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Abstract

We introduce the poset of mesh patterns, which generalises the permuta-
tion pattern poset. We fully classify the mesh patterns for which the in-
terval [1°,m] is non-pure, where 1? is the unshaded singleton mesh pat-
tern. We present some results on the Mobius function of the poset, and
show that ,u(lw, m) is almost always zero. Finally, we introduce a class of
disconnected and non-shellable intervals by generalising the direct product
operation from permutations to mesh patterns.

1. Introduction

Mesh patterns were first introduced by Bréandén and Claesson in [BC11]
as a generalisation of permutation patterns, and have been studied exten-
sively in recent years, see e.g., [CTU15, JKR15]. A mesh pattern consists of
a pair (m, P), where 7 is a permutation and P is a set of coordinates in a
square grid. For example, (312,{(0,0),(1,2)}) is a mesh pattern, which we
depict by

A natural definition of when one mesh pattern occurs in another mesh
pattern was given in [TU18|, which we present in Section 2. This allows
us to generalise the classical permutation poset to a poset of mesh pat-
terns, where (0,5) < (m, P) if there is an occurrence of (o,S5) in (m, P).
The permutation poset has received a lot of attention in recent years, but
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due to its complicated structure a full understanding of it has proven elu-
sive, see [MS15, Smil7]. The poset of mesh patterns, which we define here,
contains the poset of permutations as an induced subposet. Therefore, in-
vestigating the poset of mesh patterns may lead to a better understanding
of the poset of permutations. Moreover, studying this poset may help to
answer some of the open questions on mesh patterns.

In Section 2 we introduce the poset of mesh patterns and related defi-
nitions, including a brief overview of poset topology. In Section 3 we prove
some results on the Mobius function of this poset. In Section 4 we give a
characterisation of the non-pure (or non-ranked) intervals of the poset. In
Section 5 we give some results on the topology of the poset.

2. The Poset of Mesh Patterns

To define a mesh pattern we begin with a permutation m = w7y ... m,.
We can plot 7 on an n x n grid, where we place a dot at coordinates (i, 7;),
for all 1 < i < n. A mesh pattern is then obtained by shading some of the
boxes of this grid, so a mesh pattern takes the form p = (pe, psn), where pg
is a permutation and py, is a set of coordinates recording the shaded boxes,
which are indexed by their south west corner. For ease of notation we some-
times denote the mesh pattern (pe,psn) as p;". We let |p.| represent the
length of p.; and |psp| the size of pgp, and define the length of p as |py|, which
we denote |p|. For example, the mesh pattern (132, {(0,0),(0,1),(2,2)}), or
equivalently 132(0:0):(0:1):(2.2) 'hag the form:

To define when a mesh pattern occurs within another mesh pattern,
we first need to recall two other well-known definitions of occurrence. A
permutation ¢ occurs in a permutation 7 if there is a subsequence, 7, of ™
whose letters appear in the same relative order of size as the letters of o.
The subsequence 7 is called an occurrence of o in 7. If no such occurrence
exists we say that m avoids o.

Consider a mesh pattern (o,.5) and an occurrence n of ¢ in 7, in the
classical permutation pattern sense. Each box (i,j) of S corresponds to
an area R, (7,7) in the plot of 7, which is the rectangle whose corners are
the points in 7 which in 7 correspond to the letters o;,0;41,4,7 + 1 of o,
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Figure 2.1: A pair of mesh patterns, with an occurrence of (a) in (b) depicted in red.

and the letters 09, 0441,0 and |o| + 1 are to the south, north, east and
west boundaries, respectively. A point is contained in R, (7,7) if it is in the
interior of R, (,7), that is, not on the boundary. For example, in Figure 2.1
where 7 is the occurence in red, the area of R,(0,0) contains the boxes
{(0,0),(1,0),(0,1),(1,1)}, and it contains exactly one point. We say that 7
is an occurrence of the mesh pattern (¢, S) in the permutation 7 if there is
no point in Ry (4, j), for all shaded boxes (i, j) € S.

Using these definitions of occurrences we can recall a concept of mesh
pattern containment in another mesh pattern introduced in [TU18]. An
example of which is given in Figure 2.1.

Definition 2.1 ([TU18]). An occurrence of a mesh pattern (o, S) in another
mesh pattern (mw, P) is an occurrence n of (0, 5) in w, where for any (i,7) € S
every box in Ry(i,j) is shaded in (7, P).

The classical permutation poset P is defined as the poset of all permuta-
tions, with o <p 7 if and only if ¢ occurs in 7. Using Definition 2.1 we can
similarly define the mesh pattern poset M as the poset of all mesh patterns,
with m <4 p if m occurs in p. We drop the subscripts from < when it is
clear which partial order is being considered. An interval [, 5] of a poset is
defined as the subposet induced by the set {x|a < k < §}. See Figure 2.2
for an example of an interval of M.

The first result on the mesh pattern poset is that there are infinitely many
maximal elements, which shows a significant difference to the permutation
poset, where there are no maximal elements.

Lemma 2.2. The poset of mesh pattern contains infinitely many maximal
elements, which are the mesh patterns in which all boxes are shaded.

Proof. This follows from the easily proven fact that a fully shaded mesh
pattern occurs only in itself, and in no other mesh patterns. O
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Figure 2.2: The interval [1?,123(0:3):1:3)23)] of M.



2.1. Poset Topology

In this subsection we briefly introduce some poset topology, and refer
the reader to [Wac07] for a comprehensive overview of the topic, including
any definitions we omit here.

The Mébius function of an interval [, 3] of a poset is defined by:
w(a,a) =1, for all a, p(a,b) =0 if a £ b, and

nla,b) = — Z p(a, c).

c€la,b)

See Figure 3.1 for an example. The Mobius function of a poset P is given
by u(P) = (0, 1), where 0 and 1 are unique minimal and maximal elements
which we add to P.

In a poset we say that a covers 3, denoted « > 3, if a > 8 and there is
no x such that o > x > . A chain of length & in a poset is a totally ordered
subset ¢ < ¢g < --- < ¢k11, S0 the length of a chain is one less than its
number of elements. A chain is mazimal if ¢; < ¢;41, for all 1 < i < k, and
c1 and cpy1 are minimal and maximal elements of the poset, respectively.
A poset is pure (also known as ranked) if all maximal chains have the same
length. The height of a poset P, denoted h(P), is the length of the longest
maximal chain. For example, the interval in Figure 2.2 is nonpure because
there is one maximal chain of length 3 (+ < % < 3t <« % ), two
maximal chains of length 4 and all other maximal chains have length 5, so
the interval has height 5.

The interior of an interval [, (] is obtained by removing a and 3, and
is denoted (a, 8). The order complex of an interval [«, 5], denoted A(a, f),
is the simplicial complex whose faces are the chains of («, 5). When we refer
to the topology of an interval we mean the topology of the order complex of
the interval. Note that h(«, 5) = dim A(a, ).

A simplicial complex is shellable if we can order the maximal faces
Fy, ..., F; such that the subcomplex <Uf:_11Fi> N F}, is pure and (dim Fy—1)-
dimensional, for all k = 2,...,t. So a poset is shellable if there is an ordering
of the maximal chains such that the intersection given above is pure and has
height (h(Fy)—1). Being shellable implies other properties on the topology,
such as having the homotopy type of a wedge of spheres.

An interval [ is disconnected if the interior can be split into two disjoint
pairwise incomparable sets, that is, I = AU B with AN B = () and for
every a € A and b € B we have a £ b and b £ a. Each interval I can be
decomposed into its smallest connected parts, which we call the components
of I. A component is nontrivial if it contains more than one element and



we say an interval is strongly disconnected if it has at least two nontrivial
components. For example, the interval [1?,12002:(1L2)] in Figure 2.2 is dis-
connected but not strongly disconnected. Note that if an interval has height
less than 3 it can never be strongly disconnected.

It is well known that disconnectivity is a barrier to shellability when an
interval is pure, see [MS15]. In the non-pure case the situation is similar,
which can be seen in the following result.

Lemma 2.3. If an interval is strongly disconnected, then it is not shellable.

Proof. Consider any ordering of the maximal chains and let F, with & > 1,
be the first chain where every preceding chain belongs to a different com-
ponent and Fj belongs to a nontrivial component. Note that such an Fj
exists in every ordering because the interval is strongly disconnected, and
because F}, belongs to a nontrivial component it must have length at least 1.

So (U;:llFO N Fy, = 0, which has height —1 # (h(F)) — 1). Therefore, the
ordering is not a shelling. O

Since every subinterval of a shellable interval is shellable, [Wac07, Corol-
lary 3.1.9], we obtain the following:

Corollary 2.4. An interval which contains a strongly disconnected subin-
terval is not shellable.

Finally, we present a useful result known as the Quillen Fiber Lemma
[Qui78]. Two simplicial complexes are homotopy equivalent if one can be ob-
tained by deforming the other but not breaking or creating any new “holes”,
for a formal definition see [Hat02]. A simplicial complex is contractible if it
is homotopy equivalent to a point and if two posets are homotopy equivalent
their M6bius functions are equal. Given a poset P, with p € P define the
upper ideal P>, = {q € P|q > p}.

Proposition 2.5. (Quillen Fiber Lemma) Let ¢ : P — @ be an order-
preserving map between posets such that for any x € @Q the complex
A(¢p~H(Q>z)) is contractible. Then P and Q are homotopy equivalent.

3. Mobius Function

In this section we present some results on the Mobius function of the
mesh pattern poset. We begin with some simple results on: mesh pat-
terns with the same underlying permutations; the mesh patterns with no
points €? and €©0); and mesh patterns with no shaded boxes. Throughout
the remainder of the paper we assume that m and p are mesh patterns.



Lemma 3.1. Let m be a permutation. For any sets A C B the inter-
val [r4, 78] is isomorphic to the boolean lattice Bp|—ja-  Therefore,
(A, 7By = (=D)IBI-IAL and (74, 78] is shellable.

Proof. The elements of [14, 78] are exactly the mesh patterns 74Y¢ where

C C B\ A, which implies the result. O

Lemma 3.2. Consider A € {0,(0,0)}, then:

1, if p=et
:U'(EA’p) =491 ZfA =0 & |pcl| + |psh‘ =1.
0, otherwise

Proof. The first two cases are trivial. By the proof of Lemma 2.2 we
know that €®9 is not contained in any larger mesh patterns, which im-
plies ,u(e(o*o),p) =0, for all p # 00 If Ipet| + |psn| > 1, then (em,p)
contains a unique minimal element 1@, SO ,LL(e@, p) =0. O

Lemma 3.3. The interval [0°, %) is isomorphic to [0, 7] in P, so

KM (0—@7 770) = :U/P(U7 7T).
The Mo6bius function p(o, ) of the classical permutation poset is known
to be unbounded [SV06]. So we get the following corollary:

Corollary 3.4. The Mébius function u(m,p) is unbounded on M.

We can also show that the Mdbius function is unbounded if we include
shaded boxes. We do this by mapping to the poset W of words with subword
order, that is, the poset made up of all words and « < w if there is a subword
of w that equals u. The map we introduce is analogous to the map in [Smil6,
Section 2], which maps certain intervals of the permutation poset to intervals
of W. A descent in a permutation m = mymo ... 7, is a pair of letters m;, w11
with m; > m41. We call w1 the descent bottom. An adjacency tail is a
letter 7; with m; = m;—1 £+ 1. Let adj(m) be the number of adjacency tails
in 7. Consider the set I' of mesh patterns where the permutation has exactly
one descent, the descent bottom is 1 and we shade everything south west
of 1. For example, the mesh pattern 2314(0:0):(1,0),(2.0),




Lemma 3.5. Consider a mesh pattern m € T, then [21(%0:(1.0) m] s
shellable and

(—0)"I5L,if adj(ma) = 0
u(21(0’0)’(1’0),m) =< (=1)Iml, if adj(my) =1 € tail before descent .

0, otherwise

Proof. First note that every mesh pattern in [21(0’0)’(1’0),m] isalsoinI'. We
define a map f from I' to binary words in the following way. Let b(z) be
the set of letters that appear before 1in z € I'. Set f(z) as the word where
the ith letter is 0 if it is in b(z) and 1 otherwise, and let f(z) equal f(z)
with the first letter removed. So f(I') is the set of binary words with at
least one 0. The inverse of this map is obtained by the following procedure:
1) take a binary word w € f(I") and prepend a 1; 2) put the positions that
are (’s in increasing order followed by the positions that are 1 in increasing
order; and 4) shade everything southwest of 1. So f is a bijection.

It is straightforward to check that f is order preserving. So the inter-
val [21(0:9:.(10) ‘] is isomorphic to [0, f(m)] in W. It was shown in [Bj690]
that intervals of W are shellable, which proves the shellability part. It was
also shown that the Mo6bius function equals the number of normal occur-
rences with the sign given by the height, where an occurrence is normal if
in any consecutive sequence of equal elements every non-initial letter is part
of the occurrence. So for an occurrence of 0 in f(m) to be normal there
can be no 1 directly preceded by a 1 and at most one 0 directly preceded
by a 0. If such a 0 exists it must be the occurrence, otherwise any 0 can
be the occurrence. In our bijection a non-initial letter of such a sequence
maps to an adjacency tail. Combining this with the fact that if there are
no adjacency tails, then the letters before the descent must be all the even
letters of which there are L@J, completes the proof. O

The Mobius function on P often takes larger values than on M, but it
is not always true that px(m,p) < pp(mer, per). A simple counterexample

is the interval
[]_(0,1)7 123(0’2)7(073)7(1a2)u(1’3)]7

which has M6bius function 1, however up(1,123) = 0, see Figure 3.1.
If we consider intervals where the bottom mesh pattern has no shadings,
then we get the following result:

Lemma 3.6. Consider an interval [s°, p] in M with ps, # 0. If s% & (5%, p)
for any set B, then u(s°, p) = 0.
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Figure 3.1: The interval [1(01)123(%:2)(0:3).(1.2).(1.3)] (Jeft) in M and [1,123] (right) in P,
with the Mobius function in red.

Proof. Consider the map f : (s@,p) — A :x '%q) xgl, that is, f removes

cl
because it has the unique maximal element pgl, hence p(A) = 0. More-

over, f~Y(As,) = [y,p), for all y € A, which is contractible. There-
fore, (s, p) is homotopy equivalent to A by the Quillen Fiber Lemma (Propo-
sition 2.5), which implies u(s?, p) = 0. O

all shadings from z. We can see that A = (30, po], so A is contractible,

Example 3.7. Consider the subinterval [19, 12(0’2)] i Figure 2.2, applying
Lemma 3.6 implies ,u(lw, 12(0*2)) = 0. However, we cannot apply Lemma 3.6
to [19,12002:(L2] because it contains the element 1(%1).

We can combine Lemma 3.6 with the following result to see that the
Mébius function is almost always zero on the interval [10, pJ.

Lemma 3.8. As n tends to infinity the proportion of mesh patterns of
length n that contain any of {1(0’0), 1(10) 101 1(1’1)} approaches 0.

Proof. Let P(n,i) be the probability that the letter i is an occurrence of 1(0,0)
in a length n mesh pattern, and let P(n) be the probability that a length n
mesh pattern contains 1(%:0).

The probability P(n,i) can be bounded above by first considering the
index k of i, each having probability %, and then requiring that all boxes
south west of 7 are filled, of which there are ¢k. This provides an upper

bound, because it is possible that there is a point south west of i, which



would imply 7 is not an occurrence of 1(%0). We can formulate this as:
n k —q
4 1/1 1 [1—27+D)
o< (5) =, (1_2_1-—1
k=1
1 [{9-%— 2—i(n+1) 1 1 — 9-in 2
n 1-27 7121<1—2_’>_712Z
To compute the probability P(n) we can sum over all the P(n,i). Note

again this is an over estimate because if a mesh pattern contains multiple
occurrences of 1(%9) it counts that mesh pattern more than once.

_ (1)
P(n) < 3 P(ni) <3 — :2<11(2>1_1> .
. , 2

Repeating this calculation for the other three shadings of 1 implies that
the probability of containing any of the forbidden mesh patterns is bounded
by % which tends to zero as n tends to infinity. O

Because of the previous lemma we obtain:

Corollary 3.9. As n tends to infinity the proportion of mesh patterns p of
length n such that (1%, p) = 0 approaches 1.

In the classical case it is true that given a permutation o the probability
a permutation of length n contains o tends to 1 as n tends to infinity, this
follows from the Marcus-Tardos Theorem [MTO04]. By the above result we
can see the same is not true in the mesh pattern case. In fact we conjecture
the opposite is true:

Conjecture 3.10. Given a mesh pattern m, with at least one shaded bozx,
the probability that a random mesh pattern of length n contains m tends to 0
as n tends to infinity.

4. Purity

Recall that a poset is pure (also known as ranked) if all the maximal
chains have the same length, and as we can see from Figure 2.2, intervals of
the mesh pattern poset can be non-pure. In this section we classify which
intervals [1@,m] are non-pure. First we consider the length of the longest
maximal chain in any interval [1°, m], that is, the height of [1?,m).

Lemma 4.1. For a mesh pattern m, we have h(1%,m) = || + |msh]-

10
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a = 12(0,2),(1,2) b= 123(1,3),(2,3)

Figure 4.1: Two mesh patterns with a point x in black whose deletion merges shadings
and the occurrences 7% and 7; in red. By Lemma 4.2 the edge a; < a is impure, but
by < b is not, because there is a second occurrence of b, in b, using points 23, that does
not use all the shaded boxes in b.

Proof. We can create a chain from m to 1? by deshading all boxes, in any
order, and then deleting all but one point, in any order. The length of this
chain is |mg| + |msp|. Moreover, we cannot create a longer chain because at
every step of a chain we must deshade a box or delete a point. O

Therefore, we define the height of a mesh pattern as h(m) = |me|+|msp|
and we say an edge m < p is impure if h(p) — h(m) > 1. Next we give a
classification of impure edges.

Let m, be the mesh pattern obtained by deleting the point # in m and
let n¥, be the occurrence of m, in m that does not use the point z. An
occurrence 7 of m in p uses the shaded boz (a,b) € pgp, if (a,b) € Ry(i,7)
for some shaded box (i,j) € mg,. We say that deleting a point = merges
shadings if there is a shaded box in m, that corresponds to more than one
shaded box in 1%, see Figure 4.1. Also note that if deleting a point merges
an unshaded box with a shaded box then the resulting box will be unshaded,
so we say deleting that point removes shadings. Note that is is possible that
deleting a point both merges and removes shadings. We define a block of
shaded boxes to be a consecutive sequence of shaded boxes in the same row
or column.

Lemma 4.2. Two mesh patterns m < p form an impure edge if and only if
all occurrences of m in p use all the shaded bozxes of p and are obtained by
deleting a point that merges shadings.

Proof. First we show the backwards direction. Because m is obtained by
deleting a point that merges shadings, m must have one less point and at
least one less shaded box so h(p)—h(m) > 2. So it suffices to show that there
is no z such that m < z < p. Suppose such a z exists, then if z is obtained
by deshading a box in p it can no longer contain m because all occurrences

11



of m in p use all the shaded boxes of p. If z is obtained by deleting a point
and m < z, then m¢ = z,. Therefore, we can deshade some boxes of z to
get m, which implies there is an occurrence of m in p that does not use all
the shaded boxes of p.

Now consider the forward direction. Suppose m < p is impure, so h(p) —
h(m) > 2. Therefore, m is obtained by deleting a single point which merges
shadings, but does not delete shadings because any other combination of
deleting points and deshading can be done in successive steps. Furthermore,
this must be true for any point that can be deleted to get m, that is, for all
occurrences of m in p. Moreover, if there is an occurrence that does not use
all the shaded boxes of p, we can deshade the box it doesn’t use and get an
element that lies between m and p. O

Lemma 4.3. Suppose that deleting positions i or j from m gives the same
mesh pattern p, and their deletion does mot remove shaded boxes. Then
deleting any position k from m, with i < k < j, also gives p and does
not remove shaded boxes. Moreover, deleting i and k gives the same mesh
pattern as deleting k and j.

Proof. Let m, be the value of the point in position x of m, and assume m; <
mj, the case for m; > m; is analogous. It is well known that deleting two
letters from a permutation gives the same subpermutation if and only if they
are part of the same adjacency, that is, sequence of consecutively valued
letters in consecutive positions, see [Smil7]. So if deleting ¢ and j gives the
same mesh pattern they must be part of the same adjacency, so k must also
be part of the same adjacency, hence deleting k gives the same underlying
permutation, and m; < my < m;. It remains to show that deleting k results
in the same shaded boxes as deleting ¢ or j. We prove the following claim:

If deleting positions ¢ or j from m gives the same mesh pattern p,
and their deletion does not remove shaded boxes, then for every
column c¢ (resp. row r) the boxes (¢, m,) (resp. (x,r)) are either

all shaded or all unshaded, for i — 1 <z < j.

Note that the implication of the claim is equivalent to saying that every
row m; —1 < r < 7; has exactly the same shaded boxes, and every column i —
1 < ¢ < 7 has exactly the same shaded boxes.

First we consider a column ¢ < ¢ — 1. If deleting ¢ or j removes a
shaded boxes then this is true for both ¢ and j, otherwise column a in the
resulting mesh patterns would have differing number of shaded boxes. If
the deletion of i or j does not merge boxes, then there cannot be a shaded

12



box (¢,x) with m; < & < mj — 1. To see this suppose (¢, ) is the lowest
such shaded box, then deleting i causes (¢,z —1) to be shaded, but (¢, z—1)
is unshaded after deleting j. A similar argument shows there cannot be
an unshaded box (c,z) with m; < z < m; — 1 if deleting ¢ and j merge
shadings. Analogous arguments prove the same is true for any column ¢ > j,
row r < m; — 1 or row r > m,;.

It remains to consider the rectangle given by the boxes (¢, r) withi—1 <
¢c < jand m; —1 < r < 7j, for which the claim is equivalent to saying
this rectangle is either all shaded or all unshaded. Note that deleting ¢
causes any box in this rectangle to be shifted down and left. So if (a,b)
is shaded, then (a — 1,0 — 1) and (a + 1,b + 1) are also shaded, thus all
boxes in that diagonal line within the rectangle are shaded. The north
eastern most pair (x — 1,y — 1) and (x,y) of this diagonal are either in
columns j — 1 and j or rows m; — 1 and m;, and are shaded. Therefore,
the boxes (z,y — 1) and (x — 1,y) are also shaded since deleting j does not
remove shaded boxes. So the diagonals containing these two boxes, which
are the ones above and below the original diagonal, are also fully shaded.
Thus by induction every diagonal is fully shaded, so the whole rectangle is
fully shaded. This completes the proof of the claim.

So deleting any point 7 < k < j cannot remove shaded boxes, as that
would imply there is a row or column with neighbouring shaded and un-
shaded boxes between points 7 and j. Moreover, deleting k is equivalent to
merging two identical rows and two identical columns, which is the same
as removing one row and one column, and as all the rows and columns are
the same we end up with the same shadings irrelevant of which is removed.
Furthermore, deleting any pair of points is equivalent to deleting any two
rows and two columns, which results in the same mesh pattern, which proves
the final part of the lemma. O

Lemma 4.4. If [m,p| contains an impure edge, then it contains an impure
edge a < b where by = pg.

Proof. First note that inserting a point into a mesh pattern can only cre-
ate more shaded boxes by splitting previously shaded boxes?. So inserting
a letter into an occurrence that uses all the shaded boxes creates a new
occurrence, of a longer pattern, with the same property.

3A point inserted in box (4,7) splits every box in row ¢ and column j into two boxes,
except the box (4, 7) itself, which splits into four boxes.

13



Suppose z < y is an impure edge in [m, p|, and let n be an occurrence of x
in y. Let 7 be an occurrence of Z in g, where g is obtained by inserting some
letter ¢ into y, then 7 is obtained by inserting ¢ into 1, and & is uniquely
determined by 7. Given any occurrence ¢ of z in y (resp. & in g) let m(v) be
the letter deleted from y (resp. ¥) to get ¢». We show that every occurrence 1/}
of Z in g uses all the shaded boxes.

If 7,2 contains t, we show that removing ¢ from 1,2 gives an occurrence 1
of x in y. Note that removing ¢ from y gives y by construction. If m(l/AJ) and
m(7) are both before t or both after ¢, then ¢ appears as the same letter of
& in both occurrences, and removing ¢ from 7} gives an occurrence of z, so

the same must be true for ¢. If ¢ is between m(¢) and m(#), then note that

~

deleting either m(v)) or m(7) gives &, since both ¢ and 7 are occurrences of
Z in §. So by Lemma 4.3 deleting m(@@) and t gives the same mesh pattern
as deleting m(7) and ¢, which is . So v is an occurrence of z in y that
uses all the shaded boxes, hence 1/3 also uses all the shaded boxes by the first
paragraph. If ¢ does not contain ¢, then as |Z| = |y — 1] we know that ¢ is
the only letter not contained in 1&, which implies that deleting ¢ from ¢ gives
2. Moreover, by the definition of §§ we know that deleting ¢t from ¢ gives y,
so & = y. Again, by the first paragraph we know that 1/; must use all the
shaded boxes, because ¢ is constructed by inserting ¢ into y.

Now we show that deleting m(lﬁ) merges shaded boxes. Deleting m(iﬁ)
or m(7) gives Z, so the resulting number of shaded boxes must be the same
after deleting either, and we know that deleting m(7) merges shaded boxes
by construction, so the number of shaded boxes must decrease. Moreover,
as 1ﬂ uses all the shaded boxes the only way to decrease the number of shaded
boxes is to merge them.

All occurrences of # in g satisfy the conditions of Lemma 4.2, hence
T < ¢ is an impure edge. The result then follows by induction, as we can
sequentially insert points into y to create a mesh pattern b with by = pe,
which will cover an element a such that a < b is impure. O

Proposition 4.5. The interval [1@, m] is non-pure if and only if there exists
a point x in m whose deletion merges shadings and there is no other occur-
rence of my in m which uses a proper subset of the shadings used by ny, .

Proof. First we show the backwards direction. Let ¢ be the mesh pattern
obtained by inserting = back into m_, and ¢ the corresponding occurrence
of m; in t. Note that ¢ and n?, use the same set of shadings, but m may
have more shaded boxes than t. We know that deleting x from m merges
shadings, which implies that ¢ uses all the shaded boxes of t. Also note
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Figure 4.2: The interval [21(%)(1:0) 9473(0:0).(1.00.:(2.0)] " which is pure but contains both
pure and impure edges.

that any other occurrences of m_ in ¢t must also use all of the shaded boxes
because there is no occurrence of m_ in m which uses a proper subset of
the shadings used by ¢. Therefore, by Lemma 4.2 we get that m_ <t is an
impure edge.

To see the other direction suppose there is an impure edge in [1°,m]. By
Lemma 4.4 there is an impure edge a < b where b;; = m;. By Lemma 4.2 all
occurrences of a in b use all shaded boxes of b and are obtained by deleting
a point that merges shadings. Moreover, if deleting a point merges shadings
in b, then its deletion merges shadings in m, which implies the result. ]

Corollary 4.6. There is an impure edge in the interval [m,p| if and only
if there exists a point x in p whose deletion merges shadings and there is no
other occurrence of p, in p with a subset of shadings of n,, and p; > m.

Note that containing an impure edge in [m, p] does not necessarily imply
that [m, p] is non-pure. For example, if [m,p| contains only one edge and
that edge is impure, then [m, p] is still pure. Moreover, it is possible to have
a pure poset that contains impure and pure edges, see Figure 4.2.

5. Topology

A full classification of shellable intervals has not been obtained for the
classical permutation poset, so finding such a classification for the mesh pat-
tern poset would be equally difficult, if not more so. However, in [MS15] all
disconnected intervals of the permutation poset are described, and contain-
ing a disconnected subinterval implies a pure interval is not shellable. So this
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gives a large class of non-shellable intervals, in fact it is shown that almost
all intervals are not shellable. We showed in Lemma 2.3 that containing a
strongly disconnected interval implies an interval is not shellable. So in this
section we consider when an interval is strongly disconnected. Firstly we
look at the relationship between connectivity in P and M.

The connectivity of the interval [m, py] in P does not necessarily imply
the same property for [m,p] in M. For example, the interval [123,456123]
is disconnected in P but the interval

% (5.1)

is a chain in M, so is connected. Furthermore, the interval [321,521643] is
connected in P but the interval

T (5.2)

is strongly disconnected in M. Therefore, if [m.,pq] is (non-)shellable
in P, then it is not true that [m,p] has the same property in M. For
example, [123,456123] is not shellable but (5.1) is shellable, and [321, 521643]
is shellable but (5.2) is not shellable.

In [MS15] the direct sum operation is used to show that almost all inter-
vals of the permutation poset are not shellable in P. We generalise the di-
rect sum operation to mesh patterns. Given two permutations o = o ...,
and f = B; ... Bp the direct sum of the two is defined as a®f = « ... a,(B1+
a)(Ba 4+ a)...(Bp + a), that is, we increase the value of each letter of S by
the length of v and append it to «. This can also be thought of in terms of
the plots of a and 8 by placing a copy of 5 to the north east of . Similarly
we can define the skew-sum o« © 8 by prepending « to 5 and increasing the
value of each letter of a by the length of 3. We extend these definitions to
mesh patterns in the following way:

Definition 5.1. Consider two mesh patterns s and t, where the top right
corner of s and bottom left corner of t are not shaded. The direct sum s @t
has the classical pattern sq @ te and shaded bozes sgp U {(i + |sq|,J +
[sal) | (i,) € ton}, and also for any shaded boxes (i,|sal), (1sal, i), (jy|5al)
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Figure 5.1: The direct sum of two mesh patterns.

or (|sel, ), shaded all the boxzes north, east, south or west of the box, respec-
tiely, for all 0 < i < |sq| and |sq| < J < |sal + [ta|l. We similarly define
the skew-sum for when the bottom right corner of s and top left corner of t
are not shaded.

The direct product s @ ¢ can be considered as placing a copy of ¢ north
east of s and any shaded box that was on a boundary we extend to the new
boundary, see Figure 5.1. We define the direct sum in this way because it
maintains one of the most important properties in the permutation sense,
that the first |s.| letters are an occurrence of s and the final |t letters are
an occurrence of .

A permutation is said to be indecomposable if it cannot be written as the
direct sum of smaller permutations. We generalise this to mesh patterns.

Definition 5.2. A mesh pattern m is indecomposable (resp. skew-
indecomposable) if it cannot be written m = a &b (resp. m = a Sb),
where neither a nor b is m.

Remark 5.3. It is well known that a permutation has a unique decompo-
sition into indecomposable permutations. This implies that a mesh pattern
also has a unique decomposition.

Using these definitions we can give a large class of strongly disconnected
intervals, which is a mesh pattern generalisation of Lemma 4.2 in [MS15].

Lemma 5.4. If m is indecomposable, h(m) > 1 and (0,0), (|m|, |m|) & msn,
then [m, m @ m]| is strongly disconnected.

Proof. By Lemma 4.2 in [MS15] the interval [mg, mqg @ mey] is strongly
disconnected, with components P, = {my @ x|z € [1,my)} and P, =
{r®me|x € [1,mq)}. Consider any pair o, § € [m,m & m), if ay and Sy
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are not in the same component of [my, meg @ mg), then o and S are in-
comparable. Let P, = {a|aq € P} and Py = {a|ay € Py}. However,
]31 U ]52 # (m, m @ m) because it does not include the mesh patterns o with
Ol = Mep O My

There are exactly two occurrences of m in m & m. These are 77 the
first |m| letters and 7y the last |m| letters. Note that each shaded box
of m @ m is used by at least one of n; and 72, so if we deshade a box
the resulting pattern x contains at most one occurrence of m, either the
first or last |m| letters. Let Q1 and Q2 be sets of patterns with underlying
permutation mg @© my where the first and last |m| letters are the only
occurrence of m, respectively. So any element ()1 cannot contain an element
in P, U@ and similarly any element of Q2 cannot contain an element of
P; U Q1. Finally, note that P, U (1 is a connected component as it has the
minimal element m @1, similarly P,UQ)- is connected as it has the minimal
element 1 ®m,. Therefore, P, UQ1 and P, U5 are disconnected nontrivial
components of [m, m & m)]. O

Corollary 5.5. If m is skew-indecomposable, (|m|,0),(0,|m|) & mg, and
h(m) > 1, then [m,m & m] is strongly disconnected.

Using Lemma 4.2 in [MS15] it is shown that almost all intervals of the
classical permutation poset are not shellable. The proof of this follows from
the Marcus-Tardos theorem. We have seen this result does not apply in the
mesh pattern case, so we cannot prove a similar result using this technique.
A similar problem was studied for boxed mesh patterns in permutations
in [AKV13], which is equivalent to boxed mesh patterns in fully shaded
mesh patterns. So we present the following open question:

Question 5.6. What proportion of intervals of M are shellable?

The Mobius function in the permutation poset can be computed more
easily by decomposing the permutations into smaller parts using the direct
sum, or skew-sum, see [BJJS11, MS15]. Which leads to the following ques-
tion:

Question 5.7. Can a formula for the Mobius function of M be obtained by
decomposing mesh patterns using direct sums and skew sums?
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