A., Becker, S., Andresen, G. B., Heide, D. & Greiner, M.

(2014), ‘Transmission needs across a fully renewable european power

system’, Renewable Energy 63, 467 – 476.

URL: http://www.sciencedirect.com/science/article/pii/S0960148113005351

SBEM (2010), ‘Simplified building energy model - Building Research Establish-

ment (BRE)’.

Schaber, K., Steinke, F., Mühlich, P. & Hamacher, T. (2012), ‘Parametric

study of variable renewable energy integration in Europe: Advantages and

costs of transmission grid extensions’, Energy Policy 42, 498 – 508.

URL: http://www.sciencedirect.com/science/article/pii/S0301421511010081

Schlachtberger, D., Becker, S., Schramm, S. & Greiner, M. (2016), ‘Backup

flexibility classes in emerging large-scale renewable electricity systems’,



Bibliography 263

Energy Conversion and Management .

URL: http://www.sciencedirect.com/science/article/pii/S0196890416302606

Siami-Namini, S. & Namin, A. S. (2018), ‘Forecasting economics and financial

time series: Arima vs. lstm’, arXiv preprint arXiv:1803.06386 .

Steward, D., Saur, G., Penev, M. & Ramsden, T. (2009), ‘Lifecycle cost analy-

sis of hydrogen versus other technologies for electrical energy storage’, NREL

.

URL: http://www.nrel.gov/docs/fy10osti/46719.pdf

Thellufsen, J. Z. & Lund, H. (2015), ‘Energy saving synergies in national

energy systems’, Energy Conversion and Management 103, 259 – 265.

URL: http://www.sciencedirect.com/science/article/pii/S0196890415005932

Thellufsen, J. Z. & Lund, H. (2017), ‘Cross-border versus cross-sector

interconnectivity in renewable energy systems’, Energy 124, 492 – 501.

URL: http://www.sciencedirect.com/science/article/pii/S0360544217302943

Tunzi, M., Østergaard, D. S., Svendsen, S., Boukhanouf, R. & Cooper, E.

(2016), ‘Method to investigate and plan the application of low temperature

district heating to existing hydraulic radiator systems in existing buildings’,

Energy 113, 413 – 421.

URL: http://www.sciencedirect.com/science/article/pii/S0360544216309574

UKERC, . (2009), ‘Decarbonising the UK Energy Sys-

tem: Accelerated Development of Low Carbon Energy Sup-

ply Technologies’, http://www.ukerc.ac.uk/publications/

http://www.ukerc.ac.uk/publications/decarbonising-the-uk-energy-system-accelerated-development-of-low-carbon-energy-supply-technologies.html
http://www.ukerc.ac.uk/publications/decarbonising-the-uk-energy-system-accelerated-development-of-low-carbon-energy-supply-technologies.html
http://www.ukerc.ac.uk/publications/decarbonising-the-uk-energy-system-accelerated-development-of-low-carbon-energy-supply-technologies.html


Bibliography 264

decarbonising-the-uk-energy-system-accelerated-development-of-low-carbon-energy-supply-technologies.

html. Accessed: 11 May 2020.

Ward, I. (1991), ‘Domestic radiators: Performance at lower mass flow rates and

lower temperature differentials than those specified in standard performance

tests’, SAGE Publications Ltd STM- Building Services Engineering Research

and Technology 12(3), 87 – 94.

URL: http://journals.sagepub.com/doi/pdf/10.1177/014362449101200301

Wedding, G. C. & Crawford-Brown, D. (2007), ‘An Analysis of Variation in

the Energy-Related Environmental Impacts of LEED Certified Buildings’,

Journal of Green Building 2(4), 151–170.

URL: https://doi.org/10.3992/jgb.2.4.151

Wedding, G. C. & Crawford-Brown, D. (2008), ‘Improving the Link Between

the LEED Green Building Label and a Building’s Energy-Related Environ-

mental Metrics’, Journal of Green Building 3(2), 85–105.

URL: https://doi.org/10.3992/jgb.3.2.85

Wiltshire, R., Williams, J. & Woods, P. (2014), ‘A technical guide to district

heating’.

Woods, P. & Overgaard, J. (2016), Historical development of district heating

and characteristics of a modern district heating system, in R. Wiltshire,

ed., ‘Advanced District Heating and Cooling (DHC) Systems’, Woodhead

Publishing Series in Energy, Woodhead Publishing, Oxford, pp. 3 – 15.

Zhang, L., Gudmundsson, O., Thorsen, J. E., Li, H., Li, X. & Svendsen, S.

(2016), ‘Method for reducing excess heat supply experienced in typical chi-

http://www.ukerc.ac.uk/publications/decarbonising-the-uk-energy-system-accelerated-development-of-low-carbon-energy-supply-technologies.html
http://www.ukerc.ac.uk/publications/decarbonising-the-uk-energy-system-accelerated-development-of-low-carbon-energy-supply-technologies.html
http://www.ukerc.ac.uk/publications/decarbonising-the-uk-energy-system-accelerated-development-of-low-carbon-energy-supply-technologies.html
http://www.ukerc.ac.uk/publications/decarbonising-the-uk-energy-system-accelerated-development-of-low-carbon-energy-supply-technologies.html


Bibliography 265

nese district heating systems by achieving hydraulic balance and improving

indoor air temperature control at the building level’, Energy 107, 431 –

442.

URL: http://www.sciencedirect.com/science/article/pii/S0360544216303917

Çengel, Y. A. (2007), Heat & Mass Transfer: A Practical Approach, McGraw-

Hill Education Pvt Limited.

Çengel, Y. A., Cimbala, J. M. & Turner, R. H. (2012), Fluid Mechanics [Si

Units], McGraw-Hill Education Pvt Limited.


	Declaration of Authorship
	Abstract
	Acknowledgements
	Table of contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of publications
	Introduction
	District heating
	Low temperature district heating system
	Benefits of low temperature district heating
	Challenges in implementation of LTDH

	Research aim and objectives
	Research plan and research methods

	Theoretical Background
	District heating in the UK
	Decarbonisation of energy system pathways
	District heating in Nottingham
	Low temperature district heating intervention in Nottingham

	LTDH network modelling methodology
	Time series prediction and forecasting
	Machine learning methods
	K-nearest neighbors
	Linear models
	Decision trees
	Ensemble Method
	Support vector machines
	Neural networks

	Stochastic methods
	Autoregressive models (AR)
	Moving average models (MA)
	Autoregressive integrated moving average (ARIMA)
	Seasonal autoregressive integrated moving average (SARIMA)


	Model optimisation and evaluation
	Generalization, over-fitting and under-fitting
	Grid search and Cross-validation
	Model evaluation metrics
	Mean absolute error (MAE)
	Mean absolute percentage error (MAPE)
	R-squared (R2)
	Root mean square error (RMSE)



	Thermal modelling of the buildings
	Building regulations in United Kingdom
	Regulations for domestic buildings
	Regulations for non-domestic buildings

	Thermal comfort assessment
	CIBSE TM-52
	CIBSE TM-59

	Case study - domestic building thermal analysis
	Monitored weather data
	Heat demand after retrofitting of buildings
	TM-52 thermal comfort assessments - domestic buildings
	Iteration 1
	Iteration 2
	Iteration 3

	TM-59 thermal comfort assessment - domestic buildings
	Iteration 4
	Iteration 5


	Case study - non domestic building thermal analysis
	Part L compliance assessment
	Net-zero carbon emissions assessment
	TM-52 thermal comfort assessment - non domestic buildings

	Discussion and recommendations
	Summary

	Hydraulic modelling of the district heating network
	Project description
	Python programming based model
	Heat demand modelling of the buildings
	Hydraulic modelling of the LTDH network

	Monitored space-heating - data analysis
	Results and analysis
	Hydraulic modelling using Python
	Scenario 1 and 3 - constant supply water temperature
	Scenario 2 and 4 - variable supply water temperature

	Hydraulic modelling using Dymola
	Baseline iteration
	Iteration 1
	Iteration 2
	Iteration 3
	Iteration 4

	Validation of results using real monitored data

	Discussion and recommendations
	Summary

	Cost minimised decarbonised district heating network
	Background
	Energy system modelling
	Electrical grid modelling
	Heat network modelling
	Coupled network analysis

	Economic modelling and analysis
	Economic optimal network
	Effect of cost-variations
	Effect of renewable energy penetration
	Effect of selling excess generation

	Discussion and conclusion
	Summary

	Machine learning and forecasting
	Forecasting in district heating networks
	Time-series data analysis
	Dataset processing

	Supervised machine learning methods
	K-nearest neighbors (K-NN)
	Linear models
	Ordinary least squares regression
	Ridge regression
	Lasso regression
	ElasticNet regression
	Stochastic gradient descent regression

	Decision trees
	Ensemble methods
	Random forests
	Gradient boosting regression trees

	Support vector machines
	Linear kernel
	Polynomial kernel
	Radial basis function kernel

	Neural networks - multi-layer perceptron

	Time-series forecasting
	Stationarity of time-series data
	Autoregressive integrated moving average (ARIMA)
	Seasonal autoregressive integrated moving average (SARIMA)
	Forecasting using SARIMA method


	Discussion on results
	Time-series forecasting versus machine learning prediction

	Summary

	GIS mapping for district heating network planning
	Introduction
	Methodology
	Results and Discussion
	Electricity and Heat Demand Mapping
	Hydraulic modelling of the district heating network
	Scenario - 1: Centralised district heating network
	Scenario - 2: Decentralised district heating network

	Abandoned coal mines mapping

	Summary

	Discussion and Conclusions
	Achievement of research objectives
	Contribution to knowledge
	Future work

	Appendices
	REMOURBAN LTDH network project parameters
	Bibliography

