Middle Pleistocene genome calibrates a revised evolutionary history of extinct cave bears 1 2 Axel Barlow^{*1,2}, Johanna L. A. Paijmans³, Federica Alberti¹, Boris Gasparyan⁴, Guy Bar-Oz⁵, Ron 3 Pinhasi⁶, Irina Foronova⁷, Andrey Y. Puzachenko⁸, Martina Pacher⁹, Love Dalén^{10,11}, Gennady 4 Baryshnikov¹², Michael Hofreiter¹. 5 6 7 ¹School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom. 8 ²Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24–25, 9 14476 Potsdam, Germany. 10

- ¹¹ ³School of Archaeology and Ancient History, University of Leicester, University Road, Leicester
- 12 LE1 7RH, UK.
- 13 ⁴Institute of Archaeology and Ethnography, National Academy of Sciences of the Republic of
- 14 Armenia, 0025, RA, Yerevan, 15 Charents st., Armenia.
- ⁵The Zinman Institute of Archaeology, University of Haifa, 199 Aba-Hushi Avenue, Haifa, Israel
 3498838
- ⁶Department of Evolutionary Anthropology, University of Vienna, Althanstraße 14,
- 18 1090 Vienna, Austria.
- ⁷V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of
 Sciences, 3, Ac. Koptyuga ave., Novosibirsk, Russia, 630090.
- ⁸Institute of Geography, Russian Academy of Sciences, Staromonetnyy Pereulok, 29, Moscow,
- 22 Russia, 119017.
- ²³ ⁹Institute of Paleontology, University of Vienna, Geozentrum, UZA II, Althanstraße 14,
- 24 A 1090 Vienna, Austria.
- ²⁵ ¹⁰Centre for Palaeogenetics, Stockholm University, SE-106 91 Stockholm, Sweden.
- 26 ¹¹Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Svante
- 27 Ahrenius väg 3, 114 18 Stockholm, Sweden.
- 28 ¹²Zoological Institute, Russian Academy of Sciences, Universitetskaya Naberezhnaya 1, 199034 St.
- 29 Petersburg, Russia.
- 30
- 31 *Lead Contact: axel.barlow.ab@gmail.com
- 32

33

34 SUMMARY

- 35 Palaeogenomes provide the potential to study evolutionary processes in real time, but this potential
- 36 is limited by our ability to recover genetic data over extended timescales [1]. As a consequence,
- 37 most studies so far have focused on samples of Late Pleistocene or Holocene age, which covers
- 38 only a small part of the history of many clades and species. Here, we report the recovery of a low
- 39 coverage palaeogenome from the petrous bone of a ~360,000 year old cave bear from Kudaro 1
- 40 cave in the Caucasus Mountains. Analysis of this genome alongside those of several Late
- 41 Pleistocene cave bears reveals widespread mito-nuclear discordance in this group. Using the time
- 42 interval between Middle and Late Pleistocene cave bear genomes, we directly estimate ursid nuclear
- 43 and mitochondrial substitution rates to calibrate their respective phylogenies. This reveals post-
- 44 divergence mitochondrial transfer as the dominant factor explaining their mito-nuclear discordance.
- 45 Interestingly, these transfer events were not accompanied by large-scale nuclear introgression.
- 46 However, we do detect additional instances of nuclear admixture among other cave bear lineages,

- 47 and between cave bears and brown bears, which are not associated with mitochondrial exchange.
- 48 Genomic data obtained from the Middle Pleistocene cave bear petrous bone has thus facilitated a
- 49 revised evolutionary history of this extinct megafaunal group. Moreover, it suggests that petrous
- 50 bones may provide a means of extending both the magnitude and time depth of palaeogenome
- 51 retrieval over substantial portions of the evolutionary histories of many mammalian clades.
- 52

53 KEYWORDS

54 Palaeogenomics, ancient DNA, cave bear, Ursus, Middle Pleistocene, evolution

55

56

57 RESULTS AND DISCUSSION

- 58 Analyses of palaeogenomes have provided unparalleled insights into the evolution of numerous
- 59 vertebrate lineages. Assembling these datasets represents a considerable technical challenge,
- 60 however, due to postmortem degradation and the loss of endogenous DNA molecules over time [1].
- 61 This is especially true for warm temperate and tropical environments, where DNA degradation
- 62 proceeds more rapidly than in colder boreal or arctic environments [1]. As a consequence,
- 63 comparatively few ancient DNA studies have successfully retrieved genetic data from temperate
- cone samples of Middle Pleistocene age (Chibanian age, 129–774 ka [2]). Notable successes
- 65 include high coverage genome datasets from samples dating around the Middle to Late Pleistocene
- boundary from Germany [3,4] and from the Altai Mountains [5]. Much older DNA sequences have
- been retrieved from samples dating to ~430 ka from Spain, but with a lower magnitude of data
- 68 recovery, comprising of mitochondrial genome sequences [6,7] and 1–2 megabases of nuclear DNA
- 69 [8]. Nonetheless, these achievements suggest that the retrieval of genome-scale datasets of this age
- 70 is possible, provided samples of sufficient quality can be found.
- 71 72

73 Middle Pleistocene cave bear genome

- 74 One recent and notable advance in palaeogenome sequencing has been the discovery of the
- 75 mammalian petrous bone as a source of high purity ancient DNA [9]. One group where this
- 76 approach has been successfully applied are extinct cave bears [10,11], which form the sister lineage
- to the clade consisting of the extant brown (*Ursus arctos*) and polar (*Ursus maritimus*) bears. To
- investigate if petrous bones may provide a way of extending both time depth and magnitude of
- 79 Middle Pleistocene genome data retrieval, we investigated the petrous bone of a Middle Pleistocene
- 80 cave bear from Kudaro 1 cave located in South Ossetia in the Southern Caucasus. The sedimentary
- 81 layer (5c) from which this sample was recovered has been dated using radiothermoluminescence at
- 82 $360,000 \pm 90,000$ years [12], and multiple additional sources of evidence support a Middle
- 83 Pleistocene age for the specimen (see STAR Methods). The Kudaro 1 sample is assigned to the
- 84 taxon Ursus kudarensis praekudarensis, which is thought to be ancestral to the Late Pleistocene
- 85 Caucasian cave bear *U. k. kudarensis* based on morphological evidence [13,14].
- 86
- 87 We extracted DNA from the *praekudarensis* petrous bone and sequenced it using Illumina
- technology. From a total of ~2.6 billion sequenced molecules, we were able to map 2.1 Gb of
- 89 sequence with high confidence to the reference genome assembly of the polar bear (Table S1). This
- 90 represents a low coverage genome dataset where the majority of sequenced positions are covered by
- a single sequencing read (Figure S1). The estimated proportion of endogenous DNA molecules in
- 92 the *praekudarensis* extract is 3.6% (Table S1), which is remarkable given the age of the specimen,

93 and exceeds the endogenous proportions of some previously studied temperate-zone Middle

- 94 Pleistocene extracts [8] by several orders of magnitude.
- 95 96

97 Cave bear nuclear and mitochondrial relationships are highly incongruent

98 Phylogenetic relationships among cave bear taxa have been largely guided by analysis of their

99 mitochondrial DNA [15,16]. Our previous study on nuclear genomes did reveal one instance of

100 mito-nuclear discordance among three Late Pleistocene taxa [10], but the limited sampling of this

study precluded a broader assessment of cave bear nuclear relationships. To investigate this further,
 we analysed the Middle Pleistocene *praekudarensis* genome dataset alongside novel genome

102 we analysed the Whater Fleistocene *praekuatiensis* genome dataset alongside novel genome 103 datasets of Late Pleistocene cave bears generated from their petrous bones, representing the taxa

104 *rossicus* (Kizel Cave, Ural Mountains, Russia), *kanivetz* (Medvezhiya Cave, Ural Mountains,

105 Russia), and *kudarensis* (Hovk 1 Cave, Armenia). We also included published datasets from the taxa

106 spelaeus (Eiros Cave, Spain) [10], eremus (Windischkopf Cave, Austia) [10], ingressus

- 107 (Gamssulzen Cave, Austria) [11], and a second *kudarensis* individual from Hovk 1 Cave [10] in
- 108 addition to modern Georgian and Late Pleistocene Austrian brown bears [10], two modern polar
- 109 bears [17], and a modern Asiatic black bear [18] as outgroup (see Table S1 & S2).
- 110

111 We investigated relationships among the cave bear nuclear genomes using Principal Components

112 Analysis (PCA). This involved sampling a single mapped nucleotide from each individual at each

113 position of the reference genome, which provided data from a total of 487,747 variable transversion

sites after strict filtering (STAR Methods). PCA suggested three major groups (Figure 1A)

115 comprising: the Caucasus cave bears *praekudarensis* and *kudarensis*, which cluster together as

116 predicted by morphology; a second, geographically widespread and broadly European group

117 including *spelaeus*, *ingressus*, *eremus*, and *kanivetz* from the Urals; and finally, the Urals cave bear

118 rossicus, which is distinct from all other cave bears and may represent a Urals-specific group. PCA

119 further suggests a hierarchy of relationships within these groups, with each successive PC

120 separating different taxa from one another (Figure 1B).

121

122 The three major groups identified by the PCA deviate from expectations based on mitochondrial

123 DNA, which instead supports two major clades comprising the Caucasus cave bears and all

124 European and Urals cave bears, respectively, with *rossicus* nested within the latter (Figure 1C). We

125 further investigated these contrasting nuclear relationships using phylogenetic analysis, including

126 representative brown bears, polar bears and the Asiatic black bear outgroup. Palaeogenomic datasets

127 are generally associated with high rates of error, which can distort estimates of phylogenetic branch

128 lengths when only a single read is sampled [11]. We therefore applied a recently developed method,

129 Consensify [11], which calls the majority base from a random sample of three mapped nucleotides.

130 This method provided a single high quality allele from each individual for a total of 4,318,414

131 genomic sites, of which 39,122 were variable. Maximum likelihood phylogenetic analysis of this

132 dataset (Figure 1D) supported the expected relationships between polar bears, brown bears, and the

133 cave bear clade, as well as the position of the Caucasus cave bears within the latter. Among the

134 sampled cave bears from Europe and the Urals, however, there is not a single sister-group

135 relationship that agrees between the mitochondrial and nuclear phylogenies.

136

137 The relationships among cave bears inferred using nuclear DNA closely match estimates based on

138 morphological characters [19,20], in contrast to mitochondrial relationships, which are frequently

- 139 incongruent with morphology. Mitochondrial DNA, which has provided the basis for our
- 140 understanding of cave bear relationships for several decades, thus emerges as a phylogenetic outlier
- 141 in contradiction with generally congruent evidence from morphology and nuclear genomes.
- 142 Mitochondrial evolution in cave bears therefore appears to have been shaped to a large extent by
- 143 incomplete lineage sorting and/or gene flow among cave bear lineages, as previously documented in
- 144 brown bears and polar bears [17].
- 145
- 146 The revised cave bear nuclear genome phylogeny provides several new insights into their evolution. Consistent with the results of the nuclear PCA, the Uralian cave bear *rossicus* represents a deeply 147 148 divergent and isolated phylogenetic lineage (Figure 1D), supporting its recognition as a third major cave bear group, which has been obscured until now due to reliance on mitochondrial DNA. Within 149 150 the European cave bear group, three large bodied taxa, spelaeus, ingressus and kanivetz, form a 151 clade that is sister to the smaller bodied cave bear *eremus*. This suggests a single increase in body size in their common ancestor, rather than two independent shifts as previously inferred from their 152 153 mitochondrial relationships [15]. Moreover, the validity of the taxon kanivetz has itself been 154 questioned by mitochondrial phylogeographic studies [15], which show it to be nested within the wider *ingressus* mitochondrial clade. Nuclear genome analysis, however, supports its 155
- 156 distinctiveness and position as sister to the European taxa *spelaeus* and *ingressus*. Finally, the first
- 157 three primary phylogenetic divisions of cave bears involve Uralian or Asian lineages, potentially
- reflecting an eastern origin for what has traditionally been regarded as a European radiation [21].
- 159

160 Direct estimation of the genome-wide substitution rate

- 161 The temporal gap between *praekudarensis* and its Late Pleistocene sister lineage *kudarensis* 162 provides an opportunity to estimate the Ursus substitution rate and calibrate the revised nuclear phylogeny of cave bears. We calculated the difference in their respective genetic divergences to 163 164 modern brown bear and polar bear outgroups using the 4,318,414 Consensify error-reduced nuclear positions, which provides an estimate of the number of nucleotide substitutions occurring during 165 their sampling interval. Based on the median *praekudarensis* radiothermoluminescence date and the 166 age estimates of the kudarensis samples (Table S2), this equates to 305,400 years and yields a 167 genome-wide nuclear substitution rate of 9.56 x 10^{-10} substitutions/site/year (range 7.39–13.56 x 10^{-10} 168 ¹⁰ substitutions/site/year accommodating the radiothermoluminescence date uncertainty, Table S3). 169 This estimate is substantially slower than ancient-DNA derived estimates for dogs and wolves 170 171 (~1.2x10-8 [22]), but exceeds published estimates for humans and other great apes [23]. Notably, our estimated Ursus substitution rate is approximately double that estimated for humans (5 x 10^{-10} 172 substitutions/site/year [24]), which aligns well with the difference in their respective generation 173 174 times (brown and polar bears 11–12 years [25,26], humans 20–25 years [27,28]), suggesting their underlying per-generation nuclear mutation rate is approximately equal. Applying the same 175 176 methodology to mitochondrial DNA (excluding the control region) produced an estimated Ursus mitochondrial substitution rate of 1.81 x 10⁻⁸ substitutions/site/year (range 1.40–2.57 x 10⁻⁸ 177 178 substitutions/site/year, Table S3). This estimate falls within the lower range of mitochondrial 179 substitution rate estimates for other vertebrates [29]. It also overlaps with estimated rates for human 180 mitochondrial DNA [30], deviating from the ratio predicted by generation times and suggesting
- 181 some difference in the underlying rate of mitochondrial mutations between humans and bears.
- 182

183 We used these newly estimated substitution rates to calculate absolute times of nuclear and

184 mitochondrial divergence for all pairs of individuals (Figure 2, Tables S4 and S5), and calibrate

their respective phylogenies (Figure 3). We note that the divergence times of genetic lineages will 185 be older than the divergence of their respective populations as they likely include standing variation 186 in the ancestral population. However, since the lineages under study span a large evolutionary 187 188 timescale and show high levels of structuring (see D-statistic analysis below), the obtained times 189 most likely provide reasonable approximations. Median nuclear divergence time estimates of cave 190 bears and their sister clade, polar bears and brown bears, were found to be around 1.52 Ma (Figures 191 2A and 3). The mitochondrial divergence time is similar, around 1.48 Ma (Figures 2A and 3). These 192 estimates are more recent than most previous estimates based on mitochondrial DNA, but highly 193 consistent with the fossil record (see STAR Methods). Median estimates for the polar bear and 194 brown bear nuclear divergence are around 0.99 Ma (Figures 2B and 3), which is highly similar to 195 previous phylogenetic estimates [18]. Median nuclear divergence times of the three major cave bear 196 clades also fall around the same time, around 0.98 (Figures 2C and 3) and 0.87 Ma (Figures 2D and 197 3). Notably, these primary divergence events among cave bears, as well as between brown bears and polar bears, coincide with the Middle Pleistocene Transition, 1.2–0.8 Ma, when glacial cycles 198 199 shifted from a ~40 to a ~100 ka periodicity causing extended glacial periods and more abrupt, 200 intense interglacials [31], which may have been a factor promoting their divergence. Within the 201 Caucasian cave bears, we find a comparatively deep divergence time between *kudarensis* and 202 praekudarensis (median estimate ~495 ka at the age of praekudarensis; Figures 2E and 3), 203 potentially arguing against the direct ancestor descendant-relationship suggested by morphology, or, alternatively, for a genetically structured *praekudarensis* population. Among the European cave 204 205 bears, we find a comparatively rapid sequence of divergence events among the four sampled taxa 206 (median ages 427–344 ka, Figures 2F and 3), which are notably older than previous estimates based 207 on mitochondrial DNA [15,32].

208 209

210 Mitochondrial transfer explains mito-nuclear discordance in cave bears

211 Time calibration of the nuclear and mitochondrial cave bear phylogenies could reveal the underlying causes of their discordance. Specifically, mitochondrial coalescence that considerably 212 post-dates the respective nuclear coalescence of taxa implies the transfer of mitochondrial DNA 213 214 through admixture. Examination of cave bear pairs exhibiting mito-nuclear discordance (defined as 215 pairs with different taxa descending from the ancestral nodes of their respective nuclear and 216 mitochondrial clades) reveals that all pairs but one (spelaeus and ingressus) show mitochondrial 217 coalescence that is more recent than their respective nuclear coalescence (Figure 2, Tables S3 and 218 S4), implicating mitochondrial transfer as the dominant factor shaping their mitochondrial relationships. 219

220

221 Multiple alternative transfer scenarios could explain the observed mitochondrial relationships, and 222 selecting among them is challenging based on the available data. One notable set of comparisons 223 are those involving the Uralian cave bear rossicus and the European cave bears ingressus and 224 kanivetz, whose mitochondrial coalescence times post-date their respective nuclear coalescence by 225 more than 700 ka (Figure 2D). Since none of the sampled European or Uralian mitochondrial 226 lineage pairs approaches the nuclear coalescence of *rossicus* and the European cave bear group 227 (median estimate ~0.87 Ma), it seems most likely that *ingressus* or *kanivetz* transferred its 228 mitochondrial DNA to *rossicus*, although alternative scenarios such as multiple transfers or back 229 transfers cannot be conclusively excluded. Also notable are mitochondrial coalescence times of the

230 European cave bears spelaeus and eremus, and ingressus and kanivetz, which both considerably

- 231 post-date their respective nuclear divergences (> 290 ka based on median substitution rate
- estimates; Figure 2F), implicating mitochondrial transfer also between lineages of these pairs.
- 233 Determining the direction of these transfer events is challenging due the the rapid sequence of
- 234 nuclear divergence events in European cave bears, around which many of their mitochondrial
- 235 coalescence events also cluster (Figure 2F). The precise history of mitochondrial evolution is likely
- to remain uncertain until genetic data from samples pre-dating the inferred mitochondrial transfer
- 237 events is obtained, which would require obtaining DNA sequences from multiple additional Middle
- 238 Pleistocene specimens.
- 239
- 240

241 Mitochondrial transfer is not strongly associated with nuclear introgression

242 Since our analyses reveal numerous instances of mitochondrial transfer among cave bears, we 243 investigated evidence of nuclear gene flow using D-statistic analysis of the error reduced genome sequences, which has been shown to represent a conservative approach that is more resistant to false 244 245 positives than other methods [11]. Interestingly, we failed to detect nuclear gene flow among those 246 cave bear taxa implicated in mitochondrial transfer events (Figure 4), suggesting that any residual 247 nuclear introgression resulting from these gene flow events is below the detection threshold of our 248 low coverage genome datasets. In fact, only a single nuclear gene flow event is detected among the 249 sampled cave bear lineages, between the lineage leading to *kudarensis* and the lineage leading to the European cave bears (Figure 4). Notably, this nuclear admixture event is not accompanied by any 250 evidence of mitochondrial transfer. Similarly, we have previously shown that gene flow occurred 251 252 between cave bears and brown bears [10], again with no evidence of mitochondrial exchange. 253 Replicating these tests including our novel cave bear genomes consistently supports this previous 254 result, and moreover, our improved sampling pinpoints the common ancestor of the European and 255 Uralian cave bears as the admixing cave bear lineage (Figure 4), with no evidence of gene flow

256 following the divergence of its descendant clades.

257

This disparity between instances of nuclear and mitochondrial introgression within a recently diverging clade is puzzling. Enhanced mitochondrial introgression is documented in species with male-biased dispersal, such as bears, since this reduces the effective population size of maternally inherited loci in the incoming species at the contact zone [33]. However, this process does not explain the apparent absence of mitochondrial mixing among Caucasian and European cave bears, or among cave bears and brown bears. Here, some additional factor, such as a complete absence of females representing the incoming species, preferential mating of hybrids with their maternal

- species, or asymmetrical hybrid sterility [34], must have operated.
- 266
- 267

268 Conclusions

269 We have shown that petrous bones provide a way to extend both the time depth and magnitude of

- 270 Middle Pleistocene genome sequencing. The palaeogenome of the Middle Pleistocene
- 271 praekudarensis cave bear sequenced in this study has provided important insights into the evolution
- of this iconic group of extinct animals. Critically, by providing a means of calculating the genome
- substitution rate, it has calibrated their evolutionary history, revealed numerous instances of
- 274 mitochondrial transfer, and suggested a potential link between a profound change in climate
- 275 dynamics and the divergence of major evolutionary lineages.
- 276

- 277 Palaeogenomes provide the opportunity to study the process of evolution in real time. For many
- temperate zone species, however, the current time depth for palaeogenome recovery represents a
- 279 comparatively small part of their total evolutionary history. The age of the *praekudarensis* genome
- 280 pre-dates the origin of some cave bear taxa and encompasses an estimated 24% of the total
- evolutionary history of cave bears. Petrous bones may thus thus provide a means of extending the
- time depth of palaeogenome recovery over substantial fractions of the evolutionary histories of
- 283 many temperate zone species.
- 284 285

286 AUTHOR CONTRIBUTIONS

In alphabetical order: Conceptualization AB, GB, MH; Data curation AB; Formal analysis AB,
JLAP; Funding acquisition MH; Investigation FA, MP; Methodology AB; Project administration
AB, LD, MH; Resources BG, EB, GB, GB-O, IF, LD, RP; Software AB, JLAP; Supervision AB,
AP, GB, MH; Validation AB, JLAP; Visualization AB; Writing – original draft AB; Writing –
review & editing all authors.

- 292
- 293

294 ACKNOWLEDGMENTS

295 We pay tribute to our coauthor Irina Foronova for her contributions to the field of palaeontology. who sadly passed away prior to the publication of this study. We thank Anthony J. Stuart for his 296 297 help collecting radiocarbon dates of Ural cave bears. The authors would like to acknowledge support from the Science for Life Laboratory, the National Genomics Infrastructure (NGI), Sweden, 298 299 the Knut and Alice Wallenberg Foundation and UPPMAX for providing assistance in massively parallel DNA sequencing and computational infrastructure. This work was funded by European 300 301 Research Council (ERC) consolidator grant 'gene flow' 310763 to M.H. The study was fulfilled 302 within a framework of the Federal theme of the Theriology laboratory of Zoological Institute of the 303 Russian Academy of Sciences no. AAAA-A19-119032590102-7 "Phylogeny, morphology and 304 systematics of placental mammals" and project "The evolution of the organic world. Role and 305 influence of planetary processes (subprogram I. Development of life and biosphere processes)" and 306 Program of the Russian Academy of Sciences Presidium and the Russian Ministry of Education and 307 Science "Evolution of the organic world. The role and significance of planetary processes" (2019) 308 (GB), and the Federal theme of the Laboratory of Biogeography of Institute of Geography of the 309 RAS no. AAAA-A19-119021990093-8 "Evaluation of physical and geographical, hydrological, and 310 biotic environmental changes and their effects for the base of sustainable environmental management" (AP) and supported partly by a RFBR grant to AP (17-01-00100-a); and on the state 311 312 assignment of V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS (IF). 313 314

315 DECLARATION OF INTERESTS

316 The authors declare no competing interests.

317 MAIN TEXT FIGURE TITLES AND LEGENDS

318

319 Figure 1. Cave bear relationships.

- 320 A. Ordination of individual cave bears along the first and second principal components of a PCA
- 321 based on 487,747 filtered transversion sites supports three major groups.
- 322 B. Ordination of the same individuals along PC3–PC6, which separate, respectively: *eremus*,
- 323 kanivetz, kudarensis and praekudarensis, and ingressus and spelaeus
- 324 C. Mitochondrial phylogeny based on 16,383 bp of aligned sequence and rooted using the Asiatic
- 325 black bear outgroup (not shown). Bootstrap support is 100% for all nodes.
- 326 D. Nuclear phylogeny based on 39,122 filtered, error-reduced variable sites. Rooting and bootstrap
- 327 support are as described for C. There are multiple instances of mito-nuclear discordance within the
- European cave bears, among the European and Uralian cave bears, and among brown bears and polar bears.
- 330

Figure 2. Pairwise nuclear and mitochondrial divergence times.

- 332 Points indicate ages estimated from substitution rates calculated using the median
- 333 radiothermoluminescence age of the *praekudarensis* sample of 360 ka. Error bars represent the
- maximum and minimum ages reflecting the \pm 90 ka uncertainty of the radiothermoluminescence
- age (See Tables S3–S5). Note that since the age uncertainties of the pairwise estimates are not
- independent, the rank order and relative separation of the point estimates will be maintained
- 337 irrespective of the true *praekudaresis* age. Sample pairs showing mito-nuclear discordance are
- 338 marked with asterisks. Results for specific clades discussed in the text are indicated (A–F).
- 339

340 Figure 3. Calibrated nuclear and mitochondrial phylogenies.

- 341 Branches terminate at the sample ages and nodes are centered on the mean of their respective 342 pairwise estimates (See Figure 2 and Tables S3–S5). The complete mitochondrial evolutionary 343 history of the European and Uralian cave bears is uncertain. The three recent mitochondrial transfer 344 events that can be inferred from pairwise estimates (Figure 2) are indicated by vertical arrows. 345 Shaded trapezoids connecting lineages indicate the two major episodes of nuclear gene flow 346 identified by D-statistic analysis, and are coloured consistently with Figure 4.
- 347

348 Figure 4. D-statistics tests of cave bear admixture.

- 349 Results are expressed as D(P1,P2,P3,P4) with significant positive values (filled circles) indicating 350 admixture between P2 and P3 subsequent to the divergence of P1 and P2, coloured consistently with the shaded trapezoids in Figure 3. To aid visualisation, the assignment of the P1 and P2 351 352 individuals has been adjusted to make their respective D value positive. The results indicate two 353 major episodes of nuclear gene flow among the sampled lineages: between brown bears and the 354 ancestor of the European and Uralian cave bears, subsequent to their divergence from their 355 respective sister lineages, polar bears D(polar, brown, cave, out) and the Caucasian cave bears 356 D(Caucasian, European/Uralian, brown-polar, out); and between kudarensis and the ancestor of the 357 European cave bears subsequent to their divergence from their respective sister lineages, 358 praekudarensis D(prakudarensis,kudarensis,European/Uralian,out) and the Uralian cave bear
- 359 rossicus D(Uralian,European,Caucasian,out).

360 STAR METHODS

361

362 **RESOURCE AVAILABILITY**

- 363
- 364 Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Axel Barlow (axel.barlow.ab@gmail.com).

367

368 Materials availability

- 369 This study did not generate new unique reagents.
- 370

371 Data and code availability

- 372 The raw, unprocessed sequencing reads in fastq file format, in addition to the processed data
- 373 mapped to each reference genome in bam file format, are available at the European Nucleotide
- 374 Archive (ENA), accessions [submitted awaiting accessions]. Novel cave bear consensus
- 375 mitochondrial sequences are available at the NCBI nucleotide database, accessions [submitted
- awaiting accessions].
- 377

378 EXPERIMENTAL MODEL AND SUBJECT DETAILS

- 379 The novel cave bear datasets generated for this study are: *praekudarensis* (KU1), *kudarensis*
- 380 (HV72), rossicus (B05), and kanivetz (B04). These were generated from subfossil petrous bone
- 381 samples. Details of sample localities and ages are shown in Table S2.
- 382
- 383 Several sources of evidence support a Middle Pleistocene age of layer 5c in Kudaro 1 Cave, from
- 384 which the *praekudarensis* petrous bone was recovered: layer 5c has been dated using
- radiothermoluminescence at $360,000 \pm 90,000$ yBp, and the overlaying layer 5b has been dated
- using the same method at $350,000 \pm 70,000$ yBp [12,35,36]; geomorphological studies of river
- 387 terraces of the Caucasus [37] suggest the cave entrance of Kudaro 1 was opened 300–400 thousand
- 388 years ago; archaeological material recovered from layer 5c belongs to the later Acheulean [36]; and
- other faunal material recovered from layer 5c is consistent with a Middle Pleistocene age [38],
- 390 including Macaca sp., Canis mosbachensis, Panthera gombaszoegensis and Stephanorhinus
- 391 *hundsheimensis* (the rhinoceros was identified by [39] as *Dicerorhinus etruscus brachycephalus*).
- 392 According to European markers, this faunal composition would suggest an even older age than
- 393 indicated by the radiothermoluminescence dates. However, the Caucasus region is considered to
- represent a refugial area during the Pleistocene, which may explain the apparently more recent
- 395 occurrence of these taxa in Kudaro 1 compared to Middle Pleistocene European deposits.
- 396
- The *rossicus* and *kanivetz* samples have not been directly dated. For the purpose of molecular dating
 analyses, we used an indirectly estimated age for these samples based on the median age of
 radiocarbon dated cave bear bones from these sites (Table S6).
- 400 401

402 METHOD DETAILS

- 403
- 404 Laboratory methods

- 405 Six sequencing libraries (KU1_1–KU1_6) were prepared from the *praekudarensis* KU1 sample for
- 406 this study. For the *kudarensis* sample HV72 we had previously prepared seven sequencing libraries
- 407 (HV72_1-HV72_7) and carried out low level sequencing. Six of these libraries (HV72_2 -
- 408 HV72_7) are described in [40]. We prepared one additional library (HV72_8) from this sample for
- 409 this study, which was used for deeper sequencing. Single libraries were prepared from the *rossicus*
- 410 B05 and *kanivetz* B04 samples.
- 411
- 412 For each library, bone was sampled from the otic capsule of the cave bear petrous bones [41] and 413 ground to a fine powder using a RETSCH mixer mill mm 400 at a frequency of 30 Hz for 10 414 seconds. DNA was then extracted using a published protocol optimized for the recovery of short ancient DNA fragments [6], with the modifications described in [42]. 50 mg of bone powder was 415 digested in 1 mL of extraction buffer (0.45 M EDTA, 0.25 mg/mL Proteinase K) overnight at 37°C, 416 417 with rotation. Centrifugation was used to pellet any undigested material. The supernatant was removed, combined with 13 mL of binding buffer (5 M guanidine hydrochloride, 40% (vol/vol) 418 419 isopropanol, 0.05% Tween-20, and 90 mM sodium acetate), and then passed through a commercial 420 silica spin column (Oiagen MinElute) fitted with an extension reservoir (Zymo- spin V). Two wash steps were then carried out using PE buffer (Qiagen). Purified DNA was then eluted in two steps 421 422 each using 12.5 µL TET buffer (10mM Tris-HCl, 1 mM EDTA, 0.05% Tween-20).
- 423

424 Illumina sequencing libraries were prepared from the DNA extracts using a published protocol 425 based on single stranded DNA, optimised for the recovery of short ancient DNA fragments [43], with the modifications described in [42]. DNA was treated with the enzymes uracil-DNA 426 427 glycosylase and Endonuclease VIII, to excise uracils resulting from the deamination of cytosine residues and to cleave DNA strands at abasic sites, in 44 µL reactions with the following reagent 428 429 concentrations: 1.8x CircLigase buffer II, 4.5 mM MnCl2, 0.11 U/µL of uracil-DNA glycosylase, 430 and 0.02 U/µL of endonuclease VIII. Residual phosphate groups were then removed from the 431 template DNA fragment ends using 1 unit of FastAP. The DNA was then heat denatured, and oligo 432 CL78 ligated to the 3' single-stranded fragments ends during overnight incubation in 80 µL 433 reactions with the following reagent concentrations: 20% (vol/vol) PEG-4000, 0.125 mM CL78, 434 and 2.5 units/µL Circligase II. Ligation products were then immobilised on streptavidin beads 435 (MyOne C1) to allow the removal of reagent mixtures in subsequent library preparation steps. The 436 CL9 extension primer was annealed to the complementary CL78 oligo sequence and the strand 437 complementary to the template single-stranded molecules filled-in using Bst 2.0 polymerase in 50 438 µL reactions with the following reagent concentrations: 1x isothermal amplification buffer, 250 mM 439 of each dNTP, 2 mM CL9 extension primer, and 0.48 U/µL Bst 2.0 polymerase. T4 DNA 440 polymerase was then used to remove 3' overhangs, in 100 µL reactions with the following reagent concentrations: 1x Buffer Tango, 0.025% (vol/vol) Tween 20, 100 mM of each dNTP, and 0.05 441 U/µL T4 DNA polymerase. The double-stranded adaptor (CL53/CL73) was then ligated to the 442 443 blunt-ended molecules using T4 DNA ligase in 100 µL reactions with the following reagent 444 concentrations: 1x T4 DNA ligase buffer, 5% (vol/vol) PEG-4000, 0.025% (vol/vol) Tween 20, 100 445 mM double-stranded adaptor, and 0.1 U/µL T4 DNA ligase. The library strand complementary to 446 the original single-stranded template molecule was then heat denatured and eluted in 25 µL TET buffer. 447

- 448
- 449 Template library molecules were PCR amplified using AccuPrime Pfx polymerase, incorporating
- 450 unique 8 base-pair (bp) index sequences within both P5 and P7 adapters, in 80 μ L reactions with the

451 following reagent concentrations: 1x AccuPrime Pfx reaction mix, 0.4 mM each of P5 and P7

- $452 \quad indexing \ primers, \ and \ 0.025 U/\mu L \ AccuPrime \ Pfx \ polymerase. \ Prior \ to \ library \ amplification, \ qPCR$
- analysis of the unamplified library was used to identify the appropriate number of PCR cycles,
- 454 corresponding to the cycle number at the point of inflection of the qPCR amplification curve,
- 455 corrected for differing reaction volume and template amount in the subsequent library amplification 456 PCR. The qPCR analysis involved 10 μ L reactions with the following reagent concentrations: 1x
- 457 SYBR green qPCR master mix, 0.2mM each of IS7 and IS8 amplification primers, and 0.2% of the
- 458 unamplified library. After amplification, the indexed libraries were quantified using a TapeStation
- 459 2200 instrument (Agilent) with D1000 screen tape and reagents, and a Qubit 2.0 instrument (Fisher)
- 460 with the dsDNA HS Assay kit. Sequencing of the libraries was mostly performed on an Illumina
- 461 NextSeq 500 sequencing platform, using the custom CL72 R1 sequencing primer [43] and the
- 462 Gesaffelstein custom index 2 sequencing primer [44], following the procedures described in [44].
- 463 Some *praekudarensis* libraries were additionally sequenced on an Illumina HiSeq 2500 sequencing
- 464 platform using the same custom primers (see Table S1).
- 465

466 Data processing

Processing of the sequence reads was carried out within the BEARCAVE v.ce78f40 data analysis 467 468 and storage environment (available at: https://github.com/nikolasbasler/BEARCAVE) and is 469 reported in Table S1. BEARCAVE is freely available and can be used to obtain details of all software versions and parameter settings, as well as to replicate the described analyses. Data 470 processing involved trimming adapter sequences and removing reads < 30 bp using CutAdapt [45]. 471 and merging overlapping paired-end reads using FLASH [46]. The specific BEARCAVE scripts 472 used for these steps were: "trim merge DS PE standard.sh" for trimming and merging paired-end 473 data generated from double stranded libraries (modern and some published ancient datasets); 474 475 "trim merge SS PE CL72.sh" for trimming and merging paired-end data generated from single stranded libraries (ancient datasets); and "trim_SE.sh" for trimming single-end data. Reads were 476 477 then mapped to the reference genome assemblies of the polar bear [47] and the giant panda [48] 478 using the bwa [49] aln algorithm and samtools [50], filtering for mapping quality (-q 30) and 479 potential PCR duplicates (rmdup). For the praekudarensis data, duplicate removal was carried out 480 separately for each library prior to merging them into a single genomic dataset. The specific BEARCAVE scripts used for mapping datasets to the polar bear reference were: "map_SE.sh" for 481 482 mapping ancient datasets with default bwa parameters, excluding unmerged read-pairs from paired-483 end datasets since they likely represent modern contamination, rendering these datasets effectively single-end and "map_modern_PE.sh" for mapping modern datasets with default bwa parameters 484 485 including unmerged read pairs. The giant panda lineage is comparatively diverged from the investigated clade (around 12–19 million years [51,52]), requiring relaxation of the number of 486 allowed mismatches between read and reference (-n 0.01, implemented using the corresponding 487 488 BEARCAVE scripts) in order to achieve acceptable mapping performance [10]. Nonetheless, we 489 were consistently able to map more data to the polar bear than the panda reference, reflecting its 490 lower divergence from the investigated samples. For this reason, subsequent analyses investigating 491 the broader scale patterns of divergence among the sampled genomes utilised the polar bear 492 mapping reference in order to maximise the number of sampled genome positions. For analyses investigating patterns of admixture, the panda was used as mapping reference since these analyses 493 494 may be biased by using the polar bear mapping reference, which represents an ingroup to the 495 investigated clade [53,54].

497

499

498 QUANTIFICATION AND STATISTICAL ANALYSIS

500 Assessment of ancient DNA authenticity

We assessed the authenticity of the cave bear datasets by estimating the endogenous fragment
length distribution and extent of cytosine deamination for 10 million randomly sampled reads
mapping successfully to the polar bear reference, using the program mapDamage v2.08 [55] with
Bayesian statistical estimation disabled and the merge reference sequences option enabled. All cave
bear datasets showed evidence of DNA fragmentation and cytosine deamination consistent with the

- 506 sample ages (Figure S1).
- 507

508 Nuclear genome PCA

509 We investigated the broad scale patterns of divergence among the seven sampled cave bear taxa,

- 510 using principal components analysis (PCA) of a single representative genome of each taxon. The
- 511 polar bear was used as mapping reference for this analysis. A covariance matrix was calculated by
- sampling a single nucleotide at random from the read stack at each position of the reference genome
 using single base identity by state (IBS) in ANGSD v0.916 [56], only considering reads with a
- 514 minimum mapping quality score of 30 (-minMapQ 30) and nucleotides with a minimum base
- function $\frac{1}{1000}$ guardy score of 50 (minimup $\frac{1}{2}$ 50) and indecoded swith a minimum base for $\frac{1}{1000}$ guardy score of 30 (-minQ 30). We further only considered sites from scaffolds > 1 Mb in length,
- with no missing data (-minInd N, where N = number of individuals), and which were below the
- 517 upper 95th percentile of global coverage (-setMaxDepth, determined in advance using the -doDepth
- 518 function in angsd). Transition (identified using genotype likelihoods) and singleton (1/N < -minFreq
- 519 < 2/N sites were also excluded. PCA of the covariance matrix was then carried out using the
- 520 "eigen" function in R [57]. The exclusion of singleton sites in this analysis is an effective way of 521 reducing sequencing errors, which frequently occur at high abundance in ancient datasets. However,
- 522 since private alleles are also removed, this approach is sensitive to unbalanced sampling of clades,
- 523 with the tendency to underestimate divergence for undersampled lineages [11]. This effect was
- 524 observed in preliminary analyses including both *kudarensis* individuals, since all other cave bear
- 525 taxa were represented by single individuals. The sampling of the *kudarensis* lineage was therefore
- reduced to the individual with the higher coverage (HV74) in order to achieve a less biased
- 527 assessment of cave bear relationships. The ordination of individuals along PC1 and PC2 of this
- analysis is shown in Figure 1A, and along PC3 to PC6 in Figure 1B.
- 529 530

531 Generation of error-reduced genome sequences

We prepared two error-reduced sets of genome sequences using Consensify: one for datasets
mapped to the polar bear reference, which was used to estimate phylogeny and genetic distances;
and one for datasets mapped to the panda reference for admixture tests using D-statistics.

- 535
- 536 For the first set of Consensify sequences, for each dataset we used angsd to count the observed
- 537 frequency of mapped bases at each position of the polar bear reference (-doCounts function),
- 538 filtering for mapping (-minMapQ 30) and base calling (-minQ 30) qualities. In order to achieve the
- 539 most accurate estimates of genetic distances, we additionally excluded the terminal nucleotide of
- each mapped sequence to further reduce the probability of introducing errors resulting from
- 541 cytosine deamination. The Consensify error-reduced sequence for each dataset was then generated
- 542 from these base counts using the Consensify script (available from

- 543 https://github.com/jlapaijmans/Consensify), applying a maximum depth filter of the integer < 95%
- 544 depth for each individual dataset, calculated in advance using the -doDepth function in angsd.
- 545 Generation of the second set of sequences used the same methodology applied to datasets mapped
- 546 to the panda reference, except that the terminal nucleotides of the mapped sequences were included
- 547 in base counts. The Consensify error reduced sequences are summarised in Table S1.
- 548
- 549

550 *Phylogenetic analyses*

551 We estimated phylogenetic relationships among the 12 sampled nuclear genomes of cave bears, 552 brown bears and polar bears, using the Consensify error-reduced sequences generated from datasets mapped to the polar bear reference. We used the ReDuCToR script (included in the Consensify 553 554 distribution) to combine the Consensify sequences into a single alignment, removing all invariant 555 columns and any containing missing data. Maximum-likelihood phylogenetic analysis was then carried out using RaxML v8.2.12 [58] under the GTR+GAMMA substitution model with 100 rapid 556 557 bootstrap replicates and a thorough maximum likelihood search for the final tree ("-f a" option), which was rooted using the Asiatic black bear outgroup. Bootstrap values $\geq 80\%$ were considered as 558 559 statistically supported. The resulting phylogeny is shown in Figure 1D.

560

561 To estimate mitochondrial relationships, the *praekudarensis* mitochondrial genome sequence was 562 generated from the datasets described in Table S1, except "6ux" and "j54", which were sequenced

- 563 at a later date. Adapter trimming was performed as described above (data processing section),
- 564 except that reads < 28 bp were discarded. Subsequent manual inspection of the mapped reads
- 565 indicated that this lower minimum read length threshold was appropriate for reconstruction of the
- 566 praekudarensis mitochondrial genome. The reads were mapped to the published reference
- 567 mitochondrial sequence of the *kudarensis* cave bear HV74 [10] using the bwa aln algorithm,
- discarding reads with MapQuality score < 30 with samtools v1.3.1, and removing duplicate reads
 using MarkReadsByStartEnd.jar (https://github.com/dariober/Java-
- 570 cafe/tree/master/MarkDupsByStartEnd). A consensus sequence was then generated from this
- 571 alignment in Geneious v7.0, using a minimum sequence depth of 3x and a 75% majority rule for
- base calling. The consensus sequence was manually checked against the original alignment to
- 573 exclude the possibility of erroneous or incorrect consensus base calls. Details of the mitochondrial
- 574 genome reconstruction are shown in Table S7.
- 575

576 Mitochondrial genome sequences were also generated for the two brown bears (Ge, Uap), the two polar bears (SRS412584, SRS412585), the Asiatic black bear (ERS781634), and four of the Late 577 578 Pleistocene cave bears (HV72, BO4, BO5, WK01), from the datasets described in Table S1. The 579 mitochondrial genome sequences of the brown bear Uap and eremus cave bear WK01 have been 580 published previously, based on much lower coverage [59]. We therefore recomputed them using the 581 higher coverage datasets of [10] in order to achieve a more complete sequence. Mitochondrial 582 reconstruction followed the methodology described above for *praekudarensis*, except that reads < 583 30 bp were discarded, reads from each dataset were mapped to a reference mitochondrial sequence 584 selected as a close relative of the respective taxon, and consensus sequences were generated using a 585 minimum sequence depth of 3x and a 90% majority rule for base calling. Details of the

- 586 mitochondrial genome reconstruction are shown in Table S7.
- 587

588 The consensus sequences were aligned with published sequences of the *ingressus* (GS136),

589 spelaeus (E-VD-1838), eremus (WK01) and kudarensis (HV74) individuals using the MUSCLE

algorithm [60] implemented in MEGA X [61] with default parameters. The Ursus control region

591 contains a microsatellite repeat which was removed as this cannot be reliably recovered using short

read data. Maximum likelihood phylogenetic analysis was carried out as described above for the

593 nuclear genome alignment. The resulting phylogeny is shown in Figure 1C.

594 595

596 Molecular dating

597 Genomic data from individuals sampled at different time points provides information on their 598 genome-wide substitution rate. To estimate this rate for the cave, polar and brown bear clade, we 599 compared the genomic divergences of the *praekudarensis* and *kudarensis* datasets to modern polar 600 bears and brown bears, which are expected to be lower in the case of *praekudarensis* since its divergence time from the clade's common ancestor is considerably less. Thus, assuming a strict 601 602 molecular clock, the difference in divergence divided by the median estimate of 305,400 years 603 separating *praekudarensis* and *kudarensis* provides an estimate of the per-lineage substitution rate. The ReDuCToR alignment of Consensify sequences generated from datasets mapped to the polar 604 605 bear reference was recomputed to include invariant positions. Pairwise genomic distances were then 606 calculated from this alignment under the JC69 substitution model using the dist.dna function in the R package "ape", considering both transitions and transversions. Assuming the sites sampled using 607 608 Consensify are a random and unbiased sample of the genome, these distances equate to whole 609 genome divergences and can be used to estimate the genome-wide substitution rate. Six sets of 610 substitution rate estimates were calculated using all combinations of the two kudarensis individuals, both polar bears and the modern Georgian brown bear (Table S3). The six estimates were highly 611 consistent and their mean (9.56231 x 10⁻¹⁰ substitutions/site/year) was used for subsequent 612 divergence time estimations. The consistency of the rate estimates supports both the validity of our 613 method, and the assumption of a strict molecular clock. We additionally estimated the genome-wide 614 substitution rate assuming ages of the *praekudarensis* sample \pm 90 ka, representing the uncertainty 615 in its radiothermoluminescence date. We also repeated this entire set of calculations using pairwise 616 mitochondrial distances to estimate the mitochondrial substitution rate. 617

618

619 We applied substitution rate estimates to calculate nuclear (Table S4) and mitochondrial (S5) 620 divergence times from pairwise genetic distances among all individuals. Since the estimates reflect 621 the per-lineage substitution rate, they were multiplied by two to obtain the rate of genetic divergence between sister lineages, assuming a strict molecular clock. Genetic divergences between 622 623 individuals were then divided by this estimated rate of genetic divergence to obtain the divergence 624 time in years (Tables S4 and S5). The resulting pairwise divergence times represent the total time taken for lineages to achieve the observed genetic divergence, and do not take into account the non-625 626 contemporaneous ages of the individuals. The median age of each pair of individuals was therefore 627 added to their respective pairwise divergence time, which, assuming a strict molecular clock, provides their absolute time of divergence before the present day (Tables S4 and S5). This 628 629 procedure resulted in multiple absolute age estimates for most nodes of the phylogeny, with each 630 estimate based on a different combination of individuals. As for the substitution rate estimates, the 631 consistency of these absolute node age estimates supports both the validity of our method, and the 632 assumption of a strict molecular clock. To provide the calibrated trees in Figure 3, nodes were

633 centered on the mean of their calculated median age estimates.

634

635

636 Comparison with other divergence estimates

Based on a median radiothermoluminescence age of 360 ka for the praekudarensis sample, our 637 nuclear genome analysis provided an estimated divergence time of cave bears and their sister clade, 638 639 brown and polar bears, of 1.52 million years. The estimate provided by mitochondrial DNA is 640 remarkably similar, at 1.48 million years. These estimates coincide with the last documented fossil 641 occurrences ~1.6 million years ago of their accepted common ancestor, Ursus etruscus [62-64]. 642 They also moderately pre-date the earliest documented fossil occurrences of the accepted ancestral 643 cave bear, Ursus deningeri, towards the end of the Early Pleistocene (a review of the literature is 644 provided in [65]). Finally, they moderately pre-date the earliest documented fossil showing arctoslike characteristics, which have been assigned to the brown bear lineage. These fossils also date 645 646 towards the end of the Early Pleistocene, around 1.2 million years ago [63]. Our estimated divergence time is also considerably younger than a previous estimate based on complete 647 648 mitochondrial genomes [51], which reported a divergence estimate of 2.75 million years (95% 649 credibility interval (CI) 2.1-3.57) based on fossil calibration of the seal/bear divergence and of the Ursus lineage. A second study analysing ~4kb of mitochondrial sequence [66] utilised four 650 651 calibration points within the bear clade. Although the divergence time of cave bears from their sister 652 clade was not reported in this study, as first author AB carried out this analysis we can confirm the estimate was 2.20 million years (95% CI 1.58–3.00 million years). In contrast, an early study [67] 653 654 based on control region and cytochrome b sequences produced a more recent estimate than ours, 655 around 1.2 million years.

656

657

658 Tests of nuclear admixture

D-statistics were calculated from the Consensify error-reduced sequences generated from datasets 659 mapped to the panda reference using the published C_{++} program D stat.cpp [10], and the results 660 processed using the python scripts D-stat_parser.py and weighted_block_jackknife.py (available 661 from https://github.com/jacahill/Admixture). Significance of the D-statistics was assessed by 662 calculating the standard error using a weighted block jackknife analysis using 5 Mb genome 663 664 windows, with D values deviating more than three standard-errors from zero (absolute Z-score > 3) 665 considered as statistically significant. These tests used the Asiatic black bear as outgroup for allele polarisation, which has previously been shown to be a suitable outgroup taxon for testing for 666 admixture within the brown-polar-cave bear clade [10]. The two brown bears included in this study 667 have previously been shown to exhibit high genomic proportions of admixture with cave bears [10], 668 669 and were chosen to maximise sensitivity in detecting the specific admixing cave bear lineage(s).

670

We calculated D-statistics for all possible combinations of individuals congruent with their nuclear
phylogeny (Figure 1D). We found significant evidence of differential admixture between brown
bears and cave bears subsequent to the divergence of brown bears and polar bears; between brown
bears and European+Uralian cave bears subsequent to their divergence from the Caucasian cave

bears; and between European cave bears and the *kudarensis* lineage, subsequent to their divergence

676 from their respective sister clades, the Uralian cave bear *rossicus* and the *praekudarensis* lineage

677 (Figure 4). All other comparisons were not significantly different from zero.

678

679	SUPPLEMENTAL ITEM TITLES
680	
681	Figure S1. Assessment of ancient DNA authenticity. Related to STAR Methods.
682	
683	Table S1. Details of data processing and generation of error-reduced genome sequences. Related to
684	STAR Methods.
685	
686	Table S2. Details of sample localities and ages. Related to STAR Methods.
687	
688	Table S3. Nuclear and mitochondrial substitution rate estimates based on the relative difference in
689	genomic divergence of kudarensis (t1) and praekudarensis (t2) to a modern representative of the
690	brown/polar bear clade (t3). Related to Figures 2 and 3, and STAR Methods.
691	
692	Table S4. Absolute times of nuclear divergence from the present day (node age) for all sample-pairs.
693	Related to Figures 2 and 3, and STAR Methods.
694	
695	Table S5. Absolute times of mitochondrial divergence from the present day (node age) for all
696	sample-pairs. Related to Figures 2 and 3, and STAR Methods.
697	
698	Table S6. Radiocarbon dates for Medvezhiya and Kizel cave bears used for indirect age estimates
<00	

699 for the sequenced samples. Related to STAR Methods.

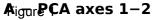
700 701	REF	ERENCES
702 703 704	1.	Hofreiter, M., Paijmans, J.L.A., Goodchild, H., Speller, C.F., Barlow, A., Fortes, G.G., Thomas, J.A., Ludwig, A., and Collins, M.J. (2015). The future of ancient DNA: Technical advances and conceptual shifts. BioEssays <i>37</i> , 284–293.
705 706	2.	Cohen, K, Finney, S, Gibbard, P.L., and Fan, JX. (2020). The ICS International Chronostratigraphic Chart (updated). Episodes <i>36</i> , 199–204.
707 708 709	3.	Palkopoulou, E., Lipson, M., Mallick, S., Nielsen, S., Rohland, N., Baleka, S., Karpinski, E., Ivancevic, A.M., To, TH., Kortschak, R.D., <i>et al.</i> (2018). A comprehensive genomic history of extinct and living elephants. Proc. Natl. Acad. Sci. <i>115</i> , E2566E2574.
710 711 712	4.	Meyer, M., Palkopoulou, E., Baleka, S., Stiller, M., Penkman, K.E.H., Alt, K.W., Ishida, Y., Mania, D., Mallick, S., Meijer, T., <i>et al.</i> (2017). Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution. Elife <i>6</i> , 1–14.
713 714 715	5.	Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P.H., De Filippo, C., <i>et al.</i> (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature <i>505</i> , 43–49.
716 717 718 719	6.	Dabney, J., Knapp, M., Glocke, I., Gansauge, MT., Weihmann, A., Nickel, B., Valdiosera, C., García, N., Pääbo, S., Arsuaga, JL., <i>et al.</i> (2013). Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. U. S. A. <i>110</i> , 15758–63.
720 721 722	7.	Meyer, M., Fu, Q., Aximu-Petri, A., Glocke, I., Nickel, B., Arsuaga, JL., Martínez, I., Gracia, A., María Bermúdez De Castro, J., Carbonell, E., <i>et al.</i> (2013). A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature <i>505</i> , 403–406.
723 724 725	8.	Meyer, M., Arsuaga, JL., de Filippo, C., Nagel, S., Aximu-Petri, A., Nickel, B., Martínez, I., Gracia, A., de Castro, J.M.B., Carbonell, E., <i>et al.</i> (2016). Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature <i>531</i> , 504–507.
726 727 728	9.	Gamba, C., Jones, E.R., Teasdale, M.D., McLaughlin, R.L., Gonzalez-Fortes, G., Mattiangeli, V., Domboróczki, L., Kővári, I., Pap, I., Anders, A., <i>et al.</i> (2014). Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. <i>5</i> , 5257.
729 730 731	10.	Barlow, A., Cahill, J.A., Hartmann, S., Theunert, C., Xenikoudakis, G., Fortes, G.G., Paijmans, J.L.A., Rabeder, G., Frischauf, C., Grandal-d'Anglade, A., <i>et al.</i> (2018). Partial genomic survival of cave bears in living brown bears. Nat. Ecol. Evol. 2, 1563–1570.
732 733 734	11.	Barlow, A., Hartmann, S., Gonzalez, J., Hofreiter, M., and Paijmans, J.L.A. (2020). Consensify: A method for generating pseudohaploid genome sequences from palaeogenomic datasets with reduced error rates. Genes (Basel). <i>11</i> .
735	12.	Lioubine, V.P. (1998). The Acheulian Epoch in the Caucasus. [In Russian] (St. Petersburg).
736 737	13.	Baryshnikov, G.F. (1998). Cave bears from the Paleolithic of the Greater Caucasus. Illinois State Mus. Sci. Pap. <i>XXVII</i> , 69–118.

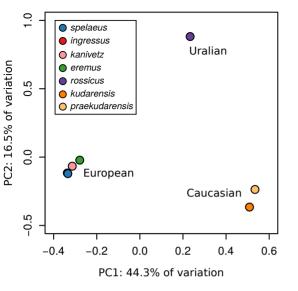
738 739 740	14.	Baryshnikov, G.F., and Puzachenko, A.Y. (2019). Evolution and morphological variability of cheek teeth in the Kudaro cave bear (<i>Ursus kudarensis</i> , Carnivora, Ursidae). [In Russian]. Zool. Zh. <i>98</i> , 1112–1136.
741 742 743	15.	Stiller, M., Molak, M., Prost, S., Rabeder, G., Baryshnikov, G., Rosendahl, W., Münzel, S., Bocherens, H., Grandal-d'Anglade, A., Hilpert, B., <i>et al.</i> (2014). Mitochondrial DNA diversity and evolution of the Pleistocene cave bear complex. Quat. Int. <i>339–340</i> , 224–231.
744 745 746	16.	Barlow, A., Hofreiter, M., and Knapp, M. (2019). Cave bears and ancient DNA : a mutually beneficial relationship. In Berichte der Geologischen Bundesanstalt, D. Nagel and N. Kavcik-Graumann, eds., pp. 33–45.
747 748 749	17.	Cahill, J.A., Green, R.E., Fulton, T.L., Stiller, M., Jay, F., Ovsyanikov, N., Salamzade, R., St. John, J., Stirling, I., Slatkin, M., <i>et al.</i> (2013). Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genet. <i>9</i> , e1003345.
750 751 752	18.	Kumar, V., Lammers, F., Bidon, T., Pfenninger, M., Kolter, L., Nilsson, M.A., and Janke, A. (2017). The evolutionary history of bears is characterized by gene flow across species. Sci. Rep. 7, 1–35.
753 754	19.	Baryshnikov, G.F., and Puzachenko, A.Y. (2011). Craniometrical variability in the cave bears (Carnivora, Ursidae): Multivariate comparative analysis. Quat. Int. <i>245</i> , 350–368.
755 756	20.	Baryshnikov, G.F., and Puzachenko, A.Y. (2019). Morphometry of upper cheek teeth of cave bears (Carnivora, Ursidae). Boreas <i>48</i> , 581–604.
757 758	21.	Kurtén, B. (1976). The cave bear story. Life and death of a vanished animal. (Columbia University Press).
759 760 761	22.	Skoglund, P., Ersmark, E., Palkopoulou, E., and Dalén, L. (2015). Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr. Biol. <i>25</i> , 1515–1519.
762 763 764	23.	Besenbacher, S., Hvilsom, C., Marques-Bonet, T., Mailund, T., and Schierup, M.H. (2019). Direct estimation of mutations in great apes reconciles phylogenetic dating. Nat. Ecol. Evol. <i>3</i> , 286–292.
765 766	24.	Scally, A. (2016). The mutation rate in human evolution and demographic inference. Curr. Opin. Genet. Dev. <i>41</i> , 36–43.
767 768 769	25.	Cronin, M.A., Amstrup, S.C., Talbot, S.L., Sage, G.K., and Amstrup, K.S. (2009). Genetic variation, relatedness, and effective population size of polar bears (<i>Ursus maritimus</i>) in the southern Beaufort Sea, Alaska. J. Hered. <i>100</i> , 681–690.
770 771 772	26.	De Barba, M., Waits, L.P., Garton, E.O., Genovesi, P., Randi, E., Mustoni, A., and Groff, C. (2010). The power of genetic monitoring for studying demography, ecology and genetics of a reintroduced brown bear population. Mol. Ecol. <i>19</i> , 3938–3951.
773 774	27.	Eyre-Walker, A., and Keightley, P.D. (1999). High genomic deleterious mutation rates in hominids. Nature <i>397</i> , 344–347.

775 28. Nachman, M.W., and Crowell, S.L. (2000). Estimate of the mutation rate per nucleotide in 776 humans. Genetics 156, 297-304. 777 29. Allio, R., Donega, S., Galtier, N., and Nabholz, B. (2017). Large variation in the ratio of 778 mitochondrial to nuclear mutation rate across animals: Implications for genetic diversity and 779 the use of mitochondrial DNA as a molecular marker. Mol. Biol. Evol. 34, 2762–2772. 780 Rieux, A., Eriksson, A., Li, M., Sobkowiak, B., Weinert, L.A., Warmuth, V., Ruiz-Linares, 30. 781 A., Manica, A., and Balloux, F. (2014). Improved calibration of the human mitochondrial 782 clock using ancient genomes. Mol. Biol. Evol. 31, 2780–2792. 783 31. Clark, P.U., Archer, D., Pollard, D., Blum, J.D., Rial, J.A., Brovkin, V., Mix, A.C., Pisias, N.G., and Roy, M. (2006). The Middle Pleistocene transition: characteristics, mechanisms, 784 785 and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 25, 3150-786 3184. 787 Gretzinger, J., Molak, M., Reiter, E., Pfrengle, S., Urban, C., Neukamm, J., Blant, M., 32. 788 Conard, N.J., Cupillard, C., Dimitrijević, V., et al. (2019). Large-scale mitogenomic analysis 789 of the phylogeography of the Late Pleistocene cave bear. Sci. Rep. 9, 1–11. 790 33. Petit, R.J., and Excoffier, L. (2009). Gene flow and species delimitation. Trends Ecol. Evol. 791 24, 386–393. 792 Konishi, M., and Takata, K. (2004). Impact of asymmetrical hybridization followed by sterile 34. 793 F 1 hybrids on species replacement in Pseudorasbora. Conserv. Genet. 5, 463-474. 794 Lioubine, V.P., and Kulikov O. (1991). About the age of the most ancient Paleolithic sites of 35. 795 the Caucasus. [In Russian]. Sov. Archaeol. 4, 4-6. 796 Lioubine, V.P. (2002). L'acheuléen du Caucase (Université de Liège, Service de Prehistoire). 36. 797 Nesmeyanov S. A. (1999). Geomorphological aspects of Paleolithic paleoecology of the 37. 798 Western Caucasus [In Russian] (Nauchniy Mir, Moscow). 799 38. Baryshnikov, G.F. (2002). Local biochronology of Middle and Late Pleistocene mammals 800 from the Caucasus. Russ. J. Theriol. 1, 61-67. 801 Guérin, C., and Baryshnikov, G.F. (1987). Le rhinocéros acheuléen de la grotte de Koudaro 39. 802 I(Géorgie, URSS) et le problème des espèces relictes du Pléistocène du Caucase. Geobios 20, 803 389-396. 804 40. Barlow, A., Fortes, G.M.G., Dalen, L., Pinhasi, R., Gasparyan, B., Rabeder, G., Frischchauf, 805 C., Paijmans, J.L.A., and Hofreiter, M. (2016). Massive influence of DNA isolation and 806 library preparation approaches on palaeogenomic sequencing data. bioRxiv, 075911. Pinhasi, R., Fernandes, D., Sirak, K., Novak, M., Connell, S., Alpaslan-Roodenberg, S., 807 41. Gerritsen, F., Moiseyev, V., Gromov, A., Raczky, P., et al. (2015). Optimal ancient DNA 808 809 yields from the inner ear part of the human petrous bone. PLoS One 10, e0129102. Basler, N., Xenikoudakis, G., Westbury, M. V., Song, L., Sheng, G., and Barlow, A. (2017). 810 42. 811 Reduction of the contaminant fraction of DNA obtained from an ancient giant panda bone. 812 BMC Res. Notes 10, 754.

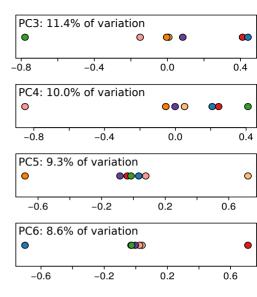
- 43. Gansauge, M.-T., and Meyer, M. (2013). Single-stranded DNA library preparation for the
 sequencing of ancient or damaged DNA. Nat. Protoc. *8*, 737–48.
- Paijmans, J.L.A., Baleka, S., Henneberger, K., Taron, U.H., Trinks, A., Westbury, M. V., and
 Barlow, A. (2017). Sequencing single-stranded libraries on the Illumina NextSeq 500
 platform. arXiv, 1–5.
- 45. Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing
 reads. EMBnet.journal *17*, 10.
- 46. Magoč, T., and Salzberg, S.L. (2011). FLASH: fast length adjustment of short reads to
 improve genome assemblies. Bioinformatics 27, 2957–63.
- 47. Li, B., Zhang, G., Willerslev, E., and Wang, J. (2011). Genomic data from the Polar Bear
 (*Ursus maritimus*). Gigascience *157*, http://dx.doi.org/10.5524/100008.
- 48. Hu, Y., Wu, Q., Ma, S., Ma, T., Shan, L., Wang, X., Nie, Y., Ning, Z., Yan, L., Xiu, Y., *et al.*(2017). Comparative genomics reveals convergent evolution between the bamboo-eating
 giant and red pandas. Proc. Natl. Acad. Sci. *114*, 201613870.
- 49. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler
 transform. Bioinformatics 25, 1754–60.
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
 and Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics
 25, 2078–2079.
- Krause, J., Unger, T., Noçon, A., Malaspinas, A.-S., Kolokotronis, S.-O., Stiller, M.,
 Soibelzon, L., Spriggs, H., Dear, P.H., Briggs, A.W., *et al.* (2008). Mitochondrial genomes
 reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene
 boundary. BMC Evol. Biol. *8*, 220.
- Abella, J., Alba, D.M., Robles, J.M., Valenciano, A., Rotgers, C., Carmona, R., Montoya, P.,
 and Morales, J. (2012). *Kretzoiarctos* gen. nov., the oldest member of the giant panda clade.
 PLoS One 7, 1–7.
- Sheng, G.-L., Basler, N., Ji, X.-P., Paijmans, J.L.A., Alberti, F., Preick, M., Hartmann, S.,
 Westbury, M. V, Yuan, J.-X., Jablonski, N.G., *et al.* (2019). Paleogenome reveals genetic
 contribution of extinct giant panda to extant populations. Curr. Biol. 29, 1695-1700.e6.
- 54. Günther, T., and Nettelblad, C. (2018). The presence and impact of reference bias on
 population genomic studies of prehistoric human populations. PLoS Genet *15*, e1008302.
- Sinolhac, A., Rasmussen, M., Gilbert, M.T.P., Willerslev, E., and Orlando, L. (2011).
 mapDamage: Testing for damage patterns in ancient DNA sequences. Bioinformatics 27, 2153–2155.
- Korneliussen, T.S., Albrechtsen, A., and Nielsen, R. (2014). Open Access ANGSD : Analysis
 of Next Generation Sequencing Data. BMC Bioinformatics 15, 1–13.
- 849 57. R Core Team (2014). R: A language and environment for statistical computing. R Found.
 850 Stat. Comput. Vienna, Austria. Available at: http://www.r-project.org/.

- Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis
 of large phylogenies. Bioinformatics *30*, 1312–1313.
- Fortes, G.G., Grandal-d'Anglade, A., Kolbe, B., Fernandes, D., Meleg, I.N., García-Vázquez,
 A., Pinto-Llona, A.C., Constantin, S., de Torres, T.J., Ortiz, J.E., *et al.* (2016). Ancient DNA
 reveals differences in behaviour and sociality between brown bears and extinct cave bears.
 Mol. Ecol. 25, 4907–4918.
- Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high
 throughput. Nucleic Acids Res *32*.
- Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: Molecular
 Evolutionary Genetics Analysis across computing platforms. Molecular Biology and
 Evolution *35*, 1547–1549.
- Rustioni, M., and Mazza, P. (1992). The genus *Ursus* in Eurasia: Dispersal events and
 stratigraphical significance. Riv. Ital. di Paleontol. e Stratigr. (Research Paleontol. Stratigr.
 98.
- 865 63. Rabeder, G., Pacher, M., and Withalm, G. (2010). Early Pleistocene bear remains from
 866 Deutsch-Altenburg (lower Austria). Geol. Carpathica *61*, 192.
- 867 64. Sala, B., and Masini, F. (2007). Late Pliocene and Pleistocene small mammal chronology in
 868 the Italian peninsula. Quat. Int. *160*, 4–16.
- 869 65. van Heteren, A.H., Arlegi, M., Santos, E., Arsuaga, J.L., and Gómez-Olivencia, A. (2019).
 870 Cranial and mandibular morphology of Middle Pleistocene cave bears (*Ursus deningeri*):
 871 implications for diet and evolution. Hist. Biol. *31*, 485–499.
- Sheng, G.L., Barlow, A., Cooper, A., Hou, X.D., Ji, X.P., Jablonski, N.G., Zhong, B.J., Liu,
 H., Flynn, L.J., Yuan, J.X., *et al.* (2018). Ancient DNA from giant panda (*Ailuropoda melanoleuca*) of south-western China reveals genetic diversity loss during the Holocene.
 Genes (Basel). 9.
- Koreille, O., Orlando, L., Patou-Mathis, M., Philippe, M., Taberlet, P., and Hänni, C. (2001).
 Ancient DNA analysis reveals divergence of the cave bear, *Ursus spelaeus*, and brown bear, *Ursus arctos*, lineages. Curr. Biol. *11*, 200–203.
- Pinhasi, R., Gasparian, B., Nahapetyan, S., Bar-Oz, G., Weissbrod, L., Bruch, A.A.,
 Hovsepyan, R., and Wilkinson, K. (2011). Middle Palaeolithic human occupation of the high
 altitude region of Hovk-1, Armenia. Quat. Sci. Rev. *30*, 3846–3857.
- 882 69. Pacher, M., and Stuart, A.J. (2008). Extinction chronology and palaeobiology of the cave
 883 bear (*Ursus spelaeus*). Boreas *38*, 189–206.

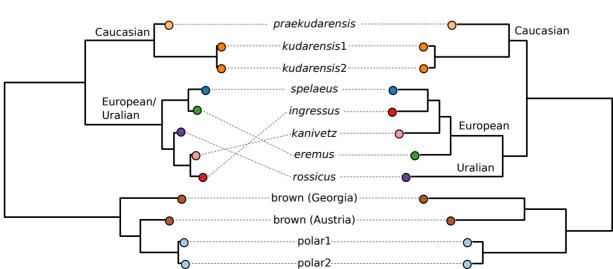

KEY RESOURCES TABLE

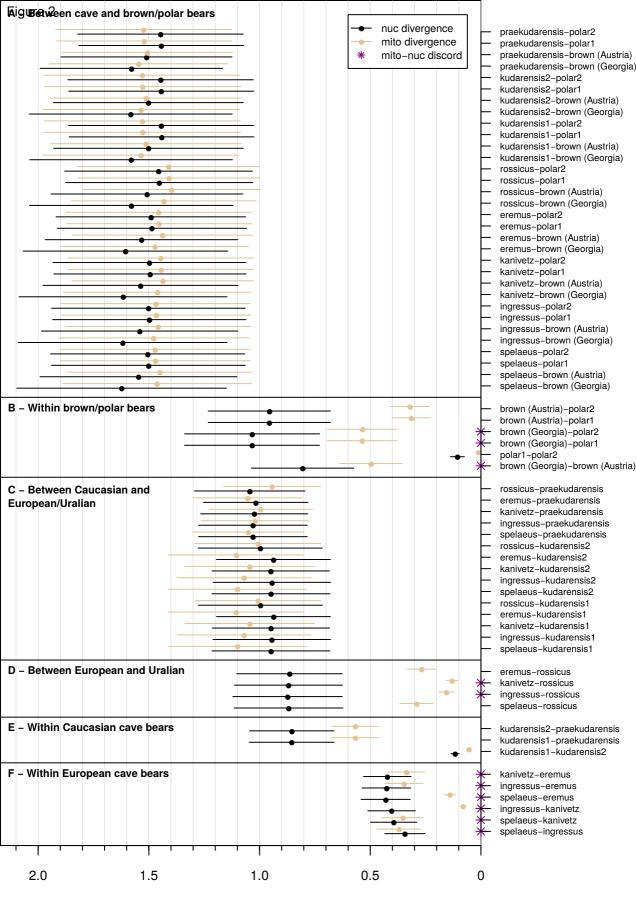

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Chemicals, Peptides, and Recombinant Proteins	1	
Guanidine hydrochloride	Roth	Cat#0037.1
QIAGEN MinElute kit	Qiagen	Cat#28004
Critical Commercial Assays		
D1000 Screen Tape (Tapestation2200)	Agilent	Cat#5067-5582
dsDNA HS Assay Kit (Qubit 2.0)	Thermofisher	Cat#Q32851
Deposited Data		
7t5-KU1_1 unprocessed data, fastq format	This paper	[submitted awaiting accession]
qgj-KU1_2 unprocessed data, fastq format	This paper	[submitted awaiting accession]
ucp-KU1_2 unprocessed data, fastq format	This paper	[submitted awaiting accession]
x54-KU1_2 unprocessed data, fastq format	This paper	[submitted awaiting accession]
4z6-KU1_3 unprocessed data, fastq format	This paper	[submitted awaiting accession]
85j-KU1_3 unprocessed data, fastq format	This paper	[submitted awaiting accession]
e5e-KU1_3 unprocessed data, fastq format	This paper	[submitted awaiting accession]
vup-KU1_3 unprocessed data, fastq format	This paper	[submitted awaiting accession]
2pq-KU1_4 unprocessed data, fastq format	This paper	[submitted awaiting accession]
4id-KU1_4 unprocessed data, fastq format	This paper	[submitted awaiting accession]
65v-KU1_4 unprocessed data, fastq format	This paper	[submitted awaiting accession]
6xw-KU1_4 unprocessed data, fastq format	This paper	[submitted awaiting accession]
9s1-KU1_4 unprocessed data, fastq format	This paper	[submitted awaiting accession]
j54-KU1_4 unprocessed data, fastq format	This paper	[submitted awaiting accession]
siw-KU1_4 unprocessed data, fastq format	This paper	[submitted awaiting accession]
009-KU1_5 unprocessed data, fastq format	This paper	[submitted awaiting accession]
6mn-KU1_5 unprocessed data, fastq format	This paper	[submitted awaiting accession]
9j7-KU1_5 unprocessed data, fastq format	This paper	[submitted awaiting accession]
b3b-KU1_5 unprocessed data, fastq format	This paper	[submitted awaiting accession]
4w5-KU1_6 unprocessed data, fastq format	This paper	[submitted awaiting accession]
6ux-KU1_6 unprocessed data, fastq format	This paper	[submitted awaiting accession]
8ux-KU1_6 unprocessed data, fastq format	This paper	[submitted awaiting accession]
dLd-KU1_6 unprocessed data, fastq format	This paper	[submitted awaiting accession]
mhh-KU1_6 unprocessed data, fastq format	This paper	[submitted awaiting accession]
n3p-KU1_6 unprocessed data, fastq format	This paper	[submitted awaiting accession]

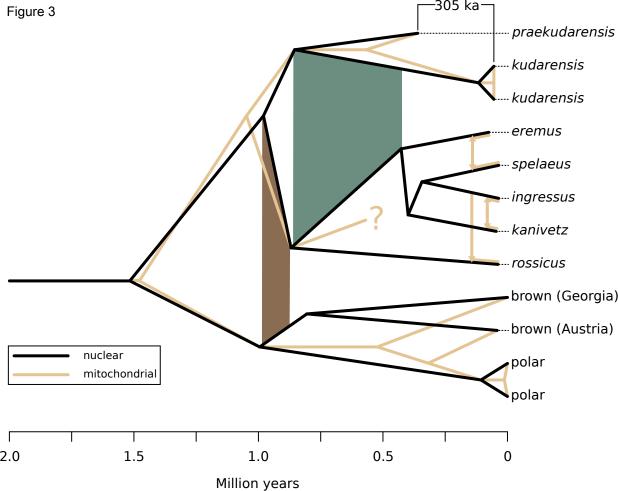
		
we6-KU1_6 unprocessed data, fastq format	This paper	[submitted awaiting accession]
ntw-HV72_8 unprocessed data, fastq format	This paper	[submitted awaiting
		accession]
w8o-HV72_8 unprocessed data, fastq format	This paper	[submitted awaiting
		accession]
2Ls-B05_1 unprocessed data, fastq format	This paper	[submitted awaiting
vhf-B05_1 unprocessed data, fastq format	This paper	accession] [submitted awaiting
		accession]
y3h-B05_1 unprocessed data, fastq format	This paper	[submitted awaiting
		accession]
9e1-B04_1 unprocessed data, fastq format	This paper	[submitted awaiting
f9L-B04_1 unprocessed data, fastq format	This paper	accession] [submitted awaiting
		accession]
vb5-B04_1 unprocessed data, fastq format	This paper	[submitted awaiting
		accession]
KU1 mapped reads, polar bear reference, bam format	This paper	[submitted awaiting
KU1 mapped reads, panda reference, bam format	This paper	accession] [submitted awaiting
Kor mapped reads, panda reference, barrionnat	This paper	accession]
B05 mapped reads, polar bear reference, bam format	This paper	[submitted awaiting
		accession]
B05 mapped reads, panda reference, bam format	This paper	[submitted awaiting
B04 mapped reads, polar bear reference, bam format	This paper	accession] [submitted awaiting
bot mapped reads, polar bear reference, barn format		accession]
B04 mapped reads, panda reference, bam format	This paper	[submitted awaiting
		accession]
HV72 mapped reads, polar bear reference, bam format	This paper	[submitted awaiting
HV72 mapped reads, panda reference, bam format	This paper	accession] [submitted awaiting
		accession]
KU1 mitochondrial genome sequence	This paper	[submitted awaiting
		accession]
B05 mitochondrial genome sequence	This paper	[submitted awaiting
B04 mitochondrial genome sequence	This paper	accession] [submitted awaiting
		accession]
HV72 mitochondrial genome sequence	This paper	[submitted awaiting
		accession]
WK01 mitochondrial genome sequence	This paper	[submitted awaiting accession]
Oligonucleotides		accession
CL9 extension primer:	[43]	Sigma Aldrich
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	[10]	olgina / lianon
Double-stranded adapter	[43]	Sigma Aldrich
Strand 1 (CL53): CGACGCTCTTC-ddC (ddC =		
dideoxycytidine) Strand 2 (CL73):		
[Phosphate]GGAAGAGCGTCGTGTAGGGAAAGAG*T*		
G*T*A (* = phosphothioate linkage)		
CL78: AGATCGGAAG[C3Spacer] 10 [TEG-biotin] (TEG	[43]	Sigma Aldrich
=triethylene glycol spacer) P5 indexing primer:	[43]	Sigma Aldrich
AATGATACGGCGACCACCGAGATCTACACnnnnnnn	[+0]	Sigma Alunch
CACTCTTTCCCTACACGACGCTCTT		
P7 indexing primer:	[43]	Sigma Aldrich
TGGAGTTCAGACGTGT IS7 amplification primer: ACACTCTTTCCCTACACGAC	[43]	Sigma Aldrich
	[10]	Cigina / idiloff


IS8 amplification primer:	[42]	Sigma Aldrich
IS8 amplification primer: GTGACTGGAGTTCAGACGTGT	[43]	Sigma Aldrich
CL72 R1 sequencing primer :	[43]	Sigma Aldrich
ACACTCTTTCCCTACACGACGCTCTTCC		
Gesaffelstein index 2 sequencing primer:	[44]	Sigma Aldrich
Software and Algorithms		
BEARCAVE ce78f40	N/A	https://github.com/ni kolasbasler/BEARCA VE/
Cutadapt v1.12	[45]	https://cutadapt.readt hedocs.io/en/stable/
Flash v1.2.11	[46]	https://ccb.jhu.edu/s oftware/FLASH/
BWA v0.7.15 and v0.7.8	[49]	http://bio- bwa.sourceforge.net/
Samtools v1.3.1	[50]	https://sourceforge.n et/projects/samtools/ files/samtools/
PreSeq	N/A	http://smithlabresear ch.org/software/pres eq/
MapDamage v2.0.8	[55]	https://ginolhac.githu b.io/mapDamage/
ANGSD v0.916	[56]	http://www.popgen.d k/angsd
Consensify v0.1	[11]	https://github.com/jla paijmans/Consensify
ReDuCToR v0.1	[11]	https://github.com/jla paijmans/Consensify
RaxML v8.2.12	[58]	https://github.com/st amatak/standard- RAxML
R version 3.6.3	[57]	https://www.r- project.org/
MarkReadsByStartEnd.jar	N/A	https://github.com/da riober/Java- cafe/tree/master/Mar kDupsByStartEnd
MEGA X v10.1.7	[61]	https://www.megasof tware.net/
D_stat.cpp	[10]	https://github.com/ja cahill/Admixture
D-stat_parser.py	[10]	https://github.com/ja cahill/Admixture
weighted_block_jackknife.py	[10]	https://github.com/ja cahill/Admixture
Other		
Proteinase K	Promega	Cat#V3021
Zymo-spin V column extension reservoir	Zymo	Cat#C1016-50
Circligase II	Biozym	Cat#131402(CL9021 K)
Endonuclease VIII	NEB	Cat#A0299S
Uracil-DNA glycosylase (Afu UDG)	NEB	Cat#M0279S
FastAP	Thermo Fisher	Cat#EF0651
MyOne C1 streptavidin beads	Thermo Fisher	Cat#65001
Bst 2.0 polymerase	NEB	Cat#M0537S

T4 DNA Polymerase	Thermo Fisher	Cat#EP0061
Buffer Tango (10x)	Thermo Fisher	Cat#BY5
T4 DNA ligase	Thermo Fisher	Cat#EL0011
Accuprime Pfx	Thermo Fisher	Cat#12344024
PEG-4000	Thermo Fisher	Cat#EP0061
Klenow fragment of DNA polymerase I	Thermo Fisher	Cat#EP0051
SYBR green PCR MasterMix	Thermo Fisher	Cat#4309155




B - PCA axes 3-6


C – Mitochondrial phylogeny

D – Nuclear phylogeny

Million years

0,00 Figure	4 ^{0.05}	0.10	0.15	0.20	0.25
			1		

D(polar,brown,cave,out)

D(brown,brown,cave,out)

D(polar,polar,cave,out)

D(Caucasian, European/Uralian, brown/polar, out)

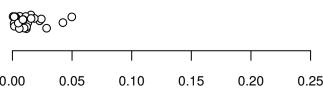
D(Uralian, European, brown/polar, out)

D(European,European,brown/polar,out)

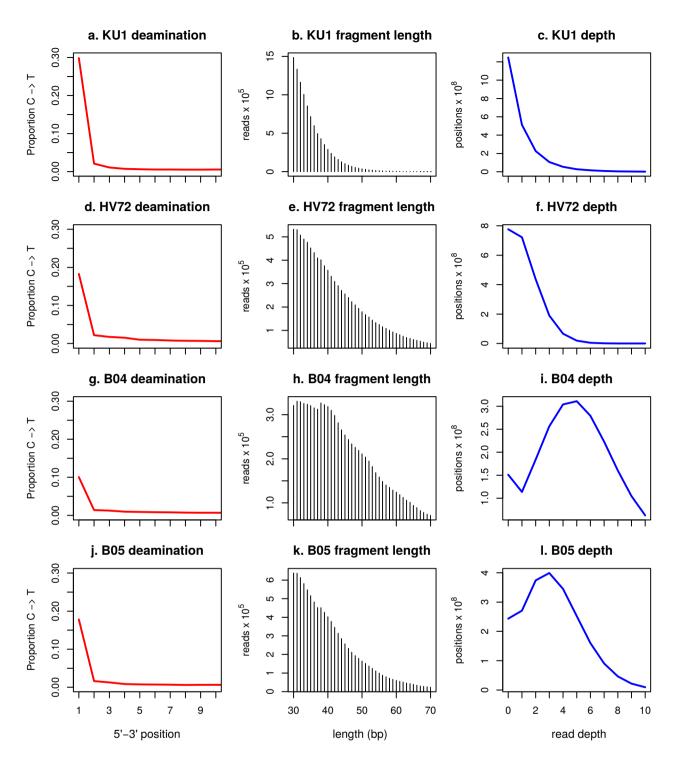
D(Caucasian, Caucasian, brown/polar, out)

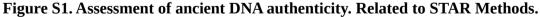
D(praekudarensis,kudarensis,European/Uralian,out)

D(kudarensis,kudarensis,European/Uralian,out)


0₀00 0

D(Uralian, European, Caucasian, out)




Ġ3

D(European, European, Caucasian, out)

D value

Estimated cytosine deamination (left panels), endogenous fragment length distributions (centre panels), and mapped read depth distributions (right panels) for cave bear samples analysed in this study: KU1 *praekudarensis* (a.–c.), HV72 *kudarensis* (d.–f.), B04 *kanivetz* (g.–i.), and B05 *rossicus* (j.–l.). Cytosine deamination and fragment length distributions are estimated from 10 million mapped reads per sample. For cytosine deamination, red lines show the frequency (y axes) of thymines in reads mapped to positions where the polar bear reference posses a cytosine, for the first 10 bases of the 5' end of the sequenced fragments (x axes). The excess of C \rightarrow T substitutions observed at the 5' end of the sequenced fragments indicates advanced cytosine deamination typical of ancient DNA. Note these are underestimates since the DNA extracts were treated with Endonuclease VIII to remove uracils, prior to library preparation. Endogenous fragment length

distributions represent the relative frequencies (y-axes) of reads mapping with alignment lengths between 30 bp and 70 bp (x-axes) to the polar bear reference. All distributions indicate advanced fragmentation typical of ancient DNA, with the *praekudarensis* dataset showing the greatest degree of fragmentation overall. Mapped read depth distributions show, for each complete dataset, the number (y-axes) of positions of the polar bear reference covered by 0–10 reads (x-axes).

Taxon F	Run	Library Mode ^a	Library Mo	Mode ^a	Reads/read- pairs	 Mapable reads^b 			Polar bea	reference				Panda reference		
				•		Unique mapped°	Duplication ^d	Endogenous °	Mapped bp ^f	95% depth ^g Consensi bp ^h	fy Unique mapped ^c	Duplication ^d	Endogeno e	us Mapped bp ^f	95% depth	^g Consensify bp ^h
praekudarensis 7	't5	KU1 1	75 bp SE	929608	367745	74	0.03896	0.00020	3078	· · ·	213	0.04911	0.00058	7542		
(KU1) ⁱ g	Igj	KU1_2	75 bp SE	1376308	291063180	11981824	0.04687	0.04117	416274746		9851647	0.04562	0.03385	339757338		
	ср	_		392821957												
	54		•	129502135												
		KU1_3			146383897	4355753	0.03298	0.02976	153706586		3553483	0.03193	0.02428	124381572		
	15j			42946104	1.0000001	1000100	0.00200	0.02010	100100000			0.00100	0.02.120	12 1001012		
	:5e		75 bp SE													
	up			49940554												
	2pq	KU1_4	75 bp SE 75 bp SE		545309057	20008538	0.08420	0.03669	697468758		16338802	0.08286	0.02996	565343725		
	id	101_4		121346233	343303037	20000330	0.00420	0.03003	037400730		10550002	0.00200	0.02330	303343723		
	i5v			214714526												
				44966523												
	ixw Is1		•	44966523 51895955												
	54			215258264												
	iw		•	231802717	150000057	FF67020	0.00055	0.02600	104420221		4548639	0.03300	0.02015	157640160		
	09	KU1_5		50475622	150869957	5567830	0.03355	0.03690	194429321		4548639	0.03300	0.03015	157643168		
	imn			57832554												
)j7			134354691												
_	3b		75 bp SE													
		KU1_6		42160302	508939093	17918152	0.07158	0.03521	628426966		14636130	0.07001	0.02876	509379472		
	iux		•	194458992												
	lux			37571245												
	ILd			180488789												
	nhh		•	196555394												
	зр			99325956												
V	ve6		75 bp SE	1087023												
	otal				1642932929	59832171	0.06489	0.03642	2090309455	3 31728614	4 48928914	0.06357	0.02978	1696512817	3 ^j	275629733
<i>udarensis</i> (HV72) p		HV72_1 ^k	70 bp PE													
n	ixu	HV72_2 ¹	70 bp PE	808632												
Z	fb	HV72_3 ^m	70 bp PE	560954												
e	et7	HV72_4 ⁿ	70 bp PE	541294												
1	oa	HV72_5°	70 bp PE	617957												
0)gw	HV72_6 ^p	70 bp PE	522654												
x	yw	HV72_7 ^q	70 bp PE	371421												
n	itw	HV72_8	75 bp SE	1978082												
v	v8o	HV72_8	100 bp PE	408079285												
Т	otal			416350152	252663833	58829996	0.13835	0.23284	2662568631	3 ⁱ 59862111	9 45416300	0.13833	0.17975	2016578684	3 ^j	456578209
rossicus (B05) 2	Ls.	B05_1	75 bp SE	800911												
v	'nf	B05_1	75 bp SE	229165973												
У	3h	B05_1	75 bp SE	345021971												
T	otal			574988855	368057543	186891382	0.06894	0.50778	7762067882	6 15194520	61 147543648	0.06852	0.40087	6056896419	6	1244838601
anivetz (B04) 9	e1	B04_1	75 bp SE	275211												
f	9L	B04_1	75 bp SE	236197693												
v	b5		75 bp SE	254445960												
	otal			490918864	380166888	241762865	0.13300	0.63594	11867462564	9 18289306	51 185653780	0.13037	0.48835	8981805339	8	1456996716

eremus (WK01) ^r [S2]	Total	499710778	7915956754	7	1569807355	6128843570	6	1210933302
ingressus (GS136ss) ^r [S3]	Total	432895345	9100724820	7	1659620719	6940781378	6	1266005835
<i>spelaeus</i> (E-VD- 1838) ^r [S2]	Total	409117882	5818548166	5	1188238828	4552148667	5	971153181
Brown (Georgia, Ge) ^r [S2]	Total	213218024	29072595580	18	1966369913	14518303667	14	1482046107
Brown (Austria, Uap) ^r [S2]	Total	217267718	3512273973	3	767590358	2651330420	3	591504908
Polar (SRS412584) ^r [S4]	Total]	105516047	12144369821	9	1704519042	6812026125	7	1118483213
Polar (SRS412585)' [S4]	Total]	112291778	10050050358	8	1596434788	6021930179	6	1025241632
Asiatic black (ERS781634) ^r [S5]	Total 5]	169470434	22574306140	15	1964247967	13436353408	12	1523577868

Table S1. Details of data processing and generation of error-reduced genome sequences. Related to STAR Methods.

^a75 bp single-end datasets were sequenced on the NextSeq 500 platform, 100 bp paired-end datasets were sequenced on the HiSeq 2500 platform, and 70 bp paired-end datasets were sequenced on the MiSeq platform;

^b"mapable reads" are the number of trimmed (and merged for paired-end data) reads > 30 bp used for mapping using bwa;

^cnumber of mapped reads remaining after duplicate removal;

^dproportion of mapped reads removed as duplicates;

^eestimated proportion of endogenous molecules, calculated as "unique mapped" / "mapable reads";

^fnumber of mapped base-pairs;

^gmaximum depth filter applied for Consensify;

^htotal bp of error reduced sequence generated using Consensify;

ⁱdata from the six *praekudarensis* libraries were processed separately and then combined;

^jfor these datasets, the 95th percentile of coverage was between 2–3 reads, and so 3 reads was used as the maximum allowed depth;

^kdata from Dabney/double-stranded treatment in [S1];

¹data from combined/double-stranded treatment in [S1];

^mdata from combined/single-stranded treatment in [S1];

ⁿdata from Dabney/double-stranded treatment in [S1];

^odata from Dabney/single-stranded treatment in [S1];

^pdata from Rohland/double-stranded treatment in [S1];

^qdata from Rohland/single-stranded treatment in [S1];

^rpublished dataset, see cited reference for details.

Sample [reference]	taxon	locality	Age (years Bp)	Dating method	Date reference
KU1 [this study]; ZIN 31896 ¹	praekudarensis	Kudaro-1 cave (layer 5c), South Ossetia, Southern Caucasus	360,000 ± 90,000	Layer 5c dated by Radiothermoluminescence. Also see STAR Methods.	[S7]
HV72 [this study]	kudarensis1	Hovk-1 cave, Armenia, Southern Caucasus	54,600 ± 5,700	Layer dated by optically stimulated luminescence	[S8]
HV74 [S2]	kudarensis2	Hovk-1 cave, Armenia, Southern Caucasus	54,600 ± 5,700; > 49,000	Layer dated by optically stimulated luminescence; radiocarbon dating	[S8,S1]
B05 [this study] ZIN 28601-9a/51 ¹	rossicus	Kizel cave, Ural Mountains, Russia	37,698 (indirect estimate)	Median of available radiocarbon dates for Kizel cave bears. See Table S6.	This study
WK01 [S2]	eremus	Windischkopf cave, Austria	71,992 (95% CI 54,640– 91,860)	Mitochondrial tip dating	[S6]
B04 [this study] ZIN n/n ¹	kanivetz	Medvezhiya cave, Ural Mountains, Russia	45,043 (indirect estimate)	Median of available radiocarbon dates for Medvezhiya cave bears. See Table S6.	This study
GS136 [S2]	ingressus	Gamssulzen cave, Austria	35,062 ± 966	Radiocarbon dating	[S6]
E-VD-1838 [S2]	spelaeus	Eiros cave, Spain	34,806 ± 931	Radiocarbon dating	[S6]
Ge [S2]	brown	Georgia, Great Caucasus	Modern	N/A	[S2]
Uap [S2]	brown	Winden cave, Austria	41,201 ± 895	Radiocarbon dating	[S6]
SRS412584 ² [S4]	polar1	North Beaufort Sea	Modern	N/A	[S4]
SRS412585 ² [S4]	polar2	Wrangel Island	Modern	N/A	[S4]
ERS781634 ² [S5]	Asiatic black	Zoo	Modern	N/A	[S5]

 Table S2. Details of sample localities and ages. Related to STAR Methods.

¹Zoological Institute RAS Collection Number.

²Sample code is European Nucleotide Archive accession number.

t1	t2	t3	Divergence t1:t3ª	Divergence t2:t3ª	t1:t3 - t2:t3ª	median sub rate	min sub rate	max sub rate
Nuclear DNA								
HV72	KU1	Brown (Ge)	2.97016 x 10 ⁻³	2.67496 x 10 ⁻³	2.95198 x 10 ⁻⁴	9.66596 x 10 ⁻¹⁰	7.46581 x 10 ⁻¹⁰	1.37047 x 10 ⁻⁹
HV72	KU1	Polar (SRS412584)	2.70656 x 10 ⁻³	2.41774 x 10 ⁻³	2.88822 x 10 ⁻⁴	9.45718 x 10 ⁻¹⁰	7.30456 x 10 ⁻¹⁰	1.34086 x 10 ⁻⁹
HV72	KU1	Polar (SRS412585)	2.71051 x 10 ⁻³	2.42401 x 10 ⁻³	2.86501 x 10 ⁻⁴	9.38116 x 10 ⁻¹⁰	7.24584 x 10 ⁻¹⁰	1.33009 x 10 ⁻⁹
HV74	KU1	Brown (Ge)	2.97341 x 10 ⁻³	2.67496 x 10 ⁻³	2.98453 x 10 ⁻⁴	9.77253 x 10 ⁻¹⁰	7.54813 x 10 ⁻¹⁰	1.38558 x 10 ⁻⁹
HV74	KU1	Polar (SRS412584)	2.70982 x 10 ⁻³	2.41774 x 10 ⁻³	2.92076 x 10 ⁻⁴	9.56371 x 10 ⁻¹⁰	7.38684 x 10 ⁻¹⁰	1.35597 x 10 ⁻⁹
HV74	KU1	Polar (SRS412585)	2.71516 x 10 ⁻³	2.42401 x 10 ⁻³	2.91149 x 10 ⁻⁴	9.53335 x 10 ⁻¹⁰	7.36339 x 10 ⁻¹⁰	1.35166 x 10 ⁻⁹
					Mean	9.56231 x 10 ⁻¹⁰	7.38576 x 10 ⁻¹⁰	1.35577 x 10 ^{.9}
<u>Mitochondrial</u> <u>DNA</u>								
HV72	KU1	Brown (Ge)	5.46936 x 10 ⁻²	4.95862 x 10 ⁻²	5.10732 x 10 ⁻³	1.67234 x 10 ⁻⁸	1.29168 x 10 ⁻⁸	2.37109 x 10 ⁻⁸
HV72	KU1	Polar (SRS412584)	5.44350 x 10 ⁻²	4.86811 x 10 ⁻²	5.75381 x 10 ⁻³	1.88403 x 10 ⁻⁸	1.45519 x 10 ⁻⁸	2.67122 x 10 ⁻⁸
HV72	KU1	Polar (SRS412585)	5.44996 x 10 ⁻²	4.87458 x 10 ⁻²	5.75381 x 10 ⁻³	1.88403 x 10 ⁻⁸	1.45519 x 10 ⁻⁸	2.67122 x 10 ⁻⁸
HV74	KU1	Brown (Ge)	5.46936 x 10 ⁻²	4.95862 x 10 ⁻²	5.10732 x 10 ⁻³	1.67234 x 10 ⁻⁸	1.29168 x 10 ⁻⁸	2.37109 x 10 ⁻⁸
HV74	KU1	Polar (SRS412584)	5.44350 x 10 ⁻²	4.86811 x 10 ⁻²	5.75381 x 10 ⁻³	1.88403 x 10 ⁻⁸	1.45519 x 10 ⁻⁸	2.67122 x 10 ⁻⁸
HV74	KU1	Polar (SRS412585)	5.44996 x 10 ⁻²	4.87458 x 10 ⁻²	5.75381 x 10 ⁻³	1.88403 x 10 ⁻⁸	1.45519 x 10 ⁻⁸	2.67122 x 10 ⁻⁸
					Mean	1.81346 x 10 ⁻⁸	1.40069 x 10 ⁻⁸	2.57118 x 10 ⁻⁸

Table S3. Nuclear and mitochondrial substitution rate estimates based on the relative difference in genomic divergence of *kudarensis* (t1) and *praekudarensis* (t2) to a modern representative of the brown/polar bear clade (t3). Related to Figures 2 and 3, and STAR Methods.

^aValues are the genetic divergence measured as the proportion of positions in the ReDuCToR alignment.

t1	t2	Age t1	Age t2	Genetic	Divergence	Median node	min node age	max node age
		3.	J • •	divergence	Time	age		.
spelaeus	ingressus	34806	35062	5.90264 x 10 ⁻⁴	308641	343575	252620	434530
spelaeus	kanivetz	34806	45043	6.77406 x 10 ⁻⁴	354206	394131	289748	498514
ingressus	kanivetz	35062	45043	6.95485 x 10 ⁻⁴	363659	403712	296543	510881
spelaeus	eremus	34806	74696	7.18663 x 10 ⁻⁴	375779	430530	319790	541270
ingressus	eremus	35062	74696	7.11478 x 10 ⁻⁴	372022	426901	317268	536534
kanivetz	eremus	45043	74696	6.94558 x 10 ⁻⁴	363175	423044	316018	530070
spelaeus	rossicus	34806	37698	1.59278 x 10 ⁻³	832844	869096	623661	1114532
ingressus	rossicus	35062	37698	1.60067 x 10 ⁻³	836970	873350	626699	1120001
kanivetz	rossicus	45043	37698	1.58373 x 10 ⁻³	828112	869482	625442	1113523
eremus	rossicus	74696	37698	1.54614 x 10 ⁻³	808455	864652	626404	1102901
kudarensis (HV72)		54600	54600	1.18571 x 10 ⁻⁴	61999	116599	98328	134870
kudarensis (HV72)	praekudarensis	54600	360000	1.23921 x 10 ⁻³	647965	855265	664313	1046218
kudarensis (HV74)	praekudarensis	54600	360000	1.23782 x 10 ⁻³	647237	854537	663799	1045275
spelaeus	1	34806	54600	1.72832 x 10 ⁻³	903713	948416	682096	1214736
ingressus		35062	54600	1.72112 x 10 ⁻³	899951	944782	679571	1209994
kanivetz	kudarensis (HV72)		54600	1.71880 x 10 ⁻³	898737	948559	683705	1213413
eremus	kudarensis (HV72)		54600	1.66821 x 10 ⁻³	872282	936930	679872	1193987
rossicus	kudarensis (HV72)		54600	1.81629 x 10 ⁻³	949712	995861	715985	1275737
spelaeus		34806	54600	1.72832 x 10 ⁻³	903713	948416	682096	1214736
ingressus	kudarensis (HV74)		54600	1.71973 x 10 ⁻³	899223	944054	679057	1209051
kanivetz	kudarensis (HV74)		54600	1.72019 x 10 ⁻³	899466	949287	684219	1214356
eremus		74696	54600	1.66913 x 10 ⁻³	872767	937415	680215	1194616
rossicus	kudarensis (HV74)		54600	1.81861 x 10 ⁻³	950926	997075	716841	1277309
spelaeus	praekudarensis	34806	360000	1.59186 x 10 ⁻³	832359	1029762	784469	1275054
ingressus	praekudarensis	35062	360000	1.59162 x 10 ⁻³	832237	1029768	784512	1275025
kanivetz	praekudarensis	45043	360000	1.57074 x 10 ⁻³	821317	1023838	781800	1265877
eremus	praekudarensis	74696	360000	1.53013 x 10 ⁻³	800084	1017432	781651	1253213
rossicus	praekudarensis	37698	360000	1.61738 x 10 ⁻³	845706	1044555	795330	1293781
brown (Ge)	Brown (Uap)	0	41201	1.50113 x 10 ⁻³	784918	805518	574206	1036830
	Polar (SRS412585)		0	2.03806 x 10 ⁻⁴	106567	106567	75162	137972
brown (Ge)	Polar (SRS412584)		0	1.97764 x 10 ⁻³	1034078	1034078	729340	1338816
brown (Ge)	Polar (SRS412585)		0	1.97717 x 10 ⁻³	1033835	1033835	729169	1338502
Brown (Uap)	Polar (SRS412584)		0	1.78913 x 10 ⁻³	935511	956112	680421	1231803
Brown (Uap)	Polar (SRS412585)		0	1.78843 x 10 ⁻³	935147	955748	680164	1231332
spelaeus	brown (Ge)	34806	0	3.07060 x 10 ⁻³	1605572	1622975	1149820	2096130
spelaeus	Brown (Uap)	34806	41201	2.88530 x 10 ⁻³	1508685	1546688	1102086	1991291
spelaeus	Polar (SRS412584)		0	2.83881 x 10 ⁻³	1484376	1501779	1064340	1939218
spelaeus	Polar (SRS412585)		0	2.84555 x 10 ⁻³	1487900	1505303	1066826	1943781
ingressus	brown (Ge)	35062	0	3.06130 x 10 ⁻³	1600709	1618240	1146518	2089961
ingressus	Brown (Uap)	35062	41201	2.87577 x 10 ⁻³	1503701	1541833	1098699	1984967
ingressus	Polar (SRS412584)		0	2.83114 x 10 ⁻³	1480365	1497896	1061639	1934153
ingressus	Polar (SRS412584)		0	2.83835 x 10 ⁻³	1484133	1501664	1064296	1939031
kanivetz	brown (Ge)	45043	0	3.04828 x 10 ⁻³	1593900	1616422	1146707	2086137
kanivetz	Brown (Uap)	45043	41201	2.85811 x 10 ⁻³	1494464	1537586	1097174	1977998
kanivetz	Polar (SRS412584)		0	2.81627 x 10 ⁻³	1472586	1495108	1061143	1929072
kanivetz	Polar (SRS412585)		0	2.82208 x 10 ⁻³	1475625	1498146	1063286	1933006
eremus	brown (Ge)	74696	0	2.99898 x 10 ⁻³	1568127	1605475	1143355	2067595
	Brown (Uap)	74696	41201	2.82208 x 10 ⁻³	1475625	1533573	1098713	1968433
eremus	Polar (SRS412584)		0	2.77118 x 10 ⁻³	1449009	1486357	1059340	1913373
eremus	Polar (SRS412584) Polar (SRS412585)		0	2.77954 x 10 ⁻³	1453384	1490732	1059340	19130373
eremus	brown (Ge)	37698	0	2.98457 x 10 ⁻³	1453384 1560590	1579439	1062426	2039338
rossicus	()	37698	0 41201	2.80999 x 10 ⁻³	1469305	1579439	1075757	1941752
rossicus	Brown (Uap) Polar (SRS412584)		41201 0	2.80999 x 10° 2.74328 x 10 ⁻³	1469305 1434425			
rossicus						1453274	1030556	1875993 1879926
rossicus	Polar (SRS412585)		0	2.74910 x 10 ⁻³	1437463	1456312 1580353	1032698	
kudarensis (HV72)		54600	0	2.97016 x 10 ⁻³	1553053		1122675	2038031
kudarensis (HV72)		54600	41201	2.78094 x 10 ⁻³ 2.70656 x 10 ⁻³	1454113	1502013	1073493	1930534
	Polar (SRS412584)		0		1415224	1442524	1025464	1859585
	Polar (SRS412585)		0	2.71051 x 10 ⁻³	1417290	1444590	1026921	1862259
kudarensis (HV74)		54600	0	2.97341 x 10 ⁻³		1582055	1123876	2040234
kudarensis (HV74)		54600	41201	2.78187 x 10 ⁻³	1454599	1502500	1073836	1931163
	Polar (SRS412584)		0	2.70982 x 10 ⁻³	1416926	1444226	1026664	1861787
. ,	· · · ·		0	2.71516 x 10 ⁻³	1419721	1447021	1028635	1865406
praekudarensis	brown (Ge)	360000	0	2.67496 x 10 ⁻³	1398698	1578698	1166508	1990888
praekudarensis	Brown (Uap)	360000	41201	2.50510 x 10 ⁻³	1309880	1510481	1124465	1896496
praekudarensis	Polar	360000	0	2.41774 x 10 ⁻³	1264203	1444203	1071648	1816758
,	(SRS412584)							·
					100715		100000	1001005
praekudarensis	Polar	360000	0	2.42401 x 10 ⁻³	1267483	1447483	1073962	1821005
	(SRS412585)							

Table S4. Absolute times of nuclear divergence from the present day (node age) for all sample-
pairs. Related to Figures 2 and 3, and STAR Methods.

Node ages between pairs of individuals (t1, t2) are calculated from their pairwise divergence time (genetic divergence/estimated divergence rate) combined with their respective ages (Age t1, Age t2). Median, maximum and minimum node ages are calculated, respectively, from their corresponding substitution rate estimates shown in Table S3.

t1	t2	Age t1	Age t2	Genetic	Divergence	Median node	Lower node	Upper node
				divergence	Time	age	age	age
spelaeus	ingressus	34806	35062	1.21541 x 10 ⁻²	335108	370042	271287	468797
spelaeus	kanivetz	34806	45043	1.13137 x 10 ⁻²	311936	351860	259934	443786
•	kanivetz	35062	45043	1.48694 x 10 ⁻³	40997	81050	68968	93131
	eremus	34806	74696	3.10318 x 10 ⁻³	85560	140311	115097	165525
· ·	eremus	35062	74696	1.06025 x 10 ⁻²	292328	347207	261060	433355
	eremus	45043	74696	1.00207 x 10 ⁻²	276286	336155	254735	417576
	rossicus	34806	37698	9.24489 x 10 ⁻³	254896	291148	216031	366265
•	rossicus	35062	37698	4.33152 x 10 ⁻³ 3.23248 x 10 ⁻³	119427 89125	155807	120612	191001
	rossicus rossicus	45043 74696	37698 37698	7.69330 x 10 ⁻³	212116	130495 268313	104230 205804	156760 330823
	kudarensis (HV74)	54600	54600	0	0	54600	54600	54600
	praekudarensis	54600	360000	1.30592 x 10 ⁻²	360063	567363	461254	673472
· · · ·	praekudarensis	54600	360000	1.30592 x 10 ⁻²	360063	567363	461254	673472
· · ·	kudarensis (HV72)	34806	54600	3.82726 x 10 ⁻²	1055234	1099937	788964	1410910
	kudarensis (HV72)	35062	54600	3.71735 x 10 ⁻²	1024932	1069763	767720	1371806
•	kudarensis (HV72)	45043	54600	3.60745 x 10 ⁻²	994630	1044451	751338	1337564
	kudarensis (HV72)	74696	54600	3.77554 x 10 ⁻²	1040974	1105622	798852	1412393
	kudarensis (HV72)	37698	54600	3.48461 x 10 ⁻²	960762	1006911	723779	1290044
	kudarensis (HV74)	34806	54600	3.82726 x 10 ⁻²	1055234	1099937	788964	1410910
	kudarensis (HV74)	35062	54600	3.71735 x 10 ⁻²	1024932	1069763	767720	1371806
	kudarensis (HV74)	45043	54600	3.60745 x 10 ⁻²	994630	1044451	751338	1337564
eremus	kudarensis (HV74)	74696	54600	3.77554 x 10 ⁻²	1040974	1105622	798852	1412393
rossicus	kudarensis (HV74)	37698	54600	3.48461 x 10 ⁻²	960762	1006911	723779	1290044
spelaeus	praekudarensis	34806	360000	3.09672 x 10 ⁻²	853813	1051216	799601	1302831
ingressus	praekudarensis	35062	360000	2.98681 x 10 ⁻²	823511	1021042	778357	1263726
	praekudarensis	45043	360000	2.87691 x 10 ⁻²	793208	995730	761975	1229485
	praekudarensis	74696	360000	3.03207 x 10 ⁻²	835988	1053336	806974	1299698
	praekudarensis	37698	360000	2.70235 x 10 ⁻²	745081	943930	724358	1163502
	Brown (Uap)	0	41201	1.72614 x 10 ⁻²	475925	496525	356272	636778
```	Polar (SRS412585)		0	4.52547 x 10 ⁻⁴	12477	12477	8800	16154
( )	Polar (SRS412584)		0	1.94595 x 10 ⁻²	536530	536530	378417	694642
. ,	Polar (SRS412585)		0	1.93949 x 10 ⁻²	534747	534747	377160	692335
Brown (Uap)	( /	41201	0 0	1.06672 x 10 ⁻²	294111	314711	228038	401385
Brown (Uap)	Polar (SRS412585)	34806	0	1.08611 x 10 ⁻²	299458 1445600	320059	231810	408308
spelaeus spelaeus	brown (Ge) Brown (Uap)	34806	0 41201	5.24308 x 10 ⁻² 5.12671 x 10 ⁻²	1413515	1463003 1451518	1036991 1034962	1889014 1868075
spelaeus	Polar (SRS412584)	34806	0	$5.26894 \times 10^{-2}$	1452730	1470133	1042020	1898245
	Polar (SRS412585)		0	5.27541 x 10 ⁻²	1454512	1471915	1042020	1900553
	brown (Ge)	35062	0	5.30127 x 10 ⁻²	1461642	1479173	1048434	1909912
ingressus	Brown (Uap)	35062	41201	5.15257 x 10 ⁻²	1420645	1458776	1040119	1877434
	Polar (SRS412584)	35062	0	5.25601 x 10 ⁻²	1449165	1466696	1039633	1893758
ingressus		35062	0	5.26248 x 10 ⁻²	1450947	1468478	1040891	1896066
	brown (Ge)	45043	0	5.21722 x 10 ⁻²	1438470	1460991	1037081	1884902
kanivetz	Brown (Uap)	45043	41201	5.05560 x 10 ⁻²	1393907	1437029	1026251	1847808
kanivetz	Polar (SRS412584)	45043	0	5.15904 x 10 ⁻²	1422427	1444949	1025766	1864132
kanivetz	Polar (SRS412585)	45043	0	5.16550 x 10 ⁻²	1424210	1446731	1027023	1866439
eremus	brown (Ge)	74696	0	5.20429 x 10 ⁻²	1434905	1472253	1049393	1895113
eremus	Brown (Uap)	74696	41201	5.01034 x 10 ⁻²	1381430	1439378	1032277	1846480
eremus	Polar (SRS412584)		0	5.13964 x 10 ⁻²	1417080	1454428	1036821	1872035
eremus	Polar (SRS412585)		0	5.14611 x 10 ⁻²	1418862	1456210	1038078	1874343
rossicus	brown (Ge)	37698	0	5.12671 x 10 ⁻²	1413515	1432364	1015807	1848920
rossicus	Brown (Uap)	37698	41201		1358258	1397707	997435	1797979
	Polar (SRS412584)		0		1390342	1409191	999464	1818919
	Polar (SRS412585)		0	5.04913 x 10 ⁻²		1410974	1000721	1821227
	brown (Ge)	54600	0	5.46936 x 10 ⁻²	1507987	1535287	1090890	1979684
	Brown (Uap)	54600 54600	41201	5.31420 x 10 ⁻²	1465207 1500857	1513108 1528157	1081318	1944897
· · ·	Polar (SRS412584) Polar (SRS412585)		0 0	5.44350 x 10 ⁻² 5.44996 x 10 ⁻²	1502639		1085861	1970453 1972760
```	brown (Ge)	54600	0	5.46936 x 10 ⁻²	1502639	1529939 1535287	1087118 1090890	1972780
	Brown (Uap)	54600	0 41201	5.31420 x 10 ⁻²	1465207	1513108	1090890	1979084
		54600	41201 0	5.44350 x 10 ⁻²	1500857	1513108	1081318	1944897 1970453
	Polar (SRS412584)		0	5.44996 x 10 ⁻²	1502639	1529939	1085801	1972760
	brown (Ge)	360000	0	4.95862 x 10 ⁻²	1367170	1547170	1144271	1950069
praekudarensis	~	230000	5					
•	Brown (Llan)	360000	/1201	1 73882 10-2	1206565		1122127	100.000
praekudarensis	Brown (Uap)	360000	41201	4.73882 x 10 ⁻²		1507166	1122127	1892205
	Brown (Uap) Polar (SRS412584)		41201 0	4.73882 x 10 ⁻² 4.86811 x 10 ⁻²	1306565 1342215	1507166 1522215	1122127 1126670	1892205 1917760

Table S5. Absolute times of mitochondrial divergence from the present day (node age) for all sample-pairs. Related to Figures 2 and 3, and STAR Methods.

Node ages between pairs of individuals (t1, t2) are calculated from their pairwise divergence time (genetic divergence/estimated divergence rate) combined with their respective ages (Age t1, Age t2). Median, maximum and minimum node ages are calculated, respectively, from their corresponding substitution rate estimates shown in Table S3.

Sample	Cave	ZIN cat #	Description	Date code	radiocarbon age	Delta 13C	Maximum calibrated age*	Minimum calibrated age*	Calibrated median age*	Notes
USP-01	Medvezhiya	34991-6	<i>kanivetz</i> partial skull	OxA-19568	45,150 ± 600	-20.84	47,984	45,320	46,652	Date may extend out of calibration range
USP-03	Medvezhiya	34991-19	<i>kanivetz</i> mandible	OxA-19608	42,000 ± 450	-20.1	44,251	42,616	43,434	
UKZ-05	Kizel	28601-44	<i>rossicus</i> right maxilla	OxA-19565	46,250 ± 700	-20.94		46,332		Date may extend out of calibration range
UKZ-06	Kizel	28601-32	<i>rossicus</i> right maxilla	OxA-19566	39,040 ± 330	-22.68	41,461	40,452	40,957	
-	Kizel	-	-	OxA-16964	36,390 ± 270	-21.842	39,646	38,462	39,054	From [S9]
UKZ-01	Kizel	28601-29	<i>rossicus</i> right maxilla	OxA-19561	35,330 ± 220	-21.55	38,543	37,387	37,965	
UKZ-02	Kizel	28601-13a	<i>rossicus</i> right maxilla	OxA-19562	35,110 ± 230	-21.08	38,301	37,095	37,698	
UKZ-07	Kizel	28601-41	<i>rossicus</i> right maxilla	OxA-19567	34,610 ± 230	-21.43	37,752	36,646	37,199	
UKZ-04	Kizel	28601-24	<i>rossicus</i> left maxilla	OxA-19564	32,940 ±190	-21.1	35,832	34,423	35,128	
UKZ-03	Kizel	28601-12a	<i>rossicus</i> left maxilla	OxA-19563	32,630 ± 180	-20.96	35,240	34,136	34,688	
-	Kizel	-	-	OxA-16960	31,870 ± 190	-21.462	34,271	33,361	33,816	From [S9]

Table S6. Radiocarbon dates for Medvezhiya and Kizel cave bears used for indirect ageestimates for the sequenced samples. Related to STAR Methods.

*Calibrated using OxCal 4.2 online, based on the IntCal-13 curve.

Taxon (sample)	Reference taxon (GenBank	•	Mapped	Unique	%	Mapped bp	Read depth*	
	Acc.)	reads		mapped	Duplication			> 2 reads
praekudarensis (KU1)	kudarensis (MH605139)	1399428212	40576	35942	11.42	1175197	69.89	97.38
brown (Ge)	U. arctos (EU497665)	61792045	5861	5354	8.6504	794631	47.43	96.60
brown (Uap)	U. arctos (EU497665)	140333181	73626	67049	8.93299	3037226	181.29	99.13
black (ERS781634)	U. thibetanus (NC_009971)	167698034	138701	31563	77.2439	2824722	168.19	99.23
polar (SRS412584)	U. maritimus (NC_003428)	31203972	32947	20507	37.7576	2001068	117.59	95.85
polar (SRS412585)	U. maritimus (NC_003428)	20357905	16691	13225	20.7657	1239153	72.82	95.84
kanivetz (B04)	spelaeus (EU327344)	380166888	169096	129959	23.1448	5925633	352.51	98.81
rossicus (B04)	spelaeus (EU327344)	368057543	242012	189019	21.8968	8010665	476.54	98.89
eremus (WK01)	spelaeus (EU327344)	335628787	157015	137148	12.6529	5817044	346.05	98.64
kudarensis (HV72)	kudarensis (MH605139)	252663833	133306	106436	20.1566	5894257	350.56	99.55

 Table S7. Details of mitochondrial genome reconstruction. Related to STAR Methods.

*Mapped bp divided by reference genome size.

SUPPLEMENTAL REFERENCES

- S1. Barlow, A., Fortes, G.M.G., Dalen, L., Pinhasi, R., Gasparyan, B., Rabeder, G., Frischchauf, C., Paijmans, J.L.A., and Hofreiter, M. (2016). Massive influence of DNA isolation and library preparation approaches on palaeogenomic sequencing data. BioRxiv, 075911.
- S2. Barlow, A., Cahill, J.A., Hartmann, S., Theunert, C., Xenikoudakis, G., Fortes, G.G., Paijmans, J.L.A., Rabeder, G., Frischauf, C., Grandal-d'Anglade, A., *et al.* (2018). Partial genomic survival of cave bears in living brown bears. Nat. Ecol. Evol. *2*, 1563–1570.
- S3. Barlow, A., Hartmann, S., Gonzalez, J., Hofreiter, M., and Paijmans, J.L.A. (2020).
 Consensify: A Method for Generating Pseudohaploid Genome Sequences from
 Palaeogenomic Datasets with Reduced Error Rates. Genes (Basel). 11.
- S4. Cahill, J.A., Green, R.E., Fulton, T.L., Stiller, M., Jay, F., Ovsyanikov, N., Salamzade, R., St. John, J., Stirling, I., Slatkin, M., *et al.* (2013). Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genet. 9, e1003345.
- Kumar, V., Lammers, F., Bidon, T., Pfenninger, M., Kolter, L., Nilsson, M.A., and Janke, A. (2017). The evolutionary history of bears is characterized by gene flow across species. Sci. Rep. 7, 1–35.
- S6. Fortes, G.G., Grandal-d'Anglade, A., Kolbe, B., Fernandes, D., Meleg, I.N., García-Vázquez, A., Pinto-Llona, A.C., Constantin, S., de Torres, T.J., Ortiz, J.E., Frischauf, C., Rabeder, G., Hofreiter, M., Barlow, A. (2016). Ancient DNA reveals differences in behaviour and sociality between brown bears and extinct cave bears. Mol. Ecol. 25, 4907–4918.
- S7. Lioubine, V.P. (1998). The Acheulian Epoch in the Caucasus. [In Russian] (St. Petersburg).
- S8. Pinhasi, R., Gasparian, B., Nahapetyan, S., Bar-Oz, G., Weissbrod, L., Bruch, A.A., Hovsepyan, R., and Wilkinson, K. (2011). Middle Palaeolithic human occupation of the high altitude region of Hovk-1, Armenia. Quat. Sci. Rev. *30*, 3846–3857.
- S9. Pacher, M., and Stuart, A.J. (2008). Extinction chronology and palaeobiology of the cave bear (*Ursus spelaeus*). Boreas *38*, 189–206.