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Abstract- This paper proposes a two-objective linearized resilient architecture (LRA) model for 

distribution networks to achieve a strictly resilient network during natural disasters like earthquakes and floods. 

To obtain this goal, the proposed LRA framework is based on the planning of the energy storage system (ESS), 

hardening and tie lines, and backup distributed generation (DG). Therefore, the proposed model minimizes the 

sum of planning and expected operation costs in the first objective function, and the total load shedding and repair 

costs originates from earthquakes and floods in the second objective function. Also, it constraints to the 

network planning model, linearized equations of the system operation, and system reconfiguration 

formulation. Moreover, stochastic programming models the uncertain availability of the network equipment 

during the natural disaster condition, the load and electricity price. In the next step, the -constraint-based 

Pareto optimization is used to achieve an equivalent single-objective LRA model and obtain the best 

compromise solution. Finally, the proposed strategy is applied to a standard test distribution network. Numerical 

simulation confirms the capability of the proposed method in obtaining a resilient distribution network during 

natural disasters.        
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Nomenclature 

1) Sets & Indices 

j Index of bus 

k, K Index and set of linear part for circular plane limit    

l, L Index and set of linear part in the voltage term  

n, N Index and set of bus 

nl Total number of  linear parts for the linearized voltage term 

nk Total number of  linear parts for the circular plane limit    

t, ST Index and set of operation hour 

w, S Index and set of scenario sample obtained by scenario reduction method 

2) Parameters

A Incidence matrix for bus and distribution line  

B, G Susceptance and conductance for a distribution line in per-unit (pu)  

cdg, crg Construction and repair cost for DG in $ 

ces, cre Construction and repair cost for ESS in $ 

chl, ctl Construction cost for hardening and tie lines in $ 

crl Repair cost for the distribution line in $ 

DR, CR Discharge and charge rate of ESS in per unit [pu]. 

Emin, EI, Emax Minimum, initial and maximum stored energy in ESS [pu]. 

du, Y Total day including earthquakes or floods, planning horizon in year 

M A fixed parameter including high value such as 106 

Nbus Total buses of the distribution network 

PD, QD Active and reactive power a load (pu) 

SDGmax Capacity of DG (pu) 

m Line slop in linearization segments for voltage magnitude. 

SLmax Capacity of distribution line (pu) 

SSmax Capacity of station (pu) 
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VOLL Penalty price called “value of lost load” in $/MWh. 

,V V   Lower and upper allowed voltage in pu 

 Deviation of angle in linearization method of circular plane limit   . 

 Probability of a scenario sample 

, dg Price of energy, and price of DG fuel in $/MWh 

ch, dis Efficiency of ESS in charging and discharging mode  

3) Variables [pu] 

PDG, QDG Active and reactive power of the backup DG.  

PESch, PESdch, QES Active power charge and discharge as well as the reactive power of ESS. 

PL, QL Power flow of a line in active and reactive terms  

PNS, QNS Power not supplied of a load in active and reactive terms 

PS, QS Power flow of a station in active and reactive terms 

V, V,  Magnitude, deviation and angle of the voltage [rad], respectively. 

xdg, xes, xhl, xtl, x0 Construction state of the backup DG, ESS, tie, hardening and existing lines. 

xch, xdch Binary variables related to charging and discharging operation model for ESS. 

y, yhl, ytl, y0 Binary variables associated with the state of the line, tie, hardening and existing lines. 

sub, sub Dual variables associated with the primal subproblem’s equality and inequality constraints. 

 

1. Introduction  

1.1. Motivation  

Resilience is one of the most important indices in the operation of the smart distribution networks, where it refers 

to network resistance versus negative effects such as disconnection of several distribution lines due to natural 

disaster condition [1-2]. Hence, the smart grid concept presents a resilient architecture (RA) strategy on the 

distribution network to protect this system under the condition of extreme weather [3-4]. This strategy uses the 

planning and operation model of the energy storage system (ESS), hardening and tie lines, backup distributed 

generation (DG) and other equipment based on improving the network resilience [5]. Therefore, the mentioned 

strategy defines an optimization problem that is obtained optimal location and schedule for the referred strong 

equipment against natural disaster events based on lower planning and operation cost and higher system resiliency.                   
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1.2. Literature review             

There is a variety of types of research presented in the area of power system’s resilience. Reference [6] that is 

improved resiliency in the distribution system employing back-up DGs, hardening and tie-line, where it uses a 

linearized distribution flow in the stochastic resilience-oriented design framework. The authors of [7] are combined 

time-to-event methods to assess the distribution network resilience as a probabilistic model along with different 

natural disasters condition. In [8], a risk assessment method is reported to study the probability of possible 

disturbances to the distribution systems and find accurate advice for trading renewable energy customers based on 

the capability of resilient network. In addition, the impacts of variability and inadequacy of DGs to enhance the 

distribution system resiliency is considered [9]. Furthermore, the network reconfiguration technique in conditions of 

extreme climate is taken into account in [10] to enhance the distribution network resiliency. Resilience enhancement 

strategy was modeled in [11] for a coupled distribution network and urban transportation system for allocation of 

hardening lines and DGs while there are outages in distribution lines and traffic lights. In [12], it is modeled a tri-

level resilience enhancement framework to minimize the cost of hardening investment and load shedding in different 

natural disasters. Moreover, the impacts of different power equipment (e.g., power electronics and energy storage) 

and distribution system topology on the resiliency during extreme events are presented in [13]. In [14], the planning 

of hardening lines and renewable DG is reported to enhance the resiliency. Ref. [15] models the robust planning of 

DGs to achieve high resiliency. In [16], a method based on decision support after an earthquake is expressed to 

enable the operators to restore the critical loads of a distribution grid.  

In [17], the planning of MGs to strengthen the network against severe faults has been studied. To do so, three 

methodologies are proposed aiming to determine the optimal nodes for connecting MGs, and the capacity of the 

dispatchable generation units deployed within MGs. Also, [18] explains an applied methodology for the resilient 

planning and routing of distribution systems taking real scenarios generated from georeferenced data into account. 

Consumers’ demand and their location are the base for distribution transformer allocation in view of the minimal 

construction costs and decrease of utility’s budget. Minimum Spanning Tree techniques are employed to allocate 

distribution transformers and medium voltage network routing. Furthermore, tie points allocation is carried out to 

minimize the total load shedding when extreme events occur, while improving reliability and resilience reducing 

downtime. Authors of [19] explain the implementation of an intelligent decision tool that allows the design of 

network distribution system planning considering the current electrical company standards, in order to have a clear 



 

5 
 

and quick initial overview of the configuration that an electricity network should have in response to an increasing 

demand, considering not only the coverage and capacity of the transformers but also voltage drop along the 

conductors, which must not exceed 3% of the nominal value. In [20], a three-layer model has been proposed to find 

the optimal routing of an underground electrical distribution system, utilizing a graph search heuristic. In the model, 

the first layer considers transformer allocation and medium voltage network routing, the second layer uses the low 

voltage network routing and transformer sizing, and the third presents a method to allocate distributed energy 

resources in the distribution system. 

 
1.3. Contributions              

According to the literature, there are various approaches to enhance the network resilience such as utilizing strong 

equipment against natural disasters and the network reconfiguration. However, previous studies have only 

considered one of the aforementioned aspects and there is limited number of research in the area such as [6] that 

proposes a hybrid approach to increase the resilience of the distribution systems under extreme weathers and the 

natural disasters. While, in [6], the capability of ESS is not investigated on the network resiliency improvement. 

Also, almost all the available literature has formulated the resilient architecture as a mixed-integer non-linear 

programming (MINLP). But, the solvers of this model cannot obtain the global optimal solution, generally. 

 To cope with mentioned subjects, this paper as Fig. 1 models a two-objective linearized RA (LRA) strategy in 

the distribution grid, where it uses the backup DG, ESS and hardening and tie lines in this system to enhance the 

system resiliency under the earthquake and flood conditions. Hence, the proposed strategy minimizes the sum of the 

investment and operation costs in the first objective function, and it considers minimizing the resiliency cost 

equaling to the total cost of repair and load shedding in the second objective function. Also, the constraints of the 

optimization model includes: the linearized optimal power flow (LOPF) equations, planning model of strong 

equipment against natural disaster events, and reconfiguration constraints. Moreover, to consider the uncertainty of 

the parameters of load, energy price and network equipment availability, the scenario-based stochastic programming 

(SBSP) model are implemented. In other words, the Monte-Carlo Simulation (MCS) generates a high number of 

scenarios based on the standard probability distribution function (PDF) for the mentioned parameters, and thus, the 

simultaneous backward method (SBM) obtains a low number of scenarios with high occurrence probability. Also, 

the Pareto optimization approach based on -constraint method is used in this paper to obtain a single-objective LRA 

model with the best compromised optimal solution. 
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Hence, the main contributions of this paper are summarized as follows: 

– Obtaining a resilient distribution network using optimal planning and operation of backup DG, ESS and 

hardening and tie lines, and reconfiguration strategy;   

– Presenting a two-objective linearized resilient architecture strategy in the distribution network to achieve high 

system resiliency based on the optimal planning and operation cost.         

    

 

LRA  
method 

Distribution 
network 

Operation and planning of strong equipment against earthquakes and floods events 

Accessibility of network equipment’s against the earthquakes and floods 
condition, electricity price and load 

SBSP 

Fig. 1. The proposed LRA scheme in the distribution system 

 

1.4. Paper organization              

In the following, Section 2 expresses the stochastic LRA formulation as a two-objective problem. Then, Section 3 

obtains the single-objective model of LRA according to Pareto optimization approach. In the end, numerical results 

and conclusions is addressed in Sections 4 and 5, respectively. 

 

2. Problem model  

In this section, the two-objective linearized resilient architecture (LRA) model for the distribution network is 

expressed. This optimization problem minimizes the summation of the daily investment and operation cost and daily 

repair and load shedding cost in the first and second terms, respectively. Also, this problem is subjected to some 

constraints the planning model of network, grid reconfiguration strategy and the linearized optimal power flow 

(LOPF) equations. Therefore, the proposed problem is written as follows:               

   

Daily investment cost
Operational cost

1 , , , , , , , ,
, ,

1min
365

dg dg es es hl hl tl tl S dg DG
n n n n n j n j n j n j w t n t w n n t w

n N n N n j N n j N w S t ST n N
F c x c x c x c x P P

Y
  

      

           
     




 

(1a) 
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 
 

Daily repair cost
Load sheding cost

0
2 , , , , , ,

,

1min . .rg dg re es rl hl tl NS
n n n n n j n j n j n j w n t w

n N n N n j N w S t ST n N
F c x c x c x x x VOLL P

du Y


     

           
    




(1b) 

Subject to: 

 , , , , , , , , , , , , , , , , , ,S DG ESdch ESch L D NS
n t w n t w n t w n t w n j n j t w n t w n t w

j N
P P P P A P P P n t w



        (1c) 

, , , , , , , , , , , , , , , ,S DG ES L D NS
n t w n t w n t w n j n j t w n t w n t w

j N
Q Q Q A Q Q Q n t w



       (1d) 

       

 

2
, , , , , , , , , , , , , , , , ,

, ,

. 1 .

. 1 , , ,

L
n j t n j t w n j l n t l w j t l w n j n t w j t w

l L

n j t

M y P G m V V V V V B

M y n j t w

 


             
  

  

  

(1e) 

       

 

2
, , , , , , , , , , , , , , , , ,

, ,

. 1 .

. 1 , , ,

L
n j t n j t w n j l n t l w j t l w n j n t w j t w

l L

n j t

M y Q B m V V V V V G

M y n j t w

 


  
            

  

  

  

(1f) 

, , 0 Slack bus, ,n t w n t w     (1g) 

    max
, , , , , , , , ,cos . sin . . , , , ,L L L

n j t w n j t w n j n j tP k Q k S y n j t k w       (1h) 

    max
, , , ,cos . sin . Slack bus, , ,S S S

n t w n t w nP k Q k S n t k w        (1i) 

 , , ,0 / , , ,n t l w lV V V n n t l w      (1j) 

0
, , , , , , , , , ,hl tl

n j t n j t n j t n j ty y y y n j t     (1k) 

0 0
, , , , ,n j t n jy x n j t   (1l) 

, , , , ,hl hl
n j t n jy x n j t   (1m) 

, , , , ,tl tl
n j t n jy x n j t   (1n) 

0
, , , 1 ,hl tl

n j n j n jx x x n j     (1o) 

 
, ,

,
1n j t bus

n j N
y N t



    (1p) 

    max
, , , ,cos . sin . , , ,DG DG dg DG

n t w n t w n nP k Q k x S n t k w       (1q) 
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      max
, , , , , ,cos . sin . , , ,ESdch ESch ES es ES

n t w n t w n t w n nP P k Q k x S n t k w        
(1r) 

, , ,0 , ,ESch ch
n t w n t nP x CR n t w    

(1s) 

, , ,0 , ,ESdch dch
n t w n t nP x DR n t w    

(1t) 

min max
, , , ,

1

1 , ,
t

es I ch ESch ESdch es
n n n n w n w n ndchx E E P P x E n t w 






 
     

 
  

(1u) 

, , ,dch ch es
n t n t nx x x n t    

(1v) 

The proposed objective functions are formulated in equation (1a) and (1b), where first and second functions in 

these equations minimize the daily network and resiliency cost, respectively [6]. So that the network cost includes 

investment cost of network equipment such as backup DG, ESS, distribution and tie lines, expected energy cost 

obtained from the upstream network, and expected DGs fuel cost based on (1a). Also, resiliency cost contains repair 

and expected load shedding costs according to (1b). Noted that according to the “wear and tear” strategy for the 

assets during its operations under extreme weather conditions, the repair cost for different elements such as DG, 

ESS, existing, hardening and tie lines, is considered in the first part of objective function (1b). In equations (1c)-(1j), 

the LOPF constraints including nodal active and reactive power balance, (1c) and (1d), active and reactive power 

flowing from the distribution line, (1e) and (1f), voltage angle of the slack bus, (1g), system operation limits such as 

distribution line and station capacity limit as well as voltage deviation limit, (1h), (1i) and (1j) [21, 22]. This model 

is based on the voltage deviation and angle to achieve the linear formulation in the AC OPF problem related to the 

distribution network [22]. Hence, according to [22], voltage magnitude (V) /V2 is equal to l
l L

V V


  / 

 2
l l

l L

V m V


   based on the conventional piecewise linearization method [22], where m is line slop. Moreover, the 

distribution line or station capacity limit is a circular plane, i.e. 2 2 2P Q S   , generally. The circular plane is able 

to approximate to a polygon plane containing high number edges [23], where more details are presented in [23]. 

Also, network reconfiguration and distribution line planning model are expressed in (1k)-(1p) [24], so that switch 

state on the distribution line, i.e. close or open mode, determinates by (1k), while it between buses n and j depends 

on construction state of the existing, hardening or tie lines, x0, xhl and xtl, according to (1l)-(1n), where only one of 

those lines can be built between these busses based on the constraint (1o). Also, the radial structure of the 
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distribution network will be obtained using constraint (1p) [24], where based on this equation; the total line number 

should be equal to difference f total number buses and 1 in the radial network. Finally, the backup DG and ESS 

planning models are demonstrated in constraints (1q)-(1v) that are referred respectively to DG capacity limit, ESS 

charger capacity limit, charge and discharge rate of ESS, stored energy limit of ESS, and a logical limit that prevents 

the simultaneous operation of charging and discharging modes in ESS [25]. Noted that in these equations, backup 

DG or ESS is built if xdg / xes = 1, otherwise, xdg / xes = 0.    

In the proposed LRA model, active and reactive loads, PD and QD, energy price, , and repair cost, crg and crl, are 

uncertain parameters, where repair cost of different devices is depended on their availability in earthquake or flood 

condition. In other words, there is this cost for device if it locates in a zone consisting of an earthquake or flood. 

Then, scenario-based stochastic programming (SBSP) is utilized to model these parameters. In this technique, the 

MCS generates many scenario samples for the mentioned uncertain parameters by using normal probability 

distribution function (PDF) [24]. In the next step, the simultaneous backward method (SBM) as scenario reduction 

approach obtains a low number of scenarios that are included high occurrence probability [24].      

   

3. Solution method 

The Pareto optimization is applied here to find the best compromise solution of the proposed two-objective LRA 

model. The Pareto optimization approaches assist the decision-makers to find, compare and select their choice 

among a set of acceptable solutions. The -constraint-based Pareto optimization of this work is a straightforward 

approach that re-organizes the two-objective model and solves it the in  form of a single-objective model [26]. Based 

on this approach, F1 in (1a) is the objective function of the single-objective problem, and F2 in (1b) will be 

constrained to   as shown in the following formulation:  

  (2a)  

   

Daily investment cost
Operational cost

1 , , , , , , , ,
, ,

1min
365

dg dg es es hl hl tl tl S dg DG
n n n n n j n j n j n j w t n t w n n t w

n N n N n j N n j N w S t ST n N
F c x c x c x c x P P

Y
  

      

           
     




    

Subject to: 

(2b)  

   
 

Daily repair cost
Load sheding cost

0
2 , , , , , ,

,

1 . .rg dg re es rl hl tl NS
n n n n n j n j n j n j w n t w

n N n N n j N w S t ST n N
F c x c x c x x x VOLL P

du Y
 

     

         
   

    



    

(2c)  Constraints (1c)-(1v) 
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where  is constrained by the lower and upper values of the F2 (here, F2
min and F2

max). Considering these minimum 

and maximum values for  F2 and by dividing this range into some equidistant intervals, a series of a single-objective 

optimization problem that each one of them constrained with a special  value will be achieved that by solving them, 

a range of semi-optimal values will be obtained for the constrained optimization of F1 subject to an additional 

constraint for F2. When these results are shown with the values of the constrained objective function, (here, F2), the 

Pareto front of the problem is achieved [26]. To help the decision-makers for selecting the best compromise 

solution, here we proposed a fuzzy decision support system (FDSS) to achieve the best compromise solution [27]. 

The pseudocode of the FDSS approach is presented in Algorithm 1. 

 
Algorithm 1 Algorithm of the FDSS 
The best compromise solution of a Pareto front; 
Pareto optimal solution along with the preferences of the decision-maker; 
Step 1: Computation of the Fuzzy membership function 
Calculation the values of the linear fuzzy membership function ( îF ) for each member of the Pareto optimal front: 
for i = 1:2 
      if Fi  Fi

min 
         The fuzzy membership function will be equal to 1; 
      elseif Fi

min  Fi  Fi
max 

          The fuzzy membership function will be equal to 
max

min max
i i

i i

F F
F F




; 

      elseif Fi  Fi
max 

          The fuzzy membership function will be equal to 0; 
      end 
end 
Step 2: Obtain value of m 

   1 2
ˆ ˆmin , 1,2,...,m m

m mF F m n     

Step 3: The best compromise solution 
Find The best compromise solution by computing maxm m   

Algorithm 1. Pseudocode of the fuzzy decision support system 
 

4. Numerical Simulation and Discussion 

4.1. Data 

In this paper, the mentioned LRA method is applied on the radial distribution grid in form of 33-bus and 119-bus, 

where their single-line circuits are plotted in Fig. 2 [28]. The characterizes of distribution lines in these networks are 

presented in [28], and also, their peak load data is reported in [28]. Daily curves of load factor and energy price are 

demonstrated in [29-31] so that hours 1:00-7:00 is low load period including energy price of 16$/MWh, hours of 

8:00-16:00 and 23:00-24:00 are related to medium load period containing energy price of 24 $/MWh, and peak load 
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hours are 17:00-22:00 with considering electricity price of 30 $/MWh [29-31]. To achieve high resiliency for the 

mentioned networks, VOLL is considered to 100 $/MWh. Also, characterizes of backup DG, tie and hardening line 

including candidate location, investment and operation cost, and capacity are expressed in [6], but these data for 

ESS is presented in Table 1.  

Also, it is considered that the ESS charge and discharge rates (CR, DR) is equal to 40% of ESS capacity (Emax), its 

charger capacity is 50% of Emax, Emin is 10% of Emax, and its charging/discharging efficiency is 0.95/0.95. One of the 

important applications of ESS is providing energy in critical condition, where this purpose is based on the high value 

of ESS initial energy (EI). Hence, it is equal to Emax in this paper. Moreover, this paper assumes that the tie and 

hardening lines, backup DG and ESS are very robust against the earthquakes and floods. Hence, it is expected that the 

repair cost of these elements can be considered close to zero, but, it is 3211 $/pole for the existing distribution line 

[6].  

This paper considers that earthquake (flood) happen in buses 11-16 and 23-24 (20-22 and 29-31) in the 33-bus 

network. Also, there are earthquake, earthquake, flood, flood, and flood in buses (21-25), (28-30, 53, 53), (39-43), 

(70-73) for the 119-bus system. Finally, in the proposed SBSP method, the MCS generates 1000 scenarios according 

to normal PDF with considering a standard deviation of 10% for the mentioned uncertain parameters in section 2. 

Then, the SBM obtains 20 scenarios that are included high occurrence probability.     

 

 
Table 1: Characterizes of the ESS [22] 

Proposed 

(candidate) location 

Size Construction 

cost  

All buses 4 MWh 150 $/kWh 
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(b) 
Fig. 2. Single line diagram of, a) 33-bus [28], b) 119-bus [28] distribution networks 
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4.2. Results  

All the numerical results of this work were performed based on the mathematical models developed using (1) and 

(2) in the GAMS environment using the well-known CPLEX solver [26].   

A) The best compromised solution: The Pareto front of the proposed LRA strategy in the 33-bus and 119-bus 

distribution networks are plotted in Fig. 3. Accordingly, the resilience index, F2, and the resilience cost (repair + 

load shedding costs) of zero achieved for the mentioned networks for the condition that the total planning and 

operation cost (F1) has the maximum value. In other words, increasing F1 will result in low resilience cost or high 

system resilience. Because, increasing resiliency leads to decreasing the expected energy not supplied (EENS) and 

that is, it will utilize strong equipment against earthquake and flood in the distribution network. Also, low EENS is 

reached for a system with a high number of local sources or storages. Finally, the best compromised solution for the 

mentioned networks based on the fuzzy decision-maker method in section 3 and different scenario number applied 

to the proposed problem is addressed in Table 2. According to this table for 1000 scenarios generated by MCS and 

20 scenarios applied to the proposed problem by SBM, the proposed LRA strategy is achieved with the resilience 

costs of 263.1$ and 396.3$, for 33-bus and 119-bus distribution networks, respectively, while the planning and 

operation costs of these networks are equal to 1238.2$ and 2720.4$, respectively. Comparing the results in Fig. 3 

and Table 2 shows that the LRA method is able to obtain F1 and F2 such that they are close to their minimum values. 

In addition, based on Table 2, the objective functions and problem calculation time with 20 and 25 scenarios 

obtained by SBM in 1000 and 2000 generated scenarios by MCS are almost same, but this condition is not true for 

comparison between 15 and 20 scenarios achieved by SBM. Therefore, this paper uses 1000 generated scenarios by 

MCS and 20 obtained scenarios by SBM due to its rational calculation time for the stochastic process and the low 

calculation error with respect to high scenario numbers that are applied to problem by SBM based on the reported 

results in Table 2.     
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(a) 

 
(b) 

Fig. 3. Pareto front for the proposed LRA strategy, a) 33-bus network, b) 119-bus network  
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Table 2: The best compromised solution results in different networks  

Number of generated scenarios by MCS  1000 

Number of applied scenarios by SBM   15 20 25 

Objective function ($) F1 F2 F1 F2 F1 F2 

 Objective functions in 33-bus network 1231.1 260.3 1238.2 263.1 1239.5 263.7 

Objective functions in 119-bus network 2709.2 390.5 2720.4 396.3 2721.9 397.1 

Calculation time (s) of stochastic process (MCS+SBM) 71 82 90 

Calculation time (s) of problem solving 352 375 398 

Number of generated scenarios by MCS  2000 

Number of applied scenarios by SBM   15 20 25 

Objective function ($) F1 F2 F1 F2 F1 F2 

 Objective functions in 33-bus network 1232.2 260.8 1238.4 263.2 1239.8 263.8 

Objective functions in 119-bus network 2710.4 391.1 2720.7 396.4 2722.3 397.3 

Calculation time (s) of stochastic process (MCS+SBM) 93 101 109 

Calculation time (s) of problem solving 351 375 397 

 

B) Planning results of the distribution networks in the LRA framework: Results of the proposed LRA strategy on 

33-bus and 119-bus distribution test systems are presented in Table 3. Based on this table and the provided data in 

section 4.1, since the hardening strategy is to use a strong line with a lower outage probability under the extreme 

weather events with respect to the conventional lines, it is utilized in the zones that earthquake and flood are 

happening. Thus, the network would not experience a blackout and it would have a high resilience in such 

conditions. On the other hand, the backup DG and ESS are generally used in the zones that are far from the 

distribution substation at the slack bus.  

As it is demonstrated in Table 3, there are 4 and 12 tie lines that installed in the 33-bus and 119-bus, respectively, to 

minimize the investment and operation costs and maximize the system resilience, i.e., minimum repair and load 

shedding costs. Also, the resilient 33-bus distribution network includes daily investment and operation costs of 

$664.1 and $574.1, respectively. However, the repair and load shedding costs are low, i.e., $22.3 and $238.2, 

because of selecting the high value for VOLL, which results in high resiliency of this network under earthquake and 

flood conditions. It should be noted that the condition happens to 119-bus distribution system, while it needs to daily 

investment cost $1481.1 and daily operation cost $1239.3 to have a repair cost of $41.8 and load shedding cost of 

$355.5.    
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Table 3: Planning results in different distribution networks   

Network 

Optimal location of strong equipment in earthquake and flood conditions 

Backup DG 

(bus) 

ESS (bus) Hardening line  Tie line 

33-bus 13 30 and 17 Between buses (11 to 16), (1 to 

3), (28 to 31), feeders between 

busses (3, 25) and (2, 22) 

Between buses 12-22, 25-

29, 9-15, 18-33 

119-bus 25 and 29 41, 73, 110 Buses 1-2, 1-63, 1-100, 21-26, 

41-43, 70-74, feeders 3-30, 30-54, 

100-118 

Between buses 6-24, 8-46, 

25-35, 54-62, 43-49, 38-

62, 58-85, 73-80, 75-99, 

94-108, 97-105, 110-118 

Network 

Daily costs ($) calculated in the proposed LRA strategy  

Investment  Operation Repair   Load shedding  

33-bus 664.1 574.1 22.3 238.2 

119-bus 1481.1 1239.3 41.8 355.5 

 

C) Investigating the operation and resilience indices: The results related to the operation indices such as energy 

loss (EL) and maximum voltage deviation (MVD) are shown in Fig. 4 for following two cases: 

 Case I: Network power flow analysis (Network without considering DG, ESS, hardening and tie lines). 

 Case II: Proposed scheme by formulation (1).  

Noted that the EL is equal to the sum of the network active power loss at whole study time. Also, MDV is equal to 

the maximum value of the absolute term of voltage deviation in all buses over whole study period. According to Fig. 

4(a), the EL for the case I in 33-bus and 119-bus distribution networks is 3.077 MWh and 5.262 MWh, respectively. 

But, in the case II, it is reduced to 1.899 MWh and 3.371 MWh, respectively. In other words, this strategy is able to 

reduce or improve EL about to 38.3% ((3.077 – 1.899)/3.077) and 35.9% ((5.262 – 3.371)/5.262) for the mentioned 

networks, respectively. This condition is met to network MVD so that the LRA can improve this index in case II 

compared to the case I about 41.4% and 32.6% for the 33-bus and 119-bus distribution systems, respectively, 

according to Fig. 4(b).  
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(a) 

 
(b) 

Fig. 4. Operation indices: (a) energy loss, (b) maximum voltage deviation  

 

Finally, the results of resilience index such as EENS is illustrated in Fig. 5, where EENS is equal to the division of 

load shedding cost by VOLL, or it is equal to the sum of total network load not supplied (PNS) at all simulation 

hours. Based on this figure, EENS values in case I are 28.9 MWh and 43.9 MWh for 33-bus and 119-bus networks, 

but, the EENS can be reduced to 2.83 MWh and 3.55 MWh for these systems in case II. Indeed, the proposed LRA 

method is able to achieve the low EENS that is close to zero to achieve the higher system resilience. In addition, the 

EENS changes versus VOLL are plotted in Fig. 6 for 33-bus and 119-bus networks. It is seen that the EENS can be 

reduced by increasing VOLL to 70 (90) $/MWh for 33-bus (119-bus) network, also, it is fixed for VOLL  70 (90) 

$/MWh in the 33-bus (119-bus) distribution grid. Noted that VOLL is a penalty price to avoid unnecessary power 

outage according to N – k contingency, hence, increasing this term causes that the EENS to be reduced. 

Accordingly, in VOLL = 100 $/MWh, the high resilience (minimum EENS) can be obtained.                 
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Fig. 5. EENS in different cases and networks  

 

Fig. 6. EENS changes vs. VOLL  

 

 
5. Conclusion 

In this paper, a two-objective LRA strategy was applied to a distribution network to obtain high resiliency in the 

condition of earthquakes and floods. Hence, the problem aimed to minimize the sum of planning the cost of backup 

DG, ESS and hardening and tie lines, and operation cost of network and backup DG in the first objective function. 

Also, the second objective function minimized the resiliency cost including repair and load shedding costs. These 

objectives were subjected to LOPF model, planning and reconfiguration constraints. Moreover, the SBSP approach 

based on a hybrid method of MCS and SBM was used to model the uncertainty of load, energy price, and  

network equipment in the proposed natural disaster conditions. In the following, the proposed two-objective 

problem is converted to a single-objective formulation using the -constraint-based Pareto optimization.  
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According to the numerical results, the proposed LAR strategy is able to obtain a network with high resiliency, that 

is the low values for resiliency cost, i.e., summation of repair and load shedding cost, can be achieved. This 

condition happened while a sufficient number of local sources and strong equipment against earthquake and flood 

occurred. Also, this strategy could improve energy losses and voltage deviations in about 37% and 40%, 

respectively. The proposed formulation is presented for the balanced MV distribution networks. As a future research 

work, the proposed scheme will be implemented in the unbalanced 3-phase distribution networks as well. Also, the 

network resiliency can be improved by different power electronic interfaced systems such as electric vehicles’ 

charging stations, where this case is not considered in this paper, but it will have investigated in the future studies. 
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