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 

Abstract—This paper proposes to replace controlled islanding, 

which is a defense mechanism against cascading failures, by tree 

partitioning whereby some of the tie-lines connecting the clusters 

are still connected in such a way that the cluster-level graph forms 

a tree. Tree-partitioning prevents line failures from spreading 

between clusters, similarly as for islanding, but keeps the clusters 

connected. That results in three main advantages. Power transfers 

between the clusters can still take place, helping to balance each 

cluster and limiting any necessary load shedding. Fewer lines are 

cut, which reduces the shock to the system. There is no need to re-

synchronize the clusters after the emergency. This paper offers a 

simple graph-theoretic justification for tree-partitioning, rather 

than one based on the spectral analysis of network Laplacian 

proposed in the literature. It also proposes a two-stage 

methodology, which utilizes spectral clustering, for splitting a 

network into tree-connected clusters.  Test results performed on 

the 118 node IEEE test network have confirmed the usefulness of 

the methodology. 

 

Index Terms—power systems,  blackout prevention, clustering 

I.  INTRODUCTION 

arge-area power blackouts, when millions of customers 

lose supply, are very rare but with very significant social 

and economic consequences. Many different reasons could 

cause such blackouts but one of the most common modes is a 

cascading blackout when tripping one transmission line results 

in a domino-like spreading of consequent line trips. Among the 

many examples, one can mention the blackouts in Canada/US 

in 2003, Italy in 2003 and Europe in 2006 [1].  

One particular defense mechanism against cascading failures 

is Controlled Islanding (CI). When a large-area blackout is 

imminent, CI splits the network into a number of self-sustained 

islands to prevent the proliferation of outages. A good overview 

of different techniques can be found in [2]. The clusters of 

nodes identified to form islands should have minimal power 

imbalance [3][4], CI should cause a minimal change in the 

power flow pattern [5][6], minimize dynamic stability problems 

[2], [7] - [14] and consider resynchronization requirements 

[15]. The conflicting requirements often require trade-offs [12]. 

The question of when to island is still open but some solutions 

have been proposed [16][17]. 

Despite many publications on CI over the last two decades, 

there has been little reported take-up by the industry. The main 
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reason seems to be the drastic nature of CI. Firstly, islanding 

goes against the fundamental instincts of System Operators who 

always try to keep the system together. Secondly, islands would 

inevitably have power imbalances and would therefore require 

balancing actions such as generation/load shedding resulting in 

a potentially significant additional loss of supply. Thirdly, CI 

would require resynchronization of islands which may not be 

easy and may take some time. Fourthly, CI requires opening 

many transmission lines and dealing with the resulting, 

potentially severe, static and dynamic problems. To summarize, 

there is a fear that the medicine may be worse than the disease. 

In a quest to find a less drastic way to contain a cascading 

blackout, we have utilized insights provided in [18][19] which 

analyzed spectral properties of the tree-partitioned network, i.e. 

a network divided into regions (clusters) connected in such a 

way that the cluster-level graph forms a tree. Papers [18][19] 

proved that Tree-Partitioning (TP) localizes line failures so that 

failures in one cluster do not affect power flows in other 

clusters. Therefore, this paper’s main idea is to replace CI by 

TP as an emergency measure to contain cascading line failures 

so that they do not propagate to other clusters. 

Essentially, the main difference between CI and TP is that 

for the former, all the tie-lines connecting the clusters are cut so 

the clusters are islanded. For TP, some of the tie-lines, referred 

to as bridges, remain in operation so the clusters are still 

connected. Both achieve localization of line failures but TP has 

the following advantages stemming from keeping the clusters 

connected. Firstly, power transfers between clusters can still 

take place and therefore there is no need for power balancing 

actions such as generation/load shedding. Secondly, fewer tie-

lines are cut so the shock to the system is less and therefore 

system stability and congestion are less affected. And thirdly, 

there is no need for resynchronization when returning to normal 

operation.  

This paper makes the following original contributions. 

Firstly, in section II.  , we offer a simple graph-theoretical proof 

of the line failure localization property of TP, rather than a more 

complicated proof utilizing spectral properties of the network 

graph [18][19]. We also show that failure localization due to cut 

vertices is a special case of TP. Secondly, in section III.  , we 

propose tree partitioning as an emergency measure to replace 

controlled islanding. Thirdly, we address a vital question, 

which has not been dealt with in [18][19], of how to split a 

network into tree-connected clusters. We suggest a two-stage 

approach. In the first step, section IV.  , we suggest using 
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spectral clustering [8][9][13][20] to select clusters of tightly 

connected nodes in both static and dynamic sense. Then, in 

section V.  , we examine two approaches to select which of the 

tie-lines linking the clusters should be retained as bridges. 

Application of Prim’s algorithm [23], minimizes the overall 

impact of cutting tie-lines while the impact on congestion can 

be minimized by evaluating all possible spanning trees of the 

cluster-level graph. 

Finally, in section VII.  ,  we show test results examining the 

performance of the proposed methodology on the 118 node 

IEEE test network.  

In this paper, we concentrate on the analysis of TP using the 

static DC network model as the first step in our investigation. 

We discuss the effects of using the AC network model and the 

dynamic effects at a high level in section VI.  Full examination 

of those issues would require an extensive further investigation 

which is beyond the scope of this paper.  

II.  GRAPH THEORY AND TREE-PARTITIONING 

A.  Graph representation of power networks 

The power network can be naturally represented as a graph: 

vertices represent buses (nodes), and edges (links) represent 

electrical connections (lines or transformers). Without losing 

generality, we will only consider simple graphs, where no self 

loops (i.e. edges beginning and ending at the same vertex) and 

no multiple edges between the same vertices are allowed.  

A graph is described by the vertex-edge incidence matrix C 











otherwise 0

  edge ofrtex  target ve theis   node if  1

   edge of vertex source  theis   node if  1

ei

ei

Cie        (1) 

The topological structure of the graph expressed by (1) does 

not capture the functional information about the power grid, 

which could be provided using edge weights. For partitioning 

purposes, it makes sense to select the weight equal to the power 

flow in an edge wij = |Pij | where ijP is the real power flow from 

node i to node  j (assuming the DC network model).  A small 

power flow indicates that disconnecting the line will result in a 

small shock to the system. In other words, edge weights can be 

interpreted as a penalty for cutting the corresponding line, but 

also as a measure of the connection strength, as nodes 

connected by lines with high power flows are more likely to be 

clustered together. 

Laplacian of a graph is a square matrix L = CWCT   where 

W is the diagonal matrix of edge weights. The elements of L are 























otherwise      ,0

 if    ,

  ,   if     ,
1

jiw

ikjiw

L ij

N

k
ik

ij     (2) 

and the degree of vertex i is equal to |Lii |.  

When W = B, where B is the diagonal matrix of line 

susceptances, the Laplacian matrix has a clear power 

engineering interpretation as the nodal susceptance matrix. 

Eigenvalues of the Laplacian matrix are nonnegative real 

numbers. 

A tree is an acyclic graph. Disconnecting any edge in a tree 

separates the tree into two disjoint trees. A tree with N vertices 

will have (N-1) edges. 

B.  Graph-theoretical justification of failure localization in 

tree-partitioned networks  

Consider Fig.  1(a) which shows a network consisting of a 

number of clusters denoted as a, b, c, d, e, f. The network is 

tree-partitioned when its cluster-level graph, Fig.  1(b), forms a 

tree. We will refer to the edges in the cluster-level tree as 

bridges. The comprehensive theory behind TP has been 

developed in [18][19] using spectral representation of the 

network graph and proved that internal line failures in a cluster 

could not affect power flows in other clusters. Hence, any 

cascading line failures in a cluster cannot propagate to other 

clusters, i.e. they are localized.  

 

 

Fig.  1 A tree-partitioned network: (a) full graph with clusters 

encircled; (b) cluster-level graph. 

This paper argues that the above conclusions can be deduced 

in a simpler way using fundamental algebraic graph theory. 

First, consider a simple tree consisting of two clusters 

connected by a bridge. The only way one cluster can affect 

power flows inside the other is through the bridge flow. The 

bridge flow depends only on each cluster’s power imbalance as 

the net export from one cluster must be equal to the net import 

by the other one, assuming a lossless network. Hence, if both 

clusters’ power imbalances are constant, any line trip inside one 

cluster cannot affect the bridge flow and therefore cannot affect 

power flows inside the other cluster.  

The above reasoning can be generalized to any number of 

tree-connected clusters. To prove it in a formal way, let us 

consider a cluster-level graph of a tree- partitioned network, as 

in Fig.  1(b), with N vertices (clusters) and (N-1) edges 

(bridges). Kirchhoff’s Current Law (KCL) applied to the graph 

can be expressed as 

''' fCp           (3) 

where C’ is the )1(  NN incidence matrix, p’ is the vector 

of N cluster imbalances, and f’ is the vector of (N-1) bridge 

flows. We assume the network to be balanced so the sum of all 

cluster imbalances is zero. As the graph is a tree, matrix C’ has 

full column rank equal to (N-1). Hence, matrix )''( CC T
 is 

invertible and bridge flows f’ are unique and equal to: 

'')''(' 1 pCCCf TT           (4) 
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Equation (4) shows that bridge flows depend only on the tree 

topology and cluster imbalances but do not depend on each 

cluster’s internal connections or any network impedances. Note 

that for practical applications, solving (3) does not require using 

pseudoinverse matrix 
1)''( CC T
. Bridge flows can be 

calculated in a recursive way using tree logic and starting from 

the leaf clusters of the tree – see an example in section VII.  A.   

Now power flows inside each cluster can be calculated by 

treating bridge flows f’ as additional injections to the clusters at 

the bridges’ terminal nodes. Using the DC network model, we 

get: 

 Cfp           (5) 

TBCf           (6) 

where f is the vector of line flows in the cluster (excluding 

the bridges), C is node-line incidence matrix of internal 

connections in the cluster (excluding the bridges), θ is the 

vector of nodal angles, B is the matrix of line susceptances in 

the cluster (excluding the bridges), and p is the extended vector 

of nodal injections in the cluster. Vector p  includes, apart from 

the “normal” injections (i.e. nodal generations/demands), also 

additional injections at the terminal nodes of the bridges which 

are equal to the appropriate elements of the bridge flows f’ 

calculated in (4). Solving (5)-(6) gives a unique solution for 

cluster power flows f and voltage angles θ (after assuming one 

angle as the reference). 

Equations (5)-(6) show that the internal cluster power flows 

f are functions of the extended cluster injections p (that also 

include the bridge flows f’), cluster topology (incidence matrix 

C), and line susceptances B. On the other hand, (4) shows that 

bridge flows f’ depend only on cluster power imbalances p’ and 

the tree topology expressed by C’. Hence, if both the tree 

topology and cluster power imbalances stay constant, power 

flows inside each cluster depend only on its internal incidence 

and susceptance matrices. Therefore, line failures in a cluster 

affect only power flows in that particular cluster but not in any 

other cluster.  

C.  Localization of line failures due to cut vertices 

Consider now cut vertices which, when removed, separate a 

graph into two or more disjoint graphs – see an example of a 

“butterfly” graph in Fig.  2(a). As proved in [19], cut vertices 

also localize line failures and we will now generalize our proof 

from section II.  B.  to prove the same. 

Let us conduct a thought experiment splitting the cut vertex 

(bus) a in Fig.  2(a) into three auxiliary vertices (buses) a0 , a1, 

a2 connected by two auxiliary lines a0-a1, a0-a2, of zero 

impedance as in Fig.  2(b). We assume that the original injection 

at bus a is connected to bus a0. 

Hence we have transformed a network with a cut vertex in 

Fig.  2(a) into a tree-partitioned network in Fig.  2(b) in which 

the auxiliary lines a1-a0, a2-a0, become bridges linking three 

clusters (b, c, a1), (a0), and (d, e, a2). And, as proved in section 

II.  B.  , a tree-partitioned network localizes line failures.  

 

 

Fig.  2: (a) a graph with cut vertex a; (b) inserting zero-impedance lines 

creates a tree-partitioned network.  

To summarize, we have proved in this section that tree-

partitioned networks localize line failures and that cut vertices 

are just a special case of tree-partitioned networks. We have 

employed only fundamental algebraic graph theory without 

resorting to a complex spectral representation of the network 

graph as in  [18][19]. 

D.  Comments 

The fundamental condition for the line failure localization 

property of TP is that the power imbalances in each cluster must 

stay constant and that bridges stay intact. However, practice 

shows that line failures may lead to generator trips hence 

changing power imbalances. On the other hand a bridge failure 

separates the network into two disjoint parts which, in effect, is 

equivalent to islanding and results in the two parts losing power 

balance. Similarly, line failures in a cluster may lead to 

islanding of a part of the cluster so that the network is separated 

into two disjoint parts. If the islanded part contains loads and 

generators that are not in power balance, the remaining part of 

the cluster, which is connected to the rest of the system, has a 

changed power balance which again violates the localization 

condition of TP. Any changes in the power balance trigger a 

frequency control process. Those effects cannot be studied 

using static DC or AC power flows as they require modelling 

of frequency response which is discussed in Section VI.   

Next, let us discuss if it would make sense to leave more than 

one bridge between clusters. That would make the network 

topology more robust as a failure of one of the bridges would 

still keep the clusters connected. However note that while the 

cluster-level graph would still be radial, it would not be a tree 

as there would be a loop due to the parallel bridges. Hence, the 

failure localization properties of TP would generally no longer 

hold. To consider that question further, let us assume that there 

are two bridges linking two clusters and that the terminal nodes 

of the two bridges are electrically distant from each other. If 

there are internal line trips in one of the clusters, the total power 

flowing over the two bridges stays constant, as the cluster-level 

network is radial (although no longer a tree), but there may be 

a shift of power transfer from one bridge to the other due to the 

cluster’s changed topology.  This will change two elements of 

the extended vector of nodal injections p in (5) that correspond 

to the two bridge lines. A change in vector p  will change power 

flows f in the other cluster which may potentially lead to 

overloads and cascading failures. This confirms that for failure 

localization, clusters must be connected by one bridge only. 

However, if the two terminal nodes of the bridges are 

electrically close, the shift in bridge power flows will be small. 

Hence, it will not cause a significant change in the other 

cluster’s internal power flows so line failures will be in practice 

localized. Quantification of that issue would warrant a separate 
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investigation which is beyond the scope of this paper. Hence, 

this paper assumes that only one bridge links any two clusters.   

III.  TREE-PARTITIONING AS AN EMERGENCY MEASURE TO 

CONTAIN CASCADING FAILURES  

In this section we suggest how Tree-Partitioning (TP) can 

replace Controlled Islanding (CI) as an emergency measure to 

contain cascading line failures. We do not address the question 

of when to apply it [16][17]. The high-level algorithm defense 

mechanism will work as follows:  

1. Using the latest information about the system, identify 

clusters of closely-connected nodes in both static and 

dynamic sense - see section IV.  Generally, each cluster 

will have a power imbalance. 

2. Find a cluster-level spanning tree, i.e. identify which tie-

lines connecting the clusters should be kept connected as 

bridges and which tie-lines should be disconnected– see 

section V.   

3. Knowing the cluster-level tree topology and cluster 

imbalances, use (4) to calculate bridge flows. 

4. Treating bridge flows as additional cluster injections at 

bridges’ terminal nodes, calculate post-partitioned line 

flows inside each cluster using (5)-(6).  

5. Assess the impact of tree-partitioning on congestion and 

stability and take appropriate remedial actions if necessary. 

Note that the strategies proposed in steps 1 and 2 should 

ensure that the need for remedial actions is minimized. 

 

Let us now compare TP to CI. Both CI and TP localize line 

failures so that they cannot propagate outside their cluster but 

for TP, some of the tie-lines (bridges) remain in operation so 

the clusters are still connected. This results in the following 

advantages of TP. Firstly, CI usually creates power imbalances 

in each island and will therefore require balancing actions such 

as generation/load shedding. When the network is tree-

partitioned, power transfers between the clusters can still take 

place to keep the clusters in balance thus avoiding 

generation/load shedding. Secondly, fewer lines are cut so that 

the shock to the system is less and therefore system stability and 

network congestion will be less affected. Thirdly, there is no 

need to re-synchronize clusters when returning to normal 

operation. Admittedly, re-connecting the disconnected tie-lines 

could cause problems due to possibly large angle differences 

between their terminal nodes, but it is less of a problem than 

resynchronization of islands.  

One of the issues for CI is finding an optimal trade-off 

between minimizing generator non-coherency and minimizing 

power imbalance of the islands [12]. TP solves that problem as 

there is no need to worry about power balances of clusters.  

IV.  HOW TO SELECT CLUSTERS? 

While [18][19] provided a theoretical background for TP, it 

did not address the vital issue of how to partition a network into 

clusters forming a tree. In this paper we suggest a two-stage 

approach. In this section, we present the first step, i.e. selection 

of optimal clusters, while in section V.   we present a 

methodology of choosing which tie-lines linking the clusters 

should be retained as bridges.  

There are many methodologies available in the islanding 

literature, briefly reviewed in Introduction, about the selection 

of nodes and generators to form clusters. Generally, any 

methodology could be used for that purpose as long as cluster 

nodes and generators are tightly connected both in a static and 

dynamic sense and weakly connected to other clusters.  

However, we believe that spectral clustering provides perhaps 

the most suitable framework as it can be theoretically justified 

using Cheeger inequality as discussed below. 

To measure the quality of clustering [20], we define 

expansion )(S  of cluster S  as  

)(

)(
)(

Svol

S
S


              (7) 

where )(S is size of the cluster boundary, i.e. the sum of 

weights of the edges (tie-lines) linking S with other clusters, and 

)(Svol  is the cluster volume defined as the sum of degrees of 

its vertices. The best partition into k clusters is quantified by 

minimizing the maximum expansion among all the clusters. It 

means that we try to find clusters of nodes that are internally 

strongly connected with each other (high volume) with weak 

interconnections between them (low boundary). This has the 

effect of minimizing disruption to the system when tie-lines 

linking the clusters are cut. The problem is NP-hard and spectral 

clustering provides an approximate solution to the problem. 

In a graph with N  vertices, we use the first k eigenvectors of 

the Laplacian, for some Nk 2 , to give geometric 

coordinates to the N vertices in ℜk. Namely, these coordinates 

are the N rows of the kN   matrix whose columns are the k 

eigenvectors of the smallest k eigenvalues. The resulting data 

points are then clustered using a standard clustering algorithm. 

Spectral clustering can be justified by Cheeger inequality [20] 

which indicates that the smaller the k-th eigenvalue, the closer 

the approximate solution is to the optimal one.   

Dendrogram produced by the hierarchical spectral 

clustering methodology [20] reveals the internal structure of a 

network and makes it possible to partition a network into almost 

any number of clusters, although with varying effectiveness. 

Best partitions are associated with large eigengaps, i.e. 

differences between two consecutive eigenvalues. Fig.  3 shows 

eigengaps of 118 node IEEE test network while Fig.  4 shows 

the network divided into 5 clusters. 

Clustering procedure should take into account not only 

power flows but also system stability. To take into account 

transient stability, each cluster should include only coherent 

generators so that they do not lose synchronism following any 

disturbances. To achive that, spectral clustering can be executed 

in two steps [8][9]. In the first step, a graph of the Kron-reduced 

network is constructed such that it contains only generator 

nodes and its edge weights are the synchronizing power 

coefficients that describe dynamic coupling between the 

generators. To satisfy the generator coherency constraint, the 

generators are grouped using spectral clustering which will 

result in each clusters containing generators strongly linked to 
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each other (high synchronizing power coefficients) and with 

weak links (small synchronizing power coefficients) between 

the clusters. In the second step, constrained spectral clustering 

is performed on the full static DC network model to identify 

clusters of network nodes that are tightly internally connected 

and with minimal power flows between the clusters. To make 

sure that the clusters contain only coherent generators, pair-

wise constraints obtained from the first step are enforced in the 

clustering process.  

Spectral clustering can be further generalized to take voltage 

and frequency stability into account [13]. We will not discuss 

those issues in detail here and refer instead to the literature. 

V.  SELECTING THE OPTIMAL SPANNING TREE  

Clustering will generally result in a cluster-level graph that 

is meshed, i.e. it contains loops. Let us now define the quotient 

graph consisting of N vertices corresponding to the clusters and 

L edges corresponding to tie-lines linking the clusters. Fig.  5 

shows an example of the quotient graph of 118 node IEEE test 

network divided into 5 clusters with 17 tie-lines linking them. 

TP requires finding a spanning tree of the quotient graph. The 

spanning tree is defined as a subgraph that links every node in 

the graph without any cycles. The retained links are bridges and 

the remaining tie-lies linking the clusters have to be 

disconnected. An optimum spanning tree depends on the chosen 

criterion of optimality. 

A.  Maximum-weight spanning tree  

The first criterion we consider is to minimize a shock to the 

system when tie-lines are cut.  To do that we will utilize the 

weights (i.e. power flows) associated with the tie-lines, hence 

we will try to cut lightly-loaded lines and preserve the lines with 

heavy power flows.  To achieve that we utilize the Prim’s 

algorithm [23] that finds a minimum-weight spanning tree for a 

weighted undirected graph. As we want to choose such edges 

that maximize, rather than minimize, power flows in the 

retained lines (bridges), we have modified the Prim’s algorithm 

so that it finds the maximum-weight spanning tree.  

The maximum-weight algorithm may informally be 

described as follows: 

1. Find an edge with the heaviest weight. The edge with its 

terminal vertices will form the starting tree. 

2. Of the edges that connect the tree to vertices not yet in 

the tree, find the maximum-weight edge, and transfer it 

to the tree together with its terminal vertex. 

3. Repeat step 2 until all vertices are in the tree. 

 

Note that we do not recalculate the flows after each step as we 

are interested in the overall impact of TP by comparing the 

flows before and after TP. Hence each step is conceptual rather 

than physical.  Section VII.  A.  shows an example of the 

algorithm using the quotient tree of 118 node IEEE test network 

divided into five clusters. 

B.  Minimizing load shedding to relieve congestion 

Maximum-weight tree minimizes the overall shock to the 

system created by cutting less-loaded tie-lines as that should 

minimize the impact on congestion and stability. However, 

congestion depends on individual line flows and limits rather 

than total changes in all flows. Hence, let us consider an 

alternative algorithm that selects such a spanning tree that the 

sum of line overloads caused by TP is minimized. This will 

therefore also minimize load shedding required to relieve 

congestion.  

The brute-force approach to do it would be to simply check 

the overloads for every possible spanning tree and chose the one 

that minimizes the overloads. The first question is how many 

trees would we have to check. Kirchhoff’s Matrix Tree 

Theorem says that the number of spanning trees can be 

computed in polynomial time and it is equal to any cofactor of 

the unweighted Laplacian matrix L. An example in section VII.  

B.   shows that there are 420 possible spanning trees for the 

quotient graph shown in Fig.  5 so we would have to run 420 

power flows.  

In order to examine if it is possible to speed up the 

calculations, we have considered the application of Line Outage 

Distribution Factors (LODFs) [22] instead of running a power 

flow for each spanning tree. LODF is defined as the share of a 

disconnected line flow that will show up on another line. 

However, the problem is that LODFs are valid for a linear DC 

network model so the results are reasonably accurate only for 

small disturbances while TP requires many tie-lines to be 

disconnected. For the IEEE 118 node system considered, 

creating a spanning tree involves disconnecting 13 tie-lines and 

our calculations showed that applying LODFs was highly 

inaccurate and cannot be applied in practice. The optimal tree 

chosen using LODFs was supposed to result in the overload of 

11 MW. We have checked that result using the AC power flow 

and found out that the actual overload value was 165 MW.  This 

proves that using LODFs to assess the effect of TP on 

congestion is highly inaccurate.  

Another possibility of speeding up calculations would be by 

eliminating irrelevant trees in the search algorithm but that issue 

woud require further research.  

Once an optimal spanning tree has been identified, 

congestion relief actions have to be undertaken which might 

involve generation/load shedding that would limit power 

transfers between clusters. We do not deal in detail with that 

issue in this paper, as congestion relief tools are well-known, 

but note that the Unified Controlled proposed in [21] would 

automatically minimize load shedding in a tree-partitioned 

network.  

VI.  AC NETWORK MODELLING AND DYNAMICS 

TP’s localization of line failures has been proved in this 

paper using the static DC network model that neglected 

transmission losses, reactive power, and voltage changes. Also, 

the effect of generation failures, which often accompany line 

failures, has not been considered. A full investigation of those 

issues is beyond the scope of this paper but in this section we 

offer a high-level discussion.  

A.  The effects of using AC network model 

When using the AC network model, we have to consider the 

effects of transmission losses, reactive powers and changing 

voltages. Firstly, let us consider the effects of considering 
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− 

transmission losses. A line failure in a cluster will generally 

increase transmission losses in that cluster and a power flow 

program will cover those increased losses from the slack bus. 

Hence, if the slack bus is located in the cluster where the line 

failure occurred, the additional losses would be covered 

internally inside the cluster and there would be no effect on 

bridge flows. However if the slack bus is located in another 

cluster, the slack bus would have to export power over the 

bridges to the cluster where the line failed to cover the increased 

losses. This, of course, would change the bridge flows meaning 

that the localization feature of TP would not hold. However, the 

slack bus just is a mathematical trick to make sure that the non-

linear power equations are balanced. In reality, if there is a 

deficit of power due to changed losses, that deficit will cause 

the frequency to drop which will activate the frequency control 

process. In the new steady-state, the allocation of increased 

transmission losses between individual generators will depend 

on the Automatic Generation Control (AGC) strategy. AGC 

could be simulated in a static AC power flow by assuming a 

distributed slack bus, with distribution factors corresponding to 

individual generators’ participation factors in the AGC. The 

conclusion is, therefore, that line failures will in practice cause 

some changes in the bridge flows due to increased losses. Still, 

those changes are likely to be small and of no great practical 

significance as transmission losses tend to be small.  

Next, let us consider the effect of reactive powers. Assuming 

the DC network model, we have used real power flows as edge 

weights and when considering congestion. Under the AC 

network model, we could use apparent power for those 

purposes. It is certainly justified when considering congestion 

as it is the current (proportional to the apparent power), rather 

than just the real power, that heats a line. It is more debatable 

whether apparent power should be considered as line weights. 

The modified Prim’s algorithm minimizes interruption caused 

by the disconnection of tie-lines. One can argue that a 

disruption of real power flows is more important than a 

disruption of reactive power flows. That issue warrants a further 

investigation beyond the scope of this paper. 

Next, let us consider the voltage effects. Any line failure will 

cause a reconfiguration of power flows and depressed voltage 

profiles. That latter effect is not only of secondary importance 

when compared to the former, but it is also mostly local and 

would therefore affect mainly the “sick” cluster where lines 

failed. Hence, localization of flow reconfiguration by TP would 

also localize voltage drops, especially when clusters have been 

chosen such that they are strongly internally connected with 

weak connections to other clusters – see section IV.  If 

depressed voltages in the “sick” cluster threatened voltage 

stability in the whole system, under-voltage protection would 

open the connecting bridges, islanding the “sick” cluster. 

B.  Dynamic effects 

First, let us consider the dynamic effects of line failures, 

concentrating on transient stability. We assume that the clusters 

are selected such that they contain only coherent generators, as 

discussed in section IV.  Hence, generators in a tree-partitioned 

network should stay synchronized within each cluster following 

large disturbances, but the clusters can lose synchronism with 

each other causing the bridges to trip. Hence, in the worst 

possible case, when system dynamics cause all the bridges to 

trip, the result will be islanding of clusters and therefore the 

same as for CI. However, at least some of the bridges could 

survive so the end result would still be better than outright CI. 

Next, let us now consider the effect of a changed cluster 

power balance due to line failures causing generation failures 

or islanding of a part of the cluster. In CI, any power balance 

change will affect only the island where it occurs, worsening its 

local power balance and most likely requiring additional load 

shedding - but the other islands are unaffected. Under TP, a 

changed cluster power balance would trigger a system-wide 

frequency response with all the system generators responding 

to a frequency drop. Suppose a power balance change in a 

cluster is less than the total system frequency reserve. In that 

case, the system will recover without load shedding so the result 

would be better than for islanding. However, if the power 

balance change in a cluster were higher than the system 

frequency reserve, it would cause an uncontrolled frequency 

drop, resulting in a possible system-wide under-frequency load 

shedding. Whether or not the outcome would be better than a 

localized load shedding in an island under CI would depend on 

the situation at hand. That question would require a further 

detailed investigation beyond the scope of this paper. 

 

To summarize the discussion, TP localizes line failures but 

in extreme situations the effects of voltages, dynamics and 

power balance changes may require reverting to CI. Hence, one 

way of taking advantage of both CI and TP would be a two-step 

defense whereby initially the network is tree-partitioned in 

order to keep the system together and limit load shedding. 

However, if and when system dynamics, voltage effects and/or 

power balance changes threaten the stability of the system, 

bridges are tripped to separate the clusters, i.e. CI is executed. 

Analysis of such a two-step defense is beyond the scope of this 

paper.   

VII.  SIMULATION RESULTS 

This section reports simulation results performed on the 

IEEE 118-bus network model available in the MATPOWER 

library [24]. Due to space constraints and also to simplify the 

considerations, we will show the results using the static DC 

network model.  

A.  Identifying clusters and bridges 

First the DC power flow problem was solved to calculate all 

the network flows. Then spectral clustering was undertaken 

utilizing MATLAB function “spectralcluster”, with power flows 

used as weights. Fig.  3 shows the absolute and relative 

eigengaps with the latter indicating that the best clustering can 

be obtained when the network is divided into two or five 

clusters. As dividing the network into two clusters would not 

achieve a good localization of disturbances, we decided to use 

five clusters shown in Fig.  4. The clusters contain 49, 15, 17, 

23, and 14 nodes, respectively.  
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Fig.  3  Absolute and relative eigengaps for 118 node system 

The quotient graph, i.e. a graph whose vertices are the 

clusters of the full network and whose edges are the tie-lines, is 

shown in Fig.  5. Note that the quotient graph is meshed. Power 

imbalances of each cluster (net export “E” or import “I” in MW) 

are indicated together with terminal nodes for each tie-line. The 

numbers on top of tie-lines show their power flows in MW.  

 

 

Fig.  4  IEEE 118 node network divided into 5 clusters. Seventeen tie-

lines linking the clusters are shown in red. Five congested lines 

considered in section  VII.  B.  are shown in green.  

The modified Prim’s algorithm to determine the maximum-

weight spanning tree of the quotient graph from Fig.  5 results 

in the following steps  

1. Choose the edge with the highest line flow (90 MW in 

line 8-30) as the starting edge. So, the starting tree 

consists of vertices 2 and 4 and the bridge line 8-30. 

2. The next heaviest edge connected to the tree is 30-38 

carrying 68 MW. Add it to the tree together with 

vertex 1. The tree consists of vertices 1, 2, and 4.  

3. The next heaviest edge connected to the tree is 80-98 

carrying 23 MW. Add it to the tree together with 

vertex 5. 

4. The next heaviest edge connected to the tree is 101-

102 carrying 39 MW. Add it to the tree together with 

vertex 3. This completes the algorithm as the tree 

contains all the vertices.  

 

The resulting maximum-weight spanning tree shown in Fig.  

6. The total amount of power flows in the disconnected tie-

lines is (1+5+6) + (11+13 +1+7) + 14 + (3+30) + (18+ 

22+15) = 146 MW.   

 

 

Fig.  5  The quotient graph of IEEE 118 node network. 

Bridge flows in Fig.  6 can now be calculated using (4). 

Cluster power imbalances are p’ = [-2, 102, 53, -44, -109]T . 

Numbering the bridges consecutively in Fig.  5 clockwise 

starting from the left gives  C’= [0 -1 1 0;1 0 0 0;0 0 0 1;-1 1 0 

0;0 0 -1 -1]. Utilizing (4) gives bridge flows  f’  = [102, 58, 56, 

53]T shown in Fig.  6. 

 

 

Fig.  6 The maximum-weight spanning tree of the quotient graph.   

Note that, as there is a unique path for power to flow along 

the tree from net exporters to importers, bridge flows can be 

calculated without using (4) but recursively starting from the 

leaf clusters. Let us start from leaf cluster 2. It exports 102 MW 

so the flow in bridge 2-4 is 102 MW. Cluster 4 net-imports 44 

MW so the balance (102-44) = 58 is flowing in bridge 4-1. 

Cluster 1 net-imports 2 MW so the balance (58-2) = 56 MW 

flows in bridge 1-5. Cluster 5 net-imports 109 MW so the 

balance (109-56)= 53 must flow in bridge 3-5. This concludes 

the calculations as the export of cluster 3 is 53 MW.  

TP has resulted in a changed pattern of flows with some 

flows increasing and some decreasing as shown in the heat map 

in Fig.  7. The vast majority of lines did not increase their flows, 

with many even reducing them, as shown in blue and green. 

There were some small increases in loading (shown in yellow) 

in clusters 3 and 4. Also, five internal lines in clusters 3, 4, and 

5 and two tie-lines linking cluster 2-4 and 3-5 (shown in amber) 

had some increases in loading. Three internal lines changed the 

flow direction. Only one line (shown in brown) linking clusters 

5 and 1 increased its load more significantly. The small impact 

of TP on the network flows is the result of applying spectral 

clustering, which minimizes the flows in the tie-lines of the 

quotient graph, and the modified Prim’s algorithm that 

minimizes the interrupted tie-line flows. Therefore the overall 

change in network power flows is minimized.   
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Fig.  7  Heat map showing color-coded changes in power flows 

following tree-partitioning. The network diagram looks different than 

that in Fig.  4 as it was produced automatically by MATLAB. 

B.  Selecting a spanning tree that minimizes congestion 

Generally, TP will change power flows in the network which 

may cause network congestion. To investigate that possibility, 

we have assumed that lines )15-33(, )94-96(, )99-100(, )100-

101(, )92-102), shown in green in Fig.  4 operated at their limits 

prior to TP so any increase in their flows would cause 

congestion. The reason for choosing those particular lines was 

that they experienced high increases in power flows due to TP. 

Choosing the maximum-weight tree shown in Fig.  6 resulted 

in the total value of overloads equal to 62 MW.  

Now, let us instead choose a tree that minimizes load 

shedding necessary to relieve congestion caused by TP - see 

section V.  B.   To do that we have to examine all the possible 

spanning trees and their number is equal to the cofactor of the 

unweighted Laplacian matrix L. For the quotient graph shown 

in Fig.  5  , the Laplacian is: 

 

𝐿 =

(

 
 

10 0 −3 −5 −2
0 4 0 −4 0
−3 0 6 0 −3
−5 −4 0 9 0
−2 0 −3 0 5 )

 
 

       (8) 

 

and all its cofactors are equal to 420.  

To evaluate all spanning trees of the quotient graph shown 

in Fig.  5 we utilized MATLAB function 

“generateSpanningTrees(A)”. Calculating DC power flow for 

each spanning tree and evaluating the impact on congestion 

resulted in choosing the optimal spanning tree shown in Fig.  8 

which uses different lines as bridges compared to the 

maximum-weight spanning tree of Fig.  6. The total value of 

overloads is reduced to 20 MW from 62 MW for the maximum-

weight tree. Note that the bridge flows in Fig.  8 and Fig.  6 are 

the same as the tree incidence matrix is the same – see (4).  

The price we pay for minimizing congestion is increasing the 

overall shock to the system as quantified by the sum of 

disconnected tie-line power flows. Comparing Fig.  5 with Fig.  

8 gives the total of disconnected power flows equal to (1+5+90) 

+ (13+68+1+7) + 23 + (30+39) + (15+22+18) = 332 MW which 

is obviously much more than that for the maximum-weight 

spanning tree equal to 146 MW. 

 

 

Fig.  8 The optimal spanning tree that minimizes the sum of 

overloads in IEEE 118 node network.  

C.  Comparison between CI and TP 

Here we provide quantification of some of the advantages of 

TP over CI which have been compared theoretically in section 

III.  CI requires extensive load/generation shedding to keep the 

islands in power balance. After being islanded, clusters 2 and 3 

would have to shed 102 and 53 MW of generation, respectively, 

while clusters 1, 4, and 5 would have to shed 2, 44, and 109 

MW of load, respectively. Hence the total load shed would be 

155 MW. Under TP, the clusters are still connected so power 

transfers to make up the power balance in each cluster can still 

take place and no load shedding is necessary. 

Obviously both CI and TP could cause network congestion, 

so some additional load shedding might be necessary. However, 

it might be expected that congestion due to TP would be less as 

TP results in a smaller flow reconfiguration – see the next 

paragraph. 

Now let us consider a shock to the system from flow 

reconfiguration which could result in congestion and stability 

problems. For CI, all the tie-lines linking the clusters, see Fig.  

5, would have to be cut so the total interrupted power over all 

the tie-lines would be 366 MW. For TP, some of the tie-lines 

would be left connected as bridges, see Fig.  6, and the total 

power cut on tie-lines would be only 146 MW, see section VII.  

A.    

D.  Execution times 

The computer used in this study was a DELL laptop with 

Intel Core i7 processor and 16GB RAM. Execution time for 

spectral clustering was 0.18 seconds, Prim’s algorithm 0.02 

seconds, calculating all possible spanning trees 0.3 seconds, and 

running DC power flows for all the trees to find a tree that 

minimizes congestion 8.8 seconds. Clearly the execution times 

are not excessive and suggest that the methodology can be 

implemented in real-time even for large systems. The most 

time-consuming step was running the power flows to find a tree 

that minimizes congestion. The algorithm could be sped up by 

omitting irrelevant trees but that issue would have to be 

investigated further.  

VIII.  CONCLUSIONS 

This paper argues that controlled islanding (CI) to stop a 

cascading blackout is a drastic move which the industry is 

finding hard to adopt in practice. We argue that tree-partitioning 

(TP), which also limits cascading of line failures to within a 

cluster, is less drastic and has the following advantages. Firstly, 
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the clusters are still interconnected so that power transfers 

between them can still take place helping to balance each cluster 

and limiting any necessary load shedding.  Secondly, fewer 

lines are cut so that the shock to the system is less and therefore 

system stability and congestion are less affected. Thirdly, there 

is no need to re-synchronize the clusters after the emergency. 

This paper has made the following original contributions. 

Firstly, we have proposed TP as an emergency measure to stop 

cascading line failures. Secondly, we have offered a graph-

theoretical justification for TP which is much simpler than the 

one based on the spectral representation of the network graph 

previously proposed in the literature. Thirdly, we have 

addressed a vital question of how to split a network into tree-

connected clusters. We have suggested a two-stage approach. 

In the first step, we have used spectral clustering to identify 

closely-connected clusters of nodes in both static and dynamic 

sense. Then we have examined two approaches to select which 

of the tie-lines linking the clusters should be retained as bridges.  

Application of Prim’s algorithm minimizes the overall impact 

of cutting tie-lines while the impact on congestion, and 

therefore also load shedding required, can be minimized by 

evaluating power flows for each possible spanning tree.  

In this paper, we have concentrated on analyzing TP using 

the static DC network model as the first step in our 

investigation. The effects of the AC model and system 

dynamics have been analyzed only at a high level and require 

further research. 

One way of taking advantage of both CI and TP would be a 

two-step defense whereby initially a network is tree-partitioned 

into clusters to keep the system together and limit load shedding 

that would be necessary for CI. However, when system 

dynamics, voltage effects and/or generation failures threaten 

the system stability, CI is executed to separate the clusters.  

Test results examining the performance of the proposed 

methodology on the 118 node IEEE test network have 

confirmed the usefulness of the method. 
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