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Abstract—Mobile edge computing (MEC) has been proposed
as a promising solution, which enables the content processing
at the edges of the network helping to significantly improve the
quality of experience (QoE) of end users. In this article, we aim to
utilize the MEC facilities integrated with time-varying renewable
energy resources for charging/discharging scheduling known as
green scheduling of on-move electric vehicles (EVs) in a geograph-
ical wide area comprising of multiple charging stations (CSs).
In the proposed system, the charging/discharging demands and
the contextual information of EVs are first transmitted to nearby
edge servers. With instantaneous electricity load/pricing and the
availability of renewable energy at nearby CSs collected by ag-
gregators, a weighted social-welfare maximization problem is then
solved at the edges using greedy-based algorithms to choose the
best CS for the EV’s service. From the system point of view, our
results reveal that compared to cloud-based scheme, the proposed
MEC-assisted EVs scheduling system significantly improves the
complexity burden, boosts the satisfaction (QoE) of EVs’ drivers by
localizing the traffic at nearby CSs, and further helps to efficiently
utilize the renewable energy across CSs. Furthermore, our greedy-
based algorithm, which utilizes the internal updating heuristics,
outperforms some baseline solutions in terms of social welfare and
power grid ancillary services.

Index Terms—Ancillary services, electric vehicles (EVs),
greedy-based algorithms, mixed integer nonlinear programming
(MINLP), mobile edge computing (MEC), renewable energy.

I. INTRODUCTION

DUE to the increase in CO2 emissions and its environmental
concerns, the integration of electric vehicles (EVs) for

sustainable transportation is gaining significant attentions from
the industrial sector [14]. According to the survey from the
Electric Power Research Institute, about 35% of vehicles in the
public transportation in USA will be EVs by 2020 [5]. Numerous
research efforts have been proposed during the past years for
designing efficient scheduling mechanisms for charging and
discharging of EVs in a controlled and coordinated manner [1],
[7], [12], [16], [18].
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From the scalability point of view, the majority of the schedul-
ing solutions have been designed for the centralized imple-
mentation. Aggregation and processing of big data from large
fleet of EVs at the central location result in high computa-
tion/communication complexity compared to the decentralized
implementations. Decentralized scheduling of EVs has been
paid noticeable attentions [1]–[3], [12], [17].

Mobile edge computing (MEC), which has been proposed
by the European Telecommunications Standards Institute, aims
to improve users satisfaction by moving network contents and
processing from cloud to the edge [23]. Preliminary research
efforts for the role of MEC in charging scheduling of EVs have
been presented in [1] and [2], where the scheduling objective
is minimizing the EVs charging service time or reducing the
response delay. However, the system model and the optimization
solutions in these recent works suffer from multiple aspects.
First, the optimization solutions do not take into account the
share profits that each participant [EVs and charging stations
(CSs)] obtains from charging/discharging operations. Second,
the EVs scheduling algorithms do not ensure the ancillary ser-
vices to the power grid, i.e., peak reduction and load flatting.
Also, from the system point of view, they do not address the in-
tegration of renewable energy and its utilization known as green
scheduling by their system. Motivated by these shortcomings,
our main contributions in this article are summarized as follows.

1) We propose the MEC-assisted system integrated with
the renewable energy for charging/discharging scheduling
known as green scheduling of on-move EVs at large geo-
graphical scale. The proposed system aims to reduce the
operational complexity, boost the Quality of Experience
(QoE) of drivers by localizing the traffic at nearby CSs, and
to utilize efficiently the renewable energy across the CSs.

2) A weighted social welfare maximization problem is then
formulated for the proposed system, which takes into
account the profits interest of each participant (EVs and
CSs), and has the flexibility to accommodate different
electricity pricing models as well as the spatiotemporal
constraints of renewable energy.

3) With the interaction between system components, a
greedy-based algorithm with internal updating heuristics
is designed to solve the optimization problem, which
yields the best CS for the EV’s service as well as better
grid ancillary services.

The remaining parts of this article are organized as follows.
Related works are discussed in Section II, and the proposed
system is described in Section III. The optimization problem is
formulated in Section V, and the proposed algorithm is detailed
in Section VI. Simulation results are presented in Section VII.
Finally, Section VIII concludes this article.
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II. RELATED WORK

Charging/discharging scheduling of EVs has been the ma-
jor focus of energy research community during the past
years [1]–[3], [6], [7], [12], [15], [17], [18]. Chandra
and Gupta [14] provide a comprehensive survey on the
EVs charging scheduling mechanisms from different system
perspectives.

A. Decentralized EVs Scheduling

As an unavoidable challenge, the scheduling of EVs at
large scale has received noticeable attentions from the research
community. Mukherjee and Gupta [17] proposed decentralized
charging scheduling of EVs at multiple charging spots where
the local aggregators collaborate with each other to optimally
schedule EVs. Tajeddini and Kebriaei [12] investigated the
use of mean-field game for the decentralized scheduling of
large-fleet of EVs. In order to improve the reliability of power
grid in large-scale networks, Rana and Mishra [4] proposed
a web-based application for day-ahead scheduling of EVs. In
their proposed solution, the most appropriate time slots were
selected for charging of EVs. Cao et al. [10] introduced the EV
battery switch technology to improve the EV drivers’ satisfac-
tion by utilizing the switchable batteries cycled at CSs. Mehrabi
et al. in [9] have proposed a distributed greedy-based algo-
rithm for scheduling of EVs in large-scale distribution energy
system.

B. Renewable Energy Utilization

From the system operational point of view, the integration
of renewable energy with low operational costs into the smart
grid has attracted several research attentions. Tushar et al. [18]
investigated the energy cost minimization problem in scheduling
of three categories of EVs at charging stations that are equipped
with photovoltaic (PV) solar panels. Chaudhari et al. [19] studied
the charging scheduling of EVs taking advantage of energy stor-
age system (ESS) at PV-integrated CS, which are powered from
the solar irradiation. In a recent study [16], authors investigated
the peak-load management in commercial systems using EVs,
battery ESSs, and PV units.

C. Information and Communication Technology (ICT)-Based
Scheduling

Majority of the aforementioned studies consider either the
scheduling of EVs in a centralized manner, which suffer from
high complexity, or the decentralized solution does not provide
facilities for dynamic data collection from large fleet of mobile
EVs. Advances in ICT has introduced innovative approaches
for decentralized EVs charging/discharging solutions. Charging
scheduling of EVs using MEC has been recently introduced [1],
[2], [10], [26], [27] in which the roadside infrastructures, such as
mobile buses or drones, act as MEC servers between the cloud
and on-move EVs.

Kumar et al. [2] proposed the architecture of vehicular delay-
tolerant network integrated with MEC for data dissemination
in smart grid environments. The objective of their model was
to alleviate high congestion at the core network when EVs
communicate with the centralized cloud and, hence, improve the
throughput while reducing the response/delay times. However,
their model suffers from proposing charging/discharging mech-
anism and the subsequent profits analysis. Chekired et al. [27]

Fig. 1. MEC-assisted green EVs scheduling model.

investigated the problem of scheduling EVs using software-
defined networking (SDN), which facilitates the communica-
tion/computation tasks between the edges and centralized cloud
server. MEC-integrated SDN architecture is also utilized in [26],
where the objective is jointly minimizing the waiting time of EVs
at CSs and maximizing the obtainable profits for EVs. However,
none of these works take into account the efficiency of MEC
in localizing EVs traffic and also there is no consideration of
integrating the renewable energy into the MEC-enabled EVs
scheduling infrastructure.

D. Cloud/Edge Computing for EVs Scheduling

Cao et al. [1] studied the problem of charging/discharging
of EVs using MEC architecture, where edge servers commu-
nicate with the globally connected cloud server. The objective
of their proposed model was minimizing the communication
cost as well as the waiting time of EVs at charging spots. A
similar MEC architecture along with an intelligent charging
recommendation strategy was utilized in [10] with the objective
of predicting the availability of charging at CSs. In their system
model, the centralized cloud server assists the edge servers to
analyze the collected data from CSs. Using MEC for charging
and discharging scheduling of EVs with the same objective of
minimizing EVs waiting time at CSs has been also studied
in [26]. However, the proposed models in these works fail to
take into account the economical aspects of service operations,
i.e., the profits that each participant (EVs and CSs) obtains from
charging/discharging services.

In summary, there are no optimization solutions for the ex-
isting MEC-enabled EVs scheduling systems, which aim to
optimize the obtainable profits for each system entity as well as
satisfying the desired ancillary services to the power grid, i.e.,
peak reduction and load shifting. Furthermore, from the system
point of view, the consideration of integrating renewable energy
sources into the CSs for the scheduling of EVs known as green
scheduling and how the MEC system can be utilized to address
this task has been overlooked.

III. MEC-ASSISTED GREEN CHARGING–DISCHARGING

SCHEDULING OF EVS

In this section, we first describe the components of the pro-
posed system and then detail the mathematical notations.

A. System Model

Fig. 1 illustrates the proposed edge computing assisted sys-
tem for the green charging/discharging scheduling of on-move
EVs. Mobile edge servers (edge servers hereafter), which are
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geographically distributed in a large area, can be either the fixed
road-side unit (RSU) infrastructures or moving objects, such as
bus vehicles or drones. Edge servers are equipped with on-board
processing hardware to serve the processing requests from EVs.
RSUs, which are equipped with high power processing facilities,
have been well utilized as edge servers in a variety of vehicular
applications [21], [22].

Associated to each edge server, a cellular base station with
radio access resources handles the communication requests from
EVs. Thanks to the wide coverage of cellular base stations in
the future generation of mobile networks, we assume that at
each time, there is at least one base station that has EV in its
coverage. The base stations that have EV in their coverage can
facilitate the processing of EV’s requests by their associated
edge servers. Distributed aggregators keep the instantaneous
information, such as real-time electricity load and the market
electricity price, at the nearby CSs and communicate these in-
formation with the nearby edge servers. The nearby CSs to each
aggregator are those CSs that are in the coverage of aggregator.
Also, the nearby edge servers to the aggregator are those edge
servers which their associated base stations have the aggregator
in their communication range.

Each time EV requires charging or it is willing to participate in
discharging, it sends first a request to the base stations to which
the EV is reachable via their communication range, indicated as
Step 1 in Fig. 1, through the cellular wireless communication.
It is noted that if at a given time, EV drives out of the com-
munication range of current base stations, the EV will resend
its charging/discharging request to the next base stations in its
vicinity. After receiving the contextual information of the EV
(location, distance, and motor force) and charging/discharging
data (initial/target energy requirements and SoC) by the as-
sociated edge severs, every nearby edge server then solves a
mixed optimization problem using the greedy-based algorithm
with internal updating heuristics in order to decide on the most
suitable CS for the EV that yields the maximum achievable
weighted social welfare. The optimization results are then ex-
plicitly communicated with the EV (Step 2) and EV then chooses
the best CS among all candidate CSs received from nearby edge
servers, and directs its route toward that selected CS (Step 3).
Edge servers decide on the selection of CS for EV based on
the sum weighted profits (considering an adjustable weighting
parameter) of both EV and CS, i.e., the weighted social welfare
of the system. This mechanism provides the flexibility to decide
on CSs selection based on the profits interest of each participant
(EVs and CSs). It is noted that CSs are stationary in our system
model; therefore, there is no need for estimating the meeting
location or meeting time between the on-move EV and CS. In
other words, the EV directs its route toward the target CS after
receiving the recommended CS from one of the nearby edge
servers.

Toward the green scheduling, sustainable renewable energy
from the environmental sources, such as solar radiations or
wind, can be also integrated into our system to improve the load
efficiency of the power grid [25]. Although the renewable energy
comes at very low operational costs [24], the most challenging
task is the time varying characteristics of renewable energy
harvesting.

It is noteworthy to mention that vehicle-to-vehicle (V2V)
communication can be also considered as a part of our system
model, although it is not the main focus of this article. In V2V
communication, the vehicles can sell the extra energy in their
battery to neighboring EVs with cheaper price than buying

directly from the power grid, which in turn helps to improve
the achievable profit for EVs owners.

B. System Notations

MEC-assisted charging/discharging system consists of K
CSs, which are geographically distributed in a large area. On-
move EVs are denoted by set M = MCHG ∪MDCG ∪MV 2G

in which MCHG indicates the set of vehicles in the system
that require only charging service, MDCG indicates the EVs
that demand for only discharging, and MV 2G indicates the set
of vehicles that can perform both charging and discharging at
different CSs. It should be noted that although EV performs
either charging or discharging at a single CS, the difference
between three sets of EVs lies on the type of operation they
perform at different CSs during the scheduling round. In contrast
to EVs in set MCHG and MDCG that request for, respectively,
only charging and discharging at any CS during the scheduling
round, the EVs in set MV 2G can request for both charging and
discharging at different CSs during the scheduling round, for
instance, charging in the first CS while discharging in the next
one.

Notation S represents the set of edge servers (RSUs, buses,
and drones), which are either fixed deployed at different loca-
tions or moving in the area. G denotes the set of aggregators that
are also deployed to monitor the instantaneous electricity load
and utility pricing at nearby CSs. Also, they explicitly commu-
nicate with the closest edge servers to dynamically update the
information about CSs at the edge. We denote by Cg and Gs as,
respectively, the set of CSs, which are controlled by aggregator
g ∈ G, and the set of aggregators, which communicate with
server s ∈ S.

1) EVs Commuting Pattern: We consider charg-
ing/discharging scheduling of EVs in one round with |T |
number of time slots and each slot with time duration of Δt
(second). Since EVs and some of the edge servers (buses/drones)
are moving in the field, we denote by variable dis(t)as (km) as the
physical distance between EV a ∈ M and edge server s ∈ S at
time slot t. The physical distance to the edge servers at each time
slot can be estimated using the technologies, such as on-board
GPS system. The fixed communication range of base station
associated to edge server s is also denoted by Rs. At time slot
t, EV a communicates with every edge server (associated base
station) s ∈ S, which is reachable via its communication range,
i.e., dis(t)as ≤ Rs.

Binary decision variable x
(t)
ak is defined such that x(t)

ak = 1
indicates the allocation of EV a to CS k at time slot t, and the
variables Aak and Dak represent the time slots of arrival and
departure of EV a to CS k. Charging/discharging time duration
of EV a in the scheduling round is represented by Ia, which
is announced by the EV in advance such that Dak = Aak + Ia
at every CS 1 ≤ k ≤ K. Nonpreemptive allocation of EVs is
also considered in which EV remains allocated to the same
CS during its service. Furthermore, EV a pays to the CS the
constant maintenance cost of MCa at each time slot for its
charging/discharging service, whereas the CS should pay the
service cost of SCa to the labors for serving EV a at each
time slot during its charging/discharging interval. More pre-
cisely, EV a pays the total maintenance cost of Ia · MCa for its
charging/discharging service in any CS, whereas the CS should
pay the total service cost of Ia · CSa to the labors for serving
the EV.
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2) EVs Energy Consumption Model: Every EV a has an
internal battery with the capacity represented by Ba (kW) and
the energy of E(t)

a (kWh) at time slot t in which EV sends the
request to nearby edge server. Depending on the vehicle type, the
final energy requirement of EV a is a 0 < ra ≤ 1 fraction of its
battery capacity and is assumed to be chosen from some uniform
distribution. Consumed energy for traveling the distance of d
(km) to the target CS is equal toF · d, whereF (kWh/km) is the
constant force of electric motor. Depending on the geographical
region, the electricity load at different CSs and during different
time slots vary such that L(t)

k (kW) and z
(t)
k (kW) represent,

respectively, the base load and the current load in CS k at time
slot t. In order to ensure the load stability of the power grid, we
also define the maximum number of EVs that can plug-in at each
time slot of CS k denoted by C

(k)
max. Charging/discharging power

of EV a at CS k in time slot t is denoted by decision variable
e
(t)
ak (kWh) such that e(t)ak > 0 indicates that EV is at the charging

state and e
(t)
ak < 0 indicates the EV is in discharging state in CS

k at time slot t. Also, constantsP c
max (kWh) andP d

max (kWh) rep-
resent the maximum feasible charging and discharging power,
respectively.

3) Grid Electricity Load: Considering the charg-
ing/discharging of EVs, the instantaneous electricity load
on the grid in CS k at time slot t is obtained as follows:
z
(t)
k = L

(t)
k +

∑
a∈M (x

(t)
ak · e(t)ak )/Δt, where L

(t)
k is the base

load at time slot t, which is from non-EV appliances.
4) Integration of Renewable Energy: EV can be partially

charged from the harvested energy during the previous time
slots, which is stored in the CS’s energy storage. The amount of
energy that is injected into the EV battery from the storage at the
time of arrival to each CS is proportional to the total number of
EVs that plug-in to the same CS. Taking into account the initial
energy in the battery of EV a ∈ M at time slot t (E(t)

a ) and the
energy consumed for the travelled distance to target CS k, the
stored energy in the battery of EV a at the time of arrival to CS
k will be: Eini

ak = E
(t)
a − F · d(t)ak .

Since EV is partially charged from the harvested renewable
energy after its arrival to CS, the stored energy in the battery of
EV a before getting its charging service at CS k will be equal
to min{Eini

ak + (K/(ρ|M |))φ(Aak)
k , (ra ·Ba)/Δt}. Here, φ(t)

k
(kWh) represents the amount of stored renewable energy in the
storage of CS k at time slot t. Also, constant ρ is the fraction of
EVs in the system that require only charging service, i.e., EVs
belong to set MCHG plus those EVs in set MV 2G that require
charging service. Since in practical scenarios, the number of EVs
that will be allocated to a particular CS for charging service
is not known in advance, we use the approximate number of
(ρ|M |)/K when there are |M | and K number of, respectively,
EVs and CSs in the system.

5) Energy Utility Pricing Model: In order to motivate EVs
to participate in grid response program, our system applies
the linear pricing model [6], [7] when the instantaneous load
on the grid is positive and the energy-buyback step function
pricing model when the grid load becomes negative due to high
discharging from EVs. Energy-buyback step pricing model that
has been adopted in the literature [9] motivates EVs to sell the
extra energy in their battery to the power grid (for preserving
in the energy storage) and are paid in an incremental manner
according to the electricity load on power grid. This helps
to stabilize the electricity load on the power grid when EVs
discharge their battery.

Denoted by nonnegative coefficients ck0 ($) and ck1 ($/kW)
as the intercept and slope of linear pricing model at CS k, the
price ($) at positive grid load at time slot t in CS k is given by
pz(k, t) = ck0 + ck1z

(t)
k . On the other side, the price at negative

load z(t)k is given by pz(k, t) = (|z(t)k |/lk)δk, where lk (kW) and
δk ($) are the step length and incremental price, respectively [9].

IV. PROFIT ANALYSIS

Achievable profit ($) for EV a is obtained by subtracting the
associated costs from the obtainable revenue

ProfitEV(a) =

K∑
k=1

RevenueEV(a, k)− CostEV(a, k). (1)

The achievable revenue ($) of EV a at CS k is obtained by
integrating over the pricing model in each time slot at CS

RevenueEV(a, k) =

|T |∑
t=1

x
(t)
ak (−

∫ z
(t)
k +e

(t)
ak

z
(t)
k

pz(t)dz). (2)

The associated EV costs in target CS are the battery degra-
dation/fluctuation due to high charging/discharging at different
time slots and maintenance costs at CS

CostEV(a, k) =

|T |∑
t=1

x
(t)
ak (αDC(t)

ak + βFC(t)
ak + MCa) (3)

where DC(t)
ak and FC(t)

ak are, respectively, battery degradation
and fluctuation costs ($) that directly impact the efficiency of the
battery over the scheduling time horizon. Note that parametersα
and β are the positive coefficients of, respectively, battery degra-
dation and fluctuation [7]. Battery degradation cost depends on
the type of battery as well as the environmental factors, such
as temperature [31]. DC(t)

ak is computed as the summation of
battery calendar and cycle degradation costs [31] at time slot t:
DC(t)

ak = DCCAL(t)
ak + DCCYC(t)

ak , where the battery calendar cost

is obtained as follows [31]: DCCAL(t)
ak = Ba · eB

(t)
a /ω · eθa/γ ·√

Δt. Here, parameters ω and γ are the fitting parameters for
battery calendar degradation cost, θa is the constant battery
temperature of EV a, and B

(t)
a is the battery SoC of EV a

at time slot t, which is derived using the following equation:
B

(t)
a = (1− db)B

(t−1)
a + ηc ·Δt · e(t)ak , where db and ηc, which

are, respectively, battery self-discharge rate and battery charging
efficiency (between zero and one), are set to respectively, 0 and
1 [32].

The battery cycle degradation is derived from the following re-
lation [31]: DCCYC(t)

ak = (α1(Ba −B
(t)
a )2 + α2(Ba −B

(t)
a ) +

α3) · (β1|e(t)ak |3 + β2|e(t)ak |2 + β3|e(t)ak |+ β4), where α1, α2, and
α3, are the fitting parameters related to battery depth of dis-
charge, and β1, β2, β3, and β4 are the fitting parameters related
to charging/discharging power of EV a in CS k at time slot t.
It is noted that the fitting parameters of battery calendar and
cycle degradation are obtained later in the simulations using the
experimental plots reported in [30]. The change in magnitude of
charging and discharging power during consecutive time slots at
CS has been evidenced to affect the performance of EV’s battery
during each scheduling round [6], [7], [9]. Known as battery
fluctuation cost FC(t)

ak , it is obtained as the square difference
of charging/discharging power of EV at consecutive time slots
t− 1 and t as follows: FC(t)

ak = (e
(t)
ak − e

(t−1)
ak )2.
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Similar to EV, the achievable profit for CS k from charg-
ing/discharging services to EVs is obtained as follows:

ProfitCS(k) =
∑
a∈M

RevenueCS(a, k)− CostCS(a, k). (4)

In our system model, the payment for charging service is the
only income for CS, whereas on the other side, the CS only pays
for EV discharging. Therefore, the revenue that CS obtains is
the negative sign of EV revenue [see (2)]

RevenueCS(a, k) = −RevenueEV(a, k). (5)

On the other side, the associated costs for the CS are the
service costs that CS pays to the labors for operating the CS
infrastructures minus the maintenance costs that EVs pay to CS
for their charging/discharging services

CostCS(a, k) =

|T |∑
t=1

x
(t)
ak (SCa − MCa). (6)

In order to fairly achieve the share profits for both participants
of the system (EVs and CSs), we define an adjustable weighting
parameter 0 ≤ γ ≤ 1 in the objective function. This mechanism
provides the flexibility to the scheduler to decide on CSs selec-
tion based on system objective and profits preference of each
participant.

V. SOCIAL WELFARE MAXIMIZATION PROBLEM

The problem of MEC-assisted charging/discharging schedul-
ing of EVs in one round considering the integration of renewable
energy sources is formulated as the following mixed-integer
nonlinear programming (MINLP) model

max
x,e

γ
∑
a∈M

ProfitEV(a) + (1− γ)
K∑

k=1

ProfitCS(k). (7)

subject to
Dak∑

t=Aak

x
(t)
ak = {0, Ia} ∀a ∈ M, 1 ≤ k ≤ K (8)

K∑
k=1

Dak∑
t=Aak

x
(t)
ak ≥ 1 ∀a ∈ M (9)

x
(t)
ak · x(t′)

ak′ = 0 (10)

∀1 ≤ k 	= k′ ≤ K,Aak ≤ t ≤ Dak, Aak′ ≤ t′ ≤ Dak′∑
∀a∈M

x
(t)
ak ≤ C(k)

max ∀1 ≤ k ≤ K, 1 ≤ t ≤ |T | (11)

K∑
k=1

x
(Aak)
ak ·

(
Eini

ak+

Dak∑
t=Aak

x
(t)
ak · e(t)ak

)
=(ra ·Ba)/Δt ∀a ∈ M

(12)

0 ≤ Eini
ak +

∑
t′∈S(t)

xt′
ak · et′ak ≤ Ba/Δt

∀a ∈ M, 1 ≤ k ≤ K, Aak ≤ t ≤ Dak (13)

x
(t)
ak ∈ {0, 1} ∀a ∈ M, 1 ≤ k ≤ K, 1 ≤ t ≤ |T | (14)

0 ≤ e
(t)
ak ≤ P c

max

∀a ∈ MCHG, 1 ≤ k ≤ K, 1 ≤ t ≤ |T | (15)

− P d
max ≤ e

(t)
ak ≤ 0

∀a ∈ MDCG, 1 ≤ k ≤ K, 1 ≤ t ≤ |T | (16)

− P d
max ≤ e

(t)
ak ≤ P c

max

∀a ∈ MV 2G, 1 ≤ k ≤ K, 1 ≤ t ≤ |T |. (17)

The constraints on instantaneous electricity load on the grid
and initial battery energy of EV defined in Section III-C are
also added to the set of aforementioned constraints. In MINLP
problem (7)–(17), the variables x

(t)
ak and e

(t)
ak are the binary

and real decision variables, whereas the values of the other
variables are known in advance. Constraint (8) states that EV
should be allocated to the same CS during its service inter-
val, which implies the nonpreemptive allocation of EV to the
target CS. Constraint (9) ensures that EV is allocated to at
least one CS for charging/discharging service, and constraint
(10) guarantees that EV cannot be allocated to more than one
CS during its charging/discharging interval. Three constraints
(8)–(10) together ensure that each EV is allocated to only one
CS in nonpreemptive manner during each scheduling round.

Constraint (11) ensures that the instantaneous number of
plugged-in EVs at each time slot of the CS does not exceed
the maximum vehicle capacity of the CS. Constraint (12) states
that the final energy stored in the battery of EV satisfies the
final energy requirement of the EV, which is the fraction ra
of its battery capacity. Constraint (13) states that the stored
energy at the battery of EV at the end of each time slot must
be nonnegative and less than its battery capacity. Here, set St

denotes the set of consecutive time slots that are before time slot
t. Constraint (14) indicates that the CS allocation variables are
binary, and finally, the constraints (15)–(17) indicate the range
of the charging/discharging power variables at each time slot
depending on the EV type.

VI. ONLINE SCHEDULING ALGORITHM

In this section, we design a greedy-based and online schedul-
ing algorithm that generates efficient suboptimal solutions for
the problem. Pseudocode of the proposed algorithm named
MEC-assisted Greedy (MEC-Greedy) that runs at edge servers
has been summarized in Algorithm 1.

A. MEC-Assisted Greedy-Based EVs Scheduling

As illustrated in Algorithm 1, at each time slot within the
scheduling round and for each EV, its charging/discharging
request is first sent to all edge servers reachable via their
communication coverage. Nearby edge servers then receive the
contextual information of EV, including its arrival/departure
times to nearby CSs, battery capacity and its initial energy, and
the distance of EV to nearby CSs. Edge servers also collect
the instantaneous information of nearby CSs at the current time
slot from the neighborhood aggregators. In the following, we
describe two parts of algorithm.

1) Load Update Heuristics: As part of the algorithm, for
every nearby CS, the internal updating heuristic is executed at
corresponding edge server to determine the achievable profit if
the EV is allocated to that CS. Since directly solving the local op-
timization problems at the CS results in high complexity, one of
three internal updating heuristics ProfitComputation_Charging,
ProfitComputation_Discharging, or ProfitComputation_V2G is
run by edge server to determine the achievable profit at every
nearby CS using precomputed values of charging/discharging
power. Based on the profits interest of both participants (weight-
ing parameter γ), the CS that yields the highest weighted social
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Algorithm 1: MEC-assisted Greedy (MEC-Greedy).
1: Input: Set of edge servers and aggregators S and G, EVs

with data (d
(t)
ak , E

(t)
a , ra, Ba, Aak,Dak, Ia, F ) for every EV

a ∈ M , K charging stations with information
(z

(t)
k , L

(t)
k , L

(t)
max, h

(t)
k , ck0 , c

k
1 , l

k
1 , l

k
2 , δk) for every

1 ≤ k ≤ K at each time slot 1 ≤ t ≤ |T | and parameter γ

2: Output: Allocation variables x(t)
ak and charging/discharging

powers e(t)ak for every EV a ∈ M in CS k at time slot t
3: for each time slot 1 ≤ t ≤ |T | do
4: for each EV a ∈ M do
5: if EV a requires charging/discharging at slot t then

6: Send request to every server s where d
(t)
as ≤ Rs;

7: Send EV a data to every server s where d
(t)
as ≤ Rs;

8: for each aggregator g ∈ Gs do
9: for each CS k ∈ Cg do

10: Send information of CS k at each time
slot t to edge server s;

11: end for
12: end for
13: if a ∈ MCHG then
14: Execute (at every nearby edge server s)

ProfitComputation_Charging;
Compute e_before(t)ak ∀k ∈ Cg, g ∈ Gs

using equations (18),(19);
15: else if a ∈ MDCG then
16: Execute (at every nearby edge server s)

ProfitComputation_Discharging;
Compute e_before(t)ak ∀k ∈ Cg, g ∈ Gs

using (18),(19) for case of discharging;
17: else
18: Execute (at every nearby edge server s)

ProfitComputation_V2G;
Compute e_before(t)ak∀k ∈ Cg, g ∈ Gs using

(18),(19) for the case of V2G;
19: end if
20: Set x(t′)

ak′ = 1, ∀Aak′ ≤ t′ ≤ Dak′ where
k′ = argmax

∀c∈Cg ,g∈Cs,∀s
d(t)as ≤Rs

{γ(RevenueEV (a, c)−

CostEV (a, c)) + (1− γ)(RevenueCS(a, c)−
CostCS(a, c))}

21: Run local optimizer (21) at corresponding edge server
s to determine e_after(t

′)
ak′ , ∀Aak′ ≤ t′ ≤ Dak′

22: Update z
(t′)
k′ , ∀Aak′ ≤ t′ ≤ Dak′

23: end if
24: end for
25: end for

welfare is then communicated to the EV. After receiving the can-
didate CSs from all neighborhood edge servers, EV then chooses
the most suitable CS, which yields the maximum weighted
social welfare. We use two notations e_before(t)ak and e_after(t)ak′
in Algorithm 1 to indicate, respectively, charging/discharging
power of EV at every nearby CS k before its allocation to target
CS and the actual charging/discharging power of EV after its
allocation to target CS k′.

As illustrated in the body of algorithm MEC-Greedy, one
of the procedures ProfitComputation_Charging, ProfitCompu-
tation_Discharging, or ProfitComputation_V2G is executed at
every nearby edge server after EV sends its service request. In
ProfitComputation_Charging procedure (if the vehicle request is
charging), the charging requirement of EV is first equally divided
between all time slots of the interval. Within consecutive number
of iterations (equal to the size of interval), the charging power
of EV at each time slot is then updated based on the difference
ratio between electricity price at that time slot and the average
price during the whole interval.

Mathematically speaking, once EV a sends charging request
to CS k, the charging power at all time slots of its interval is
initially set to the equal value (r ·Ba − Eini

ak)/Ia. Then, for
each iteration Aak ≤ t ≤ Dak, the charging power at all time
slots Aak ≤ t′ ≤ Dak is updated as follows. First, for time slots
Aak ≤ t′ ≤ t, it is updated using the following relation. Note
that the temporary variable δ

(tt′)
ak is used here to indicate the

charging power at time slot t′ in iteration t

δ
(tt′)
ak =

(
2p̄z − pz(k, t

′)
p̄z

)
(δ

((t−1)t′)
ak ) (18)

Where p̄z is the average price at all time slots within the
charging interval of EV, and pz(k, t

′) is the electricity price at
time slot t′ in CS k. Here, the coefficient 2p̄z−pz(k,t

′)
p̄z

comes

from the expression p̄z−(pz(k,t
′)−p̄z)

p̄z
, which states the ratio of

the difference between the current price at time slot t′ and the
average price at all time slots. Based on this expression, if the
price in the current time slot t′ is below the average, then the
coefficient in (18) increases, which in turn yields the increase
in the charging power at time slot t′. Otherwise, the charging
power at this time slot reduces if the price at this time slot is
above the average.

Then, for the remaining time slots t < t′ ≤ Da,k, the charging
power is equally set to the following average value:

δ
(tt′)
ak =

r ·Ba − Eini
ak −∑t

t′′=Aak
δ
(tt′′)
ak

Dak − t
. (19)

At each time slot that the charging load is updated, the
corresponding price is also updated and is used for the next
iteration of the algorithm. More precisely, the price is updated
using the linear pricing model given in Section III-C.5.

After completing all the iterations, the algorithm sets
e_before(t)ak are equal to the final updated charging power in
the last iteration as follows:

e_before(t)ak = δ
(Dakt)
ak ∀Aak ≤ t ≤ Dak. (20)

The achievable profit and the associated costs of EV a at CS k
are also obtained using the relations given in (1)–(3) and (4)–(6).
Achievable profits/costs from the nearby CSs are then used to
compute the obtainable weighted social welfare at CSs and make
a decision on the selection of target CS.

Similar aforementioned procedures are executed for the
case when EV requires discharging service (ProfitComputa-
tion_Discharging) or participates in V2G program (ProfitCom-
putation_V2G) with only difference in the way that the power
is updated at each time slot. More precisely, for the case of dis-
charging, a reverse action occurs when updating the discharging
power at each time slot with respect to the average price. While
for the case of V2G, the same update is performed as for the case
of charging when EV is in charging state, and the reverse update
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occurs (same as discharging) when the EV is in discharging state
at each time slot.

2) Local Optimization: Once EV was plugged-in to the tar-
get station 1 ≤ k′ ≤ K, the following local optimizer is then
directly solved at the corresponding edge server to determine
the actual charging/discharging power at each time slot of the
interval at CS k′. The following optimizer aims to achieve the
ancillary services to the power grid:

minimize
e

√
(1/Ia)

∑Dak′

t′=Aak′
(z

(t′)
k′ + e_after(t

′)
ak′ − z̄k′)2

(21)

subject to constraints: (11)–(13), (15)–(17).
In the aforementioned nonlinear programming (NLP) prob-

lem, the only decision variable is the charging/discharging power
e_after(t

′)
ak′ at each time slot of the interval in the target CS. The

objective of this local optimizer is to allocate powers at each
time slot such that the deviation of the final electricity load
on the grid from the average load is minimized. This in turn
ensures the flatting of the final electricity load as the desired
ancillary service for the power grid. It should be noted that the
NLP problem (21) is solved for each EV at the allocated target
CS using a standard optimization solver.

Subsequently, the MEC-Greedy algorithm updates the elec-
tricity load at every time slot of the interval in the target CS
considering the determined charging/discharging powers of EV
and the availability of renewable energy.

B. Complexity Against Cloud-Based Scheduling

In this section, we analyze and compare the worst-case time
complexity of the proposed greedy-based algorithm under two
centralized cloud-based and decentralized MEC-assisted imple-
mentations.

In the worst case, at each time slot 1 ≤ t ≤ |T |, every EV
a ∈ M sends charging/discharging request to the nearby reach-
able edge servers. Depending on vehicle type, the execution
of load updating heuristic takes O(|T |3). It is noted that EV
sends the request message simultaneously to nearby edge servers
and the CSs run the load updating heuristic in parallel. There-
fore, it takes only O(|T |3) time to run the heuristic. Then,
the selection of optimal CS using linear search takes O(K).
After EV was plugged in to the target CS, solving the opti-
mization problem (21) using a standard solver with primal-dual
interior point method yields the worst-case time complexity of
O((1/ε)|T |√|T |), where ε is the accuracy in terms of closeness
to the optimal solution [33]. Since in large-scale scheduling sce-
narios (1/ε)|T |√|T | ∈ O(|T |√|T |), the overall time complex-
ity of greedy algorithm under centralized cloud-based schedul-
ing is therefore given by: TCGreedy ∈ O(|T | · |M | · (|T |3 +K +

|T |√|T |)).
Considering the average of |M |/|S| vehicles and K/|S|

CSs in the coverage of each edge server, the decentralized
implementation of algorithm using MEC yields the follow-
ing worst-case complexity: TMEC−Greedy ∈ O(|T | · (|M |/|S|) ·
(|T |3 +K/|S|+ |T |√|T |)). Obviously, this confirms the sig-
nificant reduction in complexity using MEC-assisted solution
compared to the cloud-based scheduling when the size of EVs
fleet dramatically increases under the same running algorithm.

C. Remarks on the Optimality

As we discussed in Section VI, MEC-Greedy algorithm yields
suboptimal solutions for maximization problem (7)–(17). The
optimality gap using our algorithm is small, and therefore, the
solutions returned by MEC-Greedy are reasonably acceptable
in practical scenarios. The reason is that as justified in a recent
work [9], the determination of optimal energy trading between
EVs and CSs using a heuristic causes more suboptimality com-
pared to finding the optimal CSs using a heuristic. Since in our
algorithm, the allocation of EVs to CSs for any instance of the
problem is performed using an efficient greedy-based heuristic,
whereas the energy trading between EVs and CSs is performed
in exactly optimal way using the standard optimization solver,
therefore, the gap between the solutions of our algorithm and
the optimal solutions is small.

The following argument shows that the approximation factor
of MEC-Greedy algorithm for a special case of EVs scheduling
problem, where all CSs in the system have the same base load
initially and offer the same pricing model, is upper bounded
by constant 2. In order to analyze the upper bound on the
approximation factor (denoted by α) of this special case, we
need first to divide the scheduling problem into two subprob-
lems. Suppose α1 is the approximation factor of MEC-Greedy
algorithm for finding the optimal target CS for EV in the first
phase, andα2 is the approximation factor of the algorithm to find
charging/discharging power at target CS in the second phase.
Since our algorithm solves the power allocation problem in
the second phase optimally using standard solver, that means
α2 = 1. In the first phase, the allocation of EV to the target CS
can be translated to minimum makespan scheduling problem
on identical machines, which has the approximation factor of 2
using simple greedy algorithm [34]. Since the first and second
phases are not independent, this implies that α ≤ α1 · α2 when
using MEC-Greedy for special case of problem, which means
α ≤ 2.

VII. PERFORMANCE EVALUATION

In this section, we conduct simulations to evaluate the per-
formance of proposed greedy-based algorithm for our MEC-
assisted EVs scheduling system. The solutions based on random
or distance-based scheduling have been well adopted in the
literature as the common EVs scheduling approaches [1], [3],
[9], [18]. Furthermore, the most closest work to ours is presented
in [1], where the MEC system is utilized for charging scheduling
of EVs. Looking closely at this work, the proposed algorithm for
the scheduling of EVs is based on distance-based scheduling.
Since our article has also in its core the integration of MEC
into the scheduling of EVs, these have motivated us to compare
the proposed greedy-based algorithm for our MEC-assisted EVs
scheduling system with random and distance-based as well as
with the cloud-based solutions.

1) Random Allocation (RAllocation): The adopted solution
from Mehrabi et al. [9] and Tushar et al. [18] in which after
EV’s request, the edge server guides EV to a randomly
nearby CS, which has available space. Once EV was
allocated to the CS, its charging/discharging power at each
time slot is determined by solving the local optimizer (21).

2) Nearest Allocation (NAllocation): Using this solution,
each request from EVs is served at the closest CS, which
has available space [3]. The charging/discharging powers
of EV are also determined by solving problem (21).
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Fig. 2. Simulation setup scenario.

3) Cloud-Based EVs Scheduling: Under the cloud-based EVs
scheduling scheme, the greedy allocation of EVs is per-
formed in a centralized manner at the cloud server. The
EVs data and their charging/discharging requirements are
directly sent to the cloud server via the aggregators.

A. System Modeling and Simulation Setup

As illustrated in Fig. 2, we consider a simulation setup consist-
ing of ten CSs, which are distributed in an urban area with the size
of 20km × 15km. Three aggregators monitor the instantaneous
electricity load and the pricing at the nearby CSs, which are con-
nected to the aggregators with arrows in the figure. We consider
four edge servers, in which two are mobile vehicles and two are
fixed roadside units.1 Following the LoRaWAN communication
technology for large-distance urban areas [35], the communica-
tion range of associated BSs is a random value chosen from the
uniform intervalU [10km, 12km]. This communication coverage
ensures that there is at least one edge server reachable for every
EV at each time slot. Unless explicitly mentioned, the size of
EVs fleet is 500 vehicles, which randomly move within the
urban area. We consider the scheduling of EVs during one day,
including |T | = 24 time slots, each slot with the equal duration
of Δt = 1 h. Unless otherwise stated, 50% of EVs participate in
bidirectional V2G program, whereas the remaining EVs equally
demand for only charging or discharging service. The time
that they send their charging/discharging requests is uniformly
distributed between 1A.M. to 3P.M. We further assume in the
simulation that edge servers are stationary during the scheduling
day. Electric motor force of EVs is uniformly distributed in
interval U [3 kWh/km, 5 kWh/km], whereas the average speed
of EVs is within the interval U [30 km/h, 40 km/h]. It is worth
pointing out that although we consider the normal motor force
and speed for EVs in our simulations, the proposed model and
results remain valid regardless of chosen EV’s characteristics.

Li-ion EV battery with fixed capacity of B = 100 kWh and
a temperature from the interval U [−20 ◦C, 60 ◦C] is consid-
ered [30], which contains an initial energy from the uniform
interval Ea ∈ U [70%Ba, 90%Ba]. It should be noted that bat-
tery temperature has a direct impact on its fluctuation during a
given time interval, and the aforementioned interval has been
identified as the normal temperature interval for Li-ion batter-
ies according to the specifications reported in [30]. Depend-
ing on the EV type, the final energy requirement of EV is
chosen from the uniform interval U [70%, 90%] if the vehicle

1Although we consider roughly a small-scale simulation setup, our results and
discussions remain valid for large-scale systems that take place in practice. We
further discuss the impact of increasing some system entities on the performance
in the remaining parts of this section.

Fig. 3. (a) Average base load and (b) harvested energy.

demands for charging and from the interval U [min{60, Eini
a −

d · F},min{40, Eini
a − d · F}] if the EV participates in dis-

charging. Size of charging/discharging interval of EVs at each
CS is selected from the uniform interval U [3h, 6h] and the
maximum charging and discharging powers of, respectively,
15 and 10 kW are considered at every time slot of the CSs,
which according to Fernandez et al. [28] corresponds to the
charging rate of 15/100 = 0.15 C. Constant maintenance and
service costs are chosen from the uniform intervals, respectively,
MCa ∈ U [0.3$, 0.5$] and SCa ∈ U [0.2$, 0.4$] [9].

Battery degradation and fluctuation coefficients of, respec-
tively, α = 1× 10−3 and β = 2× 10−3 are considered for bat-
tery associated costs [7]. The fitting parameters of EV battery
calendar and cycle degradation costs given in Section IV are
also obtained according to the experimental reports in [30].
More precisely, we obtain the fitting parameters for battery
degradation costs by solving the system of equations derived
from the plots given in [30].

To simulate different pricing strategies across CSs, we con-
sider the coefficients of linear pricing model chosen from the
uniform interval ck0 ∈ U [10−3 − 5× 10−4, 10−3 + 5× 10−4]
and ck1 ∈ U [2× 10−3 − 5× 10−4, 2× 10−3 + 5× 10−4] [6]
for every CS k, where 1 ≤ k ≤ K. While for the energy-
buyback step function model, the length and incremental price
parameters are chosen from uniform intervals, respectively,
U [5 kW, 10 kW] and U [0.1, 0.3]. Furthermore, the maximum
vehicle capacity at every time slot in each CS is selected from
the interval U [55, 60]. We adopt a typical electricity base load
of one summer day from He et al. [7] with the minimum and
maximum loads of, respectively, 10 and 70 kW at every CS.
Average of the base load during different time slots taken over
ten CSs has been shown in Fig. 3(a). A Gaussian-shape function
is also considered for the amount of harvested energy from the
solar panels [20] at each CS with the maximum feasible energy
harvesting of hmax = 30J. This maximum energy corresponds to
the harvested energy from a solar panel with the size of 0.1m2

[24]. Average of harvested energy during different time slots
taken over all ten CSs is shown in Fig. 3(b). Since our algorithm
works in online manner, the system model and algorithm are
readily applicable under unknown energy harvesting patterns,
which may occur in practice.

Unless explicitly mentioned, the weighting parameter in ob-
jective function (7) is set to γ = 0.5 in order to achieve a fair
share of profits for both EVs and CSs in the system. Simulation
programs have been implemented in MATLAB, and the CVX
optimization package [36] was used to solve the local NLP op-
timization problems at the target CSs. Furthermore, the average
of the results taken over ten runs of simulation with confidence
interval of 90% is presented.
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TABLE I
MAJOR SIMULATION PARAMETERS AND THEIR VALUES

Fig. 4. Impact of parameter γ on profits of EVs and CSs.

We have summarized the list of main parameters used in the
simulations and their corresponding values in Table I.

B. Impact of Weighting Parameter

First, we have investigated the impact of adjustable weighting
parameter γ on achievable profits for both system participants.
To do so, we have varied parameter γ from 0 to 1 with stepwise
of 0.1 and corresponding to each value, we have illustrated the
obtainable profits for both EVs and CSs in Fig. 4 when there
are 500 number of EVs and ten CSs. As we can see from the
results, the profit of EVs decreases as γ approaches to 0, whereas
on the other side, the profits of CSs gets higher priority with γ
approaching to 0.

The results in Fig. 4 imply that depending on the profit
preference of either participant (EVs and CSs), the proper value
of parameter γ can be decided by the scheduler at edge server.

C. Comparison to Other Solutions

Next, we have compared three EVs scheduling algorithms in
terms of the achievable social welfare.

1) Vehicle Density: As we can see in Fig. 5(a) and (b), for
varying number of EVs from 500 to 1000 and two different
V2G penetrations 50% and 100% with γ = 0.5, MEC-Greedy
algorithm outperforms two other alternative solutions in terms
of achievable social welfare. The reason is that our algorithm
allocates each request from EV to the best nearby CS where the
highest social welfare is locally achieved. For this simulation
setup, our algorithm outperforms RAllocation and NAllocation
in terms of average social welfare for about, respectively, 36%
and 17% when V2G penetration is at 50%, whereas it outper-
forms them for about, respectively, 10% and 16% when V2G
penetration is at 100%. It is noted that bigger improvement
in social welfare is achieved using our algorithm when large
number of CSs and aggregators is deployed.

Fig. 5. Social welfare with (a) 50% and (b) 100% V2G penetration. Profit for
(c) EVs and (d) CSs with 50% V2G penetration.

Fig. 6. Social welfare under (a) uniform and (b) Bernoulli energy harvesting
distributions.

For different number of EVs, we have also compared three
strategies in terms of achievable profits for both EVs and CSs
when V2G penetration is at 50% with the results shown in
Fig. 5(c) and (d). Although EVs achieve higher profit using
NAllocation compared to MEC-Greedy, our algorithm yields
significantly higher profit for CSs, as observed from Fig. 5(d).

2) Energy Harvesting Distribution: In order to confirm that
the proposed algorithm MEC-Greedy is applicable under un-
known energy harvesting patterns, we have further evaluated
the performance of the algorithm under two different uniform
and Bernoulli energy harvesting distributions at every CS. More
precisely, for the uniform distribution, the harvested energy
changes uniformly within the range U [28J, 32J], whereas for
the Bernoulli distribution, the harvested energy is either zero (no
energy harvesting) or from U [28J, 32J] with equal probability.

The results in terms of system social welfare have been
illustrated in Fig. 6. As we can see from the results, the proposed
algorithm MEC-Greedy outperforms the baseline solutions even
under different energy harvesting patterns. This in turn confirms
the robustness of the proposed algorithm under different energy
harvesting patterns in practical scenarios.

D. Impact of Number of CSs

Next, we investigate the impact of increasing the number of
CSs. With 500 EVs and the same number of aggregators and
edge servers as before, the number of CSs increases from 10 to
30 such that each newly established CS is covered by at least
one of the existing aggregators. Corresponding to each number
of CSs, the achievable profits for both EVs and CSs have been
shown in Fig. 7(a) when the charging penetration is at 100% and
γ = 1 in the objective function (7). It is noted that we consider
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Fig. 7. Impact of (a) CSs and (b) aggregators on the profit.

only the maximization of EVs profit in order to evaluate the best
impact of increasing CSs.

As we see from the results, increasing the number of estab-
lished CSs indeed helps to boost the profit of EVs since with
more number of CSs, the EVs have higher flexibility in finding
most suitable CS for charging operation where the highest profit
can be achieved. On the other side, the CSs loose the profit,
which is due to two reasons. First, the CSs are paid less when
the number of stations increases since EVs find CSs where they
pay less to CSs. Second, the auxiliary (service) costs of CSs
becomes higher than their revenue when the number of stations
increases.

E. Impact of Number of Aggregators

In the next simulation, we evaluate the impact of increasing the
number of aggregators when with 500 EVs, the number of CSs
and edge servers are fixed at, respectively, 20 and 4. Increasing
the number of aggregators from 3 to 7, the achievable profits for
both EVs and CSs have been shown in Fig. 7(b) when 100%
charging penetration and the maximization of only EVs profit
are considered (γ = 1).

As it is observed from the results, by increasing the number of
aggregators, the obtainable profit of EVs slightly increases while
on the other side, the CSs slightly lose the profit. The reason is
that the edge servers that cover the newly added aggregators will
have available information about more number of CSs, which
in turn brings further opportunity for EVs to decide on optimal
CS selection. Since EVs choose the CSs in a way that only their
own profit is maximized, therefore, the decrease in the profit of
CSs is observed.

It is also noteworthy to mention that increasing the number
of deployed edge servers in the system helps to further improve
the social welfare of the system. The reason is that the newly
deployed edge servers may have the coverage of CSs where the
higher social welfare can be achieved.

F. Power Grid Ancillary Services

1) Peak Reduction: With ten CSs, three aggregators, and four
edge servers, the peak load reduction during the time interval
[2P.M.,6P.M.] with 500 number of EVs has been shown in Fig. 8.
We note that the maximization of only EVs profit (γ = 1) is
considered here in order to measure the best-case performance
of our algorithm in peak reduction. Furthermore, we assume
that the time that EVs send their charging/discharging request
to the nearby edge servers is chosen from the uniform interval
U [10A.M.,12P.M.]. During a given time interval, the percentage
of peak reduction is computed as the gap between the highest

Fig. 8. Peak load reduction: (a) 10% and (b) 20% V2G penetration.

Fig. 9. Load shifting: (a) 20% and (b) 25% charging penetration.

load of our algorithm and highest base load within that inter-
val [11]. As we see from both figures, the percentage of reducing
the peak load on power grid increases by penetrating more EVs
with V2G type, which is due to the fact that more volume of
energy is injected from the battery of EVs to the power grid.
This helps to shift larger volume of discharging load to peak
hours and, therefore, improving the load stability of power grid.
As for this simulation, the peak load reduction of 15% and 24%
is achieved with V2G penetration of, respectively, 10% and 20%.

2) Load Shifting: Next, we compare three algorithms in
terms of valley filling, i.e., the volume of charging load from
EVs, which are shifted to the valley intervals. With the same
number of EVs and CSs, aggregators and edge servers as the
previous part, the comparison results in terms of load shifting
during the time interval [3P.M.,9P.M.] considering two penetra-
tion levels of EVs with only charging type have been shown in
Fig. 9. The time at which EVs send their charging/discharging
request to the nearby edge servers is chosen from the uniform
interval U [12P.M.,3P.M.]. It is noted that given a time interval,
the root-mean-square deviation (rmsd) of the final load of each
algorithm with respect to the maximum base load within that
interval is considered as the criteria for load shifting [11].

As we can see from the results in Fig. 9(a) and (b), the pro-
posed algorithm MEC-Greedy outperforms two other alterna-
tives solutions in terms of load shifting. The reason is that using
our algorithm, the local optimizers at CSs shift the charging
load of EVs to time slots where the instantaneous electricity
price is low (valley hours) in order to maximize the system social
welfare. As for this simulation setup, our algorithm outperforms
RAllocation for about 8%, whereas it significantly outperforms
NAllocation strategy for about 70% in terms of load shifting
(rmsd) when charging penetration is at 25%. On the other side,
when charging penetration is at 20%, our algorithm outperforms
RAllocation and NAllocation for about, respectively, 16% and
67% in terms of load shifting.

G. QoE/Social Welfare Against Cloud-Based Scheduling

We are also interested to compare MEC-assisted solution with
cloud-based EVs scheduling in terms of drivers QoE, i.e., the
percentage of EVs that get their charging/discharging services
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Fig. 10. Comparison between cloud-based and MEC-assisted EV scheduling
systems in terms of (a) QoE and (b) social welfare.

Fig. 11. Comparison results in terms of (a) renewable utilization deviation
and (b) the pattern of utilized renewable energy.

in the nearby CSs. With 20 number of CSs and the same number
of aggregators and edge servers as the initial setup, we have
shown in Fig. 10(a) the number of EVs that are allocated to
nearby CSs using both MEC-assisted and cloud-based solutions.
We consider the configuration of CSs under the control of local
aggregators, as given in Fig. 2, as the baseline for evaluating the
EVs scheduling at nearby CSs.

As we can see for different number of EVs, the cloud-based
system allocates on average about 87% of EVs to nearby CSs for
this simulation setup, whereas on the other side, MEC-assisted
system allocates 100% of EVs to nearby CSs. This implies
that MEC-assisted system outperforms the cloud-based system
for on average about 13% in terms of QoE satisfaction for
this simulation setup. We have also illustrated in Fig. 10(b)
the achievable social welfare in which the centralized cloud
has the coverage of all CSs in contrast to MEC. Comparing
Fig. 10(a) and (b), we observe that the cloud-based system
yields the improvement on average about only 2.5% in social
welfare. Therefore, we conclude that high complexity overhead
and the degradation of about 13% in QoE of the drivers using
cloud-based EVs scheduling obviously confirm the superiority
of MEC-assisted solution.

H. Renewable Energy Utilization

We have also compared the MEC-assisted EVs scheduling
with cloud-based scheduling scheme in terms of renewable
energy utilization across all CSs. We considered different num-
ber of EVs with 20 CSs, γ = 1 and the same configuration
of edges/aggregators as the initial setup in Fig. 2. In order to
measure the best performance, we further consider that EVs
require only charging service and also there is heterogeneous
distribution of electricity base loads across CSs. For different
number of EVs, we have shown in Fig. 11(a) the comparison
results in terms of rmsd of renewable utilization. Note that
the rmsd values are computed with respect to the average of
harvested energy across CSs.

As we can see from the results, the MEC-assisted solution
results in lesser rmsd values compared to cloud-based schedul-
ing solution. The reason is that in contrast to cloud-based
scheduling, MEC-assisted solution allocates EVs for charging

service to the nearby CSs, which in turn helps to balance the
utilization of renewable energy across all CSs. As for this small-
scale simulation, MEC-assisted solution yields on average about
5% improvement in utilizing renewable energy across all CSs
compared to cloud-based scheduling. We have further shown in
Fig. 11(b) the pattern of renewable energy utilization (in terms of
Joule) at all CSs for 1000 number of EVs. As we can see from
the patterns, compared to cloud-based system, MEC-assisted
solution yields lesser deviation of utilized renewable energy
at CSs with respect to the average harvested energy per CS
(the constant line). This is because higher renewable energy is
utilized in some particular CSs compared to other CSs when
using cloud-based scheduling.

VIII. CONCLUSION AND FUTURE WORK

In this article, we proposed the MEC-assisted system inte-
grated with the time-varying renewable energy resources for
the green charging/discharging scheduling of large fleet of one-
move EVs. We formulate a weighted social welfare optimization
model for the proposed system and further design a greedy-based
algorithm with efficient internal updating heuristics to solve the
problem. The algorithm runs at the edge servers and uses the
collected data from EVs, the aggregators at CSs, as well as
the availability of time-varying renewable energy. Our results
confirm that from the system point of view, the proposed MEC-
assisted EVs scheduling improves the complexity burden, the
QoE of EVs’ drivers by localizing the traffic at nearby CSs, and
further results in better utilization of renewable energy across the
CSs compared to the cloud-based solution. Furthermore, the re-
sults show that the noticeable improvement in social welfare and
power grid ancillary services are achieved using the proposed
greedy-based algorithm compared to the baseline solutions.

In this article, we consider that EVs are partially charged
from the harvested renewable energy at local CS where the EV
is plugged-in. The collaboration between CSs to transfer the
surplus harvested energy to the neighborhoods is expected to
further improve the obtainable profits for the fleet of EVs that
we consider an interesting future work.
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