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Abstract 

In this paper, an instability analysis of three-dimensional (3D) beams supported with 3D 

hinges under axial and torsional loadings is presented in large displacement and rotation regime. 

An exact displacement field is proposed based on the central line and orientation of the cross-

section consisting of nine parameters corresponded to 3D centroid movements and rotations. 

Cauchy-Green deformation tensor is derived in the local coordinate system according to the 

proposed displacement field. Deformation tensor and a normal-shear constitutive model with 

highly polynomial non-linearity are developed based on the continuum mechanics. A finite 

element formulation is then established based on the higher order shape functions to avoid shear 

and membrane locking issues. The elemental governing equations of equilibrium as well as 3D 

nodal forces and moments are obtained using the Hamiltonian principle. To solve the final 

nonlinear equilibrium equations, Newton-Raphson and Riks techniques through an incremental-

iterative scheme are implemented. The numerical results are presented to assess instability 

behaviors of beams with different cross sections and various 3D boundary conditions. The effects 

of 3D hinge joints on the stability of beams under axial and torsional loadings are studied for the 

first time. The numerical results reveal instability in bending and lateral-torsional buckling for 

beams supported by 3D hinge joints. This phenomenon is proved by both finite strain model and 

its linearization for small deformations. The numerical results show that the present finite element 

formulation is robust, reliable as well as simple and easy to model instability of 3D beams in the 

large displacement regime. 

 

Keywords: Instability, Post-buckling, 3D beams, 3D hinge joints, Finite strain, Finite element method 

 

 
† Corresponding Author, 

Tel.: +45 6550 9470; E-mail addresses: adpm@sdu.dk , ardamanpack@gmail.com 

mailto:adpm@sdu.dk
mailto:ardamanpack@


2 
 

1. Introduction 

Accurate and simple beam or plate theories are always demanded by engineers and scientists. 

In contrast to plates and shells, thin rods or beam-like structures usually experience large 

displacements and typically rotations without exceeding the material elastic limit. This substantial 

changes in the equilibrium configurations demand a proper and adapted mathematical model. 

There have been various types of strategies and methods to implement large rotations through the 

deformation fields, see e.g. Refs. [1-27]. Reissner [1] proposed a large deformation theory of 

space-curved lines with applied forces and moments on each cross section. A system of 

equilibrium equations was obtained by the virtual work based on the one-dimensional (1D) 

constitutive equation for in-plane 3D beam problems. Reissner [1,2] and Simo [3] could be 

considered as pioneers who developed geometrically exact beam models and their approaches 

were widely used by other researchers [1-6]. However, based on the Kirchhoff constraints [7], the 

shear strains may be ignored when beams are slender enough. In this case, the rotation of cross-

section can be expressed by a tangent vector of the beam axis. This assumption can reduce the 

number of equilibrium equations as well as prevent shear locking issues. Based on Simo-Ressner 

3D beam theory, some researches were performed on formulation, solution method, eliminating 

shear and membrane locking phenomenon and satisfying Kirchhoff constraints. Ibrahimbegovic 

[8] developed a non-locking finite element interpolation for 3D Reissner beam which can remove 

both shear and normal locking. Meier et al. [9, 10] developed a finite element approach based on 

3D Reissner theory for slender beams with arbitrary cross section and curve geometries. They used 

an orthogonal interpolation to satisfy Kirchhoff constraints and remove shear components of the 

strain tensor. They also employed Hermite shape functions to describe the deformation functions 

along the beam axis. Following this approach, they extended their finite element formulation for 

3D beams to overcome membrane locking phenomenon. For this purpose, they used another 

interpolation approach for normal strains when beams are very slender. Hodges [11] developed a 

weak form of the partial differential equations of motion for a deep, symmetric beam under the 

action of a tip follower force acting in the plane of symmetry. He obtained an approximate solution 

using cantilever beam bending and torsional modes. Yu et al. [12] illustrated the procedure of 

constructing a generalized variational asymptotic beam sectional analysis for composite beams 

and variational-asymptotic method and provided some benchmark results with which other 

theories could be compared. 

The co-rotational formulation is another approach which decomposes the displacement field 

into rigid body motions and deformations. In this concept, local reference configuration is 

employed to define the deformed configuration. It means that the reference frame moves and 

rotates but never deforms. When elements are small enough, the linear or modified nonlinear 

strains can be used in the reference configuration. This approach of 3D beam element so-called 

co-rotational formulation is widely used [13-16].  Some researchers used Lagrangian formulation 

to extract governing equations for 3D beam structures. Bathe and Bolourchi [4] employed two 

different formulation of total Lagrangian and updated Lagrangian for extracting stiffness matrices 
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of 3D beam elements in large displacement and rotation regime. Gimena et al. [17] obtained a 

linear ordinary system of equations for analysis of 3D beams with different curved geometries 

such as elliptical or helical arcs. They mainly focused on developing both analytical and numerical 

approaches to solve these equations. Damanpack et al. [18] developed a 3D finite strain model for 

analysis of 2D beam problems in the large deformation regime. The model was proposed based on 

Green-Lagrangian strain tensor and hyper-elastic Mooney-Rivlin strain energy function. They 

implemented the model to simulate experimental snap-through and large deformation of curved 

beams. Some researches have been dedicated to analyzing 3D beams and frames by considering 

out-of-plane deformations and warping effects under torsions. Atluri et al. [19] developed a finite 

element formulation for 3D beam theory. They considered shear deformations and warping effects 

of cross sections. Coda [20] used a solid-like approach for finite element formulating of 3D 

inhomogeneous beams and frames. The warping mode was calculated based on Saint-Venant 

theory in different parts of the solving process. Manta and Goncalves [21] developed a finite 

element formulation for 3D beam by considering Kirchhoff constraints and torsion warping. They 

also studied the effect of cross-section geometries in the large deformation regime. Vo 

and·Nanakorn [22] presented a new total Lagrangian Timoshenko beam formulation with the 

isogeometric analysis approach for a geometrically nonlinear analysis of planar curved beams. 

Beam-like structures under full or partial compressive/bending loading are prone to failure 

by the buckling phenomenon [23]. This phenomenon has been studied by many researchers 

through case studies and numerical techniques. Cardona and Huespe [24] focused on developing 

an efficient and reliable algorithm to compute lateral buckling and distinguish bifurcation point of 

3D beams, arches and frames. They also considered a wide range of aspect ratios for 3D beams 

with rectangular cross-sections. Levyakov [25] developed a finite element formulation for the 

analysis of 3D beams or rods by considering shear deformations. He also studied some examples 

in the large deformation and post-buckling regime. Liao et al. [22] also presented a differential 

quadrature formulation for post-buckling analysis of beams and 2D frames. Small displacements 

and rotations for an elastic domain were considered to derive equilibrium equations and stiffness 

matrix. Cottanceau et al. [27] presented a quasi-static formulation for flexible 3D beams based on 

the geometrically exact theory and rotational quaternions. A finite element method was employed 

to discretize equilibrium equations. The buckling and post-buckling of beams and frames were 

considered and compared with experiments. Gonçalves [28] used the geometrically exact 3D beam 

theory to simulate I-section structures undergoing bending and lateral-torsional buckling. They 

studied I-sections with standard height-to-width ratios and cantilever and simply supported 

boundary conditions (BCs). They numerically investigated different post-buckling behaviors of 

beam structures by standard cross sections. Recently, Weeger et al. [29] used an isogeometric 

method for analysis of 3D beams and rods based on the geometrically exact Cosserat rod theory. 

They also employed the gradient-based algorithms to solve the equilibrium equations under large 

deformation and rotation regime. For evaluation of sensibility of calculations, they introduced 

different methods such as semi-analytical, inconsistent analytical and fully analytical approaches. 

Through a case study, post-buckling of curved beams also was studied. 
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As reviewed above, buckling and post-buckling of 3D beams and frames have been studied 

by considering different situations except 3D boundary conditions. In this paper, for the first time, 

the effects of 3D hinge supports on the large-deformation instability of 3D beams under axial and 

torsional loadings are investigated. A geometrically exact 3D displacement field is assumed by a 

movement vector and an orthogonal rotation tensor. The Hamiltonian principle is employed to 

extract equilibrium equations by considering Cauchy-Green deformation tensor and Hooke 

constitutive equation. The governing equations are solved by establishing a finite element 

formulation based on the higher order shape functions to eliminate shear and membrane locking 

phenomena. Newton-Raphson method and Riks technique are implemented to solve the nonlinear 

system of equations. The accuracy and efficiency of the presented formulation is verified through 

some numerical studies. After validation, buckling, post-buckling behaviors of 3D hinge supported 

beams under axial and torsional loading are studied in detail. Due to the absence of similar model 

in the specialized literature, the proposed model and solution can be instrumental in the analysis 

and design of 3D beams with 3D hinge supports under axial and torsional loadings.  

 

2. 3D beam theory 

2.1. Geometrically exact formulation 

Fig. 1 shows a 3D beam element in the global coordinate system located on the mid-plane 

of beam. It is assumed that beam element is straight at the initial or reference configuration 

(𝑥1, 𝑥2, 𝑥3) as illustrated in Fig. 1a. The curved element can be mapped by means of standard iso-

parametric mapping or considered as a stress-free deformed configuration from the straight 

reference configuration. By ignoring the effect of rotations and cross-section warping [16, 25, 27], 

the deformed configuration (𝑥𝟏, 𝑥𝟐, 𝑥𝟑) can be expressed by the 3D centroid movement and 

orthogonal rotation in the reference configuration as follows: 

𝒙 = 𝒙𝒐 + 𝒖 + 𝒒(𝒙 − 𝒙𝒐) (1) 

where 𝒙𝒐 and 𝒖 are centroid position and movement, respectively, while 𝒒 denotes the orthogonal 

rotation tensor. It is geometrically exact since displacements and rotations are large, and the finite 

strain is involved. The orthogonal rotation tensor also is constrained by the following equation: 

𝒒𝒒𝑻 = 𝒒𝑻𝒒 = 𝑰 (2) 

where 𝑰 is the second order identity tensor. Regarding Eq. (2), the orthogonal rotation tensor as 

well as its consistency conditions are considered as: 

𝒒 = [

𝑞22𝑞33 − 𝑞23𝑞32 𝑞12 𝑞13
𝑞13𝑞32 − 𝑞12𝑞33 𝑞22 𝑞23
𝑞12𝑞23 − 𝑞13𝑞22 𝑞32 𝑞33

] 
(3) 

𝑞12
2 + 𝑞22

2 + 𝑞32
2 = 1                        

𝑞13
2 + 𝑞23

2 + 𝑞33
2 = 1                        

𝑞12𝑞13 + 𝑞22𝑞23 + 𝑞32𝑞33 = 0     

 (4) 
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The relationship between components of rotation matrix and rotations of axes in the reference 

configuration as demonstrated in Fig. 1b can be defined as: 

𝜃21 = −tan
−1(𝑞31/𝑞11);      𝜃31 =   tan

−1(𝑞21/𝑞11) 

𝜃12 =     tan−1(𝑞32/𝑞22);     𝜃32 = −tan
−1(𝑞12/𝑞22) 

𝜃13 = −tan−1(𝑞23/𝑞33);      𝜃23 =    tan
−1(𝑞13/𝑞33)  

(5) 

in which 𝜃𝑖𝑗  (𝑖 = 1,2,3) represents the rotation angle of 𝑥𝑗-axis around 𝑥𝑖-axis. According to the 

proposed displacement field (1), the deformation gradient tensor 𝑭 and the right Cauchy-Green 

deformation tensor 𝑪 can be determined as: 

𝑭 = 𝒙,𝒙             𝐹𝑖𝑗 =
𝜕𝑥𝑖
𝜕𝑥𝑗

     𝑖, 𝑗 = 1,2,3 (6) 

𝑪 = 𝑭𝑻𝑭 (7) 

By considering the orthogonality of rotation tensor 𝒒 and substituting Eq. (1) into Eqs. (6) and (7), 

the right Cauchy-Green deformation tensor is derived as:   

𝑪 = [
𝐶11 𝐶12 𝐶13
𝐶12 1 0
𝐶13 0 1

] (8) 

𝑬 =
1

2
(𝑪 − 𝑰) (9) 

where 𝑬 represents the Green-Lagrange strain tensor. According to Eq. (8), the 3D beams 

experience a normal axial deformation and two transverse shear deformations during mechanical 

loading. By ignoring the high-order terms of 𝑥2 and 𝑥3, the components of 𝑬 can be obtained as: 

𝐸11 =
1

2
(𝐶11 − 1) = 𝑢1,1 +

1

2
(𝑢1,1

2 + 𝑢2,1
2 + 𝑢3,1

2 ) 

              +𝑥2(𝑞12,1(1 + 𝑢1,1) + 𝑞22,1𝑢2,1 + 𝑞32,1𝑢3,1)

+ 𝑥3(𝑞13,1(1 + 𝑢1,1) + 𝑞23,1𝑢2,1 + 𝑞33,1𝑢3,1); 

2𝐸12 = 𝐶12 = 𝑞12 + (𝑞12𝑢1,1 + 𝑞22𝑢2,1 + 𝑞32𝑢3,1) + 𝑥2(𝑞12𝑞12,1 + 𝑞22𝑞22,1
+ 𝑞32𝑞32,1) + 𝑥3(𝑞12𝑞13,1 + 𝑞22𝑞23,1 + 𝑞32𝑞33,1) 

2𝐸13 = 𝐶13 = 𝑞13 + (𝑞13𝑢1,1 + 𝑞23𝑢2,1 + 𝑞33𝑢3,1) + 𝑥2(𝑞13𝑞12,1 + 𝑞23𝑞22,1
+ 𝑞33𝑞32,1) + 𝑥3(𝑞13𝑞13,1 + 𝑞23𝑞23,1 + 𝑞33𝑞33,1) 

2𝐸22 = 𝑞12
2 + 𝑞22

2 + 𝑞32
2 − 1                

2𝐸33 = 𝑞13
2 + 𝑞23

2 + 𝑞33
2 − 1                

2𝐸23 = 𝑞12𝑞13 + 𝑞22𝑞23 + 𝑞32𝑞33     

 

Considering orthogonality conditions in Eq. (4) (e.g., 𝑞12
2 + 𝑞22

2 + 𝑞32
2 = 1), it can be 

found that 𝐸22 = 𝐸33 = 𝐸23 = 0. This is consistent with the strain field derived in Ref. 

[4, 5, 15, 16, 19, 21, 22, 27, 28]. 

(10) 
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2.2. 2D beam theory 

The proposed geometrically exact 3D equation is a general form that can be simplified for a 

planar case. To this end, all movements and rotations are constrained on the 𝑥1 − 𝑥3 plane and the 

following assumptions (11) and (12) are applied on Eq. (1). The result of deformed configurations 

is called 2D theory of beam or a special case of geometrically exact formulation. 

𝑢2 = 0 

𝜃31 = 𝜃13 = 𝜃12 = 𝜃32 = 0 

𝜃21 = 𝜃23 = 𝜃2 

(11) 

in which 𝜃2 is the pure rotation angle along 𝑥2-axis [30]. 

𝐸11 =
1

2
(𝐶11 − 1) = 𝑢1,1 +

1

2
(𝑢1,1

2 + 𝑢3,1
2 ) + 𝑥3𝜃2,1((1 + 𝑢1,1)cos𝜃2 − 𝑢3,1sin𝜃2) 

2𝐸13 = 𝐶13 = (1 + 𝑢1,1)sin𝜃2 + 𝑢3,1cos𝜃2 
(12) 

 

2.3. 3D beam theory with small rotations and displacements 

For small rotations and displacements, the 3D geometrical equations can be linearized by 

neglecting nonlinear parameters in the displacement field as follows: 

𝒒 = [

1 −𝜃3 𝜃2
𝜃3 1 −𝜃1
−𝜃2 𝜃1 1

] (13) 

where 𝜃1, 𝜃2 and 𝜃3 are the pure small rotation angles along 𝑥1, 𝑥2 and 𝑥3-axes, respectively. 

𝐸11 =
1

2
(𝐶11 − 1) = 𝑢1,1 − 𝑥2𝜃3,1 + 𝑥3𝜃2,1 

2𝐸12 = 𝐶12 = 𝑢2,1 − 𝜃3 − 𝑥3𝜃1,1 

2𝐸13 = 𝐶13 = 𝑢3,1 + 𝜃2 + 𝑥2𝜃1,1 

 

(14) 

 

3. Material constitutive model 

In this section, the selected constitutive equation is adapted to a 3D beam theory which 

consists of normal-shear strain field. For isotropic materials, the strain energy density function 𝑊 

can be expressed in terms of the invariants of right Cauchy-Green deformation tensor: 

𝑊 = 𝑊(𝐼1, 𝐼2, 𝐽) = 𝑊̃(𝐼1, 𝐼2, 𝐽) (15) 

where: 

𝐼1 = 𝑡𝑟𝑎𝑐𝑒 (𝑪)      𝐼2 =
1

2
(𝑡𝑟𝑎𝑐𝑒(𝑪)2 − 𝑡𝑟𝑎𝑐𝑒(𝑪2))       𝐽2 = 𝑑𝑒𝑡(𝑪) (16) 

𝐼1 = 𝐽
−2
3 𝐼1                𝐼2 = 𝐽

−4
3 𝐼2 (17) 



7 
 

By considering Eq. (15), the second Piola–Kirchhoff stress tensor 𝑺 can be derived for hyper-

elastic materials as: 

𝑺 = 2
𝜕𝑊

𝜕𝑪
 (18) 

and 

𝑺 = 2(
𝜕𝑊

𝜕𝐼1
+ 𝐼1

𝜕𝑊

𝜕𝐼2
) 𝑰 − 2

𝜕𝑊

𝜕𝐼2
𝑪 + 𝐽

𝜕𝑊

𝜕𝐽
𝑪−𝟏 

              = 2𝐽
−2
3 (
𝜕𝑊̃

𝜕𝐼1
+ 𝐼1

𝜕𝑊̃

𝜕𝐼2
) 𝑰 − 2𝐽

−4
3
𝜕𝑊̃

𝜕𝐼2
𝑪 + 𝐽 (

𝜕𝑊̃

𝜕𝐽
−
2

3𝐽
(𝐼1

𝜕𝑊̃

𝜕𝐼1
+ 2𝐼2

𝜕𝑊̃

𝜕𝐼2
))𝑪−𝟏 

(19) 

 

The simplest strain energy is the Saint Venant–Kirchhoff model which just covers the linear 

elastic material in the finite strain regime. This strain energy can be written as: 

𝑊 = 𝑊(𝐼1, 𝐼2) =
𝜆

8
(𝐼1 − 3)

2 +
𝜇

4
(𝐼1
2 − 2𝐼1 − 2𝐼2 + 3) (20) 

where 𝜆 and 𝜇 are the Lame parameters. For this case, the constitutive equation adapted with the 

proposed 3D beam theory can be expressed by following right Cauchy–Green deformation tensor:  

𝑪 = [
𝐶11 𝐶12 𝐶13
𝐶12 𝐶22 0
𝐶13 0 𝐶33

]       𝐶22 = 𝐶33 = (1 + 𝜈) − 𝜈𝐶11;      𝜈 =
1

2
 𝜆/(𝜆 + 𝜇) (21) 

where 𝜈 is known as Poisson’s ratio. The second Piola–Kirchhoff stress tensor can be extracted by 

substituting Eq. (20) into Eq. (19) and assuming the plane stress hypothesis as:  

𝑆22 = 𝑆33 = 𝑆23 = 0  

𝑆11 =
1

2
𝐸(𝐶11 − 1)         𝑆12 = 𝜇𝐶12          𝑆13 = 𝜇𝐶13;      𝐸 = 𝜇(3𝜆 + 2𝜇)/(𝜆 + 𝜇) 

(22) 

in which 𝐸  represents Young modulus of the material. Eq. (22) is consistent with the stress field 

derived in Ref. [4, 5, 15, 16, 19, 21, 22, 27, 28] for finite strains. 

 

 

4. Finite element modeling 

4.1. Governing partial equations 

Beam- and rod-like structures are widely used for many engineering fields. In many 

engineering applications, beams undergo a combined axial-shear deformation which can be 

modeled by 3D beam elements. Therefore, in this section, a finite element formulation is developed 

to analyze 3D elastic beams and frames in the finite strain regime. 
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In order to extract governing equations of equilibrium for the proposed 3D beam element, 

the Hamiltonian principle is implemented as: 

𝛿𝑊𝑖𝑛 = 𝛿𝑊𝑒𝑥𝑡 (23) 

where 𝛿 and 𝑊𝑖𝑛 represent first variation and total internal energy, respectively. 𝑊𝑒𝑥𝑡 also is the 

external work applied by mechanical loads. For the proposed 3D beam element, the variational of 

total internal energy can be expressed as: 

𝛿𝑊𝑖𝑛 =
1

2
∫ (𝛿𝐶11𝑆11 + 2𝛿𝐶12𝑆12 + 2𝛿𝐶13𝑆13)𝑑𝑉̃
𝑉̃

 (24) 

where 𝑉̃ is the volume. According to the beam theories, external loads usually consist of centroid 

forces and moments. For the proposed model, the external forces are applied directly on the central 

point of each cross section. As demonstrated in Fig. 1a, the external moments can be enforced by 

applying two force vectors on 𝐴 and 𝐵 along 𝑥2 and 𝑥3-axes, respectively. It is stated as: 

𝒙𝒐𝑨 = 𝒙𝑨 − 𝒙𝒐 = [0 1 0]𝑇    ⇒    𝒙𝒐𝑨 = [𝑞12 𝑞22 𝑞32]
𝑇 (25) 

𝒙𝒐𝑩 = 𝒙𝑩 − 𝒙𝒐 = [0 0 1]
𝑇    ⇒    𝒙𝒐𝑩 = [𝑞13 𝑞23 𝑞33]

𝑇 
(26) 

According to the external load field, the virtual work of external load applying on each cross 

section is determined by: 

𝛿𝑊𝑒𝑥𝑡 = [𝛿𝑢1 𝛿𝑢2 𝛿𝑢3]𝒇𝒐 + [𝛿𝑞12 𝛿𝑞22 𝛿𝑞32]𝒇𝑨 + [𝛿𝑞13 𝛿𝑞23 𝛿𝑞33]𝒇𝑩  (27) 

where 𝒇𝒐 , 𝒇𝑨  and 𝒇𝑩  are the external force vectors along the local coordinate axes and applied on 

𝑜, 𝐴  and 𝐵, respectively. By substituting Eqs. (12), (24) and (27) into Eq. (23) and simplifying the 

Hamiltonian principle using the fundamental lemma of calculus of variations, we can obtain the 

integral form of governing partial equations as:  

∫ [𝛿𝑢1 𝛿𝑢2 𝛿𝑢3]

(

 
 
∫

(

 
 1
2

{
  
 

  
 
𝜕𝐶11
𝜕𝑢𝑜
𝜕𝐶11
𝜕𝑣𝑜
𝜕𝐶11
𝜕𝑤𝑜}

  
 

  
 

𝑆11 +

{
  
 

  
 
𝜕𝐶12
𝜕𝑢𝑜
𝜕𝐶12
𝜕𝑣𝑜
𝜕𝐶12
𝜕𝑤𝑜}

  
 

  
 

𝑆12 +

{
  
 

  
 
𝜕𝐶13
𝜕𝑢𝑜
𝜕𝐶13
𝜕𝑣𝑜
𝜕𝐶13
𝜕𝑤𝑜}

  
 

  
 

𝑆13

)

 
 
𝑑𝐴̃

𝐴̃

− 𝒇𝒐

)

 
 
𝑑𝑥

𝑙

0

= 𝟎 (28) 

∫ [𝛿𝑞12 𝛿𝑞22 𝛿𝑞32]

(

 
 
∫

(

 
 1
2

{
  
 

  
 
𝜕𝐶11
𝜕𝑞12
𝜕𝐶11
𝜕𝑞22
𝜕𝐶11
𝜕𝑞32}

  
 

  
 

𝑆11 +

{
  
 

  
 
𝜕𝐶12
𝜕𝑞12
𝜕𝐶12
𝜕𝑞22
𝜕𝐶12
𝜕𝑞32}

  
 

  
 

𝑆12 +

{
  
 

  
 
𝜕𝐶13
𝜕𝑞12
𝜕𝐶13
𝜕𝑞22
𝜕𝐶13
𝜕𝑞32}

  
 

  
 

𝑆13

)

 
 
𝑑𝐴̃

𝐴̃

− 𝒇𝑨

)

 
 
𝑑𝑥 = 𝟎

𝑙

0

 

(29) 

∫ [𝛿𝑞13 𝛿𝑞23 𝛿𝑞33]

(

 
 
∫

(

 
 1
2

{
  
 

  
 
𝜕𝐶11
𝜕𝑞13
𝜕𝐶11
𝜕𝑞23
𝜕𝐶11
𝜕𝑞33}

  
 

  
 

𝑆11 +

{
  
 

  
 
𝜕𝐶12
𝜕𝑞13
𝜕𝐶12
𝜕𝑞23
𝜕𝐶12
𝜕𝑞33}

  
 

  
 

𝑆12 +

{
  
 

  
 
𝜕𝐶13
𝜕𝑞13
𝜕𝐶13
𝜕𝑞23
𝜕𝐶13
𝜕𝑞33}

  
 

  
 

𝑆13

)

 
 
𝑑𝐴̃

𝐴̃

− 𝒇𝑩

)

 
 
𝑑𝑥 = 𝟎

𝑙

0

 

(30) 

where 𝑙 and 𝐴̃ are the length and the cross section of the beam element, respectively. 
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4.2. Finite element formulation 

To avoid shear and membrane locking issues, the quadratic shape functions are employed 

for interpolating of the displacement variables in the local coordinate as:  

𝑢1 = 𝑵𝟏𝒖𝒆         𝑵𝟏  = [𝑁1 0⋯0 𝑁2 0⋯0 𝑁3 0 0 0 0 0 0 0 0]1×27 

𝑢2 = 𝑵𝟐𝒖𝒆         𝑵𝟐  = [0 𝑁1 0⋯0 𝑁2 0⋯0 𝑁3 0 0 0 0 0 0 0]1×27 

𝑢3 = 𝑵𝟑𝒖𝒆         𝑵𝟑  = [0 0 𝑁1 0⋯0 𝑁2 0⋯0 𝑁3 0 0 0 0 0 0]1×27 

𝑞12 = 𝑵𝟒𝒖𝒆       𝑵𝟒  = [0 0 0 𝑁1 0⋯0 𝑁2 0⋯0 𝑁3 0 0 0 0 0]1×27 

𝑞22 = 𝑵𝟓𝒖𝒆       𝑵𝟓  = [0 0 0 0 𝑁1 0⋯0 𝑁2 0⋯0 𝑁3 0 0 0 0]1×27 

𝑞23 = 𝑵𝟔𝒖𝒆       𝑵𝟔  = [0 0 0 0 0 𝑁1 0⋯0 𝑁2 0⋯0 𝑁3 0 0 0]1×27 

𝑞13 = 𝑵𝟕𝒖𝒆       𝑵𝟕  = [0 0 0 0 0 0 𝑁1 0⋯0 𝑁2 0⋯0 𝑁3 0 0]1×27 

𝑞23 = 𝑵𝟖𝒖𝒆       𝑵𝟖  = [0 0 0 0 0 0 0 𝑁1 0⋯0 𝑁2 0⋯0 𝑁3 0]1×27 

𝑞33 = 𝑵𝟗𝒖𝒆       𝑵𝟗  = [0 0 0 0 0 0 0 0 𝑁1 0⋯0 𝑁2 0⋯0 𝑁3]1×27 

(31) 

 

where 𝒖𝒆 indicates elemental displacement vector in the local coordinate and 𝑁𝑖(𝑖 = 1,2,3) are 

quadratic Lagrange shape functions [30] defined as: 

𝑁1 =
𝑥1
𝑙
(1 − 2𝑥1

𝑙
)         𝑁2 = (1 + 2𝑥1

𝑙
)(1 − 2𝑥1

𝑙
)         𝑁3 =

𝑥1
𝑙
(1 + 2

𝑥1
𝑙
) (32) 

𝒖𝒆 = [𝒖𝟏  𝒖𝟐  𝒖𝟑]
𝑻 

𝒖𝒊 = [ 𝑢1 𝑢2 𝑢3  𝑞12 𝑞22 𝑞23 𝑞13 𝑞23 𝑞33]𝑖
𝑇   ;   𝑖 = 1,2,3 

(33) 

where 𝒖𝒊 represents nodal displacement of the 𝑖th node. By substituting the discretized 

displacement variables (31) into (10), the right Cauchy-Green deformation tensor can be expressed 

in terms of 𝒖𝒆  as: 

𝐶11 = 1 +𝑵𝑪𝟏𝟏(𝒙, 𝒖𝒆)𝒖𝒆 

𝐶12 = 𝑵𝑪𝟏𝟐(𝒙, 𝒖𝒆)𝒖𝒆 

𝐶13 = 𝑵𝑪𝟏𝟑(𝒙, 𝒖𝒆)𝒖𝒆 

(34) 

where their first variation is given by: 

𝛿𝐶11 = 𝑵𝑪𝟏𝟏𝛿𝒖𝒆 

𝛿𝐶12 = 𝑵𝑪𝟏𝟐𝛿𝒖𝒆 

𝛿𝐶13 = 𝑵𝑪𝟏𝟑𝛿𝒖𝒆 

(35) 

The governing equations of equilibrium for the elastic 3D beam element can be determined 

in the matrix form by substituting Eqs. (31) and (35) plus constitutive equations (22) into (28)-(30) 

and calculating the elemental integrals as: 

𝒈𝒆(𝒖𝒆) = 𝒇𝒆 (36) 

where 𝒇𝒆 and 𝒈𝒆 are the elemental force vectors corresponded to external and internal energies, 

respectively, defined as:  
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𝒈𝒆 = [𝒈𝟏
𝑻  𝒈𝟐

𝑻  𝒈𝟑
𝑻]
𝑻

;            𝒈𝒊 = [𝒈𝒐
𝑻     𝒈𝑨

𝑻     𝒈𝑩
𝑻]
𝒊

𝑻

    ;  𝑖 = 1,2,3 
(37) 

𝒇𝒆 = [𝒇𝟏
𝑻  𝒇𝟐

𝑻  𝒇𝟑
𝑻]
𝑻

;               𝒇𝒊 = [𝒇𝒐
𝑻      𝒇𝑨

𝑻      𝒇𝑩
𝑻 ]
𝒊

𝑻
    ;  𝑖 = 1,2,3 (38) 

𝒈𝒊 and 𝒇𝒊 are the nodal external forces applied on the 𝑖th node. 

 

4.3. Developing centroid forces and moments 

By using Eqs. (25) and (26), the centroid external moment can be given in terms of external 

forces enforced on 𝐴 and 𝐵 as follows: 

𝒎𝒐 = 𝒙𝒐𝑨 × 𝒇𝑨 + 𝒙𝒐𝑩 × 𝒇𝑩  

         = [𝑞12 𝑞22 𝑞32]
𝑇 × 𝒇𝑨 + [𝑞13 𝑞23 𝑞33]

𝑇 × 𝒇𝑩  
(39) 

 

Therefore, the governing equations (36) can be modified based on the 3D beam element presented 

in Fig. 2a in terms of centroid external forces and moments as follows: 

𝒈𝒆(𝒖𝒆) = 𝒇𝒆 (40) 
 

in which 

𝒈𝒆 = [𝒈𝟏
𝑻  𝒈𝟐

𝑻  𝒈𝟑
𝑻]
𝑻
 

𝒈𝒊 = [𝒈𝒐
𝑻    (𝒙𝒐𝑨 × 𝒈𝑨 + 𝒙𝒐𝑩 × 𝒈𝑩 )

𝑻

  𝒙𝒐𝑨
𝑻
𝒙𝒐𝑨   𝒙𝒐𝑩

𝑻
𝒙𝒐𝑩  𝒙𝒐𝑨

𝑻
𝒙𝒐𝑩]

𝒊

𝑻

    ;  𝑖 = 1,2,3 

(41) 

 

where 𝒙𝒐𝑨
𝑻
𝒙𝒐𝑨,  𝒙𝒐𝑩

𝑻
𝒙𝒐𝑩 and 𝒙𝒐𝑨

𝑻
𝒙𝒐𝑩 are three orthogonality consistency conditions which must be 

enforced directly on the rotational nodal variables. On the other hand, 𝒇𝒆 represents the modified 

elemental external forces and moments expressed by:  

𝒇𝒆 = [𝒇𝟏
𝑻  𝒇𝟐

𝑻  𝒇𝟑
𝑻]
𝑻
;              𝒇𝒊 = [𝒇𝒐

𝑻  𝒎𝒐
𝑻  1  1  0]𝒊

𝑻  ;  𝑖 = 1,2,3 (42) 

in which 𝒇𝒐   and 𝒎𝒐   , as mentioned above, are the external centroid force and moment vectors, 

respectively.  

Following this formulation, boundary conditions can be applied by constraining nodal 

displacements and rotations. The 3D hinge support is represented by 𝐻 which can be considered 

for demonstration of both displacement and rotational conditions, see Fig. 2b. As shown in Fig. 

2b, a general 3D direction of 𝛼𝛽⃗⃗⃗⃗  ⃗ is considered for applying nodal constraints. This direction is 

defined by two angles of 𝛼 and 𝛽 based on the spherical coordinate. According to 3D hinge 

conditions, various types of displacement and rotational constraints can be applied on the 

corresponded nodes as described in Table 1.  
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4. Numerical results 

4.1. Validation 

In this section, the buckling and post-buckling behaviors of 3D beams under mechanical 

loadings are investigated. The presented model is implemented in MATLAB software package 

through Newton-Raphson framework. In the solution process, Riks technique [31] is employed to 

trace non-linear deformation and/or loading paths. The beams subjected to in-plane force or 

torsional moment are studied in the large displacement regime. In following results, 𝑓𝑐 represents 

the buckling force of simply supported Euler beam and is considered as a benchmark force to 

assess in-plane forces. It is defined as: 

𝑓𝑐 =
𝜋2𝐸𝐼

𝐿2
 (43) 

where 𝐼 is minimum area moment of inertia of the cross section of the beam.  

For validating the present model in terms of accuracy and capabilities, the response of a fully 

clamped beam under in-plane load as one of the most difficult problems is studied as presented in 

Fig. 3. In this case, a slender beam with circular cross section (𝐿 = 1 𝑚 and 𝑅 = 0.02𝑚) made of 

linear elastic materials (𝐸 = 105 𝐺𝑃𝑎 and 𝜈 = 0.3) is considered. This problem has been 

investigated by some researchers [25, 27] using different numerical methods. In Fig. 3, the post-

buckling path of a fully clamped slender beam is presented and compared with numerical results 

from Ref. [27]. As can be seen, the first buckling occurs at 4𝑓𝑐 corresponded to the critical force 

of fully clamped Euler beams. By tracing the post-buckling path, it is found that configuration is 

unstable, and the bifurcation happens at 5.56𝑓𝑐 in the 3D beam model. In terms of accuracy, the 

bifurcation point is obtained 5.56𝑓𝑐 against 5.61𝑓𝑐 reported in Ref. [27]. The comparison of post-

buckling paths as presented in Fig.3 shows that there is a good agreement between present results 

and those from Ref. [27] that verifies the accuracy of the present model and solution technique for 

complex and nonlinear cases.  

The geometrical and material properties for the following simulation are set as: length =

20𝜋 𝑚𝑚, circular cross section of radius 𝑅 = 1 𝑚𝑚, rectangular cross section of width/height  
𝑏

ℎ
= 2, 𝑏 = √2𝜋 𝑚𝑚, Young’s modulus 𝐸 = 23.4 𝑀𝑃𝑎 and Poisson’s ratio 𝜈 = 0.3. The 3D 

boundary conditions in this study are listed in Table 2.  

 

4.2. Straight beams under in-plane loads 

For finding the first snap point along the buckling path, a simplified linear form of the present 

model (13) is employed to determine buckling loads as well as corresponding mode shapes. For 

the small deformation/rotation fields (14) and linear elastic materials (22), the equilibrium 

equations of the beam element can be obtained from the Hamiltonian principle (23) as follows: 
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∫ (𝐸(𝐼22 𝛿𝜃3,1𝜃3,1 + 𝐼33 𝛿𝜃2,1𝜃2,1) + 𝜇(𝐼22 + 𝐼33) 𝛿𝜃1,1𝜃1,1

𝑙

0

+ 

  𝜇𝐴 ((𝛿𝑢3,1−𝛿𝜃2)(𝑢3,1−𝜃2) + (𝛿𝑢2,1+𝛿𝜃3)(𝑢2,1+𝜃3)) − 𝑓∗ (𝛿𝑢2,1𝑢2,1 + 𝛿𝑢3,1𝑢3,1)) 𝑑𝑥 = 0 

(44) 

 

where 𝑓∗ is the axial load. 𝐼22, 𝐼33 and 𝐴 also represent moments of inertia and area of the beam 

cross section, respectively. After implementing the finite element method and applying boundary 

conditions, an eigenvalue problem is obtained. The eigenvalues and eigenvectors represent the 

buckling loads and corresponding shape modes, respectively.  

Fig. 4 shows the variation of critical in-plane buckling force of beams with various boundary 

conditions. Based on Table 2, the rotations of the beam for BC1 are constrained around 0𝛽⃗⃗⃗⃗  ⃗-axis 

by means of a 3D hinge at the first edge and clamped at the end. As explained in Fig. 2 and Table 

1, 0𝛽⃗⃗⃗⃗  ⃗-axis is perpendicular to the 𝑥3-axis, so that 0𝛽⃗⃗⃗⃗  ⃗-axis refers to 𝑥1 and 𝑥2-axes by 𝛽 = 0 and 
π

2
, respectively. In the small deformation/rotation regime under a bending condition, this 3D hinge 

acts like clamped and simply-supported boundary conditions for 𝛽 = 0 and 
𝜋

2
, respectively. In this 

case, increasing 𝛽-angle decreases the buckling force because of reduction in the stiffness at hinge 

support and changes the buckling mode shape, see Fig. 4a. According to the Euler beam theory, 

the buckling shape mode transforms from the 1st mode of clamped-clamped (4𝑓𝑐) to the 1st mode 

of simply-supported-clamped conditions (2.04𝑓𝑐). The following results  presented in Fig. 5-9 will 

show that the buckling shape modes or beam configurations could be in 3D space and not 

necessarily in the 2D plane.  

The rotations of the beam with BC2 are oriented only around 0𝛽⃗⃗⃗⃗  ⃗-axis at the first edge while 

it can freely rotate at the end. As shown in Fig. 4b, the variation of the buckling force is 

independent of 𝛽 angle except at 𝛽 = 0. As explained before, 3D hinge joint in BC2 behaves as a 

clamped joint for 𝛽 = 0. It should be noted that, by slightly change in 𝛽 angle from zero, the 

buckling force drops extremely from 2.04𝑓𝑐 to 𝑓𝑐. In reality, it can be considered that 𝛽 angle never 

gets exactly zero value while there is always some clearance in joints. Therefore, the buckling 

mode corresponds with simply-supported boundary conditions of the Euler beam. 

Beams under BC3 are constrained by 3D hinge joints at both ends. The rotations are limited 

around 𝛼𝛽⃗⃗⃗⃗  ⃗-axis at the first edge while it can rotate along 𝑥3-axis at the end. The variation of critical 

in-plane force for beams with BC3 is shown for circular and rectangular cross sections in Fig. 4c 

and 4d, respectively. For this condition and specially for beams with the circular cross section, the 

effect of 𝛽 angle on the buckling load is dominant compared with 𝛼 angle. As can be seen in Fig. 

4c, 𝛼𝛽⃗⃗⃗⃗  ⃗-axis with 𝛽 =
𝜋

2
 orients along the 𝑥3-axis, therefore the buckling force and corresponding 

shape mode are the same with the 1st mode of Euler simply-supported beams. It should also be 

noted that the buckling force and the shape mode for BC3 in case of 𝛽 = 0 are independent of 𝛼 

angle which is similar to the 1st mode of clamp-simply-supported beams. As shown in Fig. 4d, the 
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distribution of the buckling force for beams with rectangular cross section and BC3 are affected 

by the area moment of inertia of the cross section. In other words, by changing the direction of 

rotation at the 3D hinge, the effective area moment of inertia changes as well.  

The buckling forces, as shown in Fig. 4, have been obtained for various boundary conditions 

using the linear model. This estimation of buckling force and mode shape will be used as an initial 

configuration for determining post-buckling paths. Fig. 5 shows the post-buckling paths and 

corresponding 3D configurations with distribution of von-Mises stress for beams with BC1. For 

all cases, the beam configuration starts from the 𝑥1 − 𝑥2 plane, but by increasing the in-plane load, 

the configuration transforms into the 3D space. As mentioned before, 3D hinge joint with 𝛽 = 0 

reacts like clamped support in the small deformation regime. Fig. 5a and 5b demonstrates that the 

bifurcation point for the 3D hinge support occurs earlier than that for fully clamped boundary 

conditions. Since the beam can freely rotate along its axis at the first end, there is no torsional 

stiffness against transformation from 2D to 3D configuration. On the other hand, there is not any 

bifurcation points for other boundary conditions while by increasing the in-plane load, the beam 

tends to rotate along its axis and transform into 3D configuration, see Fig. 5c-5f. In 3D hinge with 

0 < 𝛽 <
𝜋

2
, the in-plane load generates the rotational moment at the hinge which turns the beam 

from the 𝑥1 − 𝑥2 plane into the 3D space. The effects of the 3D hinge can be more emphasized by 

comparing post-buckling path of beams with BC1 with 𝛽/𝜋 = 0.375 and 0.5. In this case, the path 

of out-of-plane displacement and beam configuration are obviously different even though they 

show close buckling force and in-plane displacement path.  

The response of beams with BC2 subjected to in-plane load is displayed in Fig. 6. In spite 

of similar critical force and buckling mode shape (see Fig. 4b), the post-buckling paths and beam 

configurations are entirely different. It is obvious that the beam with BC2 with 𝛽/𝜋 = 0 and 0.5 

follows paths of clamped-simply-supported and fully simply-supported in plane space, 

respectively. For the other cases, there are 3D post-buckling configurations. It can be seen after 

the first buckling at 𝑓𝑐, the beam experiences a bifurcation point in the post-buckling path. In fact, 

this bifurcation point happens after the first buckling point following bending/twisting path 

naturally and without any enforcement or guidance. The beam initially deforms in the 𝑥1 − 𝑥2 

plane and then by increasing the in-plane load, it starts turning around its axis for 
𝜋

2
 radian 

approximately, see Fig. 6b. That is because of high coupling between bending and torsion 

combined with the effects of 3D hinge joint to generate a twisting moment. It should also be 

highlighted that post-buckling loads show different values after passing the buckling point, and 

the shape mode configuration changes during this path that is unlike what the linear model predicts. 

The post-buckling paths of beams with BC3 are investigated in three sections. BC4, BC5 

and BC6 can be considered as special cases of BC3. The post-buckling paths and beam 

configurations for BC4 subjected to in-plane loads are shown in Fig. 7. The variation of buckling 

force can be tracked on Fig. 4c where 𝛼 = 0 and 𝛽 increases from 0 to 
𝜋

2
. For this boundary 

condition, the beam rotations are constrained around 0𝛽⃗⃗⃗⃗  ⃗-axis at the first edge, and 𝑥3-axis at the 
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end. Therefore, the beam configuration starts changing from the 𝑥1−𝑥2 plane, and then depending 

on the value of 𝛽 angle, it can either remain in the same plane or transfer into 3D space. With a 

similar scenario, the beam tends to rotate around its axis after the buckling point in spite of 

resistance of hinge supports at both ends. It should be mentioned that the value of buckling point 

as well as post-buckling path highly depend on the hinge 𝛽 angle.  

Next, a post-buckling analysis of beams with BC5 is presented in Fig. 8. The buckling forces 

have been predicted as shown in Fig. 4c where 𝛽 = 0 and 𝛼 increases from 0 to 
𝜋

2
. Except beams 

with BC5 and 𝛼 = 0, other beams start changing shape from the 𝑥1 − 𝑥3 plane predicted by the 

linear model. It should be noted that despite same buckling force predicted by the linear model, 

the post-buckling paths are different. It is seen in Fig. 8 that, when beams buckle, their 

configurations transfer from 2D plane to 3D space. Except the beam with BC5 and 𝛼 = 0, the 

other beams experience snap-bucking phenomenon around the buckling point. In other words, after 

passing the buckling point, the buckling load decreases gradually. In this case, the coupling 

between bending and torsion as well as 3D hinge joints have significant effects on the post-

buckling paths and beam configurations.  

Finally, tracking post-buckling paths of beams with BC6 is investigated in Fig. 9. The result 

of the linear model for this case can be found in Fig. 4c where 𝛼 =
𝜋

2
 and 𝛽 increases from 0 to 

𝜋

2
. 

In this case, the beam configurations have been predicted in the 3D space by the linear model. It 

is observed that, the buckling forces as well as out-of-plane deformations directly depend on the 

hinge 𝛽 angle, see Fig. 9a and 9b. Except beams with BC6 and 𝛽 = 0, the other cases under 

proportional out-of-plane deformation experience post-buckling paths in the same direction of 

buckling mode shapes, see Fig. 9b. 

 

4.3. Straight beam under torsion 

In this section, the behavior of beams with BC7 and BC8 subjected to torsional loadings is 

investigated. BC7 has 3D hinge-hinge supports and it is constrained at 𝑥1 = 𝐿 to move and rotate 

along the beam axis and can only rotate around 0𝛽⃗⃗⃗⃗  ⃗-axis at 𝑥1 = 0.  

As shown in Fig. 10, in the first step, the beam is twisted with an out-of-plane rotation via 

applying a torque at 𝑥1 = 𝐿. As explained in the previous section, there is a high coupling between 

bending and torsion in the 3D beam structures especially with 3D hinge supports. This loading 

step will continue to return a point at D where the beam turns around its axis. After passing the 

first return point, the torsional torque decreases to get a negative value till it meets the 2nd return 

point at F. In this stage, the beam turns around its axis to get back to the initial configuration. It 

should be noted that all these stages somehow can be detected for all 𝛽 angles in beams with BC7. 

As can be seen, Riks technique successfully captures torque-angle paths whereas the usual 

Newton-Raphson method fails to follow paths after the 1st return point. 
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5. Conclusion 

The exact displacement field were proposed based on the central point movement and 

orthogonal rotation functions. The Cauchy-Green deformation adapted for the 2nd Piola–Kirchhoff 

stress tensors was extracted through the continuum mechanics framework. The finite element 

formulation was developed based on the exact 3D beam deformation field. The elemental vectors 

and matrices were modified according to centroid forces and moments in the 3D Cartesian 

coordinate system. The present finite element format is adapted with other 2D or linear beam 

theories as well as 3D boundary conditions. After assembling the elemental vectors and matrices, 

the system of equilibrium equations were obtained in the global coordinate. The solution process 

was done by taking advantage of Newton-Raphson method and Riks technique. The post-buckling 

response of the fully clamped beam was studied for verification of the present model and finite 

element formulation. The comparison study revealed a good overview of robustness and accuracy 

of the presented model. The effects of 3D hinge supports on the large-deformation instability of 

beams under axial and torsional loadings were studied. It was observed that the post-buckling paths 

as well as beam configuration are highly affected by torsion and bending coupling. This coupling 

can be strengthened when the beam is constrained by 3D hinge supports. It was found that the 

linear model can not provide accurate estimations of the beam behavior under complicated 

boundary conditions. It was seen that, in some cases, the post-buckling paths and configuration 

modes are transformed upon passing the buckling point. It was also highlighted that in-plane loads 

turn the beam around its axis due to generating torque at 3D hinges. It was observed that in-plane 

load decreases after passing the buckling point which can make a snap point in a load-control path. 

The high coupling between torsion and bending was also observed in beams with 3D hinge 

supports under torsional moments. It was concluded that the torsional deformation can raise the 

bending stiffness up extremely. In these cases, robustness and accuracy of the present model were 

examined showing good and efficient outcomes. Due to lack of similar work in the literature, the 

formulation, solution and results of this research are expected to contribute to understanding of the 

stability behaviors and to be instrumental in design of 3D beams supported with 3D hinge joints 

under axial and torsional loadings.  
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Table 1. Description of 3D nodal boundary conditions 

3D hinge type 
Displacement boundary Rotation boundary 

Symbol Conditions Symbol Conditions 

Movements/rotations along 3 axes 𝐻_  𝑓1 = 𝑓2 = 𝑓3 = 0 𝐻_  𝑚1 = 𝑚2 = 𝑚3 = 0 

Movements/rotations along 2 axes 𝐻
𝛼1𝛽1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝛼2𝛽2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

 
(𝛼𝛽⃗⃗⃗⃗  ⃗ = 𝛼1𝛽1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ × 𝛼2𝛽2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

𝑢1𝛼𝛽⃗⃗⃗⃗⃗⃗ = 0 
𝐻
𝛼1𝛽1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝛼2𝛽2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

 
(𝒒𝛼𝛽⃗⃗⃗⃗⃗⃗ = 𝒒𝛼1𝛽1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝒒𝛼2𝛽2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

𝑞
33𝛼𝛽⃗⃗⃗⃗⃗⃗ 

= 𝑞
11𝛼𝛽⃗⃗⃗⃗⃗⃗ 

𝑞
22𝛼𝛽⃗⃗⃗⃗⃗⃗ 

 

Movement/rotation along 1 axis 𝐻
𝛼1𝛽1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  𝑢2𝛼1𝛽1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑢3𝛼1𝛽1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 0 𝐻

𝛼1𝛽1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
(𝒒 = 𝒒

𝛼1𝛽1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

𝑞11𝛼1𝛽1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 1; 𝑞12𝛼1𝛽1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 0 

Fixed in 3 axes 𝐻𝐶  𝑢1 = 𝑢2 = 𝑢3 = 0 𝐻𝐶  
(𝒒 = 𝑰) 

𝑞11 = 𝑞22 = 𝑞33 = 1 

(𝛼 = 0, 𝛽 = 0) → 𝑥1                               (𝛼 =
𝜋

2
, 𝛽 = 0) → 𝑥2                            (𝛼 = 𝛼0, 𝛽 =

𝜋

2
) → 𝑥3 
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Table 2. Boundary conditions 

   Case 

 

Location 

BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 

𝑥1 = 0 𝐻
0𝛽⃗⃗⃗⃗  ⃗𝐶  𝐻

0𝛽⃗⃗⃗⃗  ⃗𝐶  𝐻
𝛼𝛽⃗⃗⃗⃗⃗⃗ 𝐶  𝐻

0𝛽⃗⃗⃗⃗  ⃗𝐶  𝐻
𝛼0⃗⃗⃗⃗  ⃗𝐶  𝐻

𝜋𝛽⃗⃗ ⃗⃗  ⃗𝐶  𝐻
0𝛽⃗⃗⃗⃗  ⃗𝐶  𝐻

0𝛽⃗⃗⃗⃗  ⃗𝐶  

𝑥1 = 𝐿 𝐻𝐶𝑥1  𝐻_𝑥1  𝐻𝑥3𝑥1  𝐻𝑥3𝑥1  𝐻𝑥3𝑥1  𝐻𝑥3𝑥1  𝐻𝑥1𝑥1  𝐻𝑥1𝐶  
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(a)                                                  (b)      

 
 

Fig. 1. Coordinate system and kinematics of the geometrically exact beam model: (a) displacements, (b) 

rotations. 
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(a)                                               (b) 

 
 

Fig. 2. (a) 3D beam element and (b) 3D support model. 
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(a) (b) 

  
 

Fig. 3. Comparison between 2D and 3D behaviors of a fully clamped beam under an in-plane axial load: 

maximum out-of-plane displacements path. 
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(a) (b) 

  
(c) (d) 

  

 

Fig. 4. The buckling force of beams with different boundary conditions: the circular cross section under (a) 

BC1, (b) BC2, (c) BC3; the rectangular cross section under BC3 (d). 
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(a) (b) 

  
(c) (d) (e) (f) 

    
 

 

Fig. 5. The post-buckling path and configuration at 
𝑢1

𝐿
= 20%, 40% and 60% for beams with BC1: (a) in-

plane force path with displacement; (b) maximum out-of-plane displacements path; beam configuration 

with von-Misses stress distribution (MPa) for (c) 𝛽/𝜋 = 0, (d) 𝛽/𝜋 = 0.125, (e): 𝛽/𝜋 = 0.375, and (f) 

𝛽/𝜋 = 0.5. 
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(a) (b) 

  
(c) (d) (e) (f) 

    
 

 

Fig. 6. The post-buckling path and configuration at 
𝑢1

𝐿
= 10%, 30% and 60% for beams under BC2: (a) 

in-plane force path with displacement; (b) maximum out-of-plane displacements path; the beam 

configuration with von-Misses stress distribution (MPa) for (c) 𝛽/𝜋 = 0, (d) 𝛽/𝜋 = 0.1, (e) 𝛽/𝜋 =

0.25 and (f) 𝛽/𝜋 = 0.5. 
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(a) (b) 

  
(c) (d) (e) (f) 

    
 

 

Fig. 7. The post-buckling path and configuration at 
𝑢1

𝐿
= 20%, 40% and 60% for beams with BC4: (a) 

in-plane force path with displacement; (b) maximum out-of-plane displacements path; the beam 

configuration with von-Misses stress distribution (MPa) for (c) 𝛽/𝜋 = 0, (d) 𝛽/𝜋 = 0.125, (e) 𝛽/𝜋 =

0.375 and (f) 𝛽/𝜋 = 0.5. 
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(a) (b) 

  
(c) (d) (e) (f) 

    
 

Fig. 8. The post-buckling path and configuration at 
𝑢1

𝐿
= 20%, 40% and 60% for beams with BC5: (a) 

in-plane force path with displacement; (b) maximum out-of-plane displacements path; the beam 

configuration with von-Misses stress distribution (MPa) for (c) 𝛼/𝜋 = 0, (d) 𝛼/𝜋 = 0.125, (e) 𝛼/𝜋 =

0.375 and (f) 𝛼/𝜋 = 0.5. 
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(a) (b) 

  
(c) (d) (e) (f) 

    
 

Fig. 9. The post-buckling path and configuration at 
𝑢1

𝐿
= 20%, 40% and 60% for beams with BC6: (a) 

in-plane force path with displacement; (b) maximum out-of-plane displacements path; the beam 

configuration with von-Misses stress distribution (MPa) for (c) 𝛽/𝜋 = 0, (d) 𝛽/𝜋 = 0.125, (e) 𝛽/𝜋 =

0.375 and (f) 𝛽/𝜋 = 0.5. 
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(a) (b) 

  
(c) 

 
 

 

Fig. 10. The torque path with twisting angle and configuration for beams with BC7: (a) torsional moment 

path with twisting angle; (b) bending moment path with twisting angle; (c) the beam configuration with 

von-Misses stress distribution (MPa) for 𝛽/𝜋 = 0.3. 

 

 


