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Abstract

In this thesis an approach for modelling social interactions in a context of long-term 

relationships is developed in order to investigate apparently altruistic behaviour. The 

common model of social interactions is based on Prisoners’ Dilemma game. 

Considering the interaction of the players not in isolation but in the context of 

conditions in which it takes place leads to the conclusion that cooperative behaviour 

may be rational or evolved. In this thesis this idea is taken further to consider 

different contexts of interaction.

Firstly, a three-player model is introduced in which the third player interacts with 

two other players engaged in a single interaction Prisoners’ Dilemma. The existence 

of the third player in the interaction changes the payoffs in such a way that the two 

players are induced to cooperate.

The Iterated Prisoners’ Dilemma is generalised by allowing additional states to exist 

in the game. This provides the possibility of introducing completely new types of 

strategies such as “ allocating tasks” strategies. These strategies are relevant to the 

explanation of apparently altruistic behaviour since the observed behaviour for them 

is: one player cooperates while the other defects.

It is shown that “ allocating tasks with punishment” and “ cooperating with 

punishment” strategies can be Nash Equilibria. Populations which consist of 

different mixtures of “ allocating tasks (cooperating) without punishment” and 

“ allocating tasks (cooperating) with punishment” players can be the end points of 

the evolutionary process. There are ranges of parameters in the model for which the 

non-cooperative strategies considered are not Nash Equilibria, nor are they 

evolutionarily or asymptotically stable. Therefore, it can be concluded that 

cooperative populations can evolve under the influence of natural selection and it is 

possible to evolve to cooperative types of populations from populations initially 

composed of a majority of uncooperative individuals.
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Chapter 1

Introduction and Background

1.1 In troduction

Understanding of evolutionary mechanisms that can produce altruistic behaviour in animals 

has been regarded [1] as “the central theoretical problem in sociobiology” since the theory of 

evolution had been developed [2]. Gintis [3] gives the definition of the altruism as following: 

“an altruist is an agent who takes actions that improve the fitness or material well-being 

of other agents when more self-interested actions are available” . Examples of altruistic be­

haviour among related and unrelated individuals can be observed in nature [4] and in many 

human societies. For instance, such behaviour has been observed in African lions [5], [6]. It 

has been suggested in [5] that female lions can be classified according to four discrete strate­

gies: “unconditional cooperators” who always lead the response in the territorial defence, 

“unconditional laggards” who always lag behind, “conditional cooperators” who lag least 

when they are most needed, and “conditional laggards” who lag farthest when they are most 

needed. Although leaders recognize laggards and behave more cautiously in their presence, 

they continue to lead the response. For more examples see [7] where also further references 

can be found.

Since the pioneering work of Trivers [8] on reciprocal altruism the analysis of social in­

teractions has become an important topic in Behavioural Ecology. In evolutionary models of 

interaction it is usually supposed that behaviours used by animals are determined by genes 

and, therefore, inherited and that welfare of the individuals is measured in terms of fitness 

(usually represented by the number of surviving offspring). If this point of view is adopted 

then by definition the fitness of an altruistic individual is less then others who choose “more
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self-interested actions” , and therefore the result of evolutionary process must be extinction 

of the altruistic behaviour.

In order to explain the cooperative behaviour game-theoretic descriptions of social inter­

actions are often used. Situations, in which the outcome of an interaction depends on the 

behaviour of all the individuals concerned, must be analysed using game theory. John von 

Neumann developed the mathematical foundations of Game Theory [9] and this theory was 

then applied to problems in Economics [10], [11]. In 1950 John Nash introduced the concept 

of the Nash Equilibrium [12] which made it possible to solve a wider range of games. Later, 

game theory was used to analyse problems in the biology of animal behaviour [13], [14], and 

the concept of an evolutionarily stable strategy was introduced [14]. Although evolutionarily 

stable strategies were introduced for biological reasons, evolutionary stability can be viewed 

as a generalisation of the Nash equilibrium concept to the case of models which may include 

evolution: for example, in economics a “learning evolution” (where the players switch to the 

most beneficial strategy) is used instead of Natural selection.

There is a standard game which has been used as a generic model of social interactions 

both by economists [15] and by biologists [16]. It is called Prisoners’ Dilemma game. In 

the non-iterated (single interaction) form of this game, two prisoners decide independently 

whether or not to confess to a crime that they committed together. The police lack sufficient 

evidence to secure a conviction unless at least one of the prisoners confesses. If neither 

confesses, then they both will be convicted of a minor offence and sentenced to one month 

in prison. If one of them confesses, he will be released, while the other will be sentenced to 

nine months in prison. If both confess, they will both be convicted, but their sentences will 

be reduced to six months. We can represent this game by the following table

( i . i )

To solve this game let us find what the first player should do. If the second player does not 

confess, then the first player should confess because then he will be released. If the second 

player confesses, then the first player should also confess because then he will be sentenced to 

six months in prison rather than nine. So whatever the second player does, the first player is 

better off if he confesses. Similarly, the second player is better off confessing no matter what 

the first player does. So both prisoners should confess, i.e. [Confess, Confess] is the solution

Player\ \  Player2 Do not confess Confess

Do not confess - 1 ,-1 -9 ,0

Confess 0 ,-9 —6, —6
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of the game. If prisoners do not confess it can be interpreted as cooperating with each other. 

Here if a prisoner confesses it can be interpreted as a defection since the other prisoner will 

end up worse off in this case.

In general a game is considered to be a Prisoners’ Dilemma if it is described by a table

(1.2)

where the payoffs hj, j  =  1, 2,3 ,4, satisfy the inequalities

h2 <  h4 < h\ < h^. (1 .3)

The solution of this game can be obtained in the same way as it has just been done for 

the game (1.1). If the second player cooperates, then the first player should defect because 

that gives him payoff equal /13 rather than hi. If the second player defects, then the first 

player should also defect because that gets him payoff h^ rather than h2. So whatever the 

second player does, the first player is better off if he defects. Similarly, the second player is 

better off defecting no m atter what the first player does. So both players should defect, i.e. 

[Defect, Defect] is the solution of the game. Nevertheless cooperative behaviour is observed 

in many human and animal societies.

There exist different approaches that try to shed light on the existence of the altruistic 

behaviour. One of them is to consider selection on groups [3]: “suppose there are many 

groups, and the altruists so enhance the fitness of the groups they are in, compared to the 

groups without altruists, that the former outcompete the latter, so that the average fitness 

of the altruist is higher than that of the selfish agent.” The main idea here that the selection 

works not on individuals but 011 a type of behaviour. By benefiting the group which contains 

a big fraction of individuals who use the same (altruistic) behaviour, an altruistic individual 

therefore contributes to benefiting of its own type of behaviour. In this instance there exists 

Hamilton’s Law [17] which describes such situation. This law is as follows. Suppose there 

are two types of agents: “selfish” and “altruist” . By cooperating, an agent produces a fitness 

increment b > 0 for his partner, at personal cost c < 6, and by defecting an agent produces 

zero at zero cost. Notice that this interaction is the Prisoners’ dilemma and can be described

Playeri \  Playe7*2 Cooperate Defect

Cooperate hi, hi h>2, hs
Defect hz, h 2 /iq, / (*/(
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by the following bi-matrix

7

Playeri \  Player2 Cooperate Defect

Cooperate b — c, b — c —c, b

Defect 6, —c 0,0

Suppose the associating agents pair off in each period, and each type is likely to meet its 

own type with probability r > 0 , and a random member of the population with probability 

1 — r. Then a small number of cooperators can invade a population of selfish actors if and 

only if br > c. In this approach the agent is transferred to the type of behavior rather 

than individual and “altruistic” acts occur because the agent, in fact, is following its own 

self-interest. Therefore, this approach states that altruistic behaviour is only “apparently 

altruistic” and not “really altruistic” .

Another approach that is used to explain the evolution of cooperative behaviour involves a 

repeated game based on the Prisoners’ Dilemma. Individuals interact repeatedly and play the 

same game (the Prisoners’ Dilemma) at each interaction [16], [18]. Repeating the Prisoners’ 

Dilemma Game provides the possibility for considering “punishing strategies” . The basic idea 

is that “ if you do not cooperate now, I will punish you in the future” . Using this approach 

it is possible to conclude that cooperative behaviour may be rational or evolved [16], [18]. In 

this case the observed altruistic behaviour is also shown to be only “apparently altruistic” 

since the individual is expecting reciprocation many times in the future.

Although this approach has played an important role in the explanation of cooperative 

behaviour, it is insufficient. For example, in a population where all members are using a 

“punishing strategy” , cooperative behaviour should be observed at all interactions. On the 

other hand, if a member of the population does not cooperate during an interaction, then 

punishment should be observed subsequently. Nevertheless, for example in African lions, non- 

cooperative behaviour has been observed but this has not been followed by any identifiable 

punishment behaviour [5], [6]. Therefore this approach is not sufficient to explain all social 

behaviour.

The Prisoners’ Dilemma model of social interaction is one of the most studied of all game 

theoretic models. There are many approaches to investigating the possibility of cooperation 

in this model, most of which are based on computer simulations [19]-[25]. One approach 

consists of considering ever more complex strategies in an evolutionary model [19], [20]. One 

way of producing an elaborate strategy is to allow players to learn from experience [21]. The
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results of [21] show that mutual cooperation can be maintained when players have a primi­

tive learning ability. It was shown that under proposed learning evolution some cooperative 

strategies can invade not only unconditional cooperation, Tit for Tat and Pavlov strategies 

but also noncooperative strategies. Another approach is to embed the prisoners’ dilemma 

into a spatial context [22], [23], [24]. For example in [22] the version of the iterated prisoners’ 

dilemma with only unconditionally cooperating and unconditionally defecting players inter­

acting with the immediate neighbours was considered. It was shown [22] that such a model 

can generate chaotically changing spatial patterns, in which cooperators and defectors both 

persist indefinitely. In [23] it was found that the pattern generated by groups of cooperators 

exhibits the scale-invariance which is typical of self-organized criticality [26]. In [24] it is 

shown that a spatial context for the interaction encourages cooperative behaviour. Multi 

players games are also considered [25] with solutions been found by computer simulations. 

There is also a direction of research based on the idea of private information available to the 

players. That is, each player may have some information about themselves or state of the 

game which is not available to other players. An overview of the recent developments in this 

area which have revealed the possibility of cooperation under condition of private information 

can be found in [27].

Whatever approach is taken cooperative behaviour becomes understandable when the 

interaction is considered in a wider context (such as length of interaction, for example). In 

this thesis we will generalise the Prisoners’ Dilemma to consider models with more complex 

interactions. In chapter 2 we will give an example showing the importance of considering 

an interaction in the context of other possible interactions. We will show that if there is 

the third player interacting with the two players engaged in Prisoners’ Dilemma, then the 

payoffs of the two players can be changed in such a way that cooperation becomes a rational 

outcome. Existing models based on the Prisoners’ Dilemma do not allow for the possibility 

tha t individuals may interact in more than one context (i.e. play more than one game). We 

will extend (chapters 5-7) the game theoretic approach to modelling social interactions to 

include behaviours beyond simple cooperation and defection in a single context.

To analyse games two main approaches are usually used in game theory. Classical game 

theory supposes that the analysed game is played once by rational players. In this approach 

a concept of Nash Equilibrium introduced by Nash in [12] is used in order to describe the 

solutions of the game, where
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NE: a Nash Equilibrium is a profile of strategies such that each player’s strategy is an 

optimal response to the other player’s strategies.

We will discuss this concept in more detail in section 1.2. There the formal definitions are 

introduced and the Prisoners’ Dilemma game is analysed as an example. We will show how 

to obtain the standard conclusion that cooperative behaviour is not rational in the Prisoners’ 

Dilemma.

Another approach used to analysed games comes from evolutionary game theory which 

supposes that the game is played repeatedly by players who are randomly selected from a 

large population. Each player is programmed with some type of behaviour. It is assumed 

that some evolutionary selection process operates over time on the population distribution of 

behaviours. Under this approach the ideas of an Evolutionarily Stable Strategy (introduced 

by J. Maynard Smith and G. R. Price in [13]) and Replicator Dynamics (introduced by 

P. D. Taylor and L. B. Jonker in [28]) are used to investigate the game:

ESS: an Evolutionarily Stable Strategy is a strategy such that, if all the members of a popula­

tion adopt it, then no mutant strategy could invade the population under the influence 

of the evolutionary selection process, and

RD: Standard Replicator Dynamics is a dynamical system that describes changes of a popu­

lation state in a population whose members are playing a symmetric two-person game.

In this thesis when we refer to the Replicator Dynamics we will mean the standard 

Replicator Dynamics for which members of the population are only using pure strategies 

while playing a symmetric two-person game.

The main idea of evolutionary game theory is that the evolutionary selection process 

is operating as a force that changes the structure of population towards the optimisation 

of fitness. The notion of an Evolutionarily Stable Strategy describes stable results of the 

selection process. But the explicit dynamic analysis shows that populations may exist that 

are the end-points of an evolutionary process, but the corresponding strategy (that prescribes 

choosing each particular action of the two-person game with probabilities which are equal to 

fractions of individuals who use this action) is not an Evolutionarily Stable Strategy [29], [30]. 

We discuss these ideas in more detail in sections 1.3 and 1.4

In section 1.5 the structure of the thesis is outlined and the results obtained are described.
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1.2 B asic G am e theory.

In this section the definition of finite games in normal form and Nash equilibrium solutions 

for such games are discussed.

Let

• I  — {1 ,2 ,. ..  , n} , n  G N, n  > 2, be a set of players,

• A 1 = {a^,. . .  , alm.} be a set of actions for player i , and

• iTi(a) — 7̂ (a 1, . . .  , an) be the payoff for player i, specified for every possible combination 

of actions a =  {a1, . . .  , an } chosen by all the players, where G A J is the action chosen 

by player j.

D efin ition  1.1  Sets I, A 1 and payoffs ir*(a), i = 1, . . .  ,n , define a game in normal form.

To play the game, each player specifies a strategy: a rule which determines an action to 

be chosen by the player for every circumstance in which a decision must be made. Pure and 

mixed strategies are usually distinguished.

D efin ition  1.2 For each player i £ I  let %ll = { a | , . . .  , a ^ . }• be a set of pure strategies, 

where strategy a t , j  — 1, . . .  specifies that player i chooses action a*- with probability 1. 

A vector a  = ( a 1, . . .  , a n j  , where a* G 21* is a pure strategy for player i, is called a pure- 

strategy profile.

D efin ition  1.3 A mixed (behavioural) strategy for player i , is a probability distribution 

over the set of actions A 1.

A  mixed strategy cr̂  =  { e r |,... , a f 1} is a vector in Rmh Its j th coordinate is the 

probability assigned by <Tj to the action dj. For a mixed-strategy profile er =  {crl5. . . ,crn} 

payoffs 7Ti(cr) for each player i are calculated as

m ia ) =TTi(au . . .  ,<rn)=  ( f [ c r 3kk J 7Ti (aj1>. . .  ,a fn).
jl=l,...,mi; \fc=l /

1,... ,mn.

R em ark  1.1  The pure strategy a t  that prescribes choosing action at with probability 1 can 

be considered as being equivalent to the mixed strategy cri = < 0, . . .  , 0 , 1, 0 , . . .  , 0 > .
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R em ark  1.2  Since Oi is a probability distribution, YfJJf l °i =  1,  ̂ € I.

Let us now define the notion of Nash equilibrium (introduced by Nash in [12]). Denote 

(T_i =  (oq, . . .  , cfi—i ■> (Ti+i > • • • j o"n) and cr =  ((J{, cr_j) =  [o i , . . .  , crn).

D efin ition  1.4 A best reply strategy S i of the Ith player to the strategies S - i  is a strategy 

such that S i = argmaxCT. iiq(oq,<f_i).

D efin ition  1.5 i  Nash equilibrium for a game in normal form is a vector of mixed strategies 

a* =  {cr{,. . .  , cr* } such that cr* =  argmaxffi 7Ti(oq, cr* ^  for each player i E I.

The concept of Nash Equilibrium assumes that no player wishes to change his strategy (since 

it gives him the highest payoff) when the Nash Equilibrium strategies are played by all players. 

We will refer to this as to rationality of the players.

E xam ple  1.1. Let us consider the Prisoners’ Dilemma game defined by table (1.2) and

conditions (1.3). The set of players for this game is I  =  {1,2} . The sets of actions A1, i = 1,2,

consist of two actions “Cooperate” and “Defect” for each player: A 1 =  {Cooperate, Defect} , 

i =  1,2. Payoffs for players are defined as follows

* l(C ,C )  =  h i ,  * l{ C ,D )= h  2, TX\(D,C) =  /l3, Tti(D,D) = / l 4,

7r2(C',C) =  fti, 7T2 (C,D) = h3, 7T2(D ,C) =  /i2, w2 (D ,D ) = Ih .

The set of pure strategies for each player consists of two strategies

a \ = {choose action “Cooperate” with probability 1} , i =  1,2,

and

ct'2 =  {choose action “Defect” with probability 1} , i — 1,2.

Mixed strategies for ith player can be described by the formula aq =  (cr*, 1 — of) , where cq is

the probability with which action “Cooperate” is chosen. Hence the payoffs nfcr) for mixed

strategy profile cr =  (cr^oq ) are given by the formula

tn(tr) = o-1o 27Ti (C, C) + oi (1 -  o2) 7r<(C, D)

+  (1 -  (T\)cT2'Ki(D,C) +  (1 -  erf) (1 -  cr2) 7r?;(D, D), i = 1, 2.

Therefore,

TTi(cr) =  ((hi + 1m -  h2 -  h3) o 2 + h2 -  1m) oi + (1 -  o2) + o 2h3,

ir2(cr) =  [(hi +  h4 -  h2 -  h$) o\ +  h2 -  hf) o2 +  (1 -  cra) hA -f- 0 ^ 3 .
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To find Nash equilibrium solutions we need to solve the following system of equations 
/

erf = arg maxCTl tti (a\ , cr?)

— arg maxo-j ( ( h i  +  /14 -  h 2 -  h 3) a?  +  /r2 -  l u )  g \  4 - (1 -  <r2) ^4 +  02^3

or̂  =  argm axCT2 7r2(o-f,o-2)

, =  arg m ax^ ((hi +  /i4 -  /i2 -  /1 3 ) o'* +  ^ 2  -  h4) cr2 +  (1 — erf) h4 +  erf/i3

Let us notice that, since inequalities (1.3) hold,

Therefore, since Tr^ai^a?) and 7r2(erf,<j2) are linear in 0*1 and <r2, respectively, they take 

their maximum values 011 the interval [0,1] at the boundary points. Hence, any solutions for 

system (1.4) must have one of the following forms

Substituting these values into system (1.4) and taking into account inequalities (1.3), we 

find that there is only one solution <ti =  0 and cr2 — 0. This means that for the Prisoners’ 

Dilemma game there exists only one Nash equilibrium solution, which is a symmetric strategy 

profile a* =  { c rf ,^ }  , with erf =  cr  ̂ =  (0,1). That is, both players choose “Defect” with 

probability 1.

From this example we can see that analysis of social interactions based on the single­

interaction Prisoners’ Dilemma game leads to the conclusion that cooperative behaviour is 

not rational. Also, since /14 <  hi, rational behaviour leads to an outcome which is sub-optimal 

for both players. It is this dilemma which provides the interest in this simple game, and has 

led to it being used as a model for economic and biological interactions. In the next chapters 

I introduce more complex models as an attempt to overcome this dilemma. But first let us 

discuss the standard model based on the idea of iterating the Prisoners’ Dilemma.

1.3 R ep eated  gam es.

(hi +  /14 — I12 — h3) X + I12 — 1m 7̂  0 Vx G [0 , 1].

Many existing models of social interactions which investigate the evolution of cooperative 

behaviour involve a repeated game based on the Prisoners’ Dilemma [16], [18]. Let us consider 

again the Prisoner’s Dilemma game defined by table (1.2) and conditions (1.3). Assume that
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the game is played an infinite number of times and that there is a constant discount factor (3 

between each round of the game, so that the expected number of rounds in the game is 

The game obtained in this way is called the Iterated Prisoners ’ Dilemma. In Economics the 

discount factor (3 usually represents inflation over time. From the biological point of view (3 

represents the probability that players participate in the next round of interaction and can 

be interpreted as surviving probability.

The Iterated Prisoners’ Dilemma game is commonly used as an example of a model of 

social interaction for which cooperative behaviour may be evolved [16], [18]. The main 

difference of such models from the single interaction models is that when players are making 

a decision about which action to choose in each Prisoners’ Dilemma game they can use 

information about actions chosen by both players in the past (for example, in the previous 

round). Therefore, players can “punish” their partner if he did not cooperate in the past. 

The most famous of such strategies is T it for Tat [18], [31], [32], which begins by cooperating 

and thereafter mimics an opponent’s play in the previous stage. Many numerical, analytical 

and computer simulation studies [15], [18], [31], [32] show that this strategy is a successful 

one. Later [16] it was discovered that, in simulated interactions of stochastic strategies 

with the memory of one previous state, the players using a Pavlov-type strategy (Win-Stay 

Lose-Switch) eventually dominate a population which was started in the completely random 

configuration.

Natural selection on strategies with memory of one previous state has also been studied 

in [20]. In this work a deterministic dynamical system based on differential reproductive 

success has been introduced. It has been shown that the Pavlov strategy is the only cooper­

ative strategy which cannot be invaded by a similar strategy when the model is restricted to 

strategies with memory of one previous state with 1% noise level.

It is known [20] that an Iterated Prisoner’s Dilemma interaction between players using 

strategies with memory of one previous state can be modeled by a Markov Process. Another 

closely related approach for analysis of repeated games is developed in [33]. In this work 

strategies are represented by way of a state space, where a player’s choice of action depends 

on the player’s current state. We will extend the idea of using competitive Markov decision 

processes (see [20], [34]) to include the possibility for analysis of more complex models of 

social interactions. We will use properties of such processes to find the Nash equilibrium 

solutions for these models.
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1.4 E volutionary D ynam ics.

1.4 .1  E vo lu tion arily  S tab le  S tra teg ies.

The concept of an Evolutionarily Stable Strategy [13], [14] is one of the main concepts in 

evolutionary game theory. In the approach proposed by J. Maynard Smith and G. R. Price 

it is supposed that there is a large population of individuals. The individuals in the popu­

lation are “programmed” with certain types of behaviour. Then a small population share of 

individuals who are “programmed” to play some other pure or mixed strategy is introduced 

into the population. A strategy cr' is called an Evolutionarily Stable Strategy if, for each 

mutant strategy, there exists a positive invasion barrier such that if the population share of

individuals playing the mutant strategy falls below this barrier, then the strategy a' earns a

higher payoff than the mutant strategy [35].

This definition can be formalised as follows [13], [14], [35].

D efin ition  1.6 A strategy cr' is an Evolutionarily Stable Strategy if  for every strategy a cr' 

there exists some ea G (0,1) such that for all e G [0,£o-) the payoff to a player who uses 

strategy cr' in a population consisting of e-fraction of cr players and (1 — e) -fraction of cr' 

players is greater than the payoff to a player who uses strategy a in the same population. It 

means that inequality

ir(cr',ecr +  (1 — e) cr') > 7f((j,£cr +  (1 — e) cr') (1.5)

holds for all e G [0,£a) .

If the case of pairwise contests is considered then there is an equivalent way of defining 

an Evolutionarily Stable Strategy which is given by the following proposition.

P ro p o sitio n  1.1 A strategy a' is an Evolutionarily Stable Strategy if  and only if it satisfies 

the first-order and the second-order best-reply conditions:

1. 7r(a',a') > n(cr,cr') for any cr;

2 . if  Tr(<j',a') — n(a,cr') then 7c(a',a) > 7r(cr,cr) for any a =4 a'.

E xam ple  1.2. The defection strategy in the Prisoners’ Dilemma is evolutionarily stable. 

In section 4.1.3 we will analyse the Iterated Prisoners’ Dilemma and it will be shown that
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neither Tit for Tat nor unconditional cooperation (the strategy that prescribes cooperation 

at every round) are evolutionarily stable since, for example, we will have that

Here C  stands for unconditional cooperation and T F T  stands for Tit for Tat.

It is immediately apparent from Proposition 1.1 that in order to be Evolutionarily Stable 

a strategy must be a Nash Equilibrium of the corresponding two-person game. Therefore, the 

concept of Evolutionarily Stable Strategy generalises the concept of Nash Equilibrium, which 

assumes the rationality of playing individuals, to the case of evolving population. However, 

both the Evolutionarily Stable Strategy concept and the Nash Equilibrium concept describe 

only results of the evolutionary process and do not explain the dynamics leading to such an 

outcome. In the next section we discuss the concept of Replicator Dynamics which models 

the selection mechanism.

1 .4 .2  R ep lica tor  D yn am ics.

Consider an infinitely large population of individuals who are programmed with certain types 

of behaviour (pure strategies) i G { 1 ,... , n} . Denote by x% the proportion of the individuals 

in the population who adopt behaviour i. The Replicator Dynamics proposed by P. D. Taylor 

and L. B. Jonker [28] describes changes of a population state X  = (aq ,. . .  , xn) in a population 

whose members are playing a symmetric two-person game with the payoffs given by matrix A, 

with elements ciij. In this work we will use two forms of the most commonly used version of the 

Replicator Dynamics: the continuous-time form and the discrete-time form. The continuous­

time Replicator Dynamics is usually used for an analytical approach to the problem. On 

the other hand the discrete-time version of the Replicator Dynamics is more applicable when 

computational analysis and simulations are performed.

The Replicator Dynamics in continuous time is the following dynamical system.

Using relationship xn = 1 — x\ — . . .  — xn- \ ,  which is preserved by the dynamical system, 

we can reduce the number of equations in system (1.6) to n — 1. Denote x — (aq ,. . .  ,x n- \ ) .

tv (TFT, T F T ) = 7t(TFT, C) = i:(C, C) = tt(C, C ).

(1.6)
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Then

d x . ( ( » ■  } \
= ~  I |  ^  j (p'ij Q-in) %j T  ^in / M (■*') I 5 i = I, . . .  71 1, (1*7)

where

(i{x) = («!,••• -  an ~  . . .  -  a;n_i) A (aii,- ■ • ,a;n_ i, 1 -  aq -  . . .  - r c n_ i)T .

Since the Xi represent population shares (proportions), we consider the solutions of the 

system (1.7) that are restricted to the simplex

A = | ^ : Q  ^0 < Xi  j  n  ^53^* ~ *) } ^ ^

This system of differential equations, in general, has no explicit analytical solution. To 

analyse the behaviour of the solutions and describe the dynamics we apply methods of the 

qualitative theory of the dynamical systems (due to [36]-[40]) and the concepts of evolution­

arily and asymptotic stability presented in [35], [41], [42]. In chapter 4 we discuss these 

methods in detail.

To obtain the discrete time analogue of the Replicator Dynamics (see [35]) let us make 

the following time substitution r  =  f.t(x) t, then the dynamical system (1.7) becomes

(  n—l
d x i  Xi  i 
d T  ~  n  (X)  |  A  XJ +  “ >»

— X{, i = 1, . . .  n — 1.

By replacing by , where A t  — h is fixed and A Xi =  x k+1 — x k we obtain

Ar- r k+1 -  Tk Tk {n~X )= Jx “ = j 53 (aii ~ ain) XI  ̂ain | — i = 1 ,.. .n — 1. (1.9)

Choosing h = 1 in the above formula, the following discrete time analogue of the Replicator 

Dynamics (see [35]) is obtained

k [ n~ 1
fc+i _  xx i |  5 3 K j  -  a i n ) x j  + a in > , i =  l , . . . n - l .  (1.10)

This form of the Replicator Dynamics was used to perform computer simulations.
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1.4 .3  P o in tw ise  and setw ise  evo lu tion ar ily  stab ility .

The end points of the evolutionary process are stable points of the dynamical system (1.7). 

Such points can be considered as a generalisation of the Nash Equilibrium and evolutionarily 

stable strategy concepts. For every Nash Equilibrium strategy (prescribing to choose action i 

with probability &{) of the two-person game there exists a corresponding stationary point of 

Replicator Dynamics representing a population in which the proportion x l of the individuals 

who adopt behaviour i is equal <7j, that is x l = <Ji. The proof of this fact can be found in [35]. 

It is also the case that for every evolutionarily stable strategy there exists an asymptotically 

stable point of the corresponding Replicator Dynamics system [35]. The relationship between 

different concepts of stability is illustrated by the diagram in figure 1.1.

Figure 1.1. Relationship between stability concepts.

If stationary points are not isolated then the asymptotically stable sets and evolutionarily 

stable sets are considered. Such sets often appear in the Replicator dynamics when the payoff 

bi-matrix for corresponding two-person game is non-generic.

The definition of an asymptotically stable set (in the sense of Lyapounov stability theory) 

is standard [35]. It generalises the concept of asymptotically stable point. The definition is 

as follows.

Definition 1.7 A closed set & is asymptotically stable if  every neighbourhood B  of t5 con­

tains a neighbourhood B° of & such that for any x  € B° £ (t, x) G B  Vi > 0 and there exists 

neighbourhood B * of & such that £ (t , x ) — ► (5 for all x  6 B*.

The concept of evolutionarily stable sets was introduced by Thomas [41]. It generalises 

the concept of evolutionarily stable strategy. There exist two version of this definition: the
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“strategy” version and the “population” version. The correspondence between the two ver­

sions can be established if instead of a strategy cr prescribing the choice of action i with 

probability Vi we consider a corresponding stable point of Replicator Dynamics representing 

a population in which the proportion of the individuals who adopt behaviour i is equal cr*. 

In this thesis we will use the “population” version of this definition which is formulated as 

follows [35].

D efin ition  1.8 A set © in simplex A is evolutionarily stable i f  it is non empty and closed, 

and each x° £ 6  has a neighbourhood Vxo such that f xo(x) — (x° — x) A x T > 0 for all 

population states x  £ V^o\©. Here A  is a payoff matrix for the corresponding two-player 

game.

The concept of an asymptotically stable set is a general concept of the stability theory. 

The concept of evolutionarily stable set is introduced in a context of population evolution. 

As a result the latter one is more specific. It is true [35] that every evolutionarily stable set 

is also an asymptotically stable set. In general, for the Replicator Dynamics with a generic 

matrix A  (which we investigate in this thesis), the converse statement is not true. But 

in the special case of Replicator Dynamics for which the corresponding two-player game is 

doubly symmetric (for which matrix A  is symmetric) every asymptotically stable set is also 

an evolutionarily stable set.

1.5 O utline o f th e  thesis.

In this thesis I generalise existing models of social interactions based on the Prisoners’ 

Dilemma game in order to explore social and other behaviours in the context of long-term 

interaction and investigate the conditions for existence of cooperative behaviour. The thesis 

is structured as follows.

In chapter 2 I consider an example of an interaction which shows the importance of 

taking into account the conditions in which the interaction takes place. I introduce a third 

player into the model, who interacts with two other players engaged in a single interaction 

Prisoners’ Dilemma. The two players interacting in the Prisoners’ Dilemma Game represent 

two companies deciding whether to form an alliance. The third player is another company 

attacking the first two. The analysis of the model shows that, under the threat of an attack 

by another player, cooperation may be stabilised. I establish the relationship between the
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power of the attack, the level to which the attack affects the players and the possibility for 

forming an alliance.

The rest of the thesis is dedicated to the consideration of multi-state models which gener­

alise the models of social interactions based on the Iterated Prisoners’ Dilemma as follows. I 

will consider a repeated interaction between two individuals in which the game played at any 

particular time is randomly selected from a specified set of games. For example, individuals 

may interact either to hunt for food or to defend a jointly held territory. Such an interaction 

can also model two companies deciding whether to form an alliance for trading in a home 

country market and a foreign market. In addition to examining the behaviour of the individ­

uals in these two contexts, I will take into account whether or not they wish to continue their 

long-term association. Chapters 3 and 4 contain explanations of the main techniques used in 

the analysis. Chapters 5, 6 and 7 contain the results obtained for the multi-state models.

In chapter 3 I explain the approach which allows us to check that a strategy is a Nash 

Equilibrium for a stochastic game with finite memory. I generalise the techniques of competi­

tive Markov decision processes (see [34]) to be applicable for the analysis of general multi-state 

games. I illustrate this technique by considering the Iterated Prisoners’ Dilemma game, and 

obtain Nash Equilibrium conditions for any one-stage-memory pure strategy.

In chapter 4 I show how the theory of qualitative analysis of differential equations can 

be used to obtain a qualitative picture of the evolutionarily dynamics for a game. I also 

introduce the concept of evolutionarily attractive sets. It will be shown in chapters 6 and 7 

that evolutionarily attractive sets appear in the analysis of the multi-state games considered. 

I also describe the technique of singular coordinate transformations ( “blowing up”), which 

can be used to determine the stability properties of non-hyperbolic fixed points. Such points 

may occur in the Replicator dynamics of stochastic and other non-generic games.

In chapter 5 I introduce a multi-state game model that allows for the possibility that 

individuals may interact in more than one context. I consider a repeated interaction between 

two individuals in which the game played at any particular time is randomly selected from 

a specified set of two context-games G\ and (?2- In addition to examining the behaviour of 

the individuals in these two context-games, I will also allow them to decide whether or not 

they wish to continue their long-term association. Such a model will allow us to explore the 

consequences of a richer structure of interaction. For example, the possibility for introducing 

a new type of behaviour in such games arise: strategies based on the idea of division of
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labor or allocating tasks. That is one player cooperates in game G\ and defects in game G2 

while the other player defects in G\ and cooperates in G2 . I will show that under certain 

conditions on the parameters of the model such strategy is a Nash Equilibrium. This result is 

particularly important since the observed behavior for such strategies (in each of G\ and G2 

separately) is: one player cooperates while the other defects. Therefore this Nash Equilibrium 

is relevant to the explanation of apparently altruistic behaviour among unrelated individuals. 

It is also possible to find interactions in which the strategies similar to unconditional defection 

strategy in the Iterated Prisoners’ Dilemma game are not Nash Equilibria. This result shows 

that cooperative society may be able to evolve from initially uncooperative population which 

is not the case for the models based on the Iterated Prisoners’ Dilemma. In chapter 7 I 

investigate this possibility for a particular choice of parameters of the model.

In chapter 6 I analyse the Replicator Dynamics obtained for the multi-state model with 

a generic set of parameters. I obtain conditions on the parameters such that cooperative 

or alternating tasks populations are the outcome of the selection process, but the pure non 

cooperative populations are not.

In chapter 7 I consider some interesting examples. In particular, I show that there are ex­

amples of interaction such that the only outcome of the selection process is either cooperative 

or alternating tasks behaviour. I also show that uncooperative population can be unstable 

and that cooperation may evolve from such populations. Another interesting result concerns 

the investigation of non reciprocal cooperation. In this instance I show the following. Let 

context-games G\ and G2 be modelled by Prisoners Dilemma Games with the same payoffs 

and let a Hawk-Dove Game be used to model the decision of whether or not to continue a 

long-term association. Assume that the probability of playing game G\ is p  and therefore the 

probability of playing game G2 is 1 — p. Suppose that the probability p can change over time 

and can become either zero or one (then only one of the games G\ or G2 will be observed). 

The observed behaviour for the alternating tasks strategies (which is an outcome of the se­

lection process for the set of parameters considered in the example) are then as follows: one 

player is always cooperating and another is defecting. Since the other game is never played 

in this situation such a behaviour gives an example of evolution of non-reciprocal cooperative 

(apparently altruistic) behavior among unrelated individuals.

In the final chapter the main results of the thesis are summarised.



Chapter 2

Beyond the Prisoners’ Dilemma: a 
three-player game.

In this chapter I generalise the single interaction Prisoners’ Dilemma game by introducing a 

third player who can choose the degree to which he interacts with the first and the second 

players. If there is no interaction between the third player and the two other players, the first 

and the second players are assumed to play a Prisoners’ Dilemma type game. For example, 

the two players interacting in Prisoners’ Dilemma game may represent two companies trying 

to ensure an alliance. Then the third player may represent another company attacking 

the alliance. The third player can also represent ‘Nature’, that is environmental or other 

conditions that have an impact on the game and do not depend on the behaviour of the 

first two players (for example, a tax regime by which a government ensures “nice” corporate 

behaviour). The main idea here is the same as in considering repeated interaction: the context 

of the interaction may change the conclusions drawn from the analysis. By considering the 

two players not in isolation but in the context of their interaction with the third player it 

becomes possible to obtain a cooperative Nash Equilibrium.

The idea of introducing the third player was suggested to me by Prof. L. Fletcher (in 

private communication) who proposed that symmetric attack forces the players to form an 

alliance. Besides the game-theoretic interest this game provides business application interest, 

since the problem of investigating the mechanisms allowing the formation and maintenance 

of an alliance in business is quite important [43].

In the next section a general model of the interaction described above is introduced

21
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and the effect which the existence of the third player has on the possibility of cooperation 

is investigated. For example, I establish the relationship between the power of the attack 

(favorable or unfavorable conditions in the ‘Nature’ case), the level to which the attack affects 

the players and the possibility for forming an alliance. Considering the problem from the two- 

player plus ‘Nature’ perspective, I look for Nash Equilibrium solutions that are relevant to 

the understanding of cooperative behaviour. When, taking the third player into account, I 

also show how to find an optimal strategy for attack.

2.1 Tw o-player perspective.

Let us start with considering two players who are playing the game with the payoffs deter­

mined by the following bi-matrix.

P l \ P 2 Cooperate Defect

Cooperate I , I B1B+B1B1

Defect 1 + v  — X , I — V — X 1 B 1 1 B 1 *-s

(2 .1)

Here we suppose that I > 0, v > 0, x  > 0 and /  > 0.

If we consider an example of two companies trying to ensure an alliance then we can 

interpret the payoff's (2.1) as follows.

• If both players choose to cooperate we will interpret it as the companies agreeing to 

form an alliance. Here 21 represents the value of a market share available for the two 

companies. The players share the market equally and obtain payoff of I.

• If one player chooses to defect and another to cooperate, it will be taken to represent 

the defecting player is attacking the cooperating player who does not fight back. Here 

v represents the value of market share transferred as a result of the attack from player 

who cooperates to the player who defects. The parameter x  represents the extra cost 

of running business outside the alliance compared with the cost of running business in 

alliance.

• If both players chose to defect then there is a fight and each player has an equal 

probability of obtaining the whole market. Here /  represents the cost of fighting.
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In order for the game (2.1) to be identified as a Prisoners’ Dilemma conditions (1.3) on 

payoffs (2.1) must be satisfied. This means that the following inequalities must hold

I + v — x  > I > I — x — f  > I — v — x.

Hence we must have v >  x  and v > / .

Now, let us assume that there is a third player who may choose to attack player one with 

level p and player two with level q. For convenience of analysis we normalise the levels of 

attack to be between zero and one: 0 <  p < 1 and 0 < q < 1.

• If player three attacks with level p or q a market share proportional to the appropriate 

level of attack is lost by players one and two, respectively.

• We assume that there may be a cost of being attacked which is proportional to the level 

of attack and will be expressed as pc and qc. We assume that c >  0.

• We also assume that withstanding an attack in an alliance may be easier for a company 

than on its own, so that there maybe an extra cost py or qy of attack if companies are 

not in an alliance. Here y > 0.

• Finally, we suppose that if players are in an alliance they share the cost of the attack 

equally.

Taking into account the above assumptions, we obtain the following payoff bi-matrix for 

players one and two if player three attacks player one with level p and player two with level q.

P l \ P 2 C D

c Z(l-p)-A(pc+gc) , l ( l -q)-±(pc+qc) (Z—v ) ( l -p ) -x -p (c+y)  , (l+ v ) ( l -q ) -x -q (c +y )

D ( l+v) ( l -p) -x -p(c+y)  , (l - v ) ( l - q ) - x - q ( c + y ) l ( l - p ) - x ~ p ( c + y ) - f  , l ( l - q ) - x - q ( c + y ) - f

(2.2)

We will now describe conditions for a particular strategy profile to be a Nash Equilibrium.

CC : If

I (1 -  P) ~ \  (PC +  Qc) > (I +  v) (1 -  p) -  x -  p (c +  y) 
I (1 -  q) -  \  {pc +  qc) > (I + v) (1 -  q) -  x  -  q (c +  y)
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then the pair of strategies where both players choose cooperation with probability one 

is a Nash Equilibrium for the game (2.2). This conditions reduce to

2v -  2x  +  cq 2v - 2x  + pc
V >     and q > ----------------- . (2.3)

2v + 2y P c 2v + 2y + c

This means that to obtain the cooperative Nash Equilibrium the levels of attack on 

both players should be quite high.

DD : If

{I -  v) (1 -  p) -  x  -  p (c +  y) < I (1 -  p) -  x  -  f  -  p (c +  y)

(I -  v) (1 -  q) -  x  -  q (c +  y) < I (1 -  q) -  x  -  f  -  q (c +  y)

then the pair of strategies where both players choose defect with probability one is a

Nash Equilibrium for the game (2.2). This conditions reduce to

p < 1  and q < 1 — —. (2.4)
v v

Therefore, there is the non cooperative Nash Equilibrium if the levels of attack are not 

high enough.

CD : If

(I -  v) (1 -  p) -  x  -  p (c +  y) > I (1 -  p) -  x  -  f  -  p  (c +  y)

I (1 -  q) -  \  {pc +  qc) < (I +  v) (! -  q) -  x -  q (c +  y)

then the pair of strategies where the first player chooses cooperation and the second 

chooses defection with probability one is a Nash Equilibrium for the game (2.2). This 

conditions reduce to

^ i f  i ^ 2v ~ 2x + pc .p >  1  and q < —   . (2 .5)
v 2v -f 2y +  c

Therefore, if attack on the first player is strong enough and attack on the second player 

is weak enough then there is a Nash Equilibrium there the first player cooperates and 

the second player defects.

DC : If

I (1 -  p) — \  {pc + qc) <  (I +  v) (1 — p) —x —p(c + y)

(/ -  v) (1 -  q) -  x  -  q (c +  y) > I (1 -  q) -  x  -  f  -  q (c +  y)
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then the pair of strategies where the first player chooses defection and the second 

chooses cooperation with probability one is a Nash Equilibrium for the game (2.2). 

This conditions reduce to

cq + 2v - 2x f
p < —-----------— and q > 1 ------. (2.6)

2v + c-\-2y 1 ~ v y ’

This Nash Equilibrium solution is “symmetric” to the CD Nash Equilibrium: if attack 

on the first player is weak enough and attack on the second player is strong enough 

then there is a Nash Equilibrium there the first player defects and the second player 

cooperates.

M : There could be also a mixed strategy Nash Equilibrium as we will show in the example 

below.

E xam ple  2 .1 . As an example we consider the game with the following parameters 

v — 5, x — 2, y = 2, /  =  2, c =  3.

Then the payoff bi-matrix (2.2) is

P l \ P 2 C D

c Z(l-p)-§(p+g) , Z(l_9)_ |(p+4) Z(l-p)-7 , l(l-qr)+3-10g

D Z(l-p)+3-10p , l ( l - q ) - 7 Z(l— p)—4—5p , 1(1—q)—4—5<7

(2.7)

Using formulae (2.3), (2.4) (2.5) and (2.6), we obtain the following conditions for the

various Nash Equilibria.

CC : If < p < 1 and < g < 1 then the pair of strategies where both players choose 

cooperation with probability one is a Nash Equilibrium for the game (2.7).

DD : If 0 < p < |  and 0 < q < |  then the pair of strategies where both players choose defect 

with probability one is a Nash Equilibrium for the game (2.7).

CD : If |  < p < 1 and 0 < q <  then the pair of strategies where the first player 

chooses cooperation and the second chooses defection with probability one is a Nash 

Equilibrium for the game (2.7).
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DC : If 0 < p < and |  < q < 1 then the pair of strategies where the first player

chooses defection and the second chooses cooperation with probability one is a Nash 

Equilibrium for the game (2.7).

M : We can also find that if ^±<1 < p <  |  and < q < |  then there is a mixed strategy 

Nash Equilibrium which is as follows

'6 - 1 0 ( 7 .  6 - 10q^ v _ ( Q~ 10P 1 6 — 10p'10(? 6 
7 q - 3 p ’ 7 q - Z p ) ' h  =

10p 6______
7p — 3(? ’ Ip  — 3 q

(2.8)

We illustrate conditions (2.3), (2.4) (2.5) and (2.6) on figure 2.1 below. Here p =  

is shown is blue, q — is shown is green, p — |  and q =  |  are shown in red. For each 

combination of the parameters we have a unique Nash Equilibrium solution except for region 

where < p < |  and ^ y ^  < q < |  in the middle of the square, for which there are 

three Nash Equilibria: (‘Cooperate’, ‘Cooperate’), (‘Defect’, ‘Defect’) and the mixed Nash 

Equilibrium (2.8).

F igure  2.1. N ash  E qu ilib ria  so lu tions for th e  gam e (2.7) 

depend ing  on p a ram e te rs  p an d  q.

CD
0.8 CC

0.6
/CC, 
M, DD

0.4

DCDD
0.2

0.2 0.4 „  0.6 0.8

It can be shown that for the region where < p  < |  and ^ y ^  < q < |  (‘Cooperate’, 

‘Cooperate’) is “Pareto efficient” Nash Equilibrium, that is both players obtain their highest 

payoffs if the (‘Cooperate’, ‘Cooperate’) equilibrium is played.
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2.2 Third player p erspective.

Now we will show how to determine the Nash Equilibrium levels of attack p  and q.

In this model we assume that before the game (2.2) is played the third player chooses 

levels of attack p  and q. This assumption is equivalent to the statement that the first two 

players are certain about the strength with which they are attacked. This approach simplifies 

the analysis of the game. The first and the second player make their choices at the game (2.2) 

which determine their own payoffs and also the payoff obtained by the third player. The 

payoffs to the third player will be given in the following matrix.

P l \ P 2 C D

c Ip + l q -  (a + e)  (p +  q) (I -  v )  p  +  (I +  v )  q -  cr (p +  q)

D ( I + v ) p  + (I — v )  q — cr (p  + q) lp + l q - ( c 7 -  e) (p +  q)

Here a  represents the cost of the attack, e  represents the additional cost due to attacking an 

alliance and e represents the decrement in the cost of the attack if it is made on the companies 

which are fighting with each other.

We now consider two examples showing how the optimal level of attack can be chosen. 

E xam ple 2.2. Let us choose the parameters of the game as follows.

v  = 5, x  — 2, y  = 2, /  =  2, c  — 3, I =  8, e  =  1, e — 1, o- =  3.

Then the third player payoff matrix (2.9) is

P l \ P 2 C D

C 4p +  4g 10 q

D lOp 6p +  6 q

(2 .10)

We will assume that the first and the second player use their Nash Equilibrium strategies 

and if the Nash Equilibrium is not unique for some range of the parameters p  and q  the 

Nash Equilibrium which gives the highest payoffs is played. Taking this remark into account 

we can draw a plot that represents the payoff obtained by the third player when he chooses 

different levels of attack (figure 2.2).
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F igure  2.2. T he  payoff o b ta in ed  by th e  th ird  p layer 

depend ing  on choice o f a tta c k  levels pand  q.

10q0.8
4p+4q

0.6 Tv?
/4p+4q i l l

0.4'

6p+6q 1 0 p
0.2

0.2 0.4 „ 0.6 0.8

We have that

CC : If < p < 1 and < q < 1 then the first and the second players choose 

to cooperate in this region and the payoff to the third player is equal 4p +  4q. This 

expression reaches its maximum of 8 at the point I =  {p — 1, g =  1} .

CD : If |  < p < 1 and 0 < q <  then the first player chooses cooperation and the second 

chooses defection and therefore the payoff to the third player is equal 10g, which reaches 

its maximum of ~  5. 39 at the point II = { p  =  l,g  =  ^ } .

DC : In the same way if 0 < p < and |  <  g < 1 then the first player chooses defection 

and the second chooses cooperation and therefore the payoff to the third player is equal 

lOp, which reaches its maximum of ~  5.39 at the point III == {p =  g =  1} .

DD : In the remaining area the first and the second players choose to defect and the payoff 

to the third player is equal 6p +  6g. It reaches its maximum of ^  ~  6.35 at the points 

IV ={f> =  i ,9  =  i } o r V  = { P =  § , ,  =  § } .

Comparing the values at the points I, II, III, IV and V we find that the optimal choice of

attack levels is p =  1 and q = 1. Notice that such a choice by the third player forces the first

and the second players to form (or maintain) an alliance, which means to cooperate.
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E xam ple 2.3. Let us change the value of the parameter I which represents the value of a 

market share available for the first and the second players (which therefore can be taken over 

as a result of the attack). In this example we choose 1 = 5. Then the third player’s payoff 

matrix (2.9) is

P l \ P 2 C D

c p  +  q 7q — 3p

D 1 C
O ►cs 3p  +  3^

And arguing as in example 2.2 we obtain the following plot representing the payoff gained by 

the third player if he chooses different levels of attack (figure 2.3).

F igure  2.3. T he  payoff ob ta in ed  by th e  th ird  p layer 

depend ing  on  choice of a tta c k  levels pand  q.

7q-3p0.8
p+q

0.6
'p+q

m
0.4

3p+3q 7p-3q
0.2

0.2 0.4 „  0.6 0.8

We have that

CC : If < p  < 1 and < q < 1 then the first and the second players choose to 

cooperate in this region and the payoff to the third player is equal p + q .  This expression 

reaches its maximum of 2 at the point I = { p  =  l 5̂  =  l} .

CD : If |  < p  < 1 and 0 < q  < then the first player chooses cooperation and the second 

chooses defection and therefore the payoff to the third player is equal 7q — 3p, which 

reaches its maximum of ~  1.4 at the point II = | p  =  | )g =  | | | .
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DC : In the same way if 0 < p <  and |  < q < 1 then the first player chooses defection 

and the second chooses cooperation and therefore the payoff to the third player is equal 

7p — 3q, which reaches its maximum of ~  1.4 at the point III =  {p = | | , g  =  -  } .

DD : In the remaining area the first and the second players choose to defect and the payoff 

to the third player is equal 3p +  3q. It reaches its maximum of ~  3.2 at the points

I v  = { p  =  | . 9 = i } ° r V  = { p  =  i > 9  =  f  }•

Comparing the values at the points I, II, III, IV and V we see that the third player obtains 

maximum payoff at the points IV = | p  =  | , g = | | | o r V  =  {p =  ^ , qr § } . Unfortu­

nately for the third player, if he chooses the levels of attack to be exactly {p =  ~,q = | | } or 

{ p = i . 9  =  !}  the payoff bi-matrix (2.2) for the two firms is non-generic and there exist an 

infinite number of Nash Equilibria for this game. It includes the (‘Cooperate’, ‘Cooperate’) 

Nash Equilibrium which, if it is played by the first and the second players, gives them the 

highest payoffs. The third player obtains the payoff of only if the first and second players 

choose to defect. Therefore to prevent the first and the second players from swapping be­

tween Nash Equilibria the third player must not choose {p =  =  | | }  or {p —  ̂~  5 }

but choose {p =  |  — <5i,q = | |  — 82] or {p =  | |  — 81 , q =  |  — £2} such that these points are 

still in (‘Defect’, ‘Defect’) Nash Equilibrium region and 8 \ and 82 are very small. We can 

see that for this example the optimal choice of parameters p and q does not exist. The best 

strategy for the third player would be to break the alliance by using appropriate levels of 

attack. In this case a moderate, asymmetric attack will achieve higher payoff than a strong 

(symmetric or asymmetric) attack.

R em ark  2.1 For the example where parameters are as follows

v = 5, x  = 2, y — 2, /  =  2, c =  3, e = 1, e =  1,

it is possible to show that if  the difference between value of the market I and the price of the 

attack 8 is

• less than —1 (note that in this case the actual cost of the attack is <j — e so the difference 

between value of the market I and the actual cost of the attack is less than 0) then it is 

optimal not to attack, that is p = 0 and q = 0;

• between —1 and ^  then the optimal choice of parameters p and q does not exist and 

the third player should follow the approach described in the example 2 .3 ;
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• greater than ^  then the optimal choice of attack levels is p = 1 and q =  1; this choice 

of the third player forces the first and the second players to form (or maintain) an 

alliance.

R em ark  2.2 For simplicity of the exposition we do not give the proof of this statement. The 

proof can be obtained using item-by-item examination of all possible cases. Similar conditions 

can be obtained for generic set of parameters.

2.3 Sum m ary.

In a single interaction Prisoners’ Dilemma cooperative behaviour is not a Nash Equilibrium. 

However, the interacting players are considered in isolation from the environment they inter­

act in or from other possible relationships in which they can be involved. The analysis of the 

game (2.2) shows that under the threat of an attack by another player (or under unfavorable 

conditions) the players may be induced to cooperate. It is clear that cooperative behaviour 

becomes a Nash Equilibrium of the game (2.2) because an attack on players changes their 

payoffs. But on the other hand, if in modelling the interaction we do not take into account 

the conditions in which the interaction takes place we would obtain the result that cooper­

ation is not rational when, in fact, it is. Introducing the third player is only one of many 

possible ways to generalise the basic model of interaction. In the next chapters some other 

possibilities will be explored.

Another result of the above analysis concerns the third players’ strategy. As we have 

seen from the examples, depending on the relationship between the value of the market and 

the costs of the attack, the third player may either wish to split the alliance or it may be 

better for the third player to engage in the strongest symmetric attack, which leads the first 

two players to form an alliance (for the conditions which produce each type of attacking 

behaviour see the remark 2.1 above). A strong attack, where the level of attack does not vary 

significantly between the target firms, will stabilise the possibility of forming an alliance. On 

the other hand, an asymmetric, weak or moderate attack does not provide an incentive for 

cooperation.



Chapter 3

Nash Equilibria and Markov 
Decision Processes.

In chapter 2 we have used the idea which came from the Iterated Prisoners5 Dilemma model: 

considering an interaction in a wider context provides an opportunity for cooperation to 

be explained. In chapter 2 we introduced an additional player in the interaction. Another 

possibility is to introduce additional games in the model or allow players to discontinue their 

association. These models can be described as multi-state games. In chapters 5, 6, and 7 

we will consider such models. But, before we can proceed with analysis of such models we 

need to discuss the techniques which we will use. In the analysis of multi-state games the 

techniques from the theory of Markov decision processes and stochastic games appear to be 

very useful.

Therefore, in this chapter, we will discussed the techniques and approaches that we will 

use later (in chapter 5) to find Nash Equilibria for the multi-state model we are interested 

in. To describe the approach we begin by recalling the definitions of competitive Markov 

Decision Processes and stochastic games with stationary strategies. After that we show how 

to enlarge the definition to deal with a special class of non-stationary strategies (finite memory 

strategies). The definitions of Nash equilibrium solutions for discounted stochastic games are 

also discussed. We show that Markov processes and dynamic programming can be used to 

analyse the discounted stochastic games and they are especially helpful if we wish to check 

that a particular strategy is a Nash Equilibrium for a game. In the last section of this chapter 

the definitions and techniques are illustrated using the Prisoners5 Dilemma game. Using the

32
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approach proposed, we obtain the Nash Equilibrium conditions for any one-stage-memory 

pure strategy for the Iterated Prisoners’ Dilemma game.

3.1 M arkov decision  processes and stoch astic  gam es.

In this section I recall (following [34]) the main definitions and facts about finite state com­

petitive Markov decision processes and stochastic games that will be used later.

Let us consider a process that is observed at discrete time points t  — 0 ,1 ,2 ,...  .A t each 

time point t, the state of the process will be denoted St. Here St is a random variable that 

can take values from a finite set S =  { 1 ,2 ,... ,IV} which is called the state space.

The process is controlled by players P\ and who independently choose actions a1 £ 

A  1{s) = |a } ( s ) , . . .  ,c 4 l(s)(s)} and a2 £ A 2(s) =  j a ? ( s ) , . . .  ,< ^ 2(s)(s)} at time t if 

the process is in state s : St = s. The choice of a1 £ A 1(s) and o2 £ A 2(s) in state s 

results in immediate rewards r 1(s ,a 1,a 2) and ?’2(s, a1,a 2), for the first and the second player 

respectively, and a probabilistic transition to a new state s' 6 S.

D efin ition  3.1 A process is called Markov if for every s, s' £ S and a1 6 A 1(s), a2 € A 2(s) 

the probability that St+i = s' given that St = s and the players choose actions a1 and a2 

is independent of time and any previous states and actions. That is, there exist stationary 

transition probabilities p ( s 'l s ^ ^ a 2) := P  {S t+i = s'\St = s,A } = a1, A 2 — a2} for all t =  

0,1,2, • • ■ . Here St is the state at time t , and A }, A 2 denote the actions chosen by players 

Pi and P2 at time t, respectively.

D efin ition  3.2 The ith player’s strategy f* — , f ,£\ n ) ■> i — 1,2, in Markov

decision process is a block row vector whose sth block is a nonnegative row vector

fM = ( f i A a\ ( s ) ) i f i A a2 («)),•••

with entries tha,t satisfy (s)) = 1. These entries will be given the interpretation

that fi,s(a) (5)) is probability that the i th player chooses action a (s) £ A l(s) in state s £ S 

whenever s is visited. A strategy L will be called pure if  fi,s{<Tj (s)) G {0,1} for all a*- (s) £ 

Al (s), s £ S. The property that the player’s decisions in state s are invariant with respect to 

the time of visit to s is called the stationarity of the strategy, and such strategies are called 

stationary strategies.



CHAPTER 3. NASH EQUILIBRIA AND M ARKO V DECISION PROCESSES. 34

D efin ition  3.3 The strategies fi and f2 define a probability transition matrix P ( f i , f 2) =  

(p (V|s, fi, f2))^s/=1 with entries given by

mi(s) m2(s)

p ( s '|s , f i , f 2) =  Y 2  £  p { s'\s>a} ( s) f l A alj ( S) ) f2A al ( S))■
j=l k=1

We will consider the so-called “discounted” Markov decision models which are defined as 

follows.

Let ~  1,2, denote the sequence of random rewards for the ith player, with

R\ being the reward for the i th player at the time point t. Once an initial state s and 

strategies fi and f2 are specified, then so is the probability distribution of R\ for every 

t = 0 ,1 ,2 ,.. .  ,£  =  1,2. Thus the expectation of R\ is also well defined and will be denoted 

by E S)fljf2 [P|] := E fjL|f2 [R\\So =  s] .

The total discounted value of the strategies fi and f2 from the initial state s for the Ith 

player will be defined by U g(s,fi,f2) := YnZo /^ E S)f1(f2 [-Rt] , where (3 £ [0, 1) is called the 

discount factor. In order to calculate this value, define the immediate expected reward vector 

by

r f(fi,f2) =  (r<( l , f 1,f2) , r i (2 ,f1,f2) , . . .  , r i (JV,f1,f2))T 

where, for each s £ S,

mi(s) m2{s)
P (s , f i , f2) :=  r (s ’a} ( s)>ak ( s) ) fh s (a j { s ) ) f 2,s{cil(s)).

j = l  f c = l

We can calculate now that for any s £ S

=  »’<(8>f i .f2) =  [ri (f i>f2)]1,
N

E W j f l i ]  =  ^ p ( s ' | S > f 1 , f 2 ) 7 - i ( « ) f l . f 2 ) =  [ P ( f l >f 2 ) r i ( f l , f 2 ) ] s

s'= 1 
N

E . A . 6 M  =  E w ( « ' k f i . f 2 ) r i ( 6 , f 1 , f 2 ) =  [ P 2 ( f i , f 2 ) r i ( f i , f 2 ) ] .

s'=l

N

E 5,fi,f2 [-Rt] =  Y l Vt (s/|s ,f i ,f2) P ( s , f i , f 2) =  [Pt (fi,f2) r t (f1,f2)]s
a'=l

where [u]s denotes the sth entry of a vector [u], and pt (s '|s ,fi, f2) is the i-step transition 

probability from s to s' in the Markov chain defined by fi and f2. It is well known from Markov
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chain theory that the t th power of P  ( f i, f‘2 ) contains all such i-step transition probabilities. 

That is, P l (fi, £2 ) =  (Pt f2))^s/- i  • Hence the discounted value vector of the strategies

fi and £2 for the ith player Vg(fi,f2 ) (v^ ( l , f i , f 2 ) , . . .  ,Vp (IV, fi,f2)^ can be calculated as 

vjg(fi, £2) =  E S o  f t P 1 (fi,f2) r l (fijf2)> where P° (fi,f 2 ) :== In ,  the N  x N  identity matrix.

If j3~l is larger than any eigenvalue of the matrix P  (fi, fb), then the sum E t^o  (fi> %)

is convergent and equal to the matrix

[ / jv - /3 P ( f1,f2) ] - 1 =  / Jv +  /? P (fi,f2) + / 32P 2 ( f i .f2) +  --- .

So, if the conditions on (3 and matrix P  (fi, f2) are satisfied we obtain the following compact 

matrix expression for the discounted value vector v ^ (fi,f2) for the i th player

V> (fi, f2) = [In  ~  P p  (fi, f2) r 1 r' (fi, f2) . (3.1)

R em ark  3.1 It is well known that i f  matrix P ( f i ,f2) is a stochastic matrix (all rows sum 

to 1) then the maximal eigenvalue of this matrix is equal to 1 and, hence, j3 € [0,1) satisfies 

the required condition.

D efin ition  3.4 A game that can be described as a discounted Markov decision process is 

called a discounted stochastic game.

Let us now give the definition of a Nash equilibrium solution for such games.

D efin ition  3.5 A pair of strategies ( ff , f | ) is a Nash equilibrium of a discounted stochastic 

game if  for all possible strategies fi, f2 and for all possible states s £ S the following condition 

holds

\v|( S ,f 1*,f2* )> v ^ ( 5 , f1*,f2) '

3.2  N ash  E quilibria for gam es w ith  fin ite m em ory.

Suppose now that when players make a decision about which action to choose at a state of 

a discounted stochastic game they use information about actions chosen by both players at 

some previous state. That is an example of a model which we will call a one-stage memory 

model since the strategies that players use depend only on how the game was played at
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one particular stage in the past (usually this will be the previous stage). These are non- 

stationary strategies. However, the game can still be described by a Markov decision process 

with stationary strategies over an enlarged state space.

R em ark  3.2 It is clear that we can consider non-stationary strategies for discounted stochas­

tic games (see, for example, [34] section 2.6). But for the convenience of the analysis it is 

useful to introduce a new Markov decision process for which the strategy we are considering 

becomes stationary over an enlarged state space. The idea of using the enlarged state space to 

model non-stationary strategies is well-know to game-theorists. For example such a Markov 

process was used in [20] for the Iterated Prisoner’s Dilemma interaction between players us­

ing one-state memory strategies. Nevertheless, although the idea is very natural it seems that 

the general approach has not been described. Below we describe it for completeness of the 

discussion.

Since we are considering a stochastic game there is a Markov process with the state space 

S =  { 1 ,2 ,... , N }  which corresponds to this game. Let us denote the set of all possible memo­

ries (information states) which players can have during the game under some memory model 

as I =  ,ik}- If we consider the one-stage memory model, then ij = (s ',a i ,a 2),

.7 =  1, 2, . . .  , k, is the information that actions a\ and a2 have been chosen at state s' by the 

first and the second players respectively.

To represent this model as finite state Markov decision processes with stationary strategies 

we need to enlarge the existing state space S. If at some different time players use some 

specific information ij to make their decision when they are at the state s, this situation will 

be represented by an additional state s* . of the enlarged state space S.

D efin ition  3.6 Let S' C S be a subset of all states s at which players use some information 

to make a choice of actions (the strategy is not stationary at these states). The enlarged state 

space S consists of the following elements S =  SU {s* . : s € S' ,ij € 1} .

E xam ple  3.1. In the Iterated Prisoners’ Dilemma the number of states in S is one: S =  {1} =  

{PD}  (here PD  stands for Prisoners’ Dilemma). The number of possible combinations of 

actions chosen is four. Therefore, for the one-stage memory model of the Iterated Prisoners’ 

Dilemma game

I =  {ii, t2, <3 , *4} =  {(PD, C, C ) , (PD, C, D ) , (PD, D, C ) , (PD, D,D)}.
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The enlarged state space S then is as follows

S =  {PD, P D ( P D ic ,C) > P D ( P D ,C , D )  t P P ( P D , D , C ) 5 P P{ P D , D ,D )  }  ■

Here PD  is the starting state when no previous interaction has occurred. We consider this 

example in more detail in the next section where we analyse all pure one-stage memory 

strategies for this model.

Using this idea, Markov processes with stationary strategies can be constructed for any 

stochastic game with a finite memory model. Here under finite memory we understand that 

the number of players and the number of states are finite for such a model and the information 

which the players use during the game depends only on finite number of previous rounds.

D efin ition  3.7 Let S be a state space of the Markov process with stationary strategies con­

structed for a stochastic game with finite memory. Space S consists of two different types of 

states:

• the states at which the players have no particular information on the history of the 

game; these will be called empty memory states sem (the set of all empty memory states 

will be denoted Sem), and

• the states at which the players have some information on the history of the game; these 

will be called information states.

We will now introduce the definition of a Nash Equilibrium for a discounted stochastic 

game with finite memory. In this thesis we will use this definition when we solving such 

games.

D efin ition  3.8 A pair of strategies (f*, f | ) is a Nash Equilibrium for a discounted stochastic 

game with finite memory if  for all possible strategies f i ,  f 2 for all e m p t y  m e m o r y  states 

sem G Sem the following condition holds

f v * f i , f | )

1 vjl(s'™,fi*,f2)

R em ark  3.3 The main difference between this definition and the definition of a Nash equilib­

rium of memoryless discounted stochastic games is that in this case we consider only a subset 

of the state space (empty memory states). It seems that the difference between Definition 3.5
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and Definition 3.8  is similar to the difference between the concept of Nash Equilibrium and

the concept of subgame perfect Nash Equilibrium, as Definition 3.8 does not require local best

class of strategies to be used in discounted stochastic games with memory. In section 3.3 we 

consider an example of the Iterated Prisoners ’ Dilemma game with memory of one previous 

state. It will be shown, for instance, that such a, “good” strategy as Tit for Tat would be

section 3.3. For more discussion on this matter see also Remark 3.10 of section 3.3.

If a particular game-model has many different states it can be difficult to find all Nash 

equilibria. For example, the number of only pure strategies for a model increases exponentially 

and equal 2n if the number of states is n. From an application point of view it may be more

verify that some certain “interesting” strategies are Nash Equilibria. If we are able to find 

a few such “interesting” Nash Equilibria we then can analyse the Replicator Dynamics of 

these strategies and answer the question whether or not these strategies are likely to be the 

outcome of an evolutionary process. We now introduce the technique that allows us to check 

if a strategy f is a Nash Equilibrium for a game with finite memory. In our analysis we use 

the ideas and results of dynamic programming (which can be found, for example, in [44]).

Below we explain how to check that a pair of strategies (ff, f |)  is a Nash Equilibrium.

Firstly, let us consider the following suprema of the functions Vp ( s ,f i ,f2)

The following two theorems give a system of equations on suprema V^(s, f | ) and V^(s, f-f) 

and guarantee that the solution is unique.

T h eo rem  (i). (for proof see [44])

responses at every state s E S. Such a definition is introduced in order to allow a wider

forbidden if  Definition 3.8 were extended to S \S em. This fact is explained in more detail in

useful not to attempt to solve the problem of finding all possible Nash Equilibria, but try  to

V j( s ,f |)  = s u p v j ( s , f i , f 2*), V |(« ,f f )  =  s u p v |( s ,f1*,f2), s € S, (3.4)

=  max 
o1€ A 1(s)

a2g A 2(s) 

for all s E S.

=  max

(3.5)
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T h eo rem  (ii). (for proof see [44]) V ^ s ,^ )  and V j|(s,f*) are the unique solutions for 

equations (3.5).

Suppose that, once these suprema are found, we can identify strategies f 1 and f 2 such 

that

v£(S, f \ f 2*) =  Vj,(S, f *), v2(s ,f* ,f2) =  V | ( S,fi'), s 6 S.

This would mean that the actual values of the suprema are achieved as total values for some 

strategies. Then, which ever state we consider as the beginning of the game, f 1 is the best 

reply for f |  and f is the best reply for f*. The following theorem guarantees that such 

strategies exist.

T h eo rem  (iii). (for proof see [44]) The best reply strategies f 1 and f 2 exist and can be 

taken to be stationary and pure.

Then if the pair of strategies (f* ,f |)  is a Nash Equilibrium the following equalities must 

be satisfied for all empty memory states sem € Sem

Therefore, as a procedure for checking that a particular pair of strategies (ff , f |)  is a Nash 

Equilibrium I propose the following.

1. Find the total discounted value (ffjf^) for the i th player.

2. Solve the dynamic programming equations (3.5).

3. Check that for all empty memory states sem G Sem

v^(Se’" >f1*,f2*) =  V ^(S'=“ ,f2*), =  (3.6)

R em ark  3.4 Since Theorem (iii) guarantees that the best reply strategies f 1 and f 2 exist 

there is no necessity to identify these strategies exactly, as it is follows from the existence of 

the strategies f 1 and f 2 that suprema Vg(s, f^) and V^(s,f*) are reached on the strategies f 1 

and f 2. Therefore V^(s, f | ) and V j|(s, f^) give the maximum total value which it is possible to 

obtain playing against and ff respectively. Hence if  equations (3.6) hold then Definition 3.8 

is satisfied for strategies (f-j* ,£3 ) .



CHAPTER 3. NASH EQUILIBRIA AND M ARKO V DECISION PROCESSES. 40

R em ark  3.5 Let us notice that using this approach we can verify that any strategy f (pure 

or mixed) is a Nash Equilibrium in a class of all possible strategies (pure or mixed) of the 

constructed process. When we say that a strategy f  is a Nash Equilibrium it means that 

conditions of Definition 3.8 are satisfied for a pair of strategies (f, f) where strategy f is 

played by both players. For simplicity of the analysis in the problems studied in this thesis we 

only consider symmetric Nash Equilibria. Nevertheless the approach can easily be applied to 

non symmetric Nash Equilibria.

3.3 Exam ple: one-stage m em ory m odel for Iterated  P risoner’s 

D ilem m a gam e.

In this section we consider an example of the Iterated Prisoners’ Dilemma game. We show 

that procedure described above can easily be used to verify that a certain strategy is a Nash 

equilibrium for this game. We will consider all one-stage memory pure strategies and obtain 

the Nash Equilibrium conditions for them.

Let us recall that in the Iterated Prisoners’ Dilemma game

• there is one state, the Prisoner’s Dilemma game defined by table (1.2) and condi­

tions (1.3), which is played an infinite number of times and

• there is a constant discount factor (3 between each round of the game, so that the 

expected number of rounds in the game is jzfi-

Suppose that when players make a decision about which action to choose in each Prisoners’ 

Dilemma game they use information about the actions chosen by both players in the previous 

round.

It is known that an Iterated Prisoner’s Dilemma interaction between players using such 

strategies can be modeled by a Markov Process [20]. In example 3.1 of the previous section 

we have obtained the state space of the Markov process with stationary strategies for the 

Iterated Prisoners’ Dilemma

S =  { P P ,  PP(PD,C,C), ̂ ^ ^ ^(PD,D,jD) } •

Here PD  state accounts for first round condition when there is no history and PD^PDaxa^  

is a state in which information that at the previous round actions ai and a.2 are chosen by
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the first and the second player, respectively. Since in this game the same single interaction 

game (Prisoners’ Dilemma) is played at each state we can simplify the state description and 

use the following notation

S = {PD, (C, G) ,(C,

The sets of actions A*(s), which can be chosen by the ith player at state s, are A*(s) =  {1,2} =  

{C, D}, s = 0 ,1 ,. . .  ,4, z =  1,2. Immediate rewards r 1(s ,a 1,a 2) and r 2(s, a.1, a2) for the first 

and the second player, respectively, are the same for every state s and defined by table (1.2). 

The i th player’s strategy U =  (fi,o,f;,i, • •. ,$,4 ) , U,s =  (/<.*, 1 ~  fi,s) ,  s =  0 ,1 , . . . ,4, where 

f iyS, i = 1,2, is the probability that action C  is chosen at the state s by the ith player. The 

strategies f i , f2 define a probability transition matrix as following

 ̂ 0 f l , 0 / 2,0 / l ,0 (1 — / 2 ,o) (1 ~  / i ,o )  /2,0 (1 -  / i ,o )  ( -  h , o )  ^

0 f l , l /2 , l  f l , l  (1 “  /2 , l ) (1 -  / 1, i ) / 2,i (1 -  / l , l )  ( -  / 2,1)

P ( i l , h )  = 0 / l , 2 / 2,2 / l ,2  (1 ~  /2,2) (1  -  / l ,2 )  /2,2 (1 “  / 1,2 ) ( /2,2)

0 f l , 3/2,3 f l ,3  (1 ~  /*2,3) (1 -  / l , 3 ) /2,3 (1 -  / 1,3) ( -  /2,3)

1 ° f  1,4 / 2,4 f l ,4  (1 ~  /2 ,4) (1 -  / l ,4 )  /2,4 (1 -  / 1,4) ( -  h , 4 )  )

The vector v ^ ( f 1; f2) can be calculated as v ^ ( f i , f 2) =  [/s  — p r t f u h T ^ ( f i . f a ) .

Below we consider the pure strategies for the one-stage memory model for the Iterated 

Prisoners’ Dilemma game (there are in total thirty two such strategies). We determine the 

necessary and sufficient conditions for the payoffs and discount factor (3 under which these 

strategies are Nash equilibria.

The state space descriptions of the strategies we consider are given in tables 3.1 and 3.2. 

Each strategy is given a number which is used to refer to it. The first column of ta­

bles 3.1 and 3.2 contains these numbers. For some strategies there are well known names (see, 

for example, [18], [32], [20]). These are also given in the first column of tables 3.1 and 3.2. 

The next five columns contain the probability f s with which the strategy prescribes choosing 

action C  at some particular state s. The last column contains the value of the strategy if it 

is played against itself (we denote v (f i,f2) =  v j(0 ,f i ,f2)). Since { a i,a 2} is the information 

that at the previous round actions ai and a2 are chosen by the first and the second player, 

respectively, the strategies for the first player only are given in tables 3.1 and 3.2. To obtain 

the same strategies used by the second player we need to swap the probabilities given for 

the states s — 2 =  (C, D) and s = 3 =  (D ,C ) . Some strategies are invariant under such a
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transformation. Other strategies should be considered in pairs to obtain the complete strat­

egy description. For example strategy description 6 from table 3.1 gives Tit for Tat strategy 

played by the first player, but strategy Tit for Tat played by the second player is described 

by line 4 from table 3.1. Therefore a pair of strategies where (f i,f2) — (6,4) is symmetric 

where both players use strategy Tit for Tat. To calculate the expected value for Tit For Tat 

strategy played against itself we need to calculate the expected value for strategy described 

by line 6 played against strategy described by line 4. Strategies 17-32 (see Table 3.2) are 

cautious versions of strategies 1-16: instead of starting the interaction with cooperation they 

prescribe choosing defection at the first round.

Table 3.1. M em ory-one p u re  s tra teg ies  (1-16) 

for th e  I te ra te d  P r iso n e rs ’ D ilem m a.

Strategy Probability of choosing action C at Value of strategy

played by F irs t (C,C) (C,D) (D ,C ) (D,D) played against

first player Round state state state state itself

1=A11 C 1 1 1 1 1 v ( l ,l )  =  p ^0

2 1 1 1 1 0 v(2]2) =  T^0

3 1 1 1 0 1 v(3,5) =  ̂

4=Stubborn 1 1 1 0 0 v(4,6) =  j ^ g

5=Tweedledee 1 1 0 1 1 v(5,3) =  I^

6= T it for Tat 1 1 0 1 0 v(6,4)=

7=Pavlov 1 1 0 0 1 v f r T ) ^

8 = Grim 1 1 0 0 0 v ( 8 , 8 ) = ^

9 1 0 1 1 1 v(9,9)= M ± |j4

10 1 0 1 1 0 v(10,10)=/li +

ll= B u lly 1 0 1 0 1 v ( l l , 1 3 ) = ^ ± |^

12 1 0 1 0 0 v(12,14)=/li +

13=Fickle 1 0 0 1 1 v(13 ,ll) =  ̂ f ^

14 1 0 0 1 0 v(14,12)=/li +

15 1 0 0 0 1 v(i 5)15)= M ± |J i

16 1 0 0 0 0 v(16,16)=/li +
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Table 3.2. M em ory-one p u re  s tra teg ies  (17-32) 

for th e  I te ra te d  P riso n e rs ’ D ilem m a.

Strategy Probability of choosing action C at Value of strategy

played by F irs t (C,C) (C,D) (D,C) (D ,D) played against

first player Round state state state sta te itself

17=Cautious All C 0 1 1 1 1 v(17,17)=/l4 +

18 0 1 1 1 0 v ( 1 8 , 1 8 ) = I ^

19 0 1 1 0 1 v (19,21)=/l4 +

20 0 1 1 0 0 v(20,22) =  I^ g

21=Cautious 

Tweedledee
0 1 0 1 1 v(21,19) =  /t4 +

22=Cautious 

T it for Tat
0 1 0 1 0 v(22,20)=I ^

23=Cautious Pavlov 0 1 0 0 1 v(23,23)=/l4 +  f!)]}

24=Cautious Grim 0 1 0 0 0 v(24,24)=I^

25 0 0 1 1 1 v ( 2 5 ,2 5 ) = ^ ± ^ -

26 0 0 1 1 0 v(26,26) =  I ^

27 0 0 1 0 1 v (2 7 ,2 9 )= ^ + ff i '

28 0 0 1 0 0 v(28,30) =  I^ g

29 0 0 0 1 1 v(29,27) = f r ^ | ? 1'

30 0 0 0 1 0 v(30,28) =  I ^

31 0 0 0 0 1 v ( 3 1 , 3 1 )  =  ^ | f i

32=A11 D 0 0 0 0 0 v(32,32)= i f p

R em ark  3.6 Some of the strategies we considered above are well studied (see, for example, 

[18], [20], [33], [45] and section 1.3 for more detail). The results of our analysis extend the 

existing picture as we analyse all pure strategies for the one-stage memory model for any 

possible combination of payoffs and discount factor (3.

R em ark  3.7 As has been noted already the approach works for mixed strategies as well; but, 

since there is an infinite number of such strategies, we do not consider such strategies in this
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work.

R em ark  3.8 One of the main advantages of the approach which we use here is that it is 

algorithmic: it is possible to use computer programs (such as “Mathematica” or “Maple”) to 

obtain the sufficient and necessary Nash Equilibrium conditions for all pure or (some specific 

mixed) finite memory strategies for a multi-state game.

To obtain Nash Equilibrium conditions for strategy f  we solve equations (3.5). Since we 

will only check the symmetric Nash Equilibria (f , f ) and the state game (Prisoners’ Dilemma) 

is symmetric we only need to solve the first equation for V ^(s,f). For the Iterated Prisoners’ 

Dilemma game the equation (3.5) reproduced below

V£(a,f)

=  E  r1(s,a1,a2) f ( s ia2) V  (3 £  X] P ( s ' K a V 2) / ( s , a 2)V ^ (s' ,f) l  ,
o eAl(«) [ G2 eA2 (s) s'eS a2£A2(s) H J

has the following form

V j(s ,f )  = m a x { u fs(C),ufs(D)} , (3.7)

where

“ /.(C ) =  /s/ll +  (1 — f a )  h,2 +  0  +  (1 — /») v (̂2, f)) ,

Uf.(D) =  /»/l3 +  ( l - / s ) / l 4 + / 3 ( / s V j A f )  +  ( l - / s ) V j ( 4 , f ) )

and s = 0 , 1, 2,3,4.

It follows from equation (3.7) that if, for some strategy f, the value V g(s,f) is equal to 

ufs i P )  it means that by choosing action C  at state s while playing against f  the player would 

earn the highest payoff. In the same way if V ^(s,f) is equal Uf s ( D ) players should choose 

action D at state s while playing against f to optimise their payoff.

We will now demonstrate how to establish the range of parameters for which strategy Tit 

for Tat described by the pair (6,4) of entries of table 3.1 and strategy Cautious Tit for Tat 

described by the pair (22,20) of entries of table 3.2 are the Nash Equilibria. To analyse the 

T it for Tat strategy we need to solve the equation (3.7) for this strategy played by the second 

player. As was explained above, if the T it for Tat strategy is played by the second player it

will be represented by line 4. The following lemma gives the solution for the equation (3.7)

in this case.
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L em m a 3.1 I f f  = 4 (Tit for Tat played by second player), then Vg(s, f) =  a, for s = 0,1,2, 

and Vg(s,f) — b, fo r  s = 3,4, where

a =  rti(C) — and 6 =  rto(C') =  h2 + */ 0  > fc% . and 0  > I z l :
a =  ui(C') =  -jŷ g and b =  no (I?) =  jzfp */ 0  > and 0  < ^

a =  ni(L») =  *J±gJa and 6 =  n0(C) = P < ^  and 0  > ^

a =  ui(D) = h3 +  and b — uq(D) = if P < L i t  and 0  <

P roof. Since f 0 = f i  — f 2 = 1 and fe — f± = 0 we have that

V £(0,f) =  V j,(l,f)  =  V j(2 If) =  m ax{/M + /3V ^(l,f),/i3 +  /3V ^(3,f)};

V j,(3,f) =  V j(4 ,f)  =  max {/i2 +  /3V ^(2, f ),/»4 +  /3V ^(4,f)}.

Denoting V g(0,f) =  V g (l,f)  — Vi,(2 , f) =  a and V ^(3,f) =  Vg(4, f) =  b we obtain the

following system

{ a = max {hi +  Pa, h 3 +  (3b} 

b =  max {I12 +  Pa, -j- pb}

To solve this system we should consider four different cases.

1. a = hi +  pa  and b = h2 +  Pa. This can be solved to give a = j^fp and b = _ 

This means that

h i+ P -^ p  > /i3 + /? '‘2+(!‘l f f ‘2)<3 and > lH +  0 ‘h*+^_-ki)f>

a n d / 3 > | ^ .

2. a = h\  +  Pa and b — /14 +  pb. This can be solved to give a = j}fp and b = y^g. This 

means that

hi T- Pjifp — ^3 +  and h2 +  Pj^fp 5-i h4 +  Pjztp

“  PS f c t  and PS

3. a =  h-3 +  pb and 6 =  h2 +  /5a. This can be solved to give a =  and & =  ^ ^ 23.

This means that

fti +  <ha +  0 ^ ^  and +  >  4 +  

or /? < ^  and /3 > £ = £ .
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4. a =  h3 +  (3b and b — hA +  /?&. This can be solved to give a — ancj 5 —

This means that

h 1 + p h * ± U & j* e £  <  hg +  0 ^  a n d  /l2 +  <  h A p ( 3 ^

Therefore we obtain the statement of the lemma.

R em ark  3.9 As we can see from the proof of the lemma that if  at two different states a 

strategy prescribes cooperation with the same probability, then the best actions to choose in 

reply are the same at these states. For example since for strategy Tit for Tat a — u\ (C) — jffp 

and b =  uq(D) — if (3 > pf z pf a<nd (3 < , the action C is the best reply at any state

to which strategy Tit for Tat prescribes cooperation with probability 1 and the action D is the 

best reply at any state to which strategy Tit for Tat prescribes cooperation with probability 0. 

This is due to homogeneous nature of the Iterated Prisoners ’ Dilemma Game. I f  we consider 

the game at any time moment and forget about the past history of the game the rest of the 

game is exactly the same and does not depend on the time moment.

R em ark  3.10 Taking Remark 3.9 into account, we can conclude that the standard stochastic 

game approach would be restricted if  we wish to analyse the so-called “punishing strategies” 

for which the state description is not symmetric under permutation of players (for example 

Tit for Tat). Since such strategies take into account the history of the game it may fail to be 

optimal by the following reason. Due to its nature such strategies try to ensure cooperation 

by punishing the non-cooperative behaviour of the opponent: if  an opponent defected in the 

past the strategy would prescribe choosing defection in spite of the opponent’s present action 

(which could be to cooperate). Therefore such strategy is likely to prescribe different replies 

to the same action of the opponent at different states and hence cannot be optimal under 

the standard stochastic game approach. We have introduced Definition 3.8 in order to avoid 

this problem. It is clear that under this definition some Nash Equilibrium strategies are 

not optimal from every state of the process, but this is due to the nature of “punishment”: 

sometimes a player punishing an opponent punishes himself as well. The approach that we 

have proposed here gives us the possibility of analysing “punishing strategies” since its only 

requires a strategy to be optimal at the empty-memory states. This approach can be justified 

if  we assume that the players are not rational but programed with some types of behaviours. 

For example such an interpretation of players was used in [ f6].



CHAPTER 3. NASH EQUILIBRIA AND M ARKO V DECISION PROCESSES. 47

P ro p o sitio n  3.2 Strategy Tit for Tat (strategy pair (6 ,4 )j is a Nash equilibrium if and only

i f

/i3 -  h i  hA - h 2 h3 -  hi hA -  h2 fo m
(3 >  -----------------7—  and (3 >  -  — or (3 >   — and (3 <   — . (3.9)

III — h 2 hi — h 2 hs — /14 hi — h 2

P roof. The proof of this proposition is obvious since if conditions (3.9) are satisfied then the 

expected value for the Tit For Tat strategy against itself v (6 , 4) =  Vg(0,6 ,4) =  is equal 

to the V g(s,4) which gives the maximum achievable value for the Tit For Tat strategy. If 

conditions (3.9) are not satisfied then

• if /3 < jffEpf and (3 > strategy 29 obtains the maximum payoff playing

against Tit For Tat, and therefore Tit For Tat played against Tit For Tat is not a Nash 

equilibrium;

• in the same way if (3 < ancl P < strategy 32 (All D) obtains the maximum

payoff playing against Tit For Tat.

P ro p o sitio n  3.3 Strategy pair (22, 20) (Cautious Tit For Tat) is a Nash equilibrium if a,nd 

only if

hs -  hi hA - h 2 ho, -  hi hA -  h2(3 >  ------— and (3 <   — or (3 <   — and (3 <   —
h,3 — hA hi — h2 ho, — /14 ho, — h 4

P roof. The proof of this proposition is similar to the proof of Proposition 3.2. We would 

need to solve the equation (3.7) for strategy 20. The solution is given again by (3.8) but in 

this case V ^(0, 20 ) =  b.

Using the ideas described we can solve equations (3.7) for each of the strategies given in 

tables 3.1 and 3.2. The results are presented in tables 3.3 and 3.4. The first column of these 

tables contains numbers of strategies. The strategies are given in pairs (for example strategies 

4 and 20), because solutions of equation (3.7) are given by the same expressions for strategies 

in a pair. I11 the same way as for strategies 4 and 20 the values of V ^(s,f), s — 1,2,3,4, are 

equal for such strategies. The next five columns contain the values of V^(s, f ), s — 0 ,1 ,2 ,3 ,4 , 

for each strategy. In the same way as has been done for strategy 4 we find for each strategy 

f  the values V g(s,f) =  a for any s such that f s = 1 and V ^(s,f) =  b for any s such that 

f s = 0. The last column of tables 3.3 and 3.4 contains the expressions for a and b for different 

parameter values.
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T able 3.3. Solu tions of th e  dynam ic p rog ram m in g  eq u a tio n  (3.7) 

for s tra teg ies  1-8 an d  17-24.

Strategy S,f) for different states S : Formulae for a and b depending on parameter values

f 0 1 2 3 4

1

17

a

b

a

a

a

a

a

a

a

a
a=Ul{0)=~^, 6=tai(0)=/i4+ |^ |.

2

18

a

b

a

a

a

a

a

a

b

b

a=Ul( 0) = ^ .

If then b=uoU)~ll2+jz^- 

If 0^ 4 =Ktthen 6-«o(0) -~ ^ .

3 a a a b a If ^ 'h f lh 4ttien “- “iW -h s  and b-uo(0)-hi+/3~l-.

19 b a a b a If ̂ {fE&then a=Ul(0) = ^ ± ^  and 6=«0(0) = ^ ± ^ .

If /3>7 ^ 4  and /3 > t^ 4  then 0- ^ ( 1) - ^  
and b—uo(l)~li2+ j ^ .

4 a a a b b
If £>4 ^4 and P<j£n% then a - u ^ l ) - ^  

and 6=w0(0)=2^ .

20 b a a b b If / 5 < ^ a n d  then
and 6=u0(l)=^±^a.

If ̂ <71§37ri;and P<-j^Z  then a -Ul(0)-h3+£M 
and 6=uo(0)=yf^g.

5

21

a

b

a

a

b

b

a

a

a

a
a=ixi(0)=Yiî > b=uo(0)=h^-\-H .̂

6

22

a

b

a

a

b

b

a

a

b

b
a=u i{0)=rj$, b=uo(0)=M..

7 a a b b a If P> 4 1 4  then a-u i(l)_~^ and b-u0(0)-h4+£M.

23 b a b b a If /3<7T ^ th e n  a-ul(0) - ^ ± ^  and b-uo( 0 ) - ^ ± ^ .

8

24

a

b

a

a

b

b

b

b

b

b

b= U  0(0)=j^g.

If P> h3-h4 then a—ui(l)— x_p.

If P— h^)l\ then a—Ul(0)~-ll3+JZ^•
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Table 3.4. Solutions of th e  dynam ic p rog ram m in g  eq u a tio n  (3.7)

for s tra teg ie s  9-16 an d  25-32.

Strategy Vg(s, f) for different states S : Formulae for a and b depending on parameter values

f 0 1 2 3 4

9

25

a

b

b

b

a

a

a

a

a

a
a-u l(0)=y^g, b=u0(0)=h4:+/3-^.

10

20

a

b

b

b

a

a

a

a

b

b

a=iti(0)=d^.

If b=u0(l)=h2+(3-^. 

If P<7̂ 4 then b=u,o(0) -~ ^ .

11

27

a

b

b

b

a

a

b

b

a

a
a = u  1(0) = ^ ! ,  b=Uo{0>!*±!^.

12 a b a b b If ^ d  b=u0( l ) = B H ^ .

28 b b a b b If /̂ — then a—tii(0)—/i3+/?yd  ̂ an4 b—uo(0)—jpp-

13

29

a

b

b

b

b

b

a

a

a

a
a=u i(0)=^_, b=uo (0)=/i4 +(3 .

14

30

a

b

b

b

b

b

a

a

b

b
a=u i(0)=d^, b=u0 (0)=-j^g.

15

31

a

b

b

b

b

b

b

b

a

a
a=Ml(o)=iia±^ii h=Uo(0)==Zl4±^a.

16

32

a

b

b

b

b

b

b

b

b

b
a=ui(0)=h3+(3~^, b=uo(0)=-L^.

Using the results obtained we can find the conditions required for a certain strategy to be 

a Nash Equilibrium. Considering each strategy in turn, we find tha t the strategies given in 

the first column of table 3.5 are Nash Equilibria if parameters of the model are in a specific 

range. The conditions on the parameters are given in the second column of table 3.5.
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Table 3.5. P u re  m em ory-one N ash  E q u ilib ria  for 

th e  I te ra te d  P riso n e rs ’ D ilem m a gam e.

Strategy Conditions under which a strategy is a Nash equilibrium

5, 7, 21, 23 (3 > F

6 (3 > A  and (3 > B  or (3 > C  and (3 < B

8 (3 > C

18, 26 (3 < E

22 (3 > F  and (3 < B  or (3 < C  and (3 < D

30 (3 < D

20, 24, 28, 32 0 <(3<  1

Where

a _  h  ~ hi p _  ~ h 2 /i3 -  hi _  /i4 -  hr2 /r4 -  /i2 p  _  h3 -  /xi
/q — ll2 * /'/-I — /l2 5 /i3 — ’ /I3 — /14 ’ /i3 — h2 ’ /ij — /l4

Notice that the inequalities (1.3) on the Prisoners’ Dilemma payoffs imply that all A, E , C,

D, E1 and F  are greater that zero, E , C and E  are less than one, C < F  and E  < B.

The following plots represent the above result graphically showing the range of the dis­

count factor (3 for which a strategy is a Nash Equilibrium and allow the comparison of different 

strategies. Three different cases are represented.

1. If /1 4  — h2 < h3 — hi then D < B  < C < A. In this case the results are shown in 

figure 3.1. Here for example strategy 8 (Grim) is a Nash equilibrium if (3 > C  and 

strategies 20  (Cautious Stubborn) , 24 (Cautious Grim), 28 and 32 (All C) are Nash

Equilibria for any value of (3 (0 < /? < 1).

2. If — I12 = h3 — h\ then D = B  =  C = A. In this case the results are shown in 

figure 3.2.

3. If /14 — I12 > h3 — hi then A < C < B  < D. In this case three plots are produced (see 

figure 3.3) because the precise relationships between F  and B  or D  and between E  and 

A  or C  are not relevant.
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F igu re  3.1 P u re  m em ory  one N ash  

I te ra te d  P riso n e rs ’ D ilem m a gam e 

2Q, 24, 28, 32

E qu ilib ria  for th e

if /14 — h,2 < hs — hi.

8
22, 30 6

18, 26 5, 7, 21, 23

--------1i--------1i--------- »---------- 1i------- 1i------1------------------,
0: o D B A F

F igu re  3.2 P u re  m em ory  one N ash  

I te ra te d  P riso n e rs ’ D ilem m a gam e 

2 0 , 2 4 , 2 8 , 32

E qu ilib ria  for th e

if /14 — h '2 — /l3 — h i .

6 , 8
2 2 , 30

5 , 7, 2 1 , 231 8 ,2 6

______ _ . .  ................

D =B = C= A

F igu re  3.3 P u re  m em ory  one N ash  

I te ra te d  P riso n e rs ’ D ilem m a gam e
2 0 , 2 4 , 2 8 , 32

E qu ilib ria  for th e

if /i4 — /12 >  hs — h\.

6 , 8

30
2 2 za ..!

0 B D 1

5, 7, 21, 23

18, 26

B
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Figures 3.1-3.3 give a complete set of one-stage memory symmetric pure Nash Equilib­

ria for the Iterated Prisoners’ Dilemma game. Notice that the strategies 5 (Tweedledee), 

6 (Tit for Tat), 7 (Pavlov) and 8 (Grim) are cooperative strategies. We mean here that if 

both players use these strategies then cooperative behaviour is observed at each round of 

interaction. Strategies 21 (Cautious Tweedledee) and 23 (Cautious Pavlov) are the cautious 

versions of strategies 5 and 7 respectively. They can also be considered as cooperative since 

if they are used by both players the cooperative behaviour is observed at each round except 

for the first one. All other strategies which appear in table 3.5 are non-cooperative in the 

sense that if they are played against themselves then defection is observed at each round of 

interaction.

E xam ple  3.2. For the standard set of parameters

Playeri \  Player2 Cooperate Defect

Cooperate 3,3 0,5

Defect 5,0 1,1

hi =  3, h-2 — 0, hg =  5, I14 =  1,

we have that

A =  | ,  B  = \ ,  c  = \  3 ’ 3 ’ 2
D = \ ,  E  = \ ,

The Nash equilibrium strategies in this case are shown in figure 3.4 below.

F igu re  3.4 P u re  m em ory  one N ash  E q u ilib ria  for 

th e  I te ra te d  P riso n e rs ’ D ilem m a gam e if  hi = 3,/i2 = 0, hg =  5, h.4 =  1.

20, 24, 28, 32

8

2 2 ,  3 0 6

1 8 ,  2 6

4*-------------------------1------------1 1- ------------------------------------------ , 1--------------------------- <

0 1 /5  1 /4 1/2 2 /3

Notice that, since F  =  1, strategies 5 (Tweedledee), 7 (Pavlov) 21 (Cautious Tweedledee) 

and 23 (Cautious Pavlov) are not Nash Equilibria for any value of the discount factor (3. The 

only cooperative Nash Equilibria in this case are 6 (Tit for Tat), for /3 > §, and 8 (Grim), 

for (3 >
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3.4  Sum mary.

In this chapter we have introduced the approach which allows us to check that a strategy is a 

Nash Equilibrium for stochastic games with finite memory. We use this approach in chapter 5 

to analyse a special multi-state game which we introduce. The main point of this approach 

consists in following. Once we have constructed the appropriate Markov process and obtained 

the state space representation of some strategy we are interested in analysing we can find 

the necessary and sufficient Nash Equilibrium conditions. These condition then guarantee 

that the strategy is a Nash Equilibrium in a class of all (pure and mixed) strategies which 

are allowed by the state space representation of the process. Unfortunately, the approach is 

restricted in the sense that it does not solve the problem of finding all Nash Equilibria for a 

model. In particular, mixed strategy Nash Equilibria cannot be found.



Chapter 4

Stability concepts and Evolutionary 
Dynamics.

In the previous chapter we have described how it is possible to verify that a certain strategy is 

a Nash Equilibrium. Assuming that we are able to find a few Nash Equilibrium strategies, the 

question arises: which one of the strategies will be adopted by players. From this point of view 

the Nash Equilibrium concept does not allow us to compare different strategies. If a game 

has multiple Nash Equilibria it is not possible to say which one will be played. The concepts 

of an Evolutionarily Stable Strategy and Replicator Dynamics considered in this chapter are 

aimed at answering the question: ‘which strategies or types of behavior are likely to be an 

outcome of an evolutionary process’? We have already discussed the general definitions of 

these concepts in chapter 1. In this chapter we explain in more detail the techniques which 

we will use in order to analyse the Replicator Dynamics for the multi-state game we are 

considering in chapters 5, 6 and 7.

In the first section of this chapter we discuss the standard techniques of the theory of 

qualitative analysis of differential equations [36]- [40] which mostly consists in analysing the 

linearised system of equations. This approach allows us to produce a qualitative picture of 

the evolutionary dynamics and determine the strategies which can be the end points of an 

evolutionary process. We illustrate this technique considering the example of the Iterated 

Prisoners’ Dilemma with three strategies. The results obtained for this example lead us to the 

conclusion that the standard concepts of asymptotically stable and evolutionarily stable sets 

(see section 1.4.3 for definitions) are not sufficient. In the example of the Iterated Prisoners’

54
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Dilemma there appears to be a set of strategies such that all solution trajectories starting in 

a neighbourhood of this set terminate at this set, but the set does not satisfy any standard 

definition of stability. This motivates us to introduce a new kind of stable sets which we call 

evolutionarily attractive sets. This is done in the second section where the new definition is 

introduced. In the second section we also discuss the relationship between the standard and 

new concepts and consider examples which illustrate the new definition.

In the third section we present the so-called “blowing up” technique. When repeated 

games are represented in normal form the payoff bi-matrix is commonly non-generic. As a 

consequence, some of the fixed points in the standard replicator dynamics are not hyper­

bolic and their stability properties cannot be analysed by the standard approach of local 

linearisation. In such cases stability properties may be determined by Lyapounov’s method. 

However, there is no procedure which guarantees that a Lyapounov function will be found 

and the problem of finding a suitable function by trial and error becomes increasingly in­

tractable as the number of pure strategies being considered increases. In this section we 

illustrate a technique, known either as “blowing up” or “the sigma process” , which can be 

used to determine the stability properties of non-hyperbolic fixed points in the replicator dy­

namics. This method was introduced by Bogoyavlensky and Novikov [47] and independently 

by McGehee [48] and Mather and McGehee [49]. Although this technique has been around 

for many years, it appears that it is not known to game theorists. We will illustrate its use 

by considering a replicator dynamics system which is similar to one that arises from dynamic 

models of social interactions based on multi-state games (see section 7.1 where the results of 

the similar analysis for the multi-state game are given).

Let us recall that the standard Replicator Dynamics [28] (see chapter 1), which assumes 

“pairwise contest” interaction and which we will consider in this thesis, describes changes of 

state X  = {x \ , . . .  ,x n} in a population whose members are playing a symmetric two-person 

game with the payoffs given by matrix A, with elements a^j. Here Xi is the proportion of the 

individuals in the population who adopt behaviour i. The Replicator Dynamics (4.1) (see 

formula (1.6) of chapter 1 which we reproduce here for convenience) in continuous time is the 

following dynamical system.
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Using relationship xn = 1 — xii the number of equations is reduced to n — 1. Denoting 

x  =  (aq ,. . .  , xn- i ) , we obtain system (4.2) (the system of equations labeled (1.7) in chapter 1)

n —1

^  — Gi — X{ ^   ̂ (flij Q>in) P Q-in ̂  P (•%) I i  ̂— 1, . . .  72 1, (^-2)

where

f . l (x)  =  ( » ! , ■ • •  , x n - 1 , 1  - X i  -  . . . — Xn - i )  A { x \ ,  - • ■ , Xn - l ,  1 — x \  — . . .  - x n„ i ) T  .

We consider the solutions of the system (4.2) that are restricted to the simplex (4.3)

A =  j<r : Q  ^0 < n ^ 5 3 ^  -  ^  |  ■ (4l3)

To analyse the behaviour of the solutions and describe the dynamics we apply methods 

of the qualitative theory of the dynamical systems (due to [36]-[40]) and the concepts of 

evolutionary stability.

4.1 B asic q ualitative analysis.

4 .1 .1  V ertices.

To begin with the qualitative analysis of the Replicator Dynamics we obtain conditions on 

the asymptotic stability for the vertices of the simplex A. In order to do this let us analyse the 

linearised system and calculate eigenvectors and eigenvalues of the Jacobian Jg \x =  |

at the vertices.

P ro p o sitio n  4.1

(i) I f  x  — < 0 ,0 ,. . .  , 0,0 > then eigenvectors e{ and corresponding eigenvalues Xi of the
I '— ^ —  1

Jacobian Jg \x — \JJxt} ^ le point x are as

(  \

and X{ — Q>in 'I — 1 ,  . . .  72 1.
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(ii) I f  x  = < 0 , . . .  ,0, 1 ,0 ,. . .  ,0 > then eigenvectors e* and corresponding eigenvalues Xi of

n —1

the Jacobian Jg \x = { f § }  

/
ei =

at the point x are as follows. 

\
0, . . .  , 0 , 1, 0 , . . .  , 0 , —1, 0 , . . .  ,0

 ̂ m and X{ — o>im mmi 'I 7̂  rka\
 V---
n —1

0 , . . .  , 0 , 1 , 0 , . . .  ,0 
m

7
and Xm — anm cimm'

n—1

Proof.  Firstly, let us obtain a formula for p  (x ).

p{x) =  ( » ! , - ■  • t X n - i t l  - X !  -  . . .  -  Xn - i ) A ( x i , - -  • , X n - l , l  ~  X X -  . . . -  Xn- l ) T
n—1 n—1 n —1

~  ^  y ^   ̂ ml "F &mn ^ni) Xm Xi T  E (®mn +  ®nm 2ftnn) +  CLnn
m —1 1=1 m=l

Then elements of the Jacobian are calculated as follows.

ac* a n—1

â A; aa;fc I \  ^  ^ (P“i j  d in )  +  &in /  P  (*^)

J=1 
n—1

J &in "F y   ̂ ^in) p  (^) I T  (flifc &in)
i=i

( {an k "F 2CLnn) T  /  y {^Ik T  a^l &ln ^nl &nk ^kn  "F 2a n n ) X[ J

L e t  X - ^ 0 , 0 , . ^ .  , 0 , 0  |  , t h e n  P  { x )  ~  ann  a n d  </gIx =  ^  dx .̂ J* =  {^ ik  {p in  &nn)}

Therefore we obtain statement {i) of the proposition.

Now consider the other vertices. If x — < 0 , . . .  , 0 ,1 ,0 , . . .  ,0 > , then p (x) — amrn and
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For example, if # =   ̂ 1 ,0 ,. ..  , 0 7 , then m  — 1 and we have that
n —1

=  < 8 }
$ik (^ii ^11) Y  8ii (ani a^j)

O nl &11 Q»n\ a21 

0 a2i — a n

O71I ®(n—2)1 ^nl 0.(n_ 1)1

0 0

a (7i-2)i — a n  0

0 a (n-1)1 -  O il

Calculating eigenvectors and eigenvalues of the Jacobian Jq \x directly we find that

ei =  1, 0 , . . . , 0  and Ai =  ani -  a n ,

1, 0 , . . .  , 0 , 1,0 .........0 and \ i  =  Oil — a n , i ^  1.

In the same way we can calculate eigenvectors and eigenvalues for all other vertices and 

obtain statement (i i) of the proposition.

R em ark  4.1 Using the results of Proposition f . l  we can easily check whether or not a vertex 

(which represents a monomorphic population in which all members use the corresponding 

strategy) is asymptotically stable. I f  all eigenvalues for the vertex are less than zero, then it 

is asymptotically stable. Therefore Proposition f . l  gives the analytical explanation of the fact 

that in order to be asymptotically stable the strategy must earn a higher payoff against itself 

than all other strategies (compare the formulae for eigenvalues and the payoff matrix A).

4 .1 .2  S ta tio n a ry  p o in ts  and  se ts .

All stationary points for the systems (4.1) and (4.2) are described by the solutions of the 

system of equations
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To find all solutions of the system (4.4) it is necessary to enumerate all possible combinations 

of to indices from the set { 1 ,... ,n} where to consecutively takes values from 1 to n. If a 

combination { j i , . . .  , j m} is chosen, then we suppose that coordinates x jx, . . .  , Xjm take non­

zero values and all remaining coordinates Xi are zero. In this case system (4.4) is equivalent 

to the system

If to =  1 then the solutions are the vertices of the simplex A.

Consider now the case when to 6  {2, . . .  , n} corresponding to polymorphic population. 

Denote by

the matrix of the system (4.5). If matrix A jlt^ tjm is non-singular then the system has a 

unique solution which can be obtained by Cramer’s rule as follows.

(4.5)

i a j l j l  a h h ) • • •  ( a j l j m  a j l j m )

1 . . .  1

a h 3 k + i  a i2 3 k + i

i a 3 l - h  a 3 m j l )  (ailife-l a j m 3 k - 1)  ̂ (aU.?fc+l ( a J l J m  a j m 3 m )

1 • • • 1 1 1 • - • 1
ah3k.-l a3m3k-l

a 3 l 3 m  a 3 2 3 m

( a 3 t h  a j m j  1 ) ‘ ‘ ‘ { a 3 i3 k  a 3 m 3 k ) '"*

1 • • • 1 1
3m  )

If this solution is in the domain (4.3) then it corresponds to a stationary point of the dynamical 

system (4.2).

If the matrix of system (4.5) is singular then there are two possible cases.
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1. The ranks of matrix A jlr„ jm and matrix

A

( a j l j l  a j '2 3 l )  • • •  ( a j l j m  a j ‘2 3 m )  0

Jl  >••• t jm

( a j l j l  ~  • • •  ( a j l j m  ~  a jrr,.jm.) ^

1 . . .  1 1

are different. Then the equations of system (4.5) are incompatible and there are no 

solutions for this system.

2. The ranks of matrix A ju_ yjm and matrix A jx are equal. Then the system (4.5) has

infinitely many solutions. If some of these solutions belong to the domain (4.3) then 

these solutions constitute a stationary set of the system (4.2).

It is often quite hard to obtain the global picture of the dynamics, but once the stationary 

points of the system are found it is possible to analyse the dynamics in neighbourhoods of such 

points. The following theorem is commonly used for the investigation of solution behaviour 

in the neighbourhood of a stationary point (see for example Guckenheimer and Holmes [50]). 

T h eo rem  (C en tre  M anifold  T heo rem  for Flows). Let G be a Cr vector field, on R n 

vanishing at the origin (G (0) =  0) and let Jq \q — . Divide the spectrum of Jq [0

into three parts, LS,L C,L U with

< 0 if A G Ts,

0 if A G Lc,

> 0 if A G Lu.

Let the generalized eigenspaces of L S,L C and Lu be E S,E C and E u, respectively. Then there 

exist stable and unstable invariant manifolds W s and W u tangent to E s and E u at 0 and a 

centre manifold W c tangent to E c at 0. The manifolds W s, W u and W c are all invariant 

for the flow of G. The stable and unstable manifolds are unique, but W c need not be.

This theorem provides us with an approach for finding the stable and unstable manifolds 

(separatrixes) at each stable point. Then we can use the following observation to analyse 

the global dynamics. Let there be a sequence of stationary points x l such that all outgoing 

separatrixes of the point x 1 approach the point x 2, and so on, generating a sequence of 

separatrixes . . .  — >• x 1 — > x 2 — x 3 — ■> x ‘4 — > . . .  Then, since the solutions depend 

continuously on the initial conditions, the trajectories that start sufficiently close to one of



CHAPTER 4. STA B ILITY  CONCEPTS AND EVOLU TIO NARY DYNAMICS. 61

these separatrixes of stationary points move along this sequence of separatrixes for any finite 

moment of time t.

4 .1 .3  E x a m p le : Q u a li ta t iv e  A n a ly s is  o f th e  E v o lu tio n a ry  D y n a m ic s  o f  th e  

I t e r a te d  P r is o n e r s ’ D ile m m a  g am e.

In this section we demonstrate how the ideas discussed above can be used.

The Iterated Prisoners’ Dilemma [18], [32] is the most common model used for the study 

of the evolution of cooperative behaviour in a population of selfish individuals. As such, 

it is probably the most intensively studied of all games. In the general Iterated Prisoners’ 

Dilemma the number of available strategies is infinite, so I will consider a restricted set of 

strategies. In this section I consider a class of Iterated Prisoners’ Dilemma games in which 

players are restricted to using one of the three strategies: unconditional defection (All D 

strategy from section 3.3), unconditional cooperation (All C strategy from section 3.3) and 

a strategy which attempts to ensure cooperation by invoking a punishment option in the 

event of an opponent’s defection. The most famous of such strategies is Tit for Tat (see 

T it for Tat from section 3.3) [18], [32], which begins by cooperating and thereafter mimics 

an opponent’s play in the previous stage. This is the strategy which will be considered in 

this paper. The evolutionary dynamics for this class of games is well-known, having been 

obtained by simulation [16]. It is also possible to integrate the corresponding Replicator 

Dynamics to find exact solution trajectories [51]. Here the Iterated Prisoners’ Dilemma is 

given as an example of how the qualitative approach given above can be used. Partial results 

have already been obtained by this method [15], but I give a complete analysis.

It is obvious that Tit for Tat is not an evolutionarily stable strategy in the sense of ([13], 

[14]), since in a population of Tit for Tat players unconditional cooperators gain the same 

payoff. In the replicator dynamics, this translates to the statement that the corresponding 

fixed point is not asymptotically stable. In the next section we show that there exists a set of 

populations of cooperative individuals which may be considered as potential outcomes of the 

evolutionary dynamics. These populations are composed of various mixtures of unconditional 

cooperators and Tit for Tat players. Although neither any particular population in the set 

nor the set as a whole is asymptotically stable, we show that the failure of asymptotic stability 

for the set is “mild” (this concept will be made more precise in section 4.2).

Let us consider the Iterated Prisoners’ Dilemma game as described in section 3.3. That
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is the payoffs for the players in each stage game are symmetric and given by the bi-matrix 

(1.2) reproduced below.

Player 2

Player 1

C D

c hi, hi h2 , hz

D hz j h2 hA, hA

In order for this repeated game to be identified as an Iterated Prisoners’ Dilemma, the payoffs 

given in the table must satisfy the inequalities [52]

ha > hi > hA >  I12 and, 2hi > I12 +  h3. (4.6)

We set up the evolutionary dynamics by considering an infinitely large population of 

individuals who adopt one of three strategies.

1. Unconditional cooperation at every stage (which we denote (Jc)-

2. Unconditional defection at every stage (which we denote o~d )-

3. Tit for Tat (which we denote err)-

Using a discounting factor (3 € [0,1) we can calculate the payoffs in the repeated game,

7t(<t, a') for adopting strategy a  against an opponent who adopts strategy a'. The payoffs

can be summarised in the matrix

nicrcyVc) ^{o-c,o-T) ir(crc ,o-D)

7t((Tt ,0-C) 7r(o-T,Crr ) 7i (<JT ^ d )

k {(Td , v c ) ir(o-D ,o-T ) ix (o-D , a D )

hi hi h2

hi hi h2 +  (/i4 -  h2)(3 • (4.7)

hz hz +  {hA -  hz)(3 hA

R em ark  4.2 Tit For Tat could be replaced by the strategy Grim (see table 3.1 chapter 3) as

the payoff matrix A  is exactly the same as calculated above.

The strategy pair [crĵ , cr^] is a Nash equilibrium of this game for all values of hi which 

satisfy inequalities (4.6). If the condition

h3 -  hi

A

1
1 - (3

(3{l -  o c q ) > hz -  hA'
(4.8)
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is satisfied for some cto £ [0>1)> there is also a continuum of symmetric Nash equilibria of 

the form [cra,a a] with cra — (1 — ck)<t t  +  a(Jc  for all ol € [0, a;o]- Since the Nash equilibrium 

[&d,o'd\ is strict, ajj is an evolutionarily stable strategy in the sense of [13]. However, none 

of the strategies cra are evolutionarily stable since, for example,

0 ct) =  7r(<rc7,<7a ) =  7r(<7a , a c ) =  7t((j c , (?c )-

Let xiy X2 and x 3 be the proportions of individuals who adopt a c , &t and ad  respectively. 

The state of the population then is described by a vector X  — (aq, X2 , x f). Using the identity 

X3 = 1 — x\ — X2 we reduce to two equations describing the evolution of a point x — (x i,X 2) 

in the domain

A =  {(^1,^ 2) : (x\ > 0) fl (x2 > 0) fi (xi JrX 2 < 1)} . (4.9)

The Replicator Dynamics are

±1 \  1 /  G i ( x i , x 2 )
(4.10)

where

Gi (x i,X 2) = Xi (x\ + X 2 - 1) {Axi +  (A -  fi) X2 +  0 ) ,

G2 (x i,X 2) — X2 (xi + X 2 — I) {Axi +  (A -  fi) x 2 +  0  (1 -  /?)).

Here we have used the following notation

A =  /13 +  h2 -  hi -  /i4, fi — (/i3 + J12 -  2h/{) /?, 0  =  I14 -  h2.

For later use, we also define

E =  n - A  +  e ( / ? - i )  (4 .11)

and note that conditions (4.6) and (4.8) imply the inequalities

0  > 0, T >  0, fi -  /?A > 0, fi — A > 0, 0  4- A > 0. (4.12)

R em ark  4.3 In [51] it was shown that this system is integrable. To integrate system (4-10)

let us introduce the following coordinate substitution.

k ~ X l  i.e. |  X l  ~  1 + k + l  . (4.13)I — l-a-M —X9.Xl I ^2 — 1 +k+i
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Then

L   X9.X1 —X9.x-\   (30kl
h' ~  x f  ~  (1-/3)(1+k+l)
j    - x - \  + X 9.X: —x-\X9    £(—\frfc+Q l+0+A )
L —  x f  ~  (1—/3 ) ( l+ fc + 0

Solution trajectories can be found by integrating

dlI_ _  - I l k  +  Ol +  © +  A 
dk P0 k

This can be done analytically to obtain

l w  = k i c + $ $ ) - 1) k - ( 1 + %

where C is a constant that depends on the initial conditions. Finally, substituting the ex­

pressions for k and I (4-13) into the above formula, we find that the solution trajectories are

described by the following expression.

—V c+P r  A1  ~  ~  k  -  ~  = ° (4-14)xi J ©  (1 — /3) x\  0  x\

To obtain all solutions of the system (4-10) we should add the solutions

x \= Q xi = a
, and < , a  £ [0,1],

\fx2 e  [0,1]

which were lost when the coordinate substitution (4-13) was performed.

Although the solution for the system (4.10) can be given by exact formula it is not 

possible to express the solution as a function x i (^2) or X2 (#i) for generic C , which makes it 

inconvenient to use this formula for analysis of the solution behaviour. Below we describe the 

solutions of system (4.10) by applying methods from the qualitative theory of the dynamical 

systems (see [35], [53], [54]).

There are two isolated stationary points in the simplex A: xn — (0,0) and x s — 

( 0, ) • Note that conditions (4.12) guarantee that G (0,1). There is also a

set of non-isolated stationary points {{xi,X 2) : x i  +  X2 = 1} : each point xa = (a, 1 — a) with 

a  6 [0,1] is a stationary point. Since all stationary points in the simplex A belong to the 

boundary of A, there are no limit cycles in the simplex A.

A standard linearisation about the stationary points produces the following results. The 

point xn is a nodal attractive point with eigenvalues A” =  — and Xf = — © which
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are negative due to (4.12). The eigenvalue A” corresponds to the eigenvector (1,0) and 

the eigenvalue A2 corresponds to the eigenvector (0,1). The point x s is a saddle point. 

Here the negative eigenvalue Â  =  corresponds to the eigenvector ^1, Â z~p- ĵ

and the positive eigenvalue A2 =  corresponds to the eigenvector (0,1). The points 

xa — (a, 1 — a), a  G [0,1] have the following eigenvalues.

1. A zero eigenvalue corresponding to the eigenvector (—1,1).

2. An eigenvalue - a  — corresponding to the eigenvector ^1, — a~7h0)) ^

a ^ O  and a  ^  and to the eigenvector (0,1) if a ~  0 or a — — •

Defining ct'o =  , which belongs to the interval (0,1) by (4.12), we note that the

second eigenvalue is positive for a > ao, negative for a < a 0 and zero for a  — ao-

There are three other lines in the simplex A that are invariant under the dynamics of sys­

tem (4.10). Two of these are boundary components of the simplex A: {(aq, X2) G A : x\ =  0} 

and {(x i,X 2) G A : X2 = 0} . The third line is

{ (*a>x2) e  a  ■. X2 = ( j % S r ) X1 +

which intersects the boundary of the simplex at x s and at x c — (c, 1 — c) with c =  * Note

that conditions (4.12) guarantee c G (0,1). This line splits the simplex A into two regions: 

solutions in each region terminate at different sets.

Using these results we can now draw a qualitative picture of the solutions for the dynamical 

system (4.10) given any set of parameters (i = 1,2,3,4) and (3. In figure 4.1 we give four 

examples for different sets of parameter values. These sorts of pictures have been obtained 

in the past using computer simulation [15]. Here we have obtained them using only analytic 

techniques. Information about the parameters chosen is summarised in table 4.1.



CHAPTER 4. STA B ILITY  CONCEPTS AND EVOLU TIO NARY DYNAM ICS . 66

F ig u re  4.1. Q u a lita tiv e  sketches of th e  dynam ics 

of th e  I te ra te d  P r iso n e rs ’ D ilem m a system .

Examples 4.1 and 4.2 are related to the standard set of payoffs for the Iterated Prisoners’ 

Dilemma, but two different values of the discount factor. The two other examples 

demonstrate how the dynamic changes depending on the values of the payoffs 

(see table 4.1 below for the precise parameter values).

m u

Example 4.1.

(o,o)i

(o,o).

Example 4.2

,2’zJ

(o,o)

Example 4.3. Example 4.4.
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T able 4.1 P a ra m e te rs  of th e  I te ra te d  P riso n ers  D ilem m a dynam ics.

example\parameter hi ^2 h 3 /l4 (3 A n © T

example 4.1: 3 0 5 1 9
10 1 27

10 1 8
5

example 4.2: 3 0 5 1 3
5 1 9

5 1 2
5

example 4.3: 3 0 4 3
2

4
5

1
2

4
5

3
2 1

example 4.4: 3 0 4 5
2

4
5

3
2

4
5

5
2

1
5

D iscussion. As we can see from figure 4.1 if the solution trajectories start at the region 

below the separatrix line they are attracted to the point (0,0), which corresponds to a pop­

ulation of players who use the unconditional defection strategy. If the solution trajectories 

start at the region above the separatrix line they are attracted to a point (a , 1 — a) with 

a £ [0, ao) for some no depending on hi and (3. The second set corresponds to populations 

which consist of various mixtures of unconditional cooperators and Tit for Tat players. This 

set demonstrates that cooperative behaviour may be an evolutionary outcome in the Iter­

ated Prisoners’ Dilemma. However, neither any point in the set nor the set as a whole is 

asymptotically or evolutionarily stable. In the next section we propose a new concept that 

will allow us to analyse such sets.

4.2 Setw ise evolutionary attraction .

4 .2 .1  D e fin itio n .

To analyse the solution’s behaviour in the neighbourhood of sets of non-isolated stationary 

points I prove the following useful theorem. This theorem generalises the direct Lyapounov 

method (see [35], [42] and [55]) for sets; the main difference of this theorem from standard 

results is that the set under the consideration is not assumed to be closed.

T h eo rem  4.2 Let £,(t,x) be the solution trajectory which passes through the point x at time 

t = 0. Let © be a set of points in simplex A and suppose that for each point x° £ 6  there 

exists a neighbourhood Wxo in A  and a continuous function Hxo (x ) such that

1. Hxo{x) > 0 for any x £ Wxo and Hxo(x) =  0 if  and only if  x  = x°\
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2. Hxo(£(t,x)) < Hxo(x) for any x  G Wxo if x  ©,£ >  0, and f  (s,a;) 6 W^o for any 

s G [0, t ] .

3. H xo (a;) =  0 /or some a; G Wxo if  and only i f  x  G ©.

Then for every point a;0 G © and every neighbourhood Uxo in A of the point x° there is 

a neighbourhood Vxo in A swc/i that for each x  € the following conditions hold: l;{t,x) G 

£/x.o fl A for any t G [0, oo) and there exists x° G © fl Uxo snc/i t/iat lim f  (t, a;) — a;0.t—*oo
P roof. For each point a;0 G © consider the neighbourhoods Wxo and Uxo and find a neigh­

bourhood Bxo in A such that its boundary dB xo C Wxo fl Uxo. Since dB xo is compact and the 

function Hxo is continuous we can find min Hxo(x) = hxo > 0. For each point x° G © andx£dBxo
for each h, 0 < h < hxo, define a neighbourhood V/̂ ec0) =  {x  G B xo : H xo(x) < /r} . Then

1. Vh(x°) c  BX0 C Wxan  UX0C £/xo;

2 . ^ ( z O j c V W A i f / i  1 < /1 2;

3. neighbourhoods V/j,, 0 <  /i < /rxo, are forward invariant. (The proof of this fact can be 

found in [35], in proof of theorem 6.2, p. 246.)

Let Vxo =  Vh o {x°). Fix point a;0 G © and take x  G I4o\©. Consider the w — lim it, cj( x ) ,  

of the solution f  (£, x) :

ca(a;) =  < x' G A : 31̂  —> +oo such that lim f  (t*,, x) — x' \ .
f  k—> + oo fc—>+oo J

Since is compact and forward invariant, to(x) is not empty. Take some d °  G oj{x ) .  It has 

been shown in [55] (theorem 2.6.1, p. 19) that if x° G co(x) then Hxo(x°) = 0 and therefore 

x° G © by condition 3.

Let us show that lim f  (£, x) = x°. This means that we need to show that for any e > 0t—>oo

there exists T  >  0 such that for any t > T

|f  (t,x) -  x°\ < e.

Denote B £(x°) = [x  G A : |ai — x°| < e} and choose h < hxo such that Vh(x°) C B e(x°). 

Since x° G co(x) there exists some sequence tf. —> +oo such that \im.k-^+oof, (th,x) =  x°.
k—>+oo

Then for any e >  0 there is K  G N  such that for any k < K
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Therefore £(£fc,af) E Be(x°) for any k < K . Choose e such that B c(x°) C Vh(x°) C B£(x°). 

(This is possible because Vh(x°) is open.) Then £ (£/-,x) E V/^ai0) for any £ > tx  and, since 

Vh(x°) is forward invariant, £ (t,x)  E Vh(x°) for any £ > tx -  Hence £ (t,x)  E B e(x°) for any 

£ > tj<- The theorem is proven.

In chapter 1 we have discussed the notions of evolutionarily stable and asymptotically 

stable sets. The following proposition illustrates that conditions of theorem 4.2 are necessary 

in order for a set to be evolutionarily stable.

P ro p o sitio n  4.3 I f  set © is evolutionarily stable then conditions of theorem f.2  hold for this 

set.

Proof. If a set © is evolutionarily stable when each a;0 E © has a neighbourhood Vxo such 

that f xo(x) — (cc° — x) A x T > 0 for all strategies x  E Vxo\&. Here A is a payoff matrix for 

the corresponding two-player game. Consider the Relative-Entropy Function

n /  9 \
Hxo(x) = J ^ l o g  I .

i=l '  % '

It is well known ([35], lemma 3.1, p. 98.) that there exists a neighbourhood in A such that 

condition 1 of theorem 4.2 is satisfied. Notice that since the derivative of the Hxo(x) is 

negative

H xo(x) =  — (cc0 — x) A x T — —f xo(x) < 0,

the conditions 2 and 3 of theorem 4.2 follow. (For explanation of this fact see, for example, 

[35], p. 247).

The following proposition shows that conditions of theorem 4.2 are sufficient in order for 

a set to be asymptotically stable.

P ro p o sitio n  4.4 I f  conditions of theorem f.2  hold for a closed set © then this set is asymp­

totically stable.

Proof. It is necessary to show that every neighbourhood B  of © contains a neighbourhood 

B°  of © such that for any x  E B° £ (£, x) E B  V£ > 0 and there exists neighbourhood B* 

of © such that £(£,.t) — > © for all x  E B*. If conditions of theorem 4.2 hold then, since 

any neighbourhood of a set can be considered as a neighbourhood of any point in that set, 

we have that for every point £° E © there is a neighbourhood Vxo in A such that for each
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x  G Vxo the following conditions hold: £(t, x) G B  D A for any t G [0,oo) and there exists 

x° G © fl B  such that lim £(t,x) = x°. Let us take the union of neighbourhoods Vxo theret—>00
x° G &. We obtain the neighbourhood V  = Ua;o€0 ^°* ^ ow we can choose B° = B* = V  

and we obtain that the set (5 is asymptotically stable.

R em ark  4.4 Even if the conditions of theorem f.2  hold for an open set (3 this set fails 

to be asymptotically stable (since by definition a set is required to be closed in order to be 

asymptotically stable). For example the cooperative behaviour set in the to—limit of the Iterated 

Prisoners’ Dilemma is an open set and, therefore, fails to be asymptotically stable. The closure 

of this set also fails to be asymptotically stable. However, the pictures in figure 4-1 indicate 

that this failure may be “mild” in the sense that there is a neighbourhood of the set for which 

trajectories starting from almost all points in that neighbourhood converge to the set. In the 

Iterated Prisoners ’ Dilemma example it is only the points on the line x \ JrX 2 = l  which do 

not lie on such trajectories, but they are neutrally stable and do not lie on trajectories leading 

a,way from the set either.

This remark motivates us to give the following definition.

D efin ition  4.1 Let f{t, x) be the solution trajectory which passes through the point x  at time 

t = 0. Then we call a closed set of stationary points, 6 g  A, evolutionarily attractive if  every 

neighbourhood U of & contains a neighbourhood V  such that for each x  G V  fl A one of the 

following conditions holds. Either

• £,(t,x) G C/D A for any t G [0,00) and there exists a xP G ©H17 such that lim £(t,x) =
t —»oo

2°,

• or f( t ,x )  = x for any t G [0,00) .

R em ark  4.5 Definition 4-1 is satisfied for any asymptotically stable state or set.

R em ark  4.6 Setwise Lyapounov stability is a necessary but not sufficient condition for def­

inition 4-1 to hold for a particular set.

R em ark  4.7 The set of points satisfying the second condition in definition 4 A is either the 

whole of the (restricted) neighbourhood U H A  or a subset W  with dim(W) < dim(U fl A) — 1 

[56].
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4 .2 .2  E x a m p le : th e  I t e r a t e d  P r is o n e r s ’ D ile m m a  g am e .

In this section we show that the set of cooperative behaviours in the Iterated Prisoners’ 

Dilemma is an evolutionarily attractive set.

Let us consider again the dynamics for the Iterated Prisoners’ Dilemma game. It is well- 

known that the only asymptotically stable set or point in the Iterated Prisoners’ Dilemma 

is the state xn — (0,0) where every member of the population is using the strategy of 

unconditional defection, crp. The population states xa =  (a, 1 — a) which are related to the 

cooperative Nash equilibria [aa:ao.] fail to be asymptotically stable, either individually or as 

a set. However, the preceding analysis of this game (see section 4.1.3) makes it intuitively 

obvious that definition 4.1 is satisfied for the set

& = {xa =  (a, 1 -  a) : a  6 [0, a 0]} ,

where a 0 =

Here we give a proof of this stability property. The open set of stationary points and the 

doubly degenerate end point are considered separately.

L em m a 4.5 Let © =  {xa = (a, 1 — a) : a  € [0,ao)} • For each point x a E © there exists a 

neighbourhood WXa in A such that for the function

HXa{x) — a  log — +  (1 -  a) log —— —
X \  X2

and for each population state x  € WXa fl A the following conditions hold:

1. HXa(x) > 0 and HXa(x) = 0 if and only i f  x  — xa;

2- &X*(€(t,x)) < HXa{x) if  x  £ {xa : a  e  [0,1]},t > 0, and £ (s ,x )  6  WXa for any 

s 6 [0, t ] .

3. HXa(x) = 0 for some x  € WXa if and only if  x  € ©.

P roof. The proof of the first statement of the lemma is well known (see, for example, [35], 

p. 98). To verify the second and the third conditions let us calculate HXa{x). It is easy to 

show that

H Xa(x)  =  (1 -  aa) Asi +  ( A - n ) a a + | e a  +  a - f l e
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Since

A xi 4- (A — fi) #2 +  (30a +  (1 — (3)0 (O + @ (3 )a -V  n
=  ^— i P — < 0(a,l— a) P

for any xa £ (5, it is possible to choose a neighbourhood WXa in A such that LIXa{x) < 0 on 

WXa \  & and HXa =  0 on 6 .  This is then equivalent to condition 2 (see [35], p. 247).

R em ark  4.8 Since

fxao (x) = (xao -  x) A  xT = - H Xao (x)

and

Ax\ +  (A -  0) X2 +  PQap +  (1 — j3) © (0  +  ©/3) CKO — _  q
1 - /3 (ao,l—ao)

it is not possible to find a neighbourhood WXqq in A  such that H Xao (x) <  0  on WXaQ \  0 .  

Therefore & is not evolutionary stable.

P ro p o sitio n  4.6 For each point xa £ © and any neighbourhood U X a of xa in A  there 

exists a neighbourhood VXa such that for each x £ VXa D  A  the following condition hold: 

£(t, x) £  U X a  n  A  for any t £  [0, oo) and there exists x a G 6 f l  U X a  such that lim f  ( i ,  x) =  xa.t—>00

P roof. The proposition follows directly from lemma 4.5 and theorem 4.2.

Now we deal with the doubly degenerate end point xao = (ao, 1 — «o) •

P ro p o sitio n  4.7 For point xao — ”  f7+e/3) an<̂  any neighbourhood UXocq of x ao

in  A  there exists a neighbourhood 1 4 Qo such that for each x £ VX(XQ n  A  one of the following 

conditions holds. Either

• £{t,x) £ U XaQ D  A  for any t £ [0,oo) and there exists x ao (x) £ & n  U x  such that 

lim €(t,x) = xao (x) , ort—̂oo

• £(t, x) =  x for any t £ [0, oo).

P roo f. Note that, since

(Ax, +  (A -  n) x2 + 0 )|(t>o,,_Q(j) =  >  0
and

(Ax, +  (A -  11) *2 +  e  (1 -  /3))|(Q0,,_Q0) =  ^ § f  < 0
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there exists neighbourhood QXocq in A of the point xao such that X\ < 0 and ±2 > 0 on 

QXao \<9A. Take the intersection QX(xq OUXocq flA and find an e >  0 such that the neighbourhood 

B e =  {x  G A : \x — x ao\ < e} belongs to QXao D Ux D A. Define the neighbourhood

^ .  =  {*  =  (*l '* » ) : { * * > 1 - ? T T ^ 9 - i } n  I * 1 > n ^ g - f } n { » 1+  * * < ! > } .

Consider the point x ao_z. This point has a negative eigenvalue, hence there exists a 

solution trajectory £ approaching this point as t — > + 00. Consider the dynamics when 

t — > —00. Then X\ is growing along £ and X2 is decreasing. Therefore, using the Poincare- 

Bendixson theorem we have two possibilities for the trajectory £ : it either terminates at 

some point x a, with a  G (Q;o,ao T  f  ] , or it crosses the interval

=  (x i ,x 2 ) : |^2 =  1 -  n+op -  f }  n  |  n+Qf3 ~ f  -  -  n+ep +  I } }  ■

In both of these cases £ splits VXolq into two regions. The region that contains point xao is 

a forward invariant neighbourhood. We denote it as Vx . Then any trajectory £ (t, x) such 

that x  6 Vxao will remain in Vx<XQ for any moment of time t. Taking into account that there 

are no limit cycles in the interior of A and applying the Poincare-Bendixson theorem, we can 

conclude that the trajectory £(£,&) terminates at some stationary point in Vx . Since the 

only attractive stationary points in VXaQ are from the set & we obtain proposition 4.7.

P ro p o sitio n  4.8 The set & — {xa = (a, 1 — a) : a  G [0, cvo]} , where a-o =  *s evolu-

tionarily attractive.

P roo f. It is necessary to show that every neighbourhood U of & contains a neighbourhood V  

such that for each x G k D A  the conditions of definition 4.1 hold. Since any neighbourhood 

of a set can be considered as a neighbourhood of any point in that set, we have that it follows 

from propositions 4.6 and 4.7 that for every point xa G <5 there is a neighbourhood VXa in 

A such that conditions of definition 4.1 hold. If we take the union of neighbourhoods VXq 

there x a G (5 we obtain the necessary neighbourhood as following V  — Uae[0 a0] V**- The 

proposition is proven.

The above analysis shows that populations composed of cooperative individuals may be 

the end point of the evolutionary dynamics. Although these populations are neither evolu- 

tionarily stable in the sense of [13] nor asymptotically stable points from a dynamical systems
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perspective, the failure of stability is minor. Small deviations from cooperative populations 

typically lead to evolutionary trajectories which take the system back to a (possibly dif­

ferent) cooperative population. Only a negligible set of deviations lead to neutrally stable 

populations, and no deviations lead to trajectories which diverge from cooperative behaviour.

4 .2 .3  E x a m p le : E n t r y  D e te r re n c e  G am e .

We will now consider a game in which there exists a set of non-isolated stationary points for 

which the conditions of theorem 4.2 are satisfied but that set is not evolutionarily attractive 

in the sense of definition 4.1. Consider a two player game with payoffs given by the following 

matrices

Oil O12
B =

bn b\2

«21 O2 2 621 b22

Denote

0-1 =  a n  ~ «21, O2 =  CL22 — 012 j

b\ — bn — bi2 , 62 =  ^22 — &2i-

The standard (multi-population) Replicator Dynamics (see, for example, [35]) for this game 

is the following system

] =  Tti =  ((a i +  a2) x 2 ~  ci2) x i (1 -  xi)

\  ±2 = Utt ~  ((6i +  &2) x i -  b2) x 2 (1 -  x 2)

Solution trajectories can be found by integrating

d x i   ((ax+a2)^2—Q.2)^i(l—̂ l)
dx2 ( (b i +b2) xi —b2)x2( l~X2 ) '

This can be done analytically to obtain

xh?(1 -  Z!)1’1 =  C(1 -  ,

where C  is a constant that depends on the initial conditions.

Let us choose

3  0
, B =

CO
1 IO

P I-* II to 02  =  1,
1 1 6 0 1 61 = 3 , 62 =  0 .
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This game can be represented by the bi-matrix given in the following table

Player 2

Player 1

Y F

E 3,3 0,0

A 1,6 1,6

and can be interpreted as an entry deterrence model (see [35] and [57]). Here player 1 can 

be interpreted as a potential competitor in the second player’s market. Player 2 earns its 

highest payoff of 6 if player 1 stays out. If player 1 decides to enter the market then player 2 

has two choices: either to yield (share the market) or to fight.

This game has an isolated Nash equilibrium [E,Y] and a set of Nash equilibria [A,cra] 

where cra is any mixed strategy which plays Y  with probability less than or equal to one 

third. The standard two-population Replicator Dynamics for this game is

{ X\  =  X l ( l  -  X i ) { 3 x 2 ~  1 )

X2 =  3 X! X2 (1  -  x 2)

where x \ is the proportion of JS'-players and x 2 is the proportion of Y-players. The solutions 

of this game are

x \ — 1 — Cx% (1 — x 2)* .

A sketch of the solutions for a few values of the constant C is given in figure 4.2 below. 

F igure  4.2. Q ualita tive  sketch  of th e  dynam ics for th e  e n try  d e te rren ce  gam e.
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From this figure it is immediately apparent that definition 4.1 is satisfied only for the isolated 

fixed point. It can be shown that for the fixed points in the set ^  =  {xa — (0, a) : 0 < a  < 

the conditions of theorem 4.2 are satisfied. In this sense the set is similar to the set & in the 

Iterated Prisoner’s Dilemma game. However, A  is not evolutionarily attractive: since X2 > 0 

for x \  >  0, some small deviations from the end-point of the set lead to trajectories which 

diverge from the set.

4.3 R esolv ing  singularities: th e  a — process.

In this section we illustrate a technique, known either as “blowing up” or “the sigma pro­

cess” , which can be used to determine the stability properties of non-hyperbolic fixed points 

in the Replicator Dynamics. Such points often appear in the Replicator Dynamics when the 

“pairwise contest” of repeated games is represented by a game in a normal form. The payoff 

bi-matrix for such games is commonly non-generic (see, for example, the payoffs for the Iter­

ated Prisoners’ Dilemma given in (4.7)). We illustrate the use of “blowing up” technique by 

considering a Replicator Dynamics system which is qualitatively similar to the dynamics for 

model of social interactions obtained by using multi-state games (considered in section 7.1).

4 .3 .1  T h e  s ta n d a r d  R e p lic a to r  D y n a m ic s .

We consider a symmetric two-person game with the following payoff bi-matrix.

P l\P 2 si S2 S3 s4

si 11,11 5,10 4,8 6,6

S2 10,5 9,9 3,7 6,6

S3 8,4 7,3 2,2 6,6

S4 6,6 6,6 6,6 6,6

(4.15)

These payoffs could be viewed as having come from a stochastic or repeated game. However, 

this interpretation is only incidental in this section; the important point is that the resulting 

normal form game is non-generic.

There are four Nash Equilibria for this game:

(i) both players use pure strategy si;

(ii) both players use pure strategy S2;



CHAPTER 4. STA B ILITY  CONCEPTS AND EVOLUTIONARY DYNAMICS. 77

(iii) both players use pure strategy 54;

(iv) a mixed strategy equilibrium in which each player chooses si with probability |  and S2 

with probability

Let Xi be the proportion of individuals who adopt strategies Si for i — 1,2,3,4. The stan­

dard Replicator Dynamics (Taylor and Jonker [28]) gives the dynamics of the ith component 

of the population state as

Xi  — Xi ( ( A X T) . ~ X A X T) , i — 1,2,3,4. (4.16)

where

A =

11 5 4 6

10 9 3 6

8 7 2 6

6 6 6 6

and X  = (xi ,X2 ,X3 ,X4)

By incorporating the constraint X4 = 1 — x\  — X2 — x3 we can reduce the system of equations 

to one describing the evolution of a point x  =  {x\ ,X2 ,xz) in the domain

A =  < (xu x 2yX$) : P| (®i >  0) n ((^ i +  ^2 +  x 3) < 1)
i=1,2,3

(4.17)

Equations (4.16) become

Xi =  Gi (xi ,X2,x3)

with

(4.18)

G\ (®i, X2 , X3) =  x\  (5a; 1 —X2 — 2x3 -  5a;? -  3a;| +  4x\ -  5x\X2 +  2^ 23:3) ;

G2 (oq, #2, x 3) = X2 [4x\ +  5x 2 — 3a;3 — 5x1 — 5x% +  4x^ — 5x\X2 +  2x 2X3) ;

G3 (x1, x 2, x3) =  x3 (2x! + x 2 -  4X3 -  5x1 -  5x1 +  4x\  -  5x ix2 +  2a;2a;3) .

There are five stationary points for the system (4.18). The coordinates of these points

are given in table 4.2 below together with the results of a standard linearisation analysis in
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the neighbourhood of each stationary point.

Table 4.2. The eigenvectors and associated eigenvalues for each of the stationary  

point of R D  system  (4.18) as determ ined by local linearisation.

point eigenvectors and eigenvalues

(0,0,0) [1,0,0] <->0, [0,1,0] ^ 0 ,  [0,0,1] <->0.

(1,0,0) [1,0,0] <-► -5 , [-1,1,0] -1 ,  [-1 ,0 ,1] <-> -3 .

(0,1,0) [0,1,0] «  -3 ,  [-1,1,0] « - 4 ,  [ 0 , - l , l ) « - 2 .

(0,0,1) [0 ,0 ,1 ]- .4 , [-1,0,1] «  2, [0, —1,1] <-+ 1.

(fi.0) [4,1,0] — -y, [6,1, — 7] — 2, [—1,1,0] <-> g.

From the analysis of the eigenvalues of each point we can conclude that (1,0,0) and 

(0, 1, 0) are attractive nodal points, (0, 0 , 1) is a repulsive nodal point and ( | ,  | , 0) is a saddle 

point. The stability properties of the point (0,0,0) are indeterminate.

4 .3 .2  C oord in ate  tran sform ation s.

To describe the dynamics at the non-hyperbolic fixed point (0,0,0) we use three singular 

coordinate transformations. This procedure is called blowing up or the a — process (see, for 

example, Arrowsmith and Place [54], p.102). We introduce three new coordinate systems 

U, V  and W  defined as follows.

TT f ^ 2  X 3 1U : <u1 =  Xi,u2 =  ~ , U 3 =  —
I xi xi  J

V  : i v i  =  — ,v2 — x2,v3 =  —  X ; (4.19)
I X2 x 2 )

t t /  f  Xx x 2W  : <wx = — ,w2 = ~ , w 3 = x 3
(  X3 X3

In these coordinate systems the point (0,0,0) in the ( x i , x 2 , x s )  coordinates corresponds to 

the planes u\ =  0 , v2 =  0 and W3 =  0 respectively.

Remark 4.9 The geometric interpretation of the coordinate changes (4-19) is that the point 

(0,0,0) is transformed into the projective plane R P 2 consisting of all the directions of lines 

passing through this point (see e.g. Harris [58], p. 81). But, since we only considering 

dynamics restricted to the domain A given in (4-17), we can think that the point (0,0,0) is 

transformed into the positive octant of a sphere.
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To find the behaviour of solutions near the point (0,0,0) we analyse the dynamical system 

using each of the new coordinate systems in turn.

In the coordinate system U, the dynamics (4.18) has the form

u\ =  —u\ (—5 + U2 + 2u3 +  5ui + — 4u\u\ +  Zu\U2 — 2u\U2Us)

< U2 = U\U2 ( — 1 +  4U2 ~ Us) 

i i s =  u \u s  ( - 3  +  2u 2 -  2u s )

In order to remove the degeneracy, we make the time substitution dr = \ui\dt, and obtain 

the following topologically equivalent system

u\ = —u\ (—5 +  U2 + 2u3 +  5ui +  2>u\U2 — 4u\u\ +  ?>u\U2 — 2u\U2Us)

< U2 = U2 ( — 1 +  4U2 — Us)

Us =  Us  ( - 3  +  2 u2 -  2Us)

The stationary points for this system that are on the plane u\ = 0 and also in the domain A

(4.17) are given below.

point eigenvectors and eigenvalues

I =  (0,0,0) [1,0,0] <-.5, [0,1,0] < - - 1 ,  [0,0,1] ~  -3 .

IV =  (0, | ,0 ) [1,0,0 ] ~ i 2 ,  [0,1,0] <-> 1, [0 ,1 ,1 4 ]~  - § .

Thus we obtain the picture for the dynamics in the coordinates U given in figure 4.3 below.

F igure 4.3. T he dynam ics near th e  po in t (0,0,0) in th e  coord ina tes  U.

The third eigenvector for point IV has been ignored because it lies 

in the plane u\ = 0 (which corresponds, in its entirety, 

to the point (0,0,0) in the original coordinates.)
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In the coordinates V  we have the following dynamical system. 

v\ = v \ { v \ -  4 + v$)

V2 =  v2  (4vi +  3 — 3t>3 — 3 v \v 2 — 3v2 +  4^2^3 -  3 V\V2 + 2 V2V3 )

V3 =  -V 3  {2vi + 2  +  V3 )

The stationary points for this system that are on the plane ^2 =  0 and also in the domain A

(4.17) are as follows.

point eigenvectors and eigenvalues

II =  (0.0,0) [1,0,0] ~  -4 ,  [0,1,0] «  3, [0,0,1] <- -2 .

IV =  (4,0,0) [1,0,0] =>4, [0,1,0] <-» 19, [1 ,0 ,-} ]  «  -10 .

Thus we obtain the picture for the dynamics in the coordinates V  given in figure 4.4 below.

F igure  4.4. T he  dynam ics near th e  po in t (0,0,0) in  th e  coo rd ina tes V.

The third eigenvector for point IV has been ignored 

because it lies in the plane V2 = 0.

In the coordinates W  the dynamics is given by

w\ =  w\ {3w\ — 2w2 +  2)

< W2 =  W2 (2w\ +  2W2 + 1)

W3 = — U>3 ( — 2w\ — W2 +  4 -1- 3w\w^ +  3w\w^ — 4ws +  3w\W^W2 — 2W2W3)

There is only one stationary point on the plane W3 =  0 that belongs to the domain A (4.17).

point eigenvectors and eigenvalues

III =  (0,0,0) [1,0,0] ^ . 2 , [0,1,0] <-> 1, [0,0,1] ~ -4 .
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The dynamics in the coordinates W  shown in figure 4.5.

F igure  4.5. T he  dynam ics n ear th e  po in t (0,0,0) in th e  coo rd ina tes  W.

4 .3 .3  O verall p ictu re o f  th e  d yn am ics.

Now, let us return to the original coordinates. Every stationary point in the coordinates U, V 

or W  corresponds to a direction in the original coordinates. Points I, II and III, correspond 

to the basis directions [1,0,0], [0,1,0] and [0,0,1], respectively. Point IV corresponds to 

the direction [4,1,0]. Transferring the results of the analysis back to the original coordinate 

system, we obtain dynamics in the neighbourhood of the point (0,0,0) as shown in figure 4.6 

below.

F igure  4.6. T he dynam ics near th e  non-hyperbo lic  p o in t (0,0,0).

The point (0,0,0) is “blown up” .

One result obtained from the coordinate transformation is that there is a solution leaving 

the point (0,0,0) along the vector [4,1,0]. There is also a stationary point ( | ,  ^,0) for the
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system (4.16). This suggests that the line

X\  =  4X2

X3 = 0
(4.20)

passing through the origin and the point (§ ,5 , 0) might be an invariant line under the dy­

namics (4.16). This can be confirmed by explicit calculation.

It follows from the center manifold theorem for flows (see section 4.1.2 or [50]) that in the 

neighbourhood of the point ( | ,  | , 0) there exists a two-dimensional stable invariant manifold 

M  tangent to the eigenspace generated by the vectors [4,1,0] and [6 ,1, —7]. If we consider 

this dynamical system when t —► —oo, we find that all trajectories starting from an interior 

point of the domain (4.17) terminate at the point (0 ,0 ,1). Taking this into account, we 

can conclude that the invariant manifold M  passes through the point (0 ,0 ,1). On the other 

hand, due to the comment made above, invariant line (4.20) also belongs to the manifold M. 

Therefore we obtain a qualitative picture of the invariant manifold M  as shown in figure 4.7 

below.

F igure  4.7. T he  com plete  p ic tu re  o f th e  dynam ics for th e  system  (4.18).

The invariant manifold M  is shaded.

This manifold separates the domain A into two regions with different behaviour of the solu­

tions. Any solution trajectory with the initial condition lying between M  and (0,1,0) ends 

at the point (0 ,1 ,0). Solution trajectories starting on the other side of the manifold end at 

the point (1, 0 , 0).
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4.4  Sum mary.

In this chapter we have illustrated how ideas from the theory of qualitative analysis of differ­

ential equations can be used to obtain qualitative pictures of evolutionary dynamics. Using 

the example of the Iterated Prisoners’ Dilemma we have shown that there exists a set of 

strategies, corresponding to populations which consist of various mixtures of unconditional 

cooperators and Tit for Tat players, which demonstrates that cooperative behaviour may be 

an evolutionary outcome in the Iterated Prisoners’ Dilemma. However, this set fails to be 

asymptotically or evolutionary stable. This motivated us to introduce a concept of evolu- 

tionarily attractive sets. We will show in chapters 6 and 7 that such sets are common if the 

population analysed includes a proportion of individuals who use “punishing” strategies (such 

as Tit for Tat) and also a proportion of individuals who use “non-punishing” equivalents of 

these “punishing” strategies. (For example, unconditional cooperation would be the “non­

punishing” equivalent of Tit for Tat strategy since the observed behaviour for unconditional 

cooperation and Tit for Tat is the same.)

We have also described the singular coordinate transformation ( “blowing up”) technique. 

We have shown how singular coordinate transformations can be used to determine the stability 

properties of non-hyperbolic fixed points which may occur in the Replicator Dynamics of 

non-generic games. Under this transformation a non-hyperbolic point (usually assumed to 

be at the origin of the coordinate system) is substituted by an invariant manifold. In the 

particular example considered we used directional blow-ups as these seem to be the simplest 

transformations for resolving the dynamics. While these stability properties may also be 

determined by other methods (e.g. Lyapounov functions), the coordinate transformation 

technique has the added advantage of elucidating the form of the stability or instability. This 

may then provide information about invariant manifolds, as it did in the particular example 

we have considered.

We use these ideas and techniques in chapters 6 and 7 to analyse Replicator Dynamics of 

the multi-state game model.



Chapter 5

Multi-state games: Nash Equilibria.

Now we propose one more way of generalising the Prisoners’ Dilemma model of interaction 

and in the next three chapters consider a multi-state interaction between two individuals. 

The multi-state models allow for the possibility that individuals may interact in more than 

one context. We will analyse a repeated interaction between two individuals in which the 

game played at any particular time is randomly selected from a specified set of two games 

Gi and G2. For example, individuals may interact either to hunt for food or to defend a 

jointly held territory. In addition to examining the behaviour of the individuals in these 

two context-games, we will also allow them to decide whether or not they wish to continue 

their long-term association. This will be modelled by a game Go, which we will refer to as 

“association game”. In this chapter we concentrate on a Nash Equilibrium analysis.

Firstly, we consider a multi-state interaction as a memoryless stochastic game and show 

that such an approach does not help to overcome the restriction of the Prisoners’ Dilemma. 

Modelling games G\ and G2 by Prisoners’ Dilemma games, we demonstrate that the presence 

of other games in the interaction and the possibility of discontinuing an association do not 

change the solution: cooperative behavior is not rational in such a model.

Then we consider the one-stage memory model for the multi-state game. Considering 

a memory model gives us the possibility of using “punishing strategies” . The multi-state 

model provides us with two new ways of modelling behaviour. Firstly, the players are al­

lowed to discontinue association and therefore the “punishment” for such models can consist 

not in defecting but in breaking the long term association if a partner does not cooperate 

at some state. This is the type of model which we will analyse in this thesis. Secondly,

84
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we can introduce a new type of behaviour. Since we have two activity games G i and G2 

we can introduce strategies based on the idea of the division of labour or allocating tasks. 

That is one player cooperates in game G\ and defects in game G2 while the other player 

defects in G\ and cooperates in G2. We will show that under certain conditions on the pa­

rameters of the model such strategy is a Nash Equilibrium. Note that, although we have 

already obtained cooperative Nash Equilibria using the Iterated Prisoners’ Dilemma model, 

the allocating task strategies are different. The observed type of behavior in any one game 

for such strategies is: one player cooperates while the other defects. Therefore such strategies 

may shed light on the explanation of the apparently altruistic behaviour among unrelated 

individuals. This is particularly important since the understanding of evolutionary mecha­

nisms producing altruistic behaviour in animals has been regarded as “the central theoretical 

problem in sociobiology” [1].

We also consider some other interesting strategies that we believe are relevant to the 

understanding of the cooperative behaviour between individuals. We show that in this model 

(as well as in the Iterated Prisoners’ Dilemma game) punishing cooperative strategies are 

rational. Moreover, depending on the structure of the association game Go (for example, if 

we model the association game by a Iiawk-Dove game), it is possible that strategies similar to 

All D efect  of the Prisoners’ Dilemma game are no longer Nash Equilibria for the one-stage 

memory model. In comparison, for the models based on the Iterated Prisoners’ Dilemma All 

D efect is a Nash Equilibrium for any set of parameters.

Below we use the term “context-game” to refer to a single interaction two-player game in 

the normal form.

5.1 D escrip tion  o f th e  m odel: th e  m u lti-sta te  gam e.

We consider an interaction which can be described as the following multi-state game. There 

are four possible context-games Go, G1, G2 and G3.

• The interaction starts with context-game Go, that is the decision of individuals about 

whether or not they wish to continue their long-term association. The first player 

and the second player choose between the possible actions A=  “associate” or B — “break 

up”. The payoffs in context-game Go can be considered as the background rewards 

(or costs) obtained from association. Payoffs in context-game Go can also include
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rewards (or costs) obtained from other activities, such as games which are not explicitly 

considered or non-interactive behaviour which the individuals may undertake during the 

association.

• Context-games G\ and G'2 are related to some specific activities in which the individuals 

can participate together. For example, if we model animal behaviour, these games might 

correspond to territory defence and hunting. We will consider games where the players 

choose from a set of two possible actions. We denote these actions by C and D. In 

modelling some types of behaviour (for example territory defence), it is appropriate to 

interpret these actions as cooperation and defection; so we sometimes will refer to the 

action C as “cooperation” and to the action D  as “defection”.

• Context-game G3 can be considered as a background state representing the situation 

when there is no interaction or association between the players. There is only one 

possible action to choose L=  “be alone” .

R em ark  5.1 For simplicity of analysis in this model the players are not allowed to reform 

the association. This restriction is not crucial since payoffs in context-game G3 could include 

payoffs obtained from association formed with other individuals after the current one breaks 

up. For consistency these payoffs should be derived from the equilibrium behaviour in context- 

games Go, G\ and G2 but for simplicity we will treat them as fixed. We will also assume 

that there is a constant discount factor (3 between all states of the model. This assumption 

imposes certain restrictions on the model. For example the effects of different contexts of 

interaction on survival probability (which is a standard interpretation of the discount factor 

) can be different. Nevertheless, for the simplicity of the analysis, we will assume that there 

is the same discount factor after each state.

The actions chosen define both immediate payoffs to the individuals and future transition 

probabilities. The immediate payoffs collected by the players are given in table 5.1. The first 

entry in each payoff pair contains the payoff to the player P\ , who selects the row action, the 

second is for the player P 2, who selects the column action. Transition probabilities, which 

are determined by the choice of actions are presented in table 5.1 as a set of four numbers. 

This set of numbers appears in square brackets in each cell of the matrices. Here the first, 

second, third or fourth number is, respectively, the probability that context-game Go, Gi, G2 

or G3 is played at the next round. The probabilities are defined by the following rules.
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Go : If context-game Go is played

A: and action A  = “associate” is chosen by both players, at the next round context- 

game Gi is played with probability p and context-game G2 is played with proba­

bility 1 -  p\

B : if action B=  “break up” is chosen by at least one player, context-game G3 is played 

at the next round with probability 1.

C l
Whatever actions are chosen while context-games Gior G2 are played,

or :
context-game Go is played at the next round with probability 1.

G2

G3 : If context-game G3 is played, at the next round context-game G3 is played again with 

probability 1.

T able 5.1. T he  m u lti-s ta te  gam e.

C 0:

P l\P 2 A B

A (Gi’Cl)/[[0,p,l-p,0] (C2,C3)/[o, 0,0,1]

B (C3-C2)/[0l0l0)1] (C4’C4)/ [ 0,0,0,1]

C 3 :
P l\P 2 L

L (z,2° /[0 ,0,0,1]

C i:

P l\P 2 C D

c (hl’hl)/[i,0,0,0] (/l2,/l3)/ [1,0,0,0]

D 0,0,0] 1,0,0,03

C2:

P l\P 2 C D

c {tl,tl)/[ i ,0,0,0] {t2't3)/ [1,0,0,0]

D (i3,t2)/[ l ,0,0,0]

5.2 A  m odel w ith ou t m em ory.

In this section I will prove an intuitively clear fact that if one of the games G\ or G2 are 

modeled by a Prisoners’ Dilemma and there is no memory assumed in the model then the 

defection in a Prisoners’ Dilemma state still is the only possible outcome of the interaction. 

The existence of other games and the possibility of discontinuing the association do not affect 

this solution.

We consider the game defined by table 5.1 as a standard stochastic game. For such a 

model the strategies which the players use in the game are stationary, that is they do not
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depend on time point at which the game is played, but depend only on the context-games 

played. We use the standard approach of the discounted Markov decision processes discussed 

in chapter 3 and find Nash equilibrium solutions. We describe the Markov decision process 

related to this game as follows.

• The states of the Markov process are the context-games and we have the four state 

process: S =  {0,1 ,2,3} =  {G0, G?i, G2, <73}.

• The sets of actions A*(s), which can be chosen by the first (i = 1) and the second (i — 2) 

players at some round, are

A^O) =  {A ,B } ,  A i (s) — {C, D}, s = 1,2, A* (3) =  {L}, i =  1,2.

• Immediate rewards and transition probabilities are given by table 5.1.

• The i th player’s strategy can be described as f\ =  (fj,o, fi,i, fi,2? fi,3) M — 1,2. Here

m  = (fi,o, 1 — fi,o) > where f i to is the probability of choosing action A,

f'i(s) = (f i ,s»1 — fi,s) ,s = 1, 2 , where fi,s is the probability of choosing action (7,

fi(3) =  (1) •

For the components of the immediate expected reward vector we have

?a (0,fl,f2) =  ^ l/l,o / 2,0 +  C 2 /l,0  (1  -  /2 ,o )  +  C3 (1  — /i,o) / 2,0 +  C4 (1  — / i >0) (1  -  /2 ,o )  , 

^ 1( l , f l j f 2 )  =  h l f l ,  1 /2 ,1  +  ^ 2 /1 ,1  (1  — / 2 , l )  +  ^3 (1  — / l , l )  /2 ,1  +  ^ 4  (1  — / l , l )  (1  — / 2 , l )  , 

^ 1 (2 ,  f i ,  ^2) — ^ l / l , 2 /2 ,2  +  h f l ,2 (1  — /2 ,2 )  +  t s  (1  — / l ,2) /2 ,2  +  £4 (1  ~  f i $ )  (1 — /2 ,2 )  , 

r 1(3 ,fi,f2) =  2

and

r 2 ( 0 , f i ,  f2 ) — 0 1 / 1 , 0 / 2 , 0  +  £ 3 / 1 , 0  (1 -  / 2,o )  T  C2 ( l  — / l , o )  / 2 , 0  +  C4 (1 — / i , o )  ( 1  -  / 2 , o )  ,

^2(1, f l ,  f2 ) =  / l l / l ,  1/ 2,1 +  ^3 / 1,1 (1 -  / 2 , l)  +  ^2  (1 -  / l , l )  / 2,1 +  (1 — / l , l )  (1 -  / 2, l)  ,

?’2(2, f  1 , f 2) =  £1 / 1,2 / 2,2 + £ 3 / 1,2 (1 -  / 2 ,2 ) +  £2 (1 -  / l ,2 )  / 2,2 +  £4 (1 — / l ,2 )  (1 “  / 2,2 ) , 

r 2 ( 3 , f i , f 2 ) =  z .
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Notice that r z(s, f i ,f2), i =  1,2, s = 0,1,2, depend only on sth components of strategies / i )S 

and / 2)S. That is r <(a ,fLtf2) =  P (s, / M , / 2(S).

We assume that the probability of participating in the next round does not depend on 

the context-game played, the actions chosen in this context-game or the moment at which 

the context-game is played. This means that there is a constant discount factor [3 which is 

the same between all context-games.

The strategies f i , define a probability transition matrix as following

(  0 p f i t0/ 2,0 (1 — p ) f  1,0f 2,0 (1 “ / 1,0/ 2,0) ^

Hence the vector (fi, f2) can be calculated as

v j t t . f j )  =  [/4 - / 3P ( f i . f 2)]-1 r i (f i.f2). 

For the model considered we find that

( l —/32 / i , 0 / 2 , 0 )  

0
( l —02f i , o h , o )  

0
(l—/32/l,o/2,o) 

0

1 +

P0f l ,  0 / 2 . 0  

( l - / ? 2 / i , 0 / 2 , 0 )  

P02 f t .  0 / 2 , 0

( l - / 32 / i , 0 / 2 , 0 )  

P02h ,  0 / 2 , 0  

( l —/32 / i , 0 / 2 , 0 )

0

(1—p)/3/i, 0 / 2 , 0  

( l - / 32 / i , 0 / 2 , 0 )  

i l - p ) 02h .  0 / 2 , 0  

( l - / 32 / i , 0 / 2 , 0 )

, ( l - p ) / 32 / i ,  0 / 2 , 0

( l - / 32 / i , 0 / 2 , 0 )  

0

j9 (l-/i,o /2 ,o ) 
( l - / 3) ( l - / 32 / i , o / 2 , o )  

/32 ( 1~ / i , o / 2 , q )  

( l - / 3) ( l - / 32 / : , 0 / 2 , 0 )  

/32 ( l - / i ,  0 / 2 , 0 )
( 1- / 3)  ( l - / ? 2 / x , o / 2 , o )

1
( 1 - / 9

Then, since N(s, fi, f2) =  r* ( s ,/ i ,s, / 2 , s ) , we obtain the discounted value vectors as follows

v (r\ v  v  \  ( / 3 ( l - ^ ) ( ^ ( l . / i . i > / 2 , i ) + ( l - p ) r i ( 2 , / i , 2 , / 2 , 2 ) ) - / 3 z ) / i , 0 / 2 , o + ( l - / 3 ) r <( 0 1/ i , o >/ 2 , o ) + ^

i(0’f i’f2) =  —   -

(5.1)v j ( l , f i , f 2 ) =  ^ ( 0 , f i , f 2 ) +  P  ( 1 ,  / i , i , / 2 , i ) ,

v j ( 2, f X) f 2 )  =  /?vj,(0, f i ,  f 2 ) +  P  (2, / i )2, / 2)2) , 

v j ( 3 , f i , f 2 ) =

Now, let us find Nash equilibrium solutions for this stochastic game. We shall analyse 

conditions ( 3 .2 ) from definition 3.5 of a Nash equilibrium for stochastic games.

Notice that the expression for v ^ (0 ,fi,f2) we can represent as a sum

i f n f  f  \ _  VT7 0 U - 0 ) f l , 0 / 2 , 0  | - 0 z f l , o f 2 , O + { l —0 ) r t (O, f i 'Oj2,o)+0z

where $  =  (prj (1, / i , i , / 2,i) +  (1 - p ) r 1 (2 , / 1|2, h , 2)) •
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To maximise Vg(0, fi, f2), first consider fixed f i to and j^o- For any fixed / i (o and / 2,o the value

vector attains its maximum when T is maximised, since ■ \ > 0. Maximising(1 71,0/2,0)
T determines the strategy components / p i , /Ip , / i ,2 an(  ̂ /I ,2- Once these are known, the 

maximum value vector can be determined by considering only differing values of /po and 

/ 2,0 -
The problem of maximising T is equivalent to finding Nash Equilibria for states G\ and 

G*2 considered as single games: we must find the probabilities /p i > /p i  > / f ,2 and /p 2 suc^ that

|  >  »’1( s , / 1,a, / p , )  s =  1 2  (5 2)

1 r 2( s , f t s J i s ) > r 2( s , f i s , hs )
We can see from conditions (5.2) that, disregarding the strategies used in the context- 

game Go, players defect in context-games Gi and G2 if these games represent the Prisoners’ 

Dilemma type interaction (since mutual defection is the only Nash Equilibrium in the Pris­

oners’ Dilemma). If only stationary strategies are used in the multi-state game it is not 

possible to conclude that cooperative behaviour is rational. Therefore more complex models 

need to be considered in an attempt to explain cooperative behaviour. In the next section 

we consider a model with non-stationary strategies.

5.3 O ne-stage m em ory m odel for th e  m u lti-sta te  gam e.

5 .3 .1  M o d e l o f  in te ra c t io n .  R o le  d e p e n d e n t  m o d e llin g  o f  s ta te s  G i a n d  G 2 .

Now we would like to draw attention to the following point. Since for the model considered 

in section 5.1 there are two context-games Gi and G2 related to some specific activities in 

which individuals can participate together, we wish to introduce a possibility for players to 

divide their responsibilities. For example the first player may “prefer” to “cooperate” in 

context-game Gi and “defect” in context-game G2. In return the second player “cooperates” 

in context-game G2 and “defects” in context-game G\. Such a strategy can be interpreted 

as the first player liking to participate in the activity modelled by context-game Gi and not 

liking G2. On the other hand, the second player does not take a part in G\ but carries out 

all work in G2. But, since we assume the two players to be equal, there should be some 

independent mechanism that determines the preferences of the players. We will formalise it 

as follows.

In modelling the interaction, we suppose that
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• each player can be assigned one of the two roles (denoted by A  and B)\

• there exists a rule that assigns a role to a player in such a way that if one of the players 

is assigned role A, then the other is assigned role B\

• the players are equal with respect to the assigning rule; the probabilities of being 

assigned role A  or role B are independent of the strategy the player uses and are, 

therefore, equal

• the players are certain about which role they have been assigned;

• when context-games G\ or Gi are played the players may choose different actions in 

these games if they use the same strategy but are assigned different roles.

As an example of role assignment we can consider the right of ownership on a resource. 

Such an interaction is discussed in [14] where the so-called “Bourgeois” strategy for the Hawk- 

Dove game was considered. This strategy prescribes playing Iiawk if the player is the owner 

of a resource and Dove if an intruder. Another example can be an interaction between a 

male and a female, or between a small and a large individual. In relation to the multi-state 

game considered here we can suppose, for instance, that the rule prescribing a role depends 

on ownership of a territory.

If we wish to calculate the total payoff obtained by such a role dependent strategy we 

should calculate the payoff to a player in role A , multiply it by the probability of being 

assigned role A  and add it to the payoff to a player in role B multiplied by the probability 

of being assigned role B. This can involve a lot of calculation if we are analysing a number 

of different strategies. To avoid such calculations we construct a special Markov process: 

we duplicate states G\ and Gi to account for information about a role assigned to the first 

player (then second player is assigned the other role). From calculational point of view there 

is no difference whether a role prescribed to a player at the beginning of the whole interaction 

or before state G\ or Gi is played since the role prescription is probabilistic. We only have 

to adjust the appropriate transition probabilities. The probability to be transferred to state 

G\ {A) , Gi (M), G\ (B) or Gi (B) after the context-game Go was played now become | ,  |

or ■^2 , correspondingly. The Markov process in this instance gives us the advantage of using 

the techniques described in chapter 4: we can use a software program (we have used ‘Maple’



CHAPTER 5. MULTI-STATE GAMES: NASH EQUILIBRIA. 92

to perform calculations in this thesis) to calculate the total payoffs for strategies, we also will 

be able to obtain the Nash Equilibrium conditions. Table 5.2 summarises this model.

Table 5.2. R ole d ep en d en t m odelling  of s ta te s  G\ an d  G2.

PLAYER I (PLAYER II )
1 /  V A
2 ■ / V

ROLE A  (ROLE B) ROLE B (ROLE A)
p y  \ l - p  p y  ^ 1 - p

STATE Gx (A) STATE G2 {A) STATE Gx (B) STATE G2 (B)

Here if the first player is assigned role A  then the second player is assigned role B and vice 

versa.

R em ark  5.2 I f  we assume that the players are not equal with respect to the assigning rule 

and the probabilities of being assigned role A  to the first player is q (and, therefore, to be 

assigned role B is 1 — q). Then the probability to be transferred to state G\ ( A ) , G2 (A ), 

G\ {B) or G2 (B) after the context-game Go become pq, (1 — p) q, p (1 — q) or (1 — p) (1 — q) , 

correspondingly. In this work we only consider the case of q — ^ . Since assignment rule does 

not depend on any attributes of the players, the q — \  seems to be a natural choice.

To complete the description of the Markov process we should explain how “punishment” 

will be modeled. Using multi-state models allow us a wide range of opportunities for modeling 

“punishing” strategies. Since for multi-state models there are more than one context-game, 

the “punishment” can be placed on another context-game (not necessarily the one in which

the player wishes to ensure cooperation). For example, in the Iterated Prisoners’ Dilemma

game the only possibility for modelling the “punishment” was to swap from cooperation 

to defection in the corresponding Prisoners’ Dilemma. The players did not have a chance 

to discontinue an association whatever they do. In the model that we consider below, the 

“punishment” is placed on the game Go and consists in breaking the long-term association if 

a partner did not cooperate at some state in the past.

To describe the model we assume the following.

• Whenever states G\ ( A ) , G2 (M), G\ (B) or G2 (B) are visited the players use the same 

actions at these states.



CHAPTER 5. MULTI-STATE GAMES: NASH EQUILIBRIA. 93

• The players may use different actions in context-game Go depending on which actions 

have been chosen at the previous round in one of the states G\ ( A ) , G2 (*4.), G1 (B ) or 

G j(B ).

• There is a constant discounting factor (3 between all states of the process.

In the next section we describe the Markov process related to this model and obtain a 

formula for the total payoff values.

5 .3 .2  T h e  M a rk o v  P ro c e s s  a n d  th e  T o ta l P a y o ff  V alu es: T h e  tw o -p e rs o n  

g am e .

To obtain a Markov process with stationary strategies we introduce seventeen different in­

formation states for the context-game Go depending on past history (restricted to one-stage 

memory as described in the previous section). The set of all possible information states for 

the context-game Gq in this case is I  — *• -? ^ie}? where

h={Gx{A),C,C}, i2={Gi(A),C,D}, ia={Gi(A),D,Cf}t i4—{Gi(A),D,D},

i5={G2(A)}C,C}> iG={G2(A),C,D}, i7={G2(A),D,C}, i8={G2{A) ,D ,D},

*o={C?i(B)lC,C}l *ii={Gi(B),D1C7}l i12={G!{B),D,D},

h3={G2(B),C,C}, ii4—{G2(B),C,D}, i15^{G2(B),D,C}, i16={G2(B),D,D}.

Here {Gn(A),ai,ci2} or {Gn(B),011, 0,2} is information that context-game Gn(A) or Gn(B), 

respectively, n  =  1, 2, was played at the previous stage, action a\ was chosen by the first 

player and action <22 was chosen by the second player. For example, io = {G2(A),C, D} 

means that at the previous state game G2{A) was played, first player was cooperating and 

second player defected. The final state 'io is the information that neither G\ or G2 has 

yet been played during the game. Therefore, for context-game Go seventeen states Go (ik) 1 

k — 0 , . . .  , 16, are introduced. It is necessary to introduce five more states in the process to 

include context-games G'i(M), G2CA), Gi(B), G2{B) and G3. Therefore, the set of different 

states of the process is

S =  { 0 ,1 ,2 ,... ,21}

=  (Go(io), Go(ii), ■ ■ ■ ,G 0 (ii6),G 1 (A ),G 2 (A ),G 1(S),G 2(B),G 3}.
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The sets of actions A i(s), which can be chosen by the ith player at state s, are

A* (s) =  {1,2} =  {A ,B } ,  s = 0 , . . . ,1 6 ,  i = 1,2,

A '(s) =  {1,2} =  {<?,£>}, a =  1 7 ,.. .,2 0 , t =  l,2 ,

A*(21) =  {1} =  {L}, i = 1,2.

The ith player’s strategy f; = (fi)0, f i,i , . . . ,  £.20, £,21) • Here =  ( f i}S, 1 -  / i>a) , s = 

0 ,1 ,. . .  ,20, where fa3, i — 1,2, is the probability that action A  is chosen in the state s

by the i th player if s =  0 , . . .  ,16, and the probability that action C  is chosen in the state s

by the i th player if s = 17 ,... , 20. Note that f ^ i  =  (1) •

The immediate expected rewards then are

r*(fl5f2) =  (N (0 ,fi,f2) ,r* ( l ,f i ,f2) , . . .  ,r* (21 ,fi,f2))T ,

where for s =  0 , . . .  , 16

7a (s ,f i ,f2) =  Cifasfa s +  c2f i >s (1 -  f 2,s) +  c3 (1 -  / i )S) f 2yS +  c4 (1 -  f a s) (1 -  f a s) , 

r 2 (s ,f i ,f2) =  c i f i ts f2fS +  c3f a s (1 -  f 2jS) +  c2 (1 -  f a s) f 2iS +  c4 (1 -  f liS) (1 -  f a s) ,

for s = 17,19

7a (s, f i ,f2) =  fa f a s f a s +  h2f a s (1 -  fas) +  fa (1 -  fas) fas  +  fa  (1 -  f a s) (1 -  f 2>s) , 

r 2(s, f i , f2) =  fa f a s fas  +  fa fas  (1 -  fas) +  fa  (1 -  / i iS) fas  -fi fa  (1 -  / i >s) (1 -  fa s ) ,

for s — 18,20

?J (s, fi, f2) =  h  fas fas  +  t2f a s (1 -  fas) +  *3 (1 -  fl,s) fas  +  *4 (1 -  fas) (1 -  fas) , 

r 2(s, f i , f2) =  t i f lts fa s + t 3f a s (1 -  / 2,5) + f 2 (1 -  / l iS) fas  +  u  (1 -  fas) (1 -  fa s ) ,

and r 1(21, fi, f2) =  2:, r 2(21 ,fi,f2) =  z. (See table 5.1 for definition of c*, hi and t{.)

Now the total payoffs v^(s, fi, f2) for the ith player, if the game starts from an initial state 

s and strategies fi and f2 are used by the first and second players, respectively, can be found 

using the approach discussed in chapter 3:

v j M i . f 2) =  [J22 - /3 P ( f i ,f2 ) ] -1 r i(fi,f2)- (5.3)

The probability transition matrix P(fi,f2) =  (p(s/ |5)fi,f2))^1a/_0 , is given by

p ( s '|s , f i , f 2) =  p{s '\s ,A ,A )  f hsf 2, ,+ p ( s ' \ s ,A ,B )  -  f 2,3)

+p(s '|S> B, A )(1 -  / i ,s) / 2,s +  (s '|s, (1 -  (1 -  / 2,s) ,
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for s =  0, . . .  , 16,

p ( s '|s , f i , f 2) =  p (V |s,C ',C) / i , s/ 2„, + p (s '\s ,C ,D )  / M (1 -  / 2,s)

+p (s'|s, D ,C )  (1 -  f 2,s + p  (s'ls, D, D) (1 -  (1 -  / 2,s) ,

for s = 1 7 ,... , 20 and p (s'|21, fi, f2) — p (s '(21, L, L ) . The immediate transition probabilities 

in this case are defined as follows.

p(s '\s ,A ,A )  = f ,  s =  0 , . . .  ,16; s ' -  17,19. 

p (s '|s ,A ,A ) =  ifE , 8 =  0 , . . .  ,16; s ' =  18,20. 

p(21\s ,A ,B ) = p(21\s ,B ,A ) = p {2 l \s ,B ,B )  =  1, s =  0 , . . .  , 16. 

p (l|1 7 ,C ,C ) =p(2|17,C7,D) =  p(3|17,£>,C) =  p (4| 17, £>,£>) -  1; 

p (5| 18, C, C) = p  (6|18, C,D) —p (7|18, JD, C) = p (8|18, £>, D) =  1; 

p (9|19, C,C) = p (10|19, C,D) = p  (11|19, .0,(7) =  p (12)19, D, J9) =  1; 

p (13|20, C, C) — p (14|20, C,D) = p (15|20, D ,C) = p (16|20, D, D) = 1; 

p (21|21, L, L) =  1;

and all other immediate transition probabilities p ( s '^ a 1, ^ )  =  0 .

Therefore

(  0 0 Ai A2 ^

0 A3 0 0

0 0 0 1

where

Ai =

/  p / 1 ,0 / 2 ,0  (1—p ) / i , 0 / 2 .0  p / 1 ,0 / 2 ,0  ( 1 —p ) / 1 ,0 / 2 ,0  \

P / i ,1B/2,16 ( l - p ) / l ,  16/2,16 p / l , 16/2,16 ( l ~ p ) / l ,  16/2,16

a 2 —

^ 1 ~  / l , 0 / 2 , 0  ^

\  1 — /l, 16/2,16 /



CHAPTER 5. MULTI-STATE GAMES: NASH EQUILIBRIA. 96

where

9 .  =  (  / W 2,. / l ,S( l - / 2,») ( l - / l , . ) / 2 ( l - / i , . ) ( l - / 2,.) ) .  s =  17 ,...20 .

In the next section we consider some strategies which can be used by players under this 

memory model. We use the formulae obtained to calculate the total payoff values of these 

strategies in order to determine the conditions under which these strategies are Nash equilibria 

when played against themselves. We also use these formulae in the next chapter where we 

analyse the Replicator Dynamics for the multi-state game.

5 .3 .3  S tra te g ie s .

When a Markov process constructed for a particular game-model has many different states it 

can be difficult to find all Nash equilibria. For example there are 221 different pure strategies 

for the process constructed in the previous section and we can see that the difficulty of the 

problem increases exponentially even if we wish to consider only pure strategies. It seems 

that the difficulties can be avoided if we can guess that some particular pair of strategies is a 

Nash equilibrium and then prove it. Below we introduce a few strategies that will be analysed 

in the next section. These strategies cover different types of behaviour from being a “sucker” , 

which is similar to All C  strategy of the Iterated Prisoners’ Dilemma game, to “unsociable” , 

which ignores any attempt to establish an association. A completely new type of behaviour 

is also introduced using which the players divide their responsibilities in context-games G\ 

and (?2• The strategies considered are the following.

S : “Sucker” (denoted by S ). The player, who adopts this strategy chooses the following 

actions:

(1) A—“associate” in context-game Go regardless;

(2) C — “cooperate” in context-games G\ or G<i regardless.

C P  : “Cooperator with punishment” (denoted by CP). Adopting this strategy, the player 

follows the instructions given below.

(1) Choose A — “associate” in context-game Go and then

(a) if context-game Gi or G2 is played, play C=  “cooperate” ,
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(b) then follow the instructions given in paragraph (2);

(2) depending on the action chosen by the partner in context-game G\ or G2 at the 

previous round, do the following:

(a) if the partner has chosen C— “cooperate” , follow the instructions given in 

paragraph (1),

(b) if the partner has chosen D=  “defect” , choose B — “break up” in context-game 

Go-

A T : “Allocating tasks” (denoted by AT). This strategy is as follows.

(1) Choose A=  “associate” in context-game Go and then follow the instructions given 

in paragraph (2);

(2) depending on the role, do the following:

(a) if in role A

(i) choose G = “cooperate” if context-game Gi is played, then follow the in­

structions given in paragraph (1);

(ii) choose D=  “defect” if context-game G2 is played, then follow the instruc­

tions given in paragraph (1);

(b) if in role B

(i) choose G = “cooperate” if context-game G2 is played, then follow the in­

structions given in paragraph (1);

(ii) choose D=  “defect” if context-game Gi is played, then follow the instruc­

tions given in paragraph (1);

A T P  : “Allocating tasks with punishment” (denoted by ATP).  This strategy is as follows.

(1) Choose A — “associate” in context-game Go and then follow the instructions given 

in paragraph (2);

(2) depending on the role, do the following:

(a) if in role A

(i) choose C =  “cooperate” if context-game Gi is played, then follow the in­

structions given in paragraph (1);
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(ii) choose D=  “defect” if context-game G2 is played, then follow the instruc­

tions given in paragraph (3);

(b) if in role B

(i) choose C— “cooperate” if context-game G2 is played, then follow the in­

structions given in paragraph (1);

(ii) choose D ~  “defect” if context-game G\ is played, then follow the instruc­

tions given in paragraph (3);

(3) depending on the action chosen by the partner in context-game G\ or G2 at the 

previous round do the following:

(a) if the partner has chosen C— “cooperate” , follow the instructions given in 

paragraph (1).

(b) if the partner has chosen D=  “defect” , choose B=  “break up” in the context- 

game Go-

P  : “Pathological” (denoted by P). The player, who adopts this strategy chooses action

(1) A=  “associate” in context-game Go regardless,

(2) D — “defect” in context-games G\ or G2 regardless.

LFS : “Looking for a sucker” (denoted by LFS).  Adopting this strategy, a player follows the 

instructions given below.

(1) Choose A — “associate” in the context-game Go and then

(a) if context-game G\ or G2 is played, choose D — “defect” ,

(b) then follow the instructions given in paragraph (2);

(2) depending on the action chosen by the partner in context-game G\ or G2 at the 

previous round do the following:

(a) if the partner has chosen G—“cooperate” , follow the instructions given in 

paragraph (1),

(b) if the partner has chosen D=  “defect” , then choose B — “break up” in the 

context-game Gq.
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U  : “Unsociable” (denoted by U). This strategy is to play B =  “break up” in context-game 

Go regardless.

In the next section we find Nash Equilibrium conditions that guarantee that a strategy 

is a Nash Equilibrium in a class of all strategies allowed by the model. To do so let us 

obtain the state description of the strategies given above. Since there is no choice of action 

in state 21 [G3) , this state is not included in the state description of any strategy. If the first 

player has adopted some strategy f  =  str , then f s can be found in the body of table 5.3. For 

convenience the probabilities that correspond to the states G\{A), G2 {A), G\{B) and G ^B )  

are given in bold.

T able 5.3. S ta te  d escrip tio n  of th e  s tra teg ies  w hen  used  by  th e  first player.

str\s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C P 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1

A T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1

A T P 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 0 1

P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

L F S 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0

U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The strategies CP, NT, A T P  or L F S  are not symmetric under permutation of the players. 

The state representation of these strategies when used by the second player can be found in 

table 5.4.

Table 5.4. S ta te  d escrip tio n  of th e  s tra teg ies  w hen used  by  th e  second player.

s t r \ s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C P 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1

A T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

A T P 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0

L F S 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0

In the next section we analyse the strategies introduced. Using the dynamic programming 

equations we determine the conditions under which these strategies are Nash Equilibria in a
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class of all memory-one strategies. Note that, although we have only introduced above seven 

different strategies, the dynamic programming approach allows us to determine whether or 

not a strategy is a Nash Equilibrium compared to all memory-one (that is pure and mixed) 

strategies.

5.4 N ash  Equilibria for one-stage m em ory m odel.

5 .4 .1  D y n a m ic  p ro g ra m m in g  e q u a tio n s .

In this section we obtain the formulae for the dynamic programming equations for the one- 

stage memory model. The dynamic programming equations in a general case are given by 

formula (3.5) reproduced below for convenience.

For the one-stage memory model of the multi-state game considered, these equations have 

the following form. If s  = 0 , . . .  ,16, then (s, f) =  max { u f s (A ) , U f a(5)} , where

v y s .f)

a^A^s)
max

u f s ( A ) =  fs°l +  (1 -  fa) C2

+Pf* §  V j (17, f) +  1 ^ ( 1 8 ,  f) +  f v *  (19, f ) +  V i (20, f)

+ / ? ( ! - / s) V y 21, f),

ufs(B ) =  / sca +  ( l - / a)c 4 +  /?V j(21,f),
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If s =  1 7 ,... ,20, then (s ,f) =  max {ufs(C),Uf9(D)} , where

«Ar (CO = f n h i  + (1 -  / i t )  h2 + /3  (flrV}(l ,f )  + (1 -  / i t )  V j(2 ,f0  , 

ufn  (D) =  /it/>3 +  (1 -  / i t )  /M +y9 (  / i tV I  (3jf) +  (1 _  /l7 ) V i(4 ,f ) J  ;

«/is(C) =  /is i l  +  (1 -  f i s ) t 2 + P  (fuV}(5,f) +  (1 -  /is )  V j ( 6 , f 0  ,

y-hs (D) = / i 8*3 +  (1 -  /is) *4 +  (0 (  / i 8v ^  (7, f) +  (1 -  /is) V I (8 , f) j  ;

« A .( 0  =  /lofci +  (1 -  ho) h2 + is (figV* (9,f) +  (1 -  /ig) V |( 10, f ) )  ,

«/»(-0 ) =  h o h  +  (1 -  /ig) /u  +  is [ f n V }  (11, f) +  (1 -  / 19) V* (12, fO  ;

«Ao(CO =  /soti +  (1 -  / 20) h  + 0  ( / 20V j,(13,f) +  (1 -  / 20) V g(14 ,f)) ,

"Ao (-D) =  h a h  +  (1 -  ho)U + 13 Uoy},(15, f) +  (1 -  V* (16, f)

We also have that Vg(21,f) =

5 .4 .2  “A llo c a tin g  ta s k s ” a n d  “A llo c a tin g  ta s k s  w i th  p u n is h m e n t” s t r a t e ­

g ies.

In this section we solve the dynamic programming equations and obtain the Nash Equilibrium 

conditions for “Allocating tasks” and “Allocating tasks with punishment” strategies. These 

strategies represent a new type of behaviour, which allows players “divide their labour” in the 

game. If we are able to obtain such Nash Equilibrium conditions in the case that games G \ 

and 6r2 axe modelled by Prisoners’ Dilemmas, then the observed type of behaviour would be 

that one player cooperates while the other defects. (It is possible for “Allocating tasks with 

punishment” strategy as we demonstrate in section 5.5.) We, therefore, will be able to use 

the strategy “Allocating tasks with punishment” in an explanation of cooperative behaviour. 

Below we find the Nash Equilibrium conditions.

Consider strategy A T P  “allocating tasks with punishment” . For this strategy when it is 

played by the second player f s = 0, if s = 3,4,15,16,17,20 and f s =  1 at all other states. 

Therefore if s = 0 ,1 ,2 ,5 ,. ..  ,14 then(s, f) =  max
C i+ 0 I vj, (17, f) +  V i (19, f) +  V I (18, f) + V J (20, f)

c3 +  /3Vi(21,f)
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and if s = 3,4,15,16 then V ^ (s ,f )  =  m a x jc 2 + /JVg(21,f),C4 +  /?V g(21,f)j . For s = 

1 7 ,... , 20 we have

V }  (17, f) =  max {/i2 +  0V}(2,  f), hi  +  0V}(4,  f)}  ,

V }  (18, f) =  max { i, +  0 V }  (5, f  ) , t3 +  /3V* (7, f ) } ,

V }  (19, f) =  max [ftj +  0 V }  (9, f ) , li3 + 0 V }  (11, f)}  ,

V }  (20, f) =  max | t 2 +  0 V }  (14, f ) , t4 +  0 V }  (16, f ) } .

Using the following notation

V £ (a ,f)  =  A, if s =  0 ,1 ,2 ,5 ,. ..  ,14, V j(a ,f )  =  B, if s =  3,4,15,16,

V l(1 7 ,f)  =  C, V}(18,f) =  D, V j(1 9 ,f)  =  E, V £(20 ,f) =  F,

we find that the system of dynamic programming equations is as follows.

' A  =  max {c, +  0[r(c+E)+(i-P)(D+F)] , C3 +  f f - j , }

B =  max {c2 + 0 T^ , c i  + 0 j ^ \

C =  max {I12 +  PA, h4 +  /?B}

D =  max {t\ +  {3 A ,  £3 +  p A }

E =  max {h\ +  PA, h 3 +  /3A}

F  =  max {£2 +  PA, £4 +  pB }

Now, in order to be a Nash Equilibrium the strategy A T P  played by first player must prescribe 

choosing the optimal action at every empty memory state. There are five empty memory 

states for this model, which are s = 0 =  Go(io), s — 17 =  G\{A), s — 18 =  G2(A), 

s = 19 = Gi(B) and s = 20 =  G2(B). The probability f s = 1, if s =  0,17,20, therefore 

choosing cooperation at these states must give higher or equal payoff than choosing defection. 

The probability f s = 0, if s = 18,19, therefore choosing defection at these states must give 

higher or equal payoff than choosing cooperation. Hence, we have the following necessary 

and sufficient conditions under which the strategy “allocating tasks with punishment” is a 

Nash Equilibrium.

Cl + f 3  rp ( C + E ) + ( l - p ) ( D + F )

1%2 +  PA > h4 +  PB 

£1 +  pA  < £3 +  PA 

hi +  PA  < h3 +  PA  

£ 2  +  pA > £4 +  pB

—  C3 +  @1—0

(5.4)
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If these conditions hold we have that

A =  e i + ^ ( £ g ± a t ^ iffi±n )

B =  max {02, 04} +  j3~ ^

C = h2 + (3A 

D  =  t3 4- /3A  

E =  /13 4- PA  

F  =  t2 +  PA

which can be solved to obtain

A — 1 2ci+/3(p(/t2+h3)+(l-p)(<3+*2)) 
2 l_/3a '

B =  max {c2, c4} 4-

1-/F

D . I P 2ci+/3(p(h2+k3) + ( l - p ) ( t s + t 2 ) )  
1 3  -1-  2 f Z ^

C  =  ll2 +  g 2cl + / 3(P0t2 + /l3 ) +  ( l - p ) h 3  +  t2))

P 2c i+ /3(p(/i.2+fc3) + ( l - p ) ( t 3+ t2))_

P 2c1+f3(p(h2+ l i 3 ) + ( l - p ) ( t 3 + t 2 ) )

E  — h3 +  *2----- ----------

F  =  t2 +  | --------------

Finally, substituting these expressions to the system (5.4) we obtain the necessary and suf­

ficient conditions under which the strategy “allocating tasks with punishment” is a Nash 

Equilibrium, when played against itself, in a class of one-stage memory strategies.

h  < *s, fa < h3,
hi +  | ^i+^(p('‘2+M+(i-p)(t3+tQ)) > (m ax{c2, c4} +  /3j ^ )  , 

i 2 +  > ti + (3 (max {c2,c4} +  / J ^ )  .

2C1 +  /?p (/i2 +  /13) +  0  (1 -  p)(i3 +  *2) >  2 (1 -  /32) c3 +  2 (1 +  0)

In the same way we can find the necessary and sufficient conditions under which the 

strategy “allocating tasks” is a Nash Equilibrium. These conditions are as follows.

2c\ 4- Pp (h2 +  h 3) 4- /? (1 -  p ) (t3 + 12) > 2 ( l  -  P2) c3 4- 2 (1 +  p) pz, 
h2 > h4, ti  <  i 3 , h i <  h 3 , t2 > t4 .

5 .4 .3  “C o o p e ra to r  w ith  p u n is h m e n t” a n d  “S u c k e r” s tr a te g ie s .

In this section we consider “Cooperator with punishment” and “Sucker” strategies which are 

similar to Tit for Tat and All C strategies, respectively, in the Iterated Prisoners’ Dilemma.

For the strategy C P  “cooperator with punishment” when it is played by the second 

player f s = 0, if s =  3,4,7,8,11,12,15,16 and f s = 1 at all other states. Therefore if
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s =  0 ,1 ,2,5,6,9,10,13,14

f c1 + 0§ (v J (1 7 , f )  +  V j ( 1 9 , f ) ) + ^ ( v £ ( 1 8 , f ) + V j ( 2 0 , f ) )

{  c3 + /?V i(21 ,f)
Vg (s, f) =  max

and if s = 3,4,7,8,11,12,15,16

Vj, (s, f) =  max {c2 +  /3V^(21, f),c4 +  /3V£(21, f)} .

For s =  17,18,19,20 we have

V I (17, f) =  max +  /3V> (1, f ) , +  (3, f ) } ,

V ‘ (18, f ) =  max { t, +  0 V }  (5, f ) , t3 + P V \  (7, f )} ,

V }  (19, f) =  max [h, +  0V}, (9, f ) , 3 +  /3VJ (11, f)}  ,

V ' (20, f) =  max { t, +  (13, f ) , t3 +  /?V* (15, f ) } .

Let us introduce the following notation

V j (s, f) — A, if s =  0,1,2,5, 6,9,10,13,14,

V* (s,f) = B ,  if s =  3,4,7,8,11,12,15,16,

V* (17, f) =  V I (19, f) =  C, VI (18, f) =  Vg (20,f) =  D.

Then we can rewrite the equations as follows.

A =  max |c i  T /3pC +  (3 (1 -  p) D, c3 +  f i jzp  } ,

B =  max jc 2 +  f i j z p , C4 4- Pjirp } ,  (5-5)

l C =  max {h \  +  /?A, J13 +  /3B} , D =  max {ti +  /?A, 13 +  / f i B }  .

Now, in order to be a Nash Equilibrium the strategy C P  played by the first player must 

prescribe choosing the optimal action at every empty memory state. There are five empty

memory states for this model, which are s = 0 =  C?o(^o)} s — 17 = Gi(A), s = 18 =  G2{A),

s = 19 =  G\{B) and s — 20 =  G2{B). The probability f s =  1, if s = 0,17,18,19,20, and 

therefore choosing cooperation at these states must give higher or equal payoff than choosing 

defection. Since if s = 0 then Vg (s, f) =  A, if s = 17,19 then Vg (s, f) =  C, and if s = 18,20

then Vg (s, f) =  D, and, noticing that u js(C) in this case is given by the first expression in

the brackets (5.5), we have the following necessary and sufficient conditions under which the
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(5.7)

strategy “cooperator with punishment” is a Nash Equilibrium.

hi “I- (3 A  ^  h3 -f- /?B

t 1 + ( 3 A > t 3 + PB, (5.6)

ci +  0pC  +  /? (1 -  p) D > c3 +

If these conditions are satisfied then we have that

A  =  ci +  (3pC +  (3 (1 — p) D 

B =  max {c2, c4} +

C -  hi +  (3A 

D =  ti  +  (3 A
V*

Solving this system we obtain

A  =  c^+h(phi+(i-p)t i )  c  =  h\  4- ^  +/3(p/i i + f1 ~p) b )

B =  m ax {c2,C4 } + /3T̂ .  D = fr +

Substituting expressions (5.7) to the system (5.6) we obtain the following necessary and suf­

ficient conditions under which the strategy “cooperator with punishment” is a Nash Equilib­

rium, when played against itself, in a class of one-stage memory strategies for the multi-state 

game.

hi +  > h 3 + (3 (max{c2,c4} +  »

h  +  p ci±P(P^+V--P)L) > t 3 + fi  (max {c2, c4} +  ,

ci +  (3 {phi +  (1 ~  p)  ti) > {(3z +  c3 (1 -  (3)) (1 +  (3).

In the same way we can obtain the following sufficient and necessary conditions under 

which the strategy “sucker” is a Nash Equilibrium. This conditions are as follows.

Ci -I- (3 {phi +  (1 -  p) t x) >  (1 +  (3) ((1 — (3) c3 +  (3z) , hi > h3, h > t 3.

5.4 .4  “Looking for a sucker” , “Pathological” and “U nsociab le” strategies.

In the same way as it has been done for strategies “cooperator with punishment” and “allo­

cating tasks with punishment” we can solve the dynamic programming equations and obtain 

Nash Equilibrium conditions for every strategy introduced in section 5.3.3. Table 5.5 contains
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the summary of the results obtained.

Table 5.5. C ond itions on  N ash  equ ilib ria  for no n -co o p era tiv e  s tra teg ies .

Strategy
The following conditions must be satisfied simultaneously in order 

for a strategy to be a Nash Equilibrium when played against itself.

P ci +  (3 (ph.4 +  (1 -  p) i4) > (1 p/3) ((1 -  (3) c3 +  /3z) ,  h2 <  /i4, t2 < t A.

L F S

h2 +  < h A + (3 (max{c2, c4} +  1- ^  > 
t2 + 0 c1±p(ph^i-p )u)  < U  + 0(max ,

C l+(3 (phA +  (1 -  p) U) > (1 +  (5) ((1 -  (3) c3 +  (3z) .

U h2 < /14, t2 < *4, C2 < C4

5.5 E xam ples.

In the this section we consider examples which demonstrate how the Nash Equilibrium con­

ditions obtained in the previous section depend on the parameters of the game.

E xam ple  5.1. Consider the game given by table 5.6.
T able 5.6. T h e  m u lti-s ta te  gam e: exam ple  5.1.

C 0 :

P l\P 2 A B

A (3,3)/ [ 0,p,l—p,0] (0,6)/ [ 0,0,0,1]

B (6,0)/ 0,0,0,1] ( 2> 2) j [0)0)0)1]

C3:
P l\P 2 L

L (Z,2% ,  0,0,1]

P l\P 2 C D

c 0,0,0] (/l2’/l3)/ [ 1,0,0,0]

D ('‘3''*2)/ [ 1,0.0,01 (/l4,/l4)/[ i,0,0,0]

P l\P 2 C D

C (ii.toyji ,0,0,0] (*2’*3)/[l, 0,0,0]

D (t3,f2)/[ i ,0,0,0] (t4,t4)/[i, 0,0,0]

Where payoffs in games G\ and G2 are such that 

phi + t i  (1 - p )  = 3, ph3 + t 3 (1 - p )  = 5, ph2 + t2 (1 ~ p )  = 0, p /1 4  +  *4 (1 - p )  = 1.

For example, the payoffs in games G\ and G2 can be equal, that is

h\ — 3, h2 = 0, h3 =  5, /14 =  1; ti — 3, t 2 =  0, i3 — 5, = 1.



CHAPTER 5. MULTI-STATE GAMES: NASH  EQUILIBRIA. 107

The association game Go is modeled by a Hawk-Dove game which is commonly used when the 

sharing aspect of interaction is considered. Such a game can be interpreted in the following 

way.

“S haring  A nim als” in te rp re ta tio n . There are two animals who have to decide 

whether or not to share a common resource, for example, a hunting territory. This is 

modeled by game Go- If both animals decide on sharing (choose action A  in game G'o) 

then they have to protect jointly held territory from two different kinds of intruders 

(for example, protecting territory from invasion by the same kind of animals and by the 

animals of another species). This is represented by two Prisoners’ Dilemmas: Gi and 

G2. If one of the players chooses B  and the other chooses A  in the association game it is 

interpreted as the first player being prepared to fight for the possession of the resource 

and the second player choosing to run away. If both players choose B , then they fight 

and each one has equal probability \  of gaining the resource. The cost of fighting is 

supposed to be higher than the value of the resource. Once the association is broken 

the player’s future payoffs are then equal to 2 . It is supposed that neither of the players 

has sufficient power to protect the resource from intruders on its own.

In this case strategies 5, AT, L F S  and U are not Nash Equilibria for any value of the 

parameter 2 and discount factor (3 € [0,1). For strategies C P , A T P  and P  there is a range 

of values for z  and j3 for which these strategies are Nash Equilibria. The conditions on the 

parameters for these strategies are given in the table 5.7 below together with plots that show 

the range of the acceptable parameters. In chapter 7 we will also analyse the corresponding 

Replicator Dynamics for this model. In particular we will concentrate on the case when 

parameter z — 2. This value is shown in green on the plots below.
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Table 5.7. N ash  E qu lib rim  conditions: exam ple  5.1.

Strategy Conditions Plot

C P
z  <  — blue -  0 2

*  < black

4

z 0 

-2 

*4

! /  NE ! /  zone

0.2 0.4 p 0.6 0.0

A T P
z <  1 7/32+6/3-2 u
Z -  2 0 2(0 + i )  °LUe
~ ^  .1 - 6 + 1 2 0 2+ 5 0  bJ h  
z  — 2 0 (0 + 1 )

4 

2 
2 0 

•2 
-4

/ NE / /  zone

0.2 0.4 p 0.6 0.8

4 -

2 ----- ---------  ------- -  .

P ~ ^  6/32- 3 +i0 u  
Z -  0 (0 + 1 )  0LUe z 0

NE
/  zone

*4 /
0.2 0.4 p 0.6 0.8

Analysing plots in Table 5.7 we can obtain the following results.

1. It is possible to choose the parameters 2 and (3 in such a way that the “allocating 

tasks with punishment” strategy is a Nash Equilibrium. Using this strategy one player 

cooperates in game G\ while the other player defects and the first player defects in game 

G2 while the other cooperates. This is a type of behaviour which cannot be observed 

if the interaction is modeled by a single Prisoners’ Dilemma and it may be viewed as 

relevant to the explanation of altruistic behaviour.

2. Notice that the Nash Equilibrium conditions do not depend on value of the probability 

p  if the payoffs in games G\ and G2 are equal. We therefore can consider that p is 

equal to zero or one. For example, if game G\ represents protecting territory from 

invasion by the animals of the same kind and G2 by the animals of the other species 

and the animals of the other species become extinct when the probability of playing G2 

becomes zero, which corresponds to the value of p becoming equal to one. Surprisingly
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the strategy “allocating tasks with punishment” continues to be a Nash Equilibrium in 

this situation. This is due to the role dependant definition of the strategy: the strategy 

carries in itself both the program of actions for cooperating and for defecting player 

and at the beginning of the multi-state game a rule determines which role each player 

is assigned, but the players have equal probabilities to be assigned either of the roles. 

The observed behavior in this case is non reciprocal cooperation: one player cooperates 

while the other defects. Such types of behaviour cannot arise in the Iterated Prisoners’ 

Dilemma game.

3. It is possible to choose parameters in such a way that non cooperative strategies such 

as LF S, P  and U are no longer Nash Equilibria. These strategies are generalisations 

of the All D efect strategy for the Iterated Prisoners’ Dilemma game which is a Nash 

Equilibrium for any combination of the parameters (see chapter 4). It seems that the 

possibility to discontinue the association is the main factor that changes the situation. 

These results do not mean that there is no non cooperative strategy that can be a Nash 

Equilibrium (since we are unable to analyse even all one-stage memory strategies) but 

they open an interesting direction that may be useful when an attempt to explain the 

evolution of an altruistic behaviour is made.

4. It is possible to choose the parameters 2 and (3 in such a way that the “cooperating with 

punishment” strategy is a Nash Equilibrium. This strategy is similar to T it for Tat 

strategy of the Prisoners’ Dilemma models and therefore is relevant to the explanation 

of cooperative behaviour.

5. Notice that the range of parameters for which the necessary conditions are satisfied for 

all the above cases at the same time is quite narrow: (3 should be quite high and 2 

should not be too small or too high.

E xam ple  5.2. Consider the game given by table 5.8. Here the payoffs in the context-game 

Go may represent an extra cost of the association.
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T able 5.8. T h e  m u lti-s ta te  gam e: exam ple  5.2.

110

Go:

P l\P 2 A B

A (“ 5’“ 5)/[[0,p,l-p,0] (0,0)/ [0,0,0,11

B (0,0)/[0 ,0,0,1] 0̂,° y [0,0,0,1]

G ,:
P l\P 2 L

L (z,z)/ [0,0,0,1]

G i

P l\P 2 C D

C (3’3)/ [ i , 0,0,0] (0,5)/ [ i , 0,0,0]

D (5,0)/ [ l , 0,0,0] (1>1)/ [1,0,0,03

G 2

P l\P 2 C D

c {3,3)/ [1,0,0,03 «*>/{[1,0,0,0]

D (5,0)/ [1,0,0,0] (1,1)/[1 ,0,0,0]

In this example the payoffs in games G\ and G2 are equal, so the Nash equilibrium conditions 

do not depend on value of the probability p. For this example we have that S  and A T  are 

not Nash Equilibria for any value of the parameter 2 and discount factor (3 e  [0,1). Strategy 

U earns the same total value against every strategy and every strategy earns the same total 

value against U, therefore U is a Nash Equilibrium for any value of parameter 0 and (3 € [0,1). 

For strategies CP, A T P , L F S  and P  there are ranges of values for 2: and (3 for which these 

strategies are Nash Equilibria (see table 5.9). In chapter 7 we will analyse the Replicator 

Dynamics for the populations that consist of proportions of GP, A T P , P  and U players. In 

particular we will consider the case when parameter z — \ .  This value is shown in green on 

the plots below.
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Table 5.9. N ash  E qu lib rim  conditions: exam ple 5.2.

Strategy Conditions Plot

CP
a  <  1 lo g 2- £ - 4

4 

2 

z 0 

-2 

-4

-  2 f32( /3 + l)  ULUC 

z  —  2 /3(/3+i) black /  NE 
/ /  zone

0.2 0.4 p 0.6 o.a

A T P
z < h — blue

4 

2 

z 0 

-2 

*4

—  2 p 2( /3+ l)

z  — 2  /3(/3+i) black /  NE 
/  /  zone

0.2 0.4 p 0.6 0.8

P ^  1 -1+2 B 1 ,

4 

2 

z 0 

*2 

-4

~ -  2 /3(/3+l) ^ UC
NE

/  zone

0.2 0.4 p 0.6 0.8

L F S
z  >  1 4 /32t /3 - 2  b l  

- 2  /3*G3+1) 0LUe

4

2

~  — 2 /3 0 + 1 ) black *2 NE
/  zone /

-4 I  /
0.2 0.4 p 0.6 0.8

The conclusions obtained for this example are similar to those drawn for example 5.1, 

with the exception that strategy U is a Nash Equilibrium for any value of parameter z and 

(5 € [0,1). Since it earns the same total value against every strategy and every strategy earns 

the same total value against £/, it is not an evolutionarily stable. The evolutionary properties 

of this strategy can be determined by considering the Replicator Dynamics and using the 

“blowing up” technique described in chapter 3. The results of such analysis for this example 

can be found in chapter 7.1.

E xam ple 5.3. Consider the game given by table 5.10. This example is similar to example 5.2 

and the payoffs in the context-game Gq again represent an extra cost of the association.
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T able 5.10. T h e  m u lti-s ta te  gam e: exam ple 5.3.

P l\P 2 A B

A lf 1^/[0,P,1-P,0] (0,0)/ [0,0,0,11

B (0,0)/[0 ,0,0,1] (0,0)/[0 ,0,0,1]

Pl\P2 L

L {1,1)/ [0,0,0,1]

Gv.

P l\P 2 C D

c (3,3)/ [ l ,  0,0,0] (0,5)/ [ l ,  0,0,0]

D (5,0)/ [ l ,  0,0,0] (1,1)/ [1,0,0,0]

G2:

P l\P 2 C D

C (4,4)/ [ i ,  0,0,0] (1,6)/ [ i ,  0,0,0]

D (6,1)/ [1,0,0,0] (2,2)/ [ l ,  0,0,0]

In this example the payoffs in games G\ and G2 are different, and therefore the Nash equi­

librium conditions depend on value of the probability p. In this example we fix the value of 

the payoff z to be equal 1, and investigate how the Nash equilibrium conditions depend on 

value of the probability p and discount factor (3.

In this case strategies 5, AT, L F S  and P  are not Nash Equilibria for any values of the 

probability p G [0,1] and discount factor [3 G [0,1). Strategy U again earns the same total 

value against every strategy and every strategy earns the same total value against U, therefore 

U is a Nash Equilibrium for any value of p G [0,1] and (3 G [0,1). For strategies C P  and 

A T P  there are ranges of values for p and (3 for which these strategies are Nash Equilibria 

(see table 5.11).

Table 5.11. N ash  E qu lib rim  conditions: exam ple  5.3.

Strategy Conditions Plot

0.8

C P
r p <

V < — black

O.G

P
0.4

0.2 /  / NE /  / zone
0 0.2 0.4 p 0.6 0.8

0.8

A T P {  P <  blue 
Uack

0.6

P
0.4

0.2 /  /N E  
/  / zone

0 0.2 0.4 p 0.6 0.8
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To obtain strategies C P  and A T P  as Nash Equilibria the value of the discount factor (3 must 

be quite close to one, which means that the expected time of association is long. For every 

fixed (3 there is a barrier values p ^ p  and P ^ tp  °f probability p such that if p is greater than 

PqP or P atp  then strategies C P  or A T P , respectively, are not Nash Equilibria. The barrier 

values appear because the payoffs in game Gi are lower than in game G2, so if game Gi is 

played with high probability it becomes inefficient to continue an association. The barrier 

values also depend on the value of the parameter 2: and decrease as z  increases.

E xam ple  5.4. Consider the game given by table 5.12. This example is similar to the 

example 5.1. Here context-game Go is modelled again by a Hawk-Dove Game. Again we fix 

the value of the payoff 2: to be equal 1, and investigate how the Nash equilibrium conditions 

depend on value of the probability p  and discount factor (3.

Table 5.12. T h e  m u lti-s ta te  gam e: exam ple 5.4.

Go:

P l\P 2 A B

A ( - ) / [0 , li - , 0 ] (0,1)/[0 ,0,0,1]

B (1,0)/[0 ,0 )0)1] ( - - - * ) / [ 0A 0jl]

Go:
P l \ p 2 L

L (1,1)/[o ,0,0,1]

Gx:

P l\P 2 C D

c (3,3)/ [ l  ,0,0,0] (0,5)/ [ i ,  0,0,0]

D (5,0)/ [ l ,  0,0,0] (1,1)/[1 ,0,0,0]

G 5

P l\P 2 C D

C (4,4)/ [ l ,  0,0,0] (1,6)/[1 ,0,0,0]

D (6,1)/ 1,0 ,0 ,0] (2,2)/ [ l , 0,0,0]

In this case strategies S , AT, and U are not Nash Equilibria for any values of the probability 

p  G [0,1] and discount factor (3 G [0,1). For strategies CP, A T P , L F S  and P  we can 

determine a range of values for p and /? for which these strategies are Nash Equilibria. The 

conditions on the parameters for these strategies are summarised in the table 5.13 below.

The conclusions in this case are similar to those for example 5.1. The ranges of parameters 

p and (3 for which strategies C P  and A T P  are Nash Equilibria depend on the value of the 

payoff 2:. The ranges are wide since the value of 2; is quite low (equal to 1). As the value of 2: 

increases these ranges will become narrower.
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Table 5.13. Nash Equlibrim conditions: example 5.4.

114

Strategy Conditions Plot

C P
c m 2±P-^? 01-b lu eZp

P <  — black

A T P
V <P — 2/3 black

P <  ^ f /F  ~  black
NE

zone

L F S
P > -  blue

P <  ^2^  “  black

5.6 Sum m ary.

In this chapter we have introduced a multi-state game model that allows for the possibility 

that individuals may interact in more than one context. We have constructed the Markov 

process for the one-stage memory model and obtained the expression for the total payoffs 

values which we will use in the next chapter to define the Replicator Dynamics for this model.

We introduced a new “allocating tasks” type of behaviour. It was shown that the strategy 

“allocating tasks with punishment” can be a symmetric Nash Equilibrium for a certain range 

of parameters. Since this strategy may be viewed as relevant to explanation of both reciprocal
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and non-reciprocal (see example 5.1 for more details) cooperative behaviour this result is 

particularly important.

It has also been shown that there exists a range of parameters of the model for which non- 

cooperative strategies such as “looking for a sucker” , “pathological” or “unsociable” are not 

Nash Equilibria. In all models based on the Iterated Prisoners’ Dilemma the uncooperative 

type of behaviour is a strict Nash Equilibrium and, therefore, cooperative behavior cannot 

evolve from a population where all players use the All D efect strategy. In this instance, 

the result obtained for multi-state model means that there is the possibility of evolving 

to cooperative or altruistic population from anarchy. This possibility will be examined in 

the next two chapters where we analyse the Replicator Dynamics and evolutionary stability 

properties of the strategies introduced in this chapter.



Chapter 6

Multi-state games: Replicator 
Dynamics.

In this chapter we start the analysis of the Replicator Dynamics for the multi-state game 

model introduced in the previous chapter. We obtain the conditions for the asymptotic 

stability and instability of the non cooperative population states. We will also obtain sufficient 

conditions for which there are subsets of the intervals corresponding to the cooperative or 

allocating tasks populations such that the conditions of theorem 4.2 holds (this theorem deals 

with conditions of the setwise evolutionary attraction). This will be done for a generic set of 

parameters. We will use these results in the next chapter where we consider specific examples.

6.1 Introduction .

6.1.1 T he tw o-person gam e.

The Replicator Dynamics which we will analyse in this chapter describes changes of a popu­

lation state in a population whose members are playing a symmetric two-person game. The 

individuals in the population are allowed to adopt the behaviours which correspond to the 

seven strategies considered in the previous chapter. That is: S, C P, A T P , AT, P, L F S  and 

U. To calculate the total payoff value obtained by these strategies we use the Markov Decision 

Process constructed for the multi-state game in chapter 5. Using formula (5.3), we calculate 

the total reward 7r(/i,/2 ) — V g ( l ,/ i , /2) for the first player. Information about these rewards 

is summarised in matrix A. “Maple” software was used to obtain the exact formulae in this

116
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case.

7T(S,S) 7r (S ,C P ) 7t(S ,A T P ) 7r(S ,A T ) 7T(S,P) tt(S ,L F S ) 7t (S ,U )

7T(C P,S) 7T (C P ,C P ) 7t (C P ,A T P ) tt(C P ,A T ) 7r (C P ,P ) tt(C P ,L F S ) 7T (C P,U )

tt(A T P ,S ) 7t (A T P ,C P ) tt(A T P ,A T P ) tt(A T P ,A T ) 7t (A T P ,P ) tt(A T P ,L F S ) tt(A T P ,U )

tt(A T ,S ) 7t (A T ,C P ) tt(A T ,A T P ) tt(A T ,A T ) 7t (A T ,P ) tt(A T ,L F S ) tt(A T ,U )

7r(P ,S ) 7r (P ,C P ) 7t (P ,A T P ) tt(P ,A T ) 7r(P ,P ) 7t (P ,L F S ) 7T(P,U )

7t(L F S ,S ) tt(L F S ,C P ) 7T (L F S, A T P ) 7t(L F S ,A T ) 7t (L F S ,P ) 7T (L F S ,L F S ) tt(L F S ,U )

7T(U,S) 7r (U ,C P ) tt(U ,A T P ) tt(U ,A T ) 7r (U ,P ) tt(U ,L F S ) 7T (U ,U )

2x

2x

H+U)

X+U)

2u>

2u>

C3

Here

2x

2x

2(l-/32)(^H^32C2 
(2-/3 2)

2 (l—/92) (x-t-oj)-|-/32 C2 
(2-/32)

2(l-^2)uH^2C2

2(l-T92)u>f/32C2

C3

0 + X 0+X
2 ( l - j02)(lA.U )4Jg 2 C 3  2 (1-/92) ( ^ > { ^ 2  C 3

(2-/92)

ijj+UJ

2(l-/32)(xM^2C2

(2-/92)

0+^

0+U>

^+X

2-0 20 C2

2(l-/32)^h52C3 2(l-£2)0+/32C3 C2

2 (l—/3 2) (i/'fx) +/9 2 C  3 2(l-/92)(1A4-xHJ32C4

(2-/3 2)

2(l-/92)(x4^H 792c4 2 ( l-0 2 )  ( * * ^ 2  C 3

(2-/3 2)

C3

(2-/32)

C3

(2-/32)

0+X

2%

2(1-tS2)̂ H32C3

C3

(2- /32)

2(l-/9 2 )(V 4 -^H 9 2 c 2

C2

C2(2-/92)

2(l-£2)*b32 C2 C2 

2(l-702) ^ 7S2 C4 C2

C3 C4

(6 .1)

— 1 d + / 3( p f c i - B i ( l - p ) ) ; w

^  — 1 c i+ /3 (p /l2+ < 2 ( l - p ) )  .
2 I-/32

Cl+j0(?
2 1-/32

1 ci+/3(pfr3+ t3( l - p ) ) .
2 1 - /3 2  >

•w —  1 c i + / 3 ( p / i 4 + t 4 ( l - p ) ) . 
A 2 1—/32 ’

C2 =  C2 +  - ^ ~ j : C3 — C3  + (1- / 3) :

Notice that some payoffs given in matrix A  are equal. For example,

7r(S, S) = 7t(S, C P) =  tt(C P, 5) =  tt(C P, C P), 

tt(AT, AT) =  tt(AT, ATP) =  7r(ATP, AT) -  tt(ATP, ATP).

Equal payoffs commonly appear in situations where the only difference between some 

strategies present in the population is that one uses punishment and another does not. This
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may explain the fact that the cooperative strategy with punishment (such as T F T , C P  or 

A TP )  can not be evolutionarily stable in the way described by J. Maynard Smith and G. R. 

Price [13]. Therefore other methods are used in this situation to investigate the outcome of 

the evolution process. The Replicator Dynamics provides us with the necessary technique.

R em ark  6.1 To simplify the analysis in further consideration it is assumed that the payoffs 

which are given by different expressions in each column of the matrix A  are not equal. This 

assumptions holds for generic choice of the parameters of the multi-state game.

6 .1 .2  C o o p e ra t iv e , re la t iv e ly  c o o p e ra tiv e  a n d  n o n -c o o p e ra t iv e  s tra te g ie s .

An exact definition of cooperative behaviour in a game-theoretic sense is given below. Defi­

nition 6.1 formalises the concept used in [52] for describing cooperative and non-cooperative 

strategies in a pairwise contest.

D efin ition  6.1 Strategy (a type of behaviour) is called

• cooperative with respect to strategy f2 if  the following conditions hold

7r(fi,fi) >  ?r(f2,f2) (6.2)

and

2?r(fi, fi) >  7r(f i, f2) +  7r(f2, fi) (6.3)

or

*r(fi,fl) = 7r(fi,f2) = 7r(f2,fi) = w(f2,f2),

where 7r ( f ) ,  fj) is the total reward for strategy £j playing against f);

• non-cooperative with respect to strategy f2 if  at least one of the above conditions is not 

satisfied.

Definition 6.2 generalises Definition 6.1 so it can be applied to a population of players.

D efin ition  6.2 Consider a population whose members are playing a symmetric two-person 

game. Strategy f\ (a type of behaviour) is called
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• cooperative with respect to the population if  it is cooperative with respect to every strategy 

{2 that may be present in the population;

• partially cooperative with respect to the population if  there exists a strategy $2 7̂  fi in 

the population such that fi is a cooperative strategy with respect to the strategy f2;

• non-cooperative with respect to the population if  it is non-cooperative with respect to any 

strategy f2 7  ̂ fi that is present in the population;

P ro p o sitio n  6.1 Let us consider the population whose members are playing a symmetric 

two-person game with the payoffs represented by matrix A  (see formula (6.1)). Then

• S  and C P are cooperative strategies with respect to any strategy in this population if

• Assuming that 6.4 holds, A T  and A T P  are cooperative strategies with respect to them­

selves and P ,L F S  and U if

4x  > max (2 (if +co), 4x, 2C4, C2 +  C3} . (6.4)

2 (if +  a;) > max (4%, 2C4, C2 +  C3) . (6.5)

• Assuming that 6.4  and 6.5 hold,

P  is cooperative strategy with respect to L F S  and U if

4% > max {2C4 , C2 +  C3} .

L F S  is cooperative strategy with respect to P  if

2C4 >  max (4x, C2 F C 3}

and with respect to U if

2x > C4

4 (1 -  f )  x  + w  a ,

U is cooperative strategy with respect to P  and L F S  if

2C4 > max (4x, C2 + C 3}  .
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Therefore

• S  and CP are cooperative strategies with respect to the population;

• A T  and A T P  are partially cooperative strategies with respect to the population;

• P ,L F S  and U are non-cooperative strategies with respect to the population 

i f  and only i f  the following conditions hold

P roo f. Proposition 6.1 can be obtained by verifying conditions (6 .2) and (6.3) for each 

particular strategy.

6 .1 .3  D y n a m ic a l sy s te m .

X  — (x i,X 2 ,xa,X4liX5 ,XQ,X7) in a population whose members are playing a symmetric two- 

person game with the payoffs given by the matrix A  (6.1). Here we denote by x\, X2 , X3 , 2:4, 

X 5 , x q  and £ 7  the proportion of the individuals in the population who adopt behaviour S , 

C P , A T P , A T ,  P ,  L F S  and U ,  respectively.

6.2 S tab ility  properties o f vertices.

6 .2 .1  C o n d it io n s  o f  a s y m p to t ic  s ta b i l i ty  fo r s t r a te g ie s  P, L F S  a n d  U.

In this section we formulate necessary and sufficient conditions under which the non-cooperative 

types of behaviour P, L F S  and U are asymptotically stable.

4x  > 2 (-0 +  lj) > C2 +  C3 > max {2C4,4y} . (6 .6)

The Replicator Dynamics for the multi-state game describe changes of a population state

In this case the number of equations of the Replicator Dynamics (4.2) can be reduced to

six, giving

aXi . .
Xi = —  = G i(x) — Xi

6

^   ̂(Fij &i7) T? ~b ®"i7 ■> Z — 1, . . .  6 . (6 .T)

Here aij is an element of the matrix A  (6.1), x = (aq,£2, £3,^ 4, £5,^ 6) and

y . { x )  =  ( x i , . . .  ,a ;6 , l  -  x i  -  . . .  - x 6) A ( x  1 , . . .  , x 6, 1 -  x i  -  . . .  -  x 6 ) T  .
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P ro p o sitio n  6.2 The necessary and sufficient conditions of asymptotic stability for the 

points (0, 0 , 0, 0 , 0, 0) , (0 , 0 , 0, 0 , 1, 0) and (0 , 0, 0 , 0 ,0 , 1) are the following.

Point x (0 ,0 ,0 ,0 ,0 ,0 ) (0 ,0 ,0 ,0 ,1 ,0 ) (0 ,0 ,0 ,0 ,0 ,1)

Strategy U P LFS

Condition c 4 - c 2 >  0
1
)  (C3- 2 ^ ) ( 1 - j32)+ 2 x - C 3>0  

2 x-C3 > 0

'

(C4- 2 X)<82+2(x - t/;)>0 
(2x - 2 t/; ) (1 -j32)+ (C 4~C 3)/32>0 
/32( ( 2 - P 2)(C4- 2 X) + ( 2 ^ -C 2))+2(x - ^ ) > 0  
C4—C2>0  

. 6 2(C4- 2 x )+2x - C 3>0

(6 .8)

P roof. The proof of Proposition 6.2 consists of verifying the fact that all eigenvalues of the 

Jacobian Jg \x (see section 4.1.1) are negative for corresponding point x.

R em ark  6.2 I f  conditions given in Proposition 6.2 are not satisfied then, taking in to account 

the restriction on the parameters described in Remark 6.1, we will have that there is at 

least one positive eigenvalue for each point. Then these points are not asymptotically and, 

therefore, not evolutionarily stable.

6 .2 .2  In te rv a l  I x =  {(1 — aq, aq, 0,0,0,0)  : ol\ £ [0,1]}: c o o p e ra tiv e  b e h a v io u rs .

For points (1 ,0 ,0 ,0 ,0 ,0) (corresponding to the population in which all members use strategy 

S ), (0 ,1 ,0 ,0 ,0 ,0) (corresponding to the population in which all members use strategy CP), 

(0 ,0 ,1 ,0 ,0 ,0) (corresponding to the population in which all members use strategy A T P ) and 

(0 ,0 ,0 ,1 ,0 ,0) (corresponding to the population in which all members use strategy AT) there 

are eigenvalues of the Jacobian Jg\x that are equal to zero. These vertex points are the end 

points of the sets of non-isolated stationary points I \ = {(1 — aq, ctq, 0 , 0 , 0, 0) : oq G [0 , 1]} 

(corresponding to the populations which consist of various mixtures of players who use strat­

egy S  or CP) and R  =  {(0,0,1 — oli, 0,0) : 0:2 £ [0,1]} (corresponding to the populations 

which consist of various mixtures of players who use strategy A T  or A TP ). In this section 

we formulate sufficient conditions for existence of a subset ©1 of the interval I\ such that 

conditions of theorem 4.2 holds. Analysis of the set I2 is given in the next sections.

T h eorem  6.3 I f

2 x —C 3 > 0
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then there exists a non-empty subset © i  of the set I\ — {(1  — a i ,  a n ,  0 , 0 , 0 , 0 )  : a.\ G [0 , 1] }  

such that conditions of Theorem 4.2 holds for this subset.

then
1. I f

2. I f

3. I f

2x-C3>0 
( x —u))>0
2(x-w)+/32 (2w-C2)>0 & i =  {(l-ai,ai,0 (0 ,0 ,0 ):ai6 [0 ,l]}.

then2x-C3>0 
(x—w)< 0
2(x—a>)+/32 (2a>—C2)>0 =  {( l-a 1>Ql ,0,0,0,0):ai€ ( d] } •

then2x—C3>0 
(x—a< )> 0

2 (x—w)+/?2 (2w—C2 ) < 0  z= {(l-ai,a! A0 ,0 ,0 ):^i€ ) }■

R em ark  6.3 Here we use a square bracket [ in description of conditions to denote logical 

“or” operation and a curly bracket { to denote logical “and” operation. For example,

a
means that either a or b or both a and b are true, and

means that both a and b are true at the same time.

P roo f. For each point £° =  (1 — a i ,a : i ,0 ,0 ,0,0) , a \  G [0,1], let us consider the function

Hx°{x) =  (1 -  on) log —— ^  +  a i  log —  .X\ X2
The proof of the following facts can be found in [35], p. 98.

(a) If ci'i G (0,1) then H xo(x) > 0 for any x  G A such that x \ ^  0 and X2 7̂  0.

If a\ — 0 then Hxo(x) > 0 for any x  G A such that x i ^  0.

If o;i =  l  then Hxo(x) > 0 for any x  G A such that X2 i=- 0.

(b) Hxo (x ) =  0 if and only if x  — x ° .

(c)

X\  — X®
T

Xl

FIxo (a?)
xq -  x%

A
Xq

x^ -  x i  +  . . .  +  x% ~ Xq 1 — X\  — . . . — Xq

for x  G A described in (a).
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Since conditions (2) and (3) of the theorem 4.2 will follow (see [35] p.247) if Hxo(x) is 

negative in a neighbourhood of every point of the set <5i, let us calculate function Hxo(x) at 

any point x° = {1 — , ot\, 0,0,0,0} , a \ G [0,1]. We can represent simplex A as a collection

of planes

Xq =  f i ( l  -  x i -  x 2)

X4 =  T) (1 -  Xi -  X2)

X5  =  v  (1  -  X\ -  x 2)

Xq — l9 (1 -  Xi -  X2)

Then on the plane P l^ ^ , Ah Viv and $ are fixed constants, and the function Hx0 (x) can 

be factorised as follows.

p / i
ti + r) + v  + d < 1, 

0 <Ab 0 < 77,

0 < v, 0 < d.

(6 .10)

Hxo(x)
p i 1

=  - ( 1  - x 1 - x 2) L *+tJil/+0 (xu x 2) =  - ( 1  - x x - x 2) L lk l{xu x 2).

Here k =  f.t +  77, / =  z/ +  $  and +l9 (x i ,x 2) =  L lk  ̂ (x\, x 2) is a function which is linear in

x \ and linear in x 2. Since (.L,rj,v and $ satisfy conditions (6.10) then k and I belong to

Q1 =  {(k, I) : 0 < k, 0 < I, k + l < 1} .

Now, let us find points x° =  {1 — a i, 0,0,0,0} , a\ G [0,1], such that

4 ,1

for any (k ,l) G Ql . Performing direct calculations, we find that

r  1 1 ^ l j^ l ){a3i=l-ai)a;2=ai} ’
/P(((2—/32)(C2-2c4))Z+(C2—cj—x)fc)a!+(2—/32)((2a;—C3)Z+(—Ca+x+uhfc+Ca—2x)

2 - 0 2

(6 .11)

Since Lk l( 1 — cki,q:i) is a linear function in an, it is positive(negative) on the interval [0,1] 

if its values at the end points a \ = 0 and an =  1 are both positive(negative). We also notice 

that for any fixed a \ the value of Lk l( 1 — an, an) is a linear function in k  and I. Therefore 

we obtain that this value is positive(negative) for any (fc, I) G Q1 if it is positive (negative) at 

the end points (0,0) , (1,0) and (0,1). In the table below these values are given.

L h ( 1 ~ a  i ’Q'i) an — 0 ai = 1

k  = 0 ,l = 0 2 h - C q 2h - C q

011i-HII H  — CO
2(x-o;)+/32 (2w-C2)

(2-/32)

T--1IICDII-se 2 (x  — u>) 2 {x  — u) +  (32 (2co — C2)

(6.12)
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If

2m: — C3 > 0 

(x  — to) > 0  

 ̂ 2 (x  — to) +  (32 (2a; — C2) > 0

then, analysing (6.12), we have that L \j(  1 — a i , ol{) > 0 for any a\ and for any (k ,l) G Q1.

Therefore in this case (5i =  i i  =  {(1 — a 1?a i , 0,0,0,0) : a± G [0,1]} .

If

2x  — C3 >  0

(x  — a;) < 0 ,

2 (x  — co) +  j32 (2a; — C2) > 0

we obtain that

0 <  2 (x  -  to) +  (32 (2w -  C2) = 2 (1 -  /32) (x  -  a;) +  0 1 (2x -  C2) ,

0 < 2 (l — /32) (a; — x) < /32 (2x -  C2) ,

0 <  (2x — C2) < (x T o ; — C2) < (2a; — C2) .

Therefore for any a \ G [0,1] such that

(2 — p 2) (2a; — C3) / +  (x  +  a; — C3) k C3 — 2x
rvi "> T T l —------------—------------------ --------- ---------------------- -------------------------

(fc.OeQ1 /?2 (2 -  /32) (2a; -  C2) I +  (a; +  x  -  C2) k

1^ 1) > ° -
Let us find this maximum. The function

A4 l (h 1\ — ~  ^ 2) ( ^  ~ ^ 3)  ̂+  (x  +  to — C3) fe +  C3 — 2x
( 2 - p 2) ( 2 c j - C 2)l + {co + M - C 2)k

on Q1 can reach its maximum values only on the boundary of the domain Q1. The maxima 

of M 1{k,l) on the three components of the boundary are found below.

1 =  0 : max M H M )
(M)SQ* *

-  u r n  ) A x+"~c ») 1 1
fc \ ^ ( w + x —c 2 ) C 2 fc

-  C2-/32)  (  u - x  \
/32 \̂ u>+x—C2 J ’

A; =  0 : max M 1(0,/) — max -Jk 2'<(o.OeQ1, 1 p (2u-c2)i
JL ( (2^ - 0 3 ) , C3 —2 x \  =  2(u>-x)

max ^2  ̂(2u;—C2) +  (2c0-C2)lJ /32(2uj—C2) ’
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k = 1 — I : max M l ( l - l , l )  = max
(l-Z ,i)6 Q i, i f 3 (2 -/32)(2 w -C 2)/.+(u;+>«r-C2)(l-0

=  max (2~/32) _______________ (uj—x )( /+ l)

=  max

l  ̂ 02 ( (2 - /3 2)(2 w- C 2 ) - ( w+ x -C 2 ) ) /+ ( w+ x - C 2)
2(u>—h) (2—/32) (gj—x)

/32 (2w-C2) ’ 02 (w+x-C2)

Since

2(o>—x ) .  (2 —/32 )  ( v j — x )

0 2(2oj- C 2) 0 2 (w + x -C 2) ’
2 > (2~g2)

(2u—C2) (w + x —C72) ’

2 (u, +  x  -  C2) >  (2 -  /?2) (2c j  -  C2) 

2 (x  — a;) +  P2 (2a> — (72) > 0,

we find that

=  max

Therefore, since

 (2-/32 )((x+o,-C8 )fc+C3 -2x)
m fca x  /32(uH -x-C 2)A:
max K Uu-C3)i+C3- 2x max (2u}- c 2)i >
1T1nX (2~ ^ 2) (2a ;-C 3 )H (x + a ;-C 3) ( l - / ) + C 3 - 2 x  

I 0  (2—/?2)(2q;—C2)Z+(a»+x—C2) ( l—I) >
(2—/?2) (a>—x) 2(u)—x) 1   2(g;—x)

02 (w+x-C2) ’ 02(2uj-C2) j  ~  02(2uj-C2) '

2 (a; — x)
/?2 (2w -  C2) < 1,

for any « i G

If

( 2(o;—x) -I
0 2(2uj-C2) ’ we have that L ^ ( l  — a i ,a i )  >  0. Hence, in this case

2 (lu — x)©i =  1 (l _  a-!, a i ,  0, 0,0,0) : ot\ G
P2 (2w -  C2) ,1

2x — C3 >  0 

(x  — u>) > 0  

2 (x  -  co) + P2 (2u  - C 2)>  0

we obtain that

0 >  2 ( x  -  d)  +  P2 ( 2 u j  -  C2) = 2 ( 1 -  P2) ( x  -  (j j ) +  P2 (2x  -  C 2) , 
0 >  2 (1 -  p2) (co -  x )  >  P2 (2x  -  C 2) ,

0 > (2x — C2) > (x  +  lj — C2) > (2u> — C2) .
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Therefore for any a-i G [0,1] such that

_ . ( 2 - p 2) (2u>-C3)l + ( x  + u> -C 3) k  + C3 - 2 x
cki min --------  ----------------- ----------------------------------

(fc ,/)eQ 1 p f i  (2 — ( 2a> — C 2 )   ̂ T  T  — C 2 )  /s

_  a i»a i) > 0-
Let us find this minimum. In this case function M l (k,l) on Q 1 can again reach its

minimum values only on the boundary of the domain Q1. To find the minima of M 1(/c, I) on

the three components of the boundary we perform analogous considerations and, since

2(uj—x ) .  ( 2- / 32)
/34 (2o/-C2) P2 ( u + x - C 2) ’

2 ,  ( 2 - P 2)
(2u)—C2) (w+x—C2 ) ’

2 (w  +  x  -  C 2 )  <  ( 2  -  ( 2 w  -  C 2 ) .

2 (x  -  w) +  ,32 (2w -  C2) < 0,

in this case, we obtain that

min M 1(k,l) — min <
(M)eQ1

( 2 - p 2)((x+u>-C3)k+C3- 2 x )  
n fcln '̂  0 \ u + x - C 2)k 7

min 1 {2u—C2)l+C2—2x  
I W  (2 co-C2)l

min C2-/32) (2ui—C3 )Z+(x+cj—C3 )(l—O+C3 —2x 
I P2 ( 2 - p 2)(2u;-C2) l + ( u + x - C 2)(l~ l)

-  <; (2~ f2) (^~x) 2(tJ-x) I — 2 { u - x )
nn <; ^  (u+x-C2) > p2(2u-C2) [ p2{2u>-C2)

Therefore, since

0 <
2 (to — >c) 

P2 (2 uj- G 2)'

for any a i € 0, A L A i }) we *lave t 'la t ~  “ i> “ i) > 0 and

2 (w — h )
©i =  |( 1  — c*i,cki, 0 ,0,0,0) : cni G 

Theorem 6.3 is proved.

0,
p 2 (2lo -  C2)

R em ark  6.4 It follows from the proof of theorem 6.3 that if

2 x - C 3 > 0  
(x—a>)>0
2(x - uj) + P 2 (2uj- C 2) > 0

then the whole interval R  =  {(1 — a i ,  <ai, 0,0,0,0) : a± G [0,1]} (corresponding to the popula­

tions which consist of various mixtures of players who use strategy S  or CP) is evolutionary 

stable.
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R em ark  6.5 I f

2 x - C 3>0
(x—u)<0
2 ( x - w ) + / 3 2 ( 2 w - C 2 ) > 0

or 2 x —C3>0
( x —u )> 0
2(x-w)+/32 (2o>-C2)>0

then further analysis at the point corresponding to a i = 'LS necessary M order to 

prove that is evolutionary attractive (see definition 4-1 from chapter 4)• This analysis 

is, in general, quite involved.

6 .2 .3  In te rv a l  / 2 

h a v io u rs .

{(0,0, cr2, l  Q-'2, 0, 0) : a 2 E [0,1]}: a l lo c a tin g  ta s k s  be-

In this section we formulate sufficient conditions for existence of a subset 0 2 of the interval 

h  — {(0,0, a 2, 1 — a 2, 0,0) : a 2 € [0,1]} such that conditions of theorem 4.2 hold. Recall that 

the interval I 2 corresponds to the populations which consist of various mixtures of players 

who use strategy A T  or ATP. For this interval the following theorem is true.

T h eo rem  6.4 I f

m+ i/j—C3>0
u)—x >0

tp—X>0

Ip—X<  0
2-p2^j~x)+/32U+X-C2)>0 
2-P2)0 >-x)+P2 U+x-Ca)>0

i / > - X < 0

2O’- x ) ( i - P 2) + W + “ - c 3)P2>0 
< ( 2 - P 2) ( i p - x ) + P 2U + x - C 2 ) > 0

[ 2 - P 2) ( i I j -x )+ P 2{u + X -C a )< 0  
(2-pijw-x) 2(1

 ̂ /32(C2- w-*) ^(C4-C3)

(6.13)

then there exists a non-empty subset 0 2 of the set J2 =  {(0,0, a 2, 1 — a 2,0,0) : a 2 € [0,1]} 

such that conditions of theorem 4 -2  holds for this subset.

1- V

2- I f

uj+ iIj—C3>0
u)—x >0
-0-X>O

2-p 2)(^~x)+P2U+x-C2)>o
2-/32 )(^-x)+/32 (w+x-C'4)>0

ui+ip—C3>0 
u)—x> 0 
i j j -X>  0
2-/?2) (V;-x)+/32 (u,+x-C2) <0 
‘2 - P 2) U j - x ) + P 2U + x - C 4)>0

then

@2 ={(0 ,0 )q:2 ,1 —a'2 ,0 ,0 ) : a2 G[0 ,l]}.

then

®2={ (0,0,02,1-02,0,0): C2€ [o .§ = 0 5 E g ) }•
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3. I f  <

u + ip -C 3>0
LO—X> 0
V-’—X> 0

2-/32)(ip-x)+ /32(uj+x~C2)>0 ©2=
2 - / 3  )(V-’- x ) + / 3 ^ ( w + x - C ,4 ) < 0

4- I f  <

5- I f  <

6- I f

2—/3 )('</•'—x)+/3 (<̂ +X~C4)>0

02 6

w+i/>—C3>0 
cj~x>0 
•0 - X >  0

2 - / 3 2 ) ( - i / ) - x ) + / 3 2 ( w + x - C 2 ) < 0  © 2 = .

2—/3 x)+/3 (w+x—C,4)<0

w + i/» -C 3 > 0  
w—x>0
V*- x<o
2(V'—x)(l-/32 )+(V-’+^-C3 )/32>0 
2-/32i(V'-x)+/32(^+X-C,2)>0 
2-/32 W~x)+/32 (w+x-C4)>0

o»+i/’-C,3>0 
cj—>f>0 
i/>-X< o
2(V-’—x)(l—/32 )+(i/'+w—C'3 )/32<0 
2-/32 ) (V'-x)+/32 (w+X—C'2 ) > 0

th en

(0,0,02,1—oi2,0,0):

2(l-/32)( -̂-x)-K̂ + -̂C3)/32 
’ P'2 (CA- C 3 )

th en  

(0 ,0 ,0 2 ,1 - 0:2 ,0 ,0 ):

02 G

* ' \
(2-/32 )(V>~x)

0 ,min< F2 (C2 -u,-x)’ >

2(l-/32)(V,-x)+(V-+̂ -C3 )/32
- I /32 (C4 -C3) J /

th en

© 2 —  <

( 0 ,0 ,0 2 , 1—0 2 ,0 ,0 ): 

s fi5-£y<±^) ,
\ /, (f̂ 2 —“J —X, '

© 2  =  <

02 G

uj~{-ip—C73 >0 
u)—x >  0
V-’—X<0

7. I f  2 ( t / ) - x ) ( 1 - / 3 2 ) + ( ' ! / ' + w - C 3 ) /3 2 > 0  

( 2 - ^ 2 ) ( ^ - x ) + / 3 2 ( w + x - C 2 ) > 0  

( 2 - / 3 2 ) ( ^ - x ) + / 3 2 ( w + X - C '4 ) < 0
(2-p2)\l,-x) 2(l-/32)(^-x)+(̂ ,+u,_ca)̂ 2
^(C2- w-3c) ^ ^(C4-C3)

th en

(0,0,02,1—O2,0,0):

( 2 - / 3 2 ) ( ^ - x )  

p \ C 2 - u - x )  ’ 
2 ( 1 - / 3 2 ) ( ' i/ ) - x ) + ( t / > + ^ - C ,3 ) /3 2 

/3 2 ( C 4 - ( 7 3 )

th en

©2 = <
( 0 , 0 , 0 2 , 1—0 2 ,0 ,0 ) :

( 2 - / 3 2 ) ( i /> - x )  2 ( l - / 3 2 ) ( ^, x ) + (V ,+ u , - C 3 ) ^ 2  \  

2 ^ ^ ( C 2 - ^ - x ) ’ /32 (C 4 - C 3 ) ^

P roof. For each point a;0 =  (0 ,0 ,02> 1 — cc2, 0 ,0 ), a-2 € [0,1], let us consider the function
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then

Xi x i
T

Xi

Hxo(x) =
X q X q

A
X Q

+1O
h

8..........r

. .  +  X Qq - X q 1
toH11i—

1 

8IT—
i

1

To calculate function Hxo(x) =  — (cc° — a;) A xT for any point x° = {0,0, 02,1  — <*2>0 , 0} 

02 € [0,1], we represent simplex A as a collection of planes

PI2Mt77)IV

where
X2 =:tj(i-a3-*4) ,  / . i ,  rj, v and ■d Q = < : o<M, o<^X5—v(l—X̂ —Xi)
X6=i9(i—X3—Xi) belong to 0 < I / ,  0 < t f .

Then on the plane there and I) are fixed constants, function Hxo(x) can be

factorised as follows

Hxo {x)
p i

{ 1 - X 3 -  z 4 ) L l ^  ( x 3 , X A)

Here (#3, 0:4) is a linear function in #3 and £4.

Now, let us find points x° =  (0 ,0 ,0:2,1 — 0:2,0 ,0 ), 02 € [0,1], such that

(*̂ 3? ^4) |{x3=l—a2,X4=a2} > 0'

Performing direct calculations, we find that

L  (#3) ^4) l{a;3= l—a2,X4=a2}  ̂ ~ a 2)

=  0 2 [ ( u , + x ~ C 2 ) v + ( C 3 - C A ) - d } c x + ( C 3 - x ~ i t > ) \ ( 2 - f 3 2 ) n + ( 2 - 2 p ^ v }+ ( C 3 - u , - x ) l ( 2 - p 2 ) v + ( 2 - 2 p 2 ) t i } + ( 2 - f 3 2 ) ( u > + i , - C 3 )
2 - p

(6.14)

Since L 2 u^ { a 2,1 — 02) is a linear function in 0:2, it is positive (negative) on the whole 

interval [0, 1] if its values at the end points 0.-2 =  0 and 02 =  1 are both positive (negative). 

We also notice that for any fixed 02 the value of L ^  2,1 — a'2) is a linear function in 

/.a, 77, v  and rd. Therefore we obtain that the value of L 2 v ,9(0:2,1 — 02) is positive (negative) 

for any (/.a, 77,/•/,$) € Q2 if it is positive (negative) at the end points (0 ,0 ,0 ,0), (1 ,0 ,0 ,0),
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(0 ,1 ,0 ,0 ), (0,0,1,0) and (0 ,0 ,0 ,1). In the table below these values are represented.

(^ 2 > 1  ^ 2 ) ot-2 =  0 OL2 — 1

(^ ,77, v,-&) =  (0 , 0 , 0 , 0 ) co +  -0 -  C3 CO +  if) — C3

(m>?7 , M )  =  (1, 0 , 0 , 0 ) LO — X CO — X

(fM, T),v,d) -  (0 , 1 , 0 , 0 )
2(w—x)(l-/3^)+(V;+u;—Cg)/32 

2- 02
2 (w-x)(l-0 '2) + C ' + ^ - C 3)02 

2- 0 '2
(ju,77,i/,i?) =  (0 , 0 , 1 , 0 )

(2-/3 * ) t y - x )+f32(u,+ x - C 2) 
2—02

(/.q 77, v, 1?) =  (0 , 0 , 0 , 1 )
2 (V'-X) (1- 0 1 )+(V-H-w-C3)/32 

2- 02
(2 —/32 )(V;-x)+/3a(u,+x-G1) 

2—/32

(6.15)

The rest of the proof is analogous to the proof of theorem 6.3 and consists in direct 

examination of the conditions for L§)0)00(a'2, 1 -  ct2), 1 ~  a'2)> 1 -  a 2),

^0 0,1,0(^ 251 — ^ 2) and To 0)o,1(^251 — <22) all to be greater then zero for any /i, 77, u and $ in 

any of the cases described.

6.3 S tationary  p o in ts and se ts  in th e  dynam ics o f th e  m ulti­

sta te  gam e.

Following the approach discussed in section 4.1.2 of chapter 4, all stationary points for sys­

tem (6.7) are solutions of the system of equations

(6.16)

Here A  is given by (6.1). To find all solutions of system (6.16) it is necessary to enumerate 

all possible combinations of m  indices from the set ( 1 , . . .  ,7} where m  consecutively takes 

values from 1 to 7. If a combination { j 1, . . .  , j m} is chosen, then we suppose that coordinates 

Xj1, . . .  , Xjm take non-zero values and all remaining coordinates x\ are zero. In this case 

system (6.16) is equivalent to

m
E  ( a j i j k  ~  a j i 3 k )  X i k  ~  I =  2 , . . .  ,  m ;

kE x (6.17)
E  X E  =  ! •fc=1

If m  = 1 then the solutions correspond to the vertices of the simplex. They have been 

discussed in sections 6.2.1 and 6.2.2.

2 _]ciijXj — X A X t  I =  0, i = 1 , . . .  , 7.
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Consider now the case when m  € { 2 ,... , 7} . Denote by

( a j l j l  ~  a 323l ) ■ • • ( a j l j , n  ~  a j l 3 m )

Ahi — Jm
~  a j m j  1 )  • • • { a j l j m  ~  a j m . j m )

1 . . .  1

the matrix of system (6.17). If matrix A ju„mijm is non-singular then the system has a unique 

solution which is obtained by the Cramer’ rule as following.

ry*3 h ---

(°nn aJ2 ii) (aiiifc_i aJ2Jfc-i) 0
(“ilifc+l a 3 2 3 k + l ) ( aJlJm  °J2 3m )

( a J lJ l ) 0
( aJl j'fc+1 ) (  a j  13 m  a j m j m  )

1 1 1 1 1
....

If the matrix of system (6.17) is singular then there are two possible cases.

1. The ranks of matrix A jlr. . jm and matrix

A3l v  13m

(a. a 3 2 3 l )'3l3l 3231

( a j l 3 l  ~  a j m j l  ) 

1

(a3ljm aj23m) 0

(ajljm ~ ajmjm )  ̂
1 1

are different. Then the equations of system (6.17) are incompatible and there are no 

solutions for this system. This case takes place if the combinations of indices are chosen 

as following: {1,4} , {1,3} , {4,5} , {1,3,4} , {1,3,4,5} and {1, 3,4, 6} . Since by x \, X2, 

£3, £4, X5 , xq and X7 we denote the proportion of the individuals in the population who 

adopt behaviour 51, CP) A T P , A T , P, L F S  and C7, respectively, this result means that 

the populations which consist only of the proportions of the individuals who adopt types 

of behaviour corresponding to the above combinations of indices cannot be stationary. 

For example since the equations of system (6.17) are incompatible for the combination 

{1,3,4,5} this means that there is no stationary point for the Replicator Dynamics 

that corresponds to the population consisting of a mixture of the individuals who adopt 

strategies 5, ATP, A T  or P.
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2. If the ranks of matrix A jlt^ tjm and matrix A^,,. are equal, then system (6.17) has 

infinitely many solutions. This case is true if the combinations of indices are chosen as 

following: {1,2} , {3,4} , {1,2,7} . {2,3,4} , {3,4,7} , {1,3,4,7} , {1,2,3,4} , {2,3,4,7} , 

and {1,2,3,4,7} . This result means that there may be a stationary set of points which 

correspond to populations consisting of the proportions of the individuals who adopt 

types of behaviour corresponding to the above combinations of indices. For example, 

since system (6.17) has infinitely many solutions for the combination {1,2,3,4} this 

means that there may be a stationary set of points which correspond to populations 

consisting of a mixture of the individuals who adopt strategies S, CP> A T P  and AT.

The cases of combinations {1,2} (corresponding to the populations which consist of vari­

ous mixtures of players who use strategy S  or CP) and {3,4} (corresponding to the popula­

tions which consist of various mixtures of players who use strategy A T P  or AT) have been 

considered in sections 6.2.2 and 6.2.3.

There are three combinations of indices for which it is obvious that the corresponding 

solutions do not belong to the simplex A. These are as follows. If combination {1,3,4,7} 

(corresponding to the populations which consist of various mixtures of players who use strat­

egy 5, A T P , A T  or U) is chosen then the corresponding solution for the system (6.16) is

0 , 0,1

where a  is parameter controlling mixture of strategies A T P  or AT. If combination {1,2,3,4} 

(corresponding to the populations which consist of various mixtures of players who use strat­

egy S , CP, A T P  or AT) is chosen then the corresponding solution is

f  2 > r—2 a > + 2 /3 2 u>—/32 C 2 — 2x -(-> ir/3 2 - f 2 / ? 2 w  n  n  n l

I  (3 2 (x + u ,-C 2) (3 V + w - C a )

For combination {1,2,3,4,7} (corresponding to the populations which consist of various 

mixtures of players who use strategy S, C P , A T P , A T  or U) there is solution

/  ( C 2 - C 4 ) ( - / 3 2 C 2 + 2 / 3 2 u > + 2 x - 2 r i )  ( _ 2 + / 3 2 ) ( C 2 - C ' 4 ) ( x - u ; )  }

{  ( - C 4 - 2 x + C 3 + C 2 ) ( - C 2 + x + w ) ^ 2 ’ p ‘R - C 2 + x + u j ) ( - C A- 2 x + C 3 + C 2 ) 5 a ’ U ’ ’ 2 x - C 3- C 2+C4 j  ’

Analysing the form of these solutions, we see that they do not belong to the simplex A 

for any choice of the parameter a. Therefore there are no stable points which represent the 

corresponding populations.
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Analysis of all other solutions of the system (6.16) is quite complex if there are no re­

strictions on the parameters of the payoff matrix (6.1). In the next chapter we consider some 

examples of the payoff matrix (6.1) and demonstrate how the analysis can be performed.

6.4  Som e invariant subspaces.

It is useful for further analysis to describe some invariant subspaces that are preserved by 

the dynamics (6.7).

• It can be seen that any subspaces

A ^,,. ,%k =  {•£ • x i i =  1 , .. .  , 7, i 7̂  i \ , . . .  , ifc} 

are obviously invariant.

• There is a collection of three-dimensional linear subspaces

f  cx
M a =  < x  : Xs- i  - X 4  =  0, X5  — 0, Xq =  0( a  — 1

which are invariant for any a  € [0,1]. This collection considered as a set is the sub­

space A i,2,3,4,7- Due to this fact it is possible to factorise the four-dimensional subspace 

A i,2,3,4,7 and investigate the dynamics on each three-dimensional subspaces Ma inde­

pendently, which significantly simplifies the analysis.

• The subspace

M  = { x  : x i -  0X2 +  X3 +  x4 = 0, x 5 =  0, x 6  — 0} 

is also invariant if

C2P2 +  2co (l — /?2) — 2x  
Q /32 (ip -  C3 ) -  u  (2  -  (52) +  2 x  ( l  -  p 2)

6.5 Sum m ary.

The significance of the results obtained in this chapter is that they describe the ranges of 

parameters for the model such that non cooperative populations are unstable and cooperative 

and partially cooperative populations are stable. Therefore, these results characterise the 

structure of the model which can be applicable for investigation of the evolution of cooperative
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behaviour: they allow for the possibility that cooperation may originate in a non-cooperative 

society. Unfortunately the analysis of the dynamics is very complex for general (not fixed) 

parameters. These results will help us to investigate the specific examples considered in the 

next chapter.



Chapter 7

Multi-state games: Some 
interesting results.

In this chapter we will analyse the Replicator Dynamics corresponding to the two examples 

considered in section 5.5 (examples 5.1 and 5.2). We will show that populations which consist 

of various mixtures of cooperative or allocating tasks behaviour can be the end points of the 

selection process. We will also show that it is possible for such populations to evolve from 

populations which consist of individuals using non-cooperative types of behaviour.

7.1 C ost o f association  m odel.

In this section we give the analysis of the Replicator Dynamics for the multi-state game

considered in the example 5.2 of section 5.5. For this game we have

phi +  ti (1 -  p) = 3; ph2 + t2 (1 - p )  = 0; ph3 4-13 (1 -  p) = 5; p/r4 +  f4 (1 -  p) =  1.

ci —  — c2 —  C 3 =  c4 — 0 and we chose z  = |  and (3 =  In this case strategies C P

and A T P  are Nash Equilibria (see table 5.9), strategies S, AT, L F S  and P  are not Nash 

Equilibria, and strategy U earns the same total value against every strategy and every strategy 

earns the same total value against U, therefore U is a Nash Equilibrium. For simplicity in this 

section we do not consider the Replicator Dynamics on the whole simplex (4.3) but restrict 

ourselves to the case of the populations which consist of various mixtures of the individuals 

who adopt one of the four strategies: CP, ATP, P  or U. Denote the set of such populations

135
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by A4. Let x i, X2, X3 and X4 denote the proportion of the individuals in the population who 

adopt behaviour CP, A T P , P  and P, respectively. Then

A 4 =  j x  =  (xiy  x 2 , x 3 ) : P |  ^ 0  <  Xi  j  n  ( y ^  Xi  <  1 ^  |  .

We will investigate the possibility of evolving to a cooperative or alternating tasks pop­

ulation from populations of P  or U players. In this case the payoffs of the corresponding 

symmetric two-person game are given by the following bi-matrix.

P l \p 2 C P A T P P U

C P 220 220 
19 ’ 19

656 158 
119’ 17

109 443 
25 ’ 50 6,6

A T P 158 656 
17 > 119

175 175 
19 ’ 19

A 926 
119 6,6

P 443 109 
50 ’ 25

926 a 
119 ’

40 40 
19’ 19 6,6

U 6,6 6,6 6,6 6,6

(7.1)

Each player uses one of the four possible pure strategies CP, A T P , P  and U.

There are four Nash Equilibria for this game: (v i ,v \ ) , (^2,^ 2) ,  (^45^4) and (^1,2, ^ 1,2) • 

Where v\ = “choose C P ” , V2 — “choose A T P ” , v4 =  “choose U” and

929 574
^12 =  “choose C P w ith 'probability ——— and choose A T P  w ith probability------

1503 1503

The qualitative picture of the solution behaviour for the Replicator Dynamics of this 

system is similar to the one obtained in the section 4.3 for the game determined by bi­

matrix (4.15). Here we, therefore, only give the results of the analysis as the proofs are 

analogous to the ones given for the system in section 4.3.

From the analysis of the eigenvalues of each point we have that point (1,0,0) (correspond­

ing to the population in which all members use strategy C P) and (0,1,0) (corresponding to 

the population in which all members use strategy A T P ) are attractive nodal points; (0,0,1) 

(corresponding to the population in which all members use strategy P ) is a repulsive nodal 

point; and i^ p O ) (corresponding to the population in which proportion of mem­

bers use strategy C P  and proportion of members use strategy A TP ) is a saddle point.

The dynamics in the neighbourhood of the point (0,0,0) (corresponding to the population 

in which all members use strategy U) is as shown in figure 7.1 (figure 4.6 from section 4.3 

reproduced below for convenience).
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Figure 7.1. The dynam ics near the non-hyperbolic point (0 ,0,0). 

The point (0,0,0) is “blown up” .

IV

There is an invariant line

(7.2) 
x 3 = 0
3:1 — 574 ̂ 2

passing through the origin and the point (y ^ j,

In the neighbourhood of the point (y^^ i^^pO ) there exists a two-dimensional stable 

invariant manifold M  tangent to the eigenspace generated by the vectors [§ f f ,l ,0] and 

[1 > ni4 4̂54 8̂5 5> ~  144454 855] • ^  we consider this dynamical system when t —► -oo , we find 
that all trajectories starting from an interior point of the domain A4 terminate at the point 

(0 ,0 ,1). Taking this into account, we can conclude that the invariant manifold DU passes 

through the point (0 ,0 ,1). On the other hand, due to the comment made above, the invariant 

line (4.20) also belongs to the manifold DU. Therefore we obtain a qualitative picture of the 

invariant manifold DH as shown in figure 7.2 (compare figure 4.7 from section 4.3).

Manifold Dll separates the domain A4 into two regions with different behaviour of the 

solutions. Any solution trajectory with the initial condition lying between Dll and (0,1,0) 

ends at the point (0, 1, 0) (corresponding to the population in which all members use strategy 

A TP ). Solution trajectories starting on the other side of the manifold end at the point 

(1,0,0) (corresponding to the population in which all members use strategy CP). Solution 

trajectories starting exactly in the manifold Dll end at the point ( y ^ ,  -p^pO) (corresponding
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to the population in which y^y proportion of members use strategy C P  and y ^  proportion 

of members use strategy A TP ), but the probability to start from 911 is zero since its co­

dimension is one.

Figure 7.2. The com plete picture o f the dynam ics for the game (7.1).

The invariant manifold 911 is shaded.

In this example we, therefore, have found that it is possible to evolve from populations 

which consist of a majority of P  and U players to populations of cooperating or allocating 

tasks individuals.

7.2 Tw o P risoners’ D ilem m a G am es and a H aw k-D ove G am e.

In this section we analyse the Replicator Dynamics of the multi-state model considered in 

example 5.1 of section 5.5. In the example considered context-games G\ and G2 (activity 

context-games) are modelled by a Prisoners’ Dilemma Game, which is widely used as a generic 

model of social interactions. Context-game Go is modelled by a Hawk-Dove Game, which is 

often used when a sharing context of interaction is considered.

We begin with a generic model, with payoffs satisfying the following conditions.

ci =  | ; C2 =  0; C3 =  u; C4 =  , where c > v > 0;
(7.3)

^3 > h\ > /14 > /12, 2h\ >  /i2 +  /13; £3 > t\ > £4 >  £2, 2£i >  £2 +  £3.
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Then for the parameters of the payoff matrix (6.1) we obtain
rr _  1 v+2f3(phi-Ri (1 —p)) . l v+2/3(ph3+ta(l-p)).
X — 4 1—/3'2 ’ 4  1- / 3  ̂ »
T/, _  1 t»+2/3(p/i,2+t2(l-p)). . . _  1 v+2P(ph4+ U ( l - p ) )  .
Y  4 1 - jd 2 ’ ^  4 1- / 3  ̂ »

<=■2 =  ^ ;  =  +  C4 =  V  +  fl* jj-
We can notice that the following inequalities are satisfied for the parameters of the payoff 

matrix A  (6.1) of chapter 6.

CJ > k  > X > Vh 2X > -0 +  C3 >  (?2 >  C4. (7.4)

Let us also suppose that conditions (6.6) obtained in Proposition 6.1

4x > 2 (-0 +  cj) > C2 +  > max {2C4, 4%}

are satisfied. Recall that these conditions guarantee that S  and C P  are cooperative strategies, 

A T P  and A T  are partially cooperative and P, L F S  and U are non cooperative.

Remember that we denote by aq, X2 , #3, X4 , x§, xq and x? the proportion of the individuals 

in the population who adopt behaviour P, CP, A T P , A T , P, L F S  and U, respectively. Then 

we can prove that populations in which everyone adopts one of the P, L F S  and U strategies 

are unstable in the Replicator Dynamics for the parameters considered.

P ro p o sitio n  7.1 Points (0 ,0 ,0 ,0 ,0 ,0) (corresponding to the population in which all mem­

bers use strategy U), (0 , 0 , 0 , 0 , 1 , 0 ) (corresponding to the population in which all members 

use strategy P) and (0 ,0 ,0 ,0 ,0 ,1) (corresponding to the population in which all members use 

strategy LF S) are not asymptotically and, therefore, not evolutionarily stable i f  the payoffs 

satisfy conditions (7.3).

P roof. Since C4 — C2 < 0  and 2% — C3 <  0, conditions (6.8) are not satisfied for any of 

the points (0 ,0 ,0 ,0 ,0 ,0 ), (0 ,0 ,0 ,0 ,1 ,0) and (0 ,0 ,0 ,0 ,0 ,1 ). Moreover it then follows from 

proposition 4.1 that each of these points will have at least one positive eigenvalue and, 

therefore, is unstable.

7.2.1 F ixing payoffs in th e  Prisoners D ilem m a G am es.

To be able to perform further analysis payoff values hi, ti, i — 1,2 ,3 ,4 , and p will be fixed in 

such a way that

ph\ -fiti (1 -~p) =  3; ph2 + 12 (1 — p) = 0; phs + 13 (1 -  P) = 5; ptu  +  *4 (1 ~  p) =  1-
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for example, the payoffs in games Gi and G2 can be equal

hi — ti — 3, ^ 2 = ^ 2  — 0, hs — ts — 5, / 1 4  =  * 4  =  1

and the probability p can take any value from zero to one. Then

v+60  . , , __ iH-10/3 . „/.   v .   v+20
4 ( 1 - / J 2) ’ -  4 ( l - ^ )  ’ ^  “  4( 1- ^ )  > 4 ( l —/32) ’

0 2  =  ^ ;  C3  =  u +  ^ ;  C4  =  ^  +  I^ 5 .

In this case conditions (6 .6) can be re-written as

f+6/3 ^  u+50 . , 20z  ^  mDV f  ̂ , 2/3z t>+2/3 \
lZ ^  >  >  v +  (T=% > max C+ (l-/3)’ T=iPj

Solving these inequalities we obtain the following conditions on the parameters (3, v, z  and c.

v 0 2- c 0 2+ 2(3+ c  s  s  v/3+2
2/3(/0+l) >  * > 2 0 0 +1)

V0+5
203+1)

t>/3+5 ?;/32- c/02+ 2 j0 + c
2(10+1) ^  z  ^  2/0(j0+l)

And finally, since for any value of parameters > 200+1) > we that condi­

tions (6.6) can in this case be written as

(7.5)
(5+/3«) ^ ^  (2+ftt>)
2(l+/3) ^  2  ^  2(1+0)

/ Uj02-c/32+2/3+c 
*  2/009+1)

The latter condition necessary to avoid non generic choices of parameters and appears because 

the inequalities (6.6) are strict.

The plots in figure 7.3 below show the lower and upper boundary for values of the pa­

rameter z. On the left-hand plot the colours represent the value of for each choice of

/3 and v, that is the lowest value that 2 can take in order to satisfy condition (7.5). On the 

middle plot the colours represent the value of for each choice of (3 and v, that is the

highest value that 2 can take in order to satisfy condition (7.5). Correspondence between 

colours and values of 2 is shown on the right-hand plot. On the plots below the range of the 

parameter v is between 0 and 10. It seems to be the most interesting case with respect to the 

modelling of social behaviours. The further analysis will be restricted to this domain. The 

analogous plots can be easily constructed for other values of v if necessary.



CHAPTER 7. MULTI-STATE GAMES: SOME INTERESTING RESULTS. 141

Figure 7.3. Lower and upper boundaries for z 

such that conditions (6.6) hold.

Lower boundary for z. Upper boundary for z. Colors and z values.

We will now obtain conditions that guarantee that conditions of theorem 4.2 hold for some 

subset of the sets I\ (which correspond to cooperative populations) or I2 (which correspond 

to alternating tasks populations).

Let us consider interval /! =  { ! -  c*!, <*10, 0, 0 ,0,0} , a\ e [0,1]. Condition (6.9) has the 

following form for this example.

These inequalities can be rewritten as conditions on the parameter z.

{2 v 0 2 + 6 0 - v  ^ _

20(fi+l) > Z  
lOpi+vp-4 •

2W +1)

Let us remember that 2 also satisfies (7.5). Therefore for (3 and v we have that

2V2pff+l)V > 2(T+$)' Which imPlies that v < 
and

^ S + i ) 4 > $ + $ ’ which iraples that ” >
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Hence if v and /3 are such that <  v < ^hen ^ *s possible to chose 2 in such a

way that conditions of theorem 4 .2  holds for the set

©1 =  < (1 — a i , a i 0 , 0 , 0,0,0) : a i  G ( —7------------ ------ ~
’ ’ ’ ’ ’ ' \ (3 {v +  W p - 2zP2 - 2^ ) '

The lower boundary for the parameter 2 is described by function

(  (2 + /3 v )  :c 4- 8/32 .  4/3 .
g ( v , 0 ) = 1 e f f i )  Tt̂ ’

the upper boundary is defined by function

min <f 2vP2+6Pzv wp2+vP~4 if <  J L .\  2/3(1 + P )  » 2/32(l+/3) ’ 2 ( l + ( 3 )  }  ’ /3( l- /32) <V < TTp'
void otherwise.

h{y,(3) =

On the left-hand plot below the colours represent the value of g (v, (3) for each choice of (3 and 

v. On the middle plot the colours represent the value of h (v, (3) for each choice of f3 and v.

2.
2.
2.
2.

1.
1.
1.
1.

0.
0.
0.

Colors and 2 values.

Figure 7.4. Lower and upper boundaries for z such that there exists 

subset of the set I \ for which conditions of theorem 4.2 hold.

0.5''------     1---------- '---------- -
0 2 4 6 8 10

V

g(v,(3)— lower boundary for 2

05J------ 1------     ,------ 1
0 2 4 6 8 10

V

h(v,/3)— upper boundary for 2
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Now consider the interval I 2 = {(0,0, a 2, 1 -  <*2, 0 , 0) : a 2 € [0,1]}. We find that condi­

tions (6.13) are as follows in this case.

1 2v02~ v+ 50
2 0(0+1) ^  Z 
I 7p2+v/3-2  
2_ 0‘2(l+0) ^  Z

y  ^  1 v03 —c03 —2+70 2+c0  
2"" ^(i+ /3)

1 2ttj93-2+7j92-t>g< 2 /?2(l+/3)
_  ^  1 v0 3- c 0 3-2 + 7 0 2+c0
z > ? 0H1+0 )

—2+02 , — 2̂ /33+2/33 z—7ff2+2j32z+t?/3+2 , n
k (2/32z-6/H-2/?z-u) (iH-c)(-l+/3)(l+/3) ^  u

Let us notice that

v/33 -  c(33 -  2 +  7(32 + c(3> 2v(53 -  2 +  7/52 -  i//3,

because

0  >  —(3 (1  — /?) (1 +  /3) (v +  c).

Therefore we find that condition (6.13) can be simplified and has the form

2v0 2- v + 5 0  ^

20*+20
1 702+ v 0 - 2
2 0'2(l+ 0 )  
v03- c 0 3-2 + 7 0 2+c0

202(l+ 0 )  ^  *

Moreover, we notice that for any c >  v and, therefore, we

find that conditions (6.13) are changed into

2v0 2- v+ 5 0  .

202+20
1 7 0 2+ v0 - 2  '
2 0^(l+0) > Z

It is also required that z  satisfies (7.5). Therefore, for (3 and v we have 

~V20‘̂+2 0 (3 > 2$W )^ Which imPlieS that V <  3I^*>

>  whlch implies th a t ' % ) ■

Hence if vand f3 are such that $ 3 $ * )  < v <  then '* is Possible to choose such 2 that
there is a subset of the interval I 2 — {(0, 0 ,O!2> 1 — <*2, 0 , 0) : a 2 € [0 , 1]} for which conditions 

of theorem 4.2 hold. The lower boundary for the parameter 2 is described by the function

(  ( 2 + / ? u )  •£  2—502 ^ ^  o  0
;(u,/3) =  |  2<1+« ’ ll 0 (

void otherwise.
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the upper boundary is described by function

f 2 v 0 2 - v + 5 0  7 0 2+ v0 - 2  ( 5 + 0 v ) 1 . f  2 - 5 0 2 .  o  B .
) / ’ U 0 ( l - 02) < V <I  w + l )  » 2 /3 i2( l + / 3 )  ’ 2 ( 1 + / J )  /  ’ / 3 ( l - / 3 2 )

I void otherwise.

On the left-hand plot the colours represent the value of / (v,(3) for each choice of (3 and v. 

On the middle plot the colours represent the value of k (v, (3) for each choice of (3 and v.

F igure  7.5. Lower an d  u p p er b o u ndaries for z such th a t  th e re  exists 

subse t 0 2  of th e  se t I2 for w hich cond itions o f th eo rem  4.2 hold.

8 10

l(v,(3)— lower boundary for 2 k(v,/3)— upper boundary for z  Colors and z values.

Let us finally define values of parameters v t f3 and 2 such that there are subsets 0 i  and 

02  in both intervals I\ and I2 for which conditions of theorem 4.2 hold. Parameters v and (3 

therefore must satisfy

4 —8 /3 2 ^  . .  ^  4  0  

2 —5 0 2 ^  _  30 (7.6)

In figure 7.6 below is given in blue’ IT#5 is in Sreen, is in red and f l f r
is given by a black line. Here the label ‘‘/ 1& /2” indicates ranges for parameters v and (3 

for which there are subsets 0 i and 02  in both intervals I\ and I 2 for which conditions of 

theorem 4.2 hold. The label “/ 1” indicates ranges for parameters v and (3 for which there



CHAPTER 7. MULTI-STATE GAMES: SOME INTERESTING RESULTS. 145

is subset ©i in the interval I\ but no subset ©2 in the interval I2 for which conditions of 

theorem 4.2 hold. (The label “J2” represents the reverse.)

F igure  7.6. R anges for p a ra m e te rs  v  an d  (3 for w hich th e re  are  

subse ts  © 1  an d  6 2  in  e ith e r  one or b o th  in tervals I\ or I 2 

for w hich cond itions of th e o re m  4.2 hold.

0.2 0.8

It is clear from figure 7.6 that condition (7.6) is equivalent to < v <

Now we can define the lower boundary function n (v, (3) for the parameter z  as follows

!£ £ & > ) j f  4 -8 /3 ^  ^  ^  3 (3
2 ( 1 + / 3 ) »  11 /3 (l-/32) < v  <  T - F '

void, if otherwise.
(7.7)n (v, (3) =

The upper boundary function m  (v, (3) for the parameter z  is

™  a \  _  J m i n  / g-V/3l+ 6 /3 - y _ 7 f t2 + y 0 - 2  (« + /S « )  \  ( f  4 - 8 0 2   3/3 .
\  2 /3 (1+ 0 )  > 2/3'^ (1 + /9 )  ’ 2 /9 ( /3 + l)  ’ 2 /J * ( l+ /J )  * 2 ( 1 + 0 )  J »  U  < v <  »

[ void otherwise.

(7.8)

The plots in figure 7.7 represent these functions. To obtain the conditions for which there 

is only one interval ©i or ©2 we should refer to figures 7.4 and 7.5, respectively, and consider 

the lower and the upper boundaries given in these figures restricted to the areas of parameters 

v and (3 labeled “i i ” or “I2” in figure 7.6, respectively.
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Figure 7.7. Lower and upper boundaries for z such that 

there are subsets <Si and &2 in both intervals I\ or I2 

for which conditions of theorem  4.2 hold.

n{v,(3)— lower boundary for z m(v,/3)— upper boundary for z  Colors and z values.

7 .2 .2  F ix in g  payoffs in  th e  H aw k -D o v e  G a m e  a n d  th e  b a c k g ro u n d  payoff.

We now fix parameters v and c and demonstrate how the choice of (3 affects the stationary 

points of the dynamical system. We choose v and c be the same as considered in the exam­

ple 5.1 of section 5.5. That is v = 6 and c — 7, and in terms of the payoffs for the multi-state 

game we have

ci =  3, c2 = 0, c3 =  6 , c4 =  (7.9)

Recall that we have already fixed the payoffs in the games G\ and G2 as follows.

ph\ +  ti (1 -  p) = 3; ph2 + * 2(1 - p )  = 0; ph3 -I- t3 (1 -  p) = 5; ph4 +  t4 (1 -  p) = 1.

It has been shown in section 5.5 that in this case strategies 5, A T , L F S  and U are not 

Nash Equilibria for any values of the parameter 2 and discount factor (3 G [0,1). For strategies 

C P , A T P  and P  there is a range of values for z and (3 for which these strategies are Nash
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Equilibria. We wish to choose values of the parameter 2 and discount factor (3 such that the 

strategy P  is not a Nash Equilibrium and strategies C P  and A T P  are Nash Equilibria. In 

this case there are subsets @1 and @2 in both intervals I\ and I2 for which conditions of 

theorem 4.2 hold. As we have seen in section 5.5 there exist a range of value for z and (3 then 

these assumptions are true, in particular, they are true if z  = 2. This will be the case which 

we intend to analyse in more detail.

R em ark  7.1 I f  non-cooperative strategies L F S , P  and U are not Nash Equilibria then it 

may be possible to evolve to cooperative populations from non-cooperative populations. No­

tice though that this condition is only necessary but not sufficient since there may exist 

non-cooperative populations which consist of a mixture of individuals using different non- 

cooperative strategies which can be evolutionarily and asymptotically stable. In the next sec­

tions we show that this is not the case for the example where we fix parameter z to be equal 

2 and (3 = . 88.

From the previous section it is clear that if there are subsets 61  and @2 in both intervals I\ 

and I 2 for which conditions of theorem 4.2 hold then the choice of the values for parameter j3 

such that these conditions are satisfied is determined by the lower boundary function n{v,(3)

(7.7) and the upper boundary function m (v,(3) (7.8). If v = 6 and z  — 2 then

n(f>,(3) =  §±§g,
m (Q r\ -rn {v, P) — 2 p(p+1) •

On the plot below, the function n ( 6 ,/?) is given by a blue line and the function m  (6 , (3) is 

given by a green line. The red line represents the value of parameter 2; which is fixed at 2.

F igu re  7.8. T h e  exact b o u n d a ry  for th e  p a ra m e te r  (3.

2.8-
2.6
2.4

z
2.2

1. 8 -

1.6J
0.7 0.8 0.90.8 0.9

The point of intersection of m  (6 , (3) (in green) and 2: =  2 (in red) define the exact boundary
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for the parameter (3. At this point the value of (3 is

A, =  ± t ^ « . 8 0578.

Let us mention here that the second condition z ^  (T5) case mean

that (3 =£ 1, which does not add any extra restrictions on (3.

Once all parameters of the model (except (3) are fixed it is possible to follow the approach 

described in section 6.3 and solve system (6.17) using “Maple” software. It is possible to 

determine all stationary points of the Replicator Dynamics that belong to the simplex A. 

appendix 1 contains all such points for the parameters (7.9) and (3 6  (/?o>l) • These results 

are summarised in table 7.1 and figure 7.9.

T able 7.1. In te rva ls  for (3 for w hich different s ta tio n a ry  p o in ts  an d  sets exist.

Points Interval for (3
Shown in the 

following colour 

in figure 7.9.

{3,5,6,71,(3,6,7},{3,5,6},

{3,6},{5,6,7},{5,6},{5,7},{6,7}

/3€(A)>1) red

{4,6} /3e(/3o,0.85118)U(0.89147,l) blue

{4,6,7} /3€(/9o,0.85021)U(0.89147,1) cyan

{1,2,3,5},{1,2,3,6},{1,2,4,6} /?£ (0.93078,1) black

{1,2,3,5,6} /?£(0.95629,1) green

{2,4,6},{2,4,6,7} /3e(0.82063,0.84859) yellow

{2 , w j /3e(/30,0.82958) grey

Here a combination {A, - • • ,jm }  stands for the stable point of Replicator Dynamics such that 

the coordinates Xjx, . . .  , Xjm take non-zero values and all remaining coordinates Xi are equal 

to zero. Since by x \, X2 , £3, £4, £5, xq and X? we denote the proportion of the individuals 

in the population who adopt behaviour S, C P , A T P , AT, P, L F S  and U, respectively, this 

means that there exists a stationary population which consists only of proportions of indi­

viduals who adopt types of behaviour corresponding to the above combinations of indices. 

For example combination {1,2,3,5} which appears in the fourth row of table 7.1 means that
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if (3 € (0.93078,1) then there exists a stationary population which consists of a mixture of 

individuals who adopt strategies S , CP , ATP, AT or P. The line over indices 3,4 means 

that this combination represents not a single point but a stationary set of populations in 

which proportions of individuals using A TP and AT strategies may vary (see appendix 1 for 

details). For the convenience of comparison the intervals on (3 for which corresponding points 

or sets belongs to the simplex A are shown in figure 7.9. Last column of table 7.1 indicates 

colours in which the intervals are shown in figure 7.9. For example interval (0.93078,1) is 

shown in black.

F ig u re  7.9. In terva ls  for (3 for w hich d ifferen t s ta tio n a ry  po in ts  and  sets exist.

P ; 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

It is clear from the above results that the stationary points and sets appear and disappear 

depending on what value the parameter (3 takes.

7 .2 .3  F ix in g  (3.

At this moment the last parameter (3 should be fixed in order to proceed with a qualitative 

analysis of the dynamics. I have chosen [3 — | |  =  . 88, as it appears to be a convenient 

choice. For example, this value of (3 belongs to the interval (0.85118,0.89147), and as it can 

be seen from figure 7.9 the number of stationary points and sets are the smallest in this case. 

Therefore it is easier to analyse the dynamics.

For this choice of (3 there are three stationary intervals
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for the corresponding Replicator Dynamics (6.7). The stationary point are as follows.

{3,5,6, 7} , {3,6, 7} , {3,5,6} , {5,6, 7} , {3,6} , {5,6} , {5,7} , {6 ,7} , {5} , {6} , {7} .

The exact values of the components for all these stationary points and sets together with 

their eigenvectors and eigenvalues are contained in appendix 2. The payoff matrix A  (6 .1) 

tha t corresponds to the choice of the parameters made can also be found in this appendix.

7.3 D ynam ics on som e invariant m anifolds.

Using the information represented in appendix 2 we can analyse the solution’s behaviour on 

some invariant subspaces of A.

The analysis of the dynamics on the whole six-dimensional simplex A is quite complex 

since there are few techniques available even in the three-dimensional case if the system 

of differential equations is not integrable. We will use the main techniques described in 

section 4.1.2. At the beginning we consider subspaces A i^,3,4,7, A5,6,7, As^.7,2 and A 5,6,7,3 

of the simplex A and obtain some interesting results. Then, using the method of separatrix 

approximation, we comment on the overall picture of the dynamics.

7 .3 .1  T h e  s u b sp a c e  A i,2 |3 ,4 ,7 : S, C P , A T , A T P  a n d  U  s tra te g ie s .

Let us consider the four-dimensional subspace Ai,2,3,4,7. This subspace corresponds to pop­

ulations which consist of different mixtures of individuals who use S, CP, AT, A T P  and 

U strategies. As has been explained in section 6.4 this subspace can be represented as a 

collection of three-dimensional invariant subspaces

Ma =  jz : x3 +  - x 4 =  0, x 5 = 0, x Q =  0 j , a  G [0,1]. (7.10)

Therefore, to describe the dynamics on A i>2,3,4,7 it is sufficient to analyse the dynamics on 

each of the subspaces M a. If a  is fixed then M a is a three-dimensional linear subspace that 

passes through the origin point {7} , points {1} , {2} and the point {0,0, a , 1 -  a , 0,0} that 

belongs to the interval I2 =  {3,4} . The second invariant subspace is
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As it will be clear from the forthcoming analysis this subspace separates the regions of 

attraction for the intervals Ji — {1,2} and I 2 =  {3,4}. Figure 7.10 shows the subspace 

A i ,  2,3,4,7-

F ig u re  7.10. T h e  subspace Aj.,2 ,3 ,4 ,7 .

T h e  subspace M a , a  =  | ,  is show n by yellow lines.

T h e  subspace M  is show n by green  lines.

T h e  s ta tio n a ry  po in ts  an d  in tervals o f th e  dynam ics a re  show n in red.

{4} = (0,0,0,1,0,0)(3) = (0 ,0 ,1,0 ,0,0)

(2 }=(0 ,1 ,0 ,0 ,0 ,0 )

{7} = (0,0,0,0,0,0)

{1} = (1,0,0,0,0,0)

Now, let us analyse the dynamics on the subspace Ma, where a  is fixed.

The dynamics on the plane A i^ j  is quite simple. All solution trajectories are straight lines 

that start at the origin (point {7}) and terminate at some point of the interval I2 =  {1, 2} .

Dynamics on the plane that passes through points {1}, {2} and (0,0, a , 1 — a, 0,0) is 

similar to the dynamics related to the Iterated Prisoners’ Dilemma Game obtained in sec­

tion 4.1.3. The separatrix line goes from the point ({§§§§, {§7̂ 3 >0,0,0,0) to the point 

(0, g 722̂ , o, — ck, 0,0) . This line divides the plane into two regions. The trajectories 

from one region (see figure 7.11 below) are all attracted to the point (0,0, a , 1 — a , 0 ,0). The 

trajectories from the other region terminate at some point on the interval I\ = {1, 2} .

The plane that passes through points {2} , (0,0, a , 1 — a , 0,0) and {7} also has two distinct 

regions of solution behaviour. These regions are separated by the trajectory that leaves {7} 

and terminates at (0, 1^23  > a -> 197̂ 3 — u ,0 ,0 ) . The solution trajectories from one region are 

attracted to the point (0, 0, a, 1 — u, 0 , 0) and from the other region to the point {2} .
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The solution trajectories on the plane that passes through points {1} , {(0,0, a , 1 — a , 0,0)} 

and {7} are all attracted to the point (0,0, a , 1 — a , 0 ,0).

The intersection of the subspaces Ma (7.10) and M  (7.11) is a plane that passes though 

points ( i97§ |, i^ ^ ,0 ,0 ,0 ,0 )  , (0, — c*,0,0) and {7}. This plane is shown as

the green triangle in figure 7.11 This plane divides the subspace Ma : solution trajectories 

that start above this plane terminate at the point (0 , 0 , a , 1 — a , 0 , 0) (corresponding to a 

population in which the proportion of A T P  players and A T  players are as a  to 1 — a), solution 

trajectories that start below this plane terminate at some point of the interval I\ =  {1, 2 } 

(corresponding to the populations which consist of mixture of players who use strategy S  or 

CP).

F igu re  7.11. T h e  subspace M a .

T he in terse  c tion  of M a an d  M  is show n in green.

'L“-L n 
■ 1 8 7 2 3  *u > 1 9 7 2 3  a

1 2 5 0 2  1 S 6 2 S  
2 8 1 2 7 * 2 8 1 2 7  >

1 2 5 0 2  7 2 2 1  , 
1 9 7 2 3  >1 9 7 2 3 *

{1} = (1,0,0,0,0,0)

Since the point {(0,0, a , 1 —0 , 0 , 0)} belongs to the interval I 2 =  {3,4} it is clear now 

that the subspace M  is the separatrix subspace for the dynamics on A i)2,3 4,7.

7 .3 .2  T h e  su b sp a c e  A 5)6)7 : P , L F S  a n d  U  s tra te g ie s .

The dynamics on the subspace A s^ j is considered in this section. This subspace corresponds 

to populations which consist only of non cooperative types of behaviour P, L F S  and U.

To analyse the dynamics on the plane A g^j note that the line X5 — ^ qXq =  0 is invariant. 

This line passes through the point {5,6 ,7} (see appendix 2 for exact values of the coordinates
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for this point). This point is the only point tha t has two negative eigenvalues (see appendix 2 

where all eigenvalues are given) if the dynamics are restricted to the plane A s^ j. Therefore, 

there are no limit cycles on the plane A ^ ^ j  and all trajectories that start from the interior of 

A 5,6,7 are attracted to the point {5,6,7} . The qualitative pictures of the dynamics are given 

in figures 7.12 and 7.13 below.

F ig u re  7.12. T h e  subspace A5)6,7. F ig u re  7.13. T h e  subspace A5)6)7.

N e ighbo rhood  o f th e  po in t {7} .

{5}={0,0,0,0,1,0)
{5,7}

,{5,6,7}

{6}=(0,0,0,0,0,1) {7}=(0,0,0,0,0,0)
(0,0,0,0,0,0)

T he invarian t line X5  — =  0  is show n in  pink.

R ed  po in ts  ind ica te  th e  s ta tio n a ry  po in ts  o f th e  dynam ical system .

It will be shown in section 7.3.4 that point {5,6,7} becomes unstable when the population 

contains a proportion of C P  players.

7 .3 .3  T h e  s u b sp a c e  A 3 )5)6 ,7 : A T P , P , L F S , a n d  U  s tr a te g ie s .

Now, let us consider the subspace A ^g ,? . This subspace corresponds to populations which 

consist of different mixtures of individuals who use A T P , P, L F S  and U strategies. 

Dynamics on the plane A ^# ^  has been described in the previous section.

All the solutions trajectories starting from the interior of the plane As^.7 (corresponding 

to populations which consist of different mixtures of ATP, P  and U players) are attracted to 

the point {3} (corresponding to the population which consists of A T P  players).

The plane A3t5(6 (corresponding to populations which consist of different mixtures of 

ATP, P  and L F S  players) has an interior saddle point {3,5,6}. A non integrable invariant
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curve (shown in blue in figures 7.13 and 7.14 below) passes through this point splitting 

into two parts: the trajectories starting above this curve are attracted to the point {3} , the 

trajectories starting below this curve are attracted to the point {5,6} (corresponding to a 

population which consists of a mixture of P  and L F S  players).

There are two more invariant lines (shown in blue) for the subspace A s ^ j .

The first line

of A T P , L F S  and U players). It passes through points {7} , {3,6,7} and {3,6} and divides 

A a^ j into two regions. Trajectories starting above this line are attracted to the point {3}.

belongs to the interior of A a^ e j. It passes through points {7} , {3,5,6 ,7} and {3,5,6} .

The analysis of the dynamics indicates that there is a non integrable separatrix surface 

(shown in cyan in figures 7.14 and 7.15 below) in the subspace A 3)5)6)7. It contains all invariant 

lines mentioned above together with the line

Any trajectory starting from an interior point of A a^g j that lies above this surface is at­

tracted to the point {3} . Trajectories starting from interior points of Aa^a,? that lie below 

this surface are attracted to the point {5,6,7}.

=  50.0625 
^  29 234 ^ 3

belongs to the plane A3(6,7 (corresponding to populations which consist of different mixtures

Trajectories starting below this line are attracted to the point {6,7} (corresponding to a 

population which consists of a mixture of L F S  and U players).

The second line

~ _  2008 750000 „
*5 ~  1251537143 3
_  _  1213 715695 625 ~

6 117644491442 3

#3 =  0 

# 6 = 0
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F igure  7.14. T h e  subspace A a ^ e j .  F igure  7.15. T h e  subspace A a ^ e j .

N eighborhood  of th e  po in t {7} .

{7} -  (0,0,0,0,0,0)
{3,6,7}

{3 -  (0,0,1,0,0)

(0,0,0,0,0,0)
{5,7}

II {5,6} (0,0,0,0,0,1) {5} = (0,0,0,0,1,0)

T h e  non in teg rab le  se p a ra tr ix  surface is show n in cyan.

R ed  po in ts  ind ica te  th e  s ta tio n a ry  po in ts  of th e  dynam ical system .

Although the separatrix surface is non integrable it is possible to estimate it in a small 

neighbourhood of a stationary point using computer simulations of the corresponding Discrete 

Replicator Dynamics. The results of such simulations can be found in Appendix 3 .

7 .3 .4  T h e  su b sp a c e  A 2 ,5 ,6 ,7 : C P , P , L F S  a n d  U  s tra te g ie s .

Now, consider the subspace A2,5,6,7- This subspace corresponds to populations which consist 

of different mixtures of individuals who use CP, P, LFS  and U strategies.

Solutions starting at interior points of the planes A2,5,6, A2,5,7 and A2,6,7 ah terminate 

at the point {2 } . The same is true for solutions on the whole subspace A2,5,6,7: all solutions 

starting at interior points are attracted to the point {2} .
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F igure  7.16. T he  subspace A 2 ,5 ,e,7 . F igu re  7.17. T h e  subspace A 2 ,5 ,6 ,7 -

N eighborhood  o f th e  po in t {7} .

T he  invarian t p lane X5  =  is show n in lilac.

R ed  po in ts  ind ica te  th e  s ta tio n a ry  po in ts  of th e  dynam ical system .

There is an invariant plane £5 =  ^ £ 6  passing through the points {2} , {7} and {5,6} . The 

point {5,6 ,7} is also in this plane. There is a repulsive eigenvector for this point that belongs 

to the plane £5 =  -^qXq. Therefore there is a solution trajectory that goes from the point 

{5,6 ,7} to the point {2} .

7 .3 .5  O v e ra ll p ic tu re .

In general, the following conclusions can be drawn from the analysis of the Replicator Dy­

namics.

1. Every point of the intervals {1,2}qM =  {(a, 1 — a , 0,0,0,0) : a  6  (corre­

sponding to the populations which consist of various mixtures of players who use strat­

egy S  or CP) and {3,4}att =  {(0,0,1 — a , a , 0,0) : a  E [0, ||^ ||]  {(corresponding to 

the population which consists of various mixtures of players who use strategy S  or CP) 

has non-positive eigenvalues. It has been shown in section 6.2 that the conditions of
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theorem 4.2 hold for every point of the intervals

0 i  =  { ( a , l - a l O ,O ,O ,O ) :o .6 [O ,® }  

and

6 2 =  { ( 0 , 0 , l - o , a , 0 , 0 ) : a g [ 0 , | f ) } .

Although this property has not been proved analytically to hold for the end points 

( 28~127 > 1 “  28127 > 0) and (0,0 ,1 — g ^ f ,  3I 054 > 0, 0) , the results of computer sim­

ulations performed indicate that conditions of the theorem 4.2 hold for the end points 

as well. (The simulations were performed using the software “Mathematica” . The dis­

crete version of the Replicator Dynamics (1.10) was used.) Using these'results, we can 

claim that sets | l , 2 } a££ and {3,4}ati are evolutionarily attractive (see definition 4.1 

in section 4.2.1). These sets have the following property: solution trajectories starting 

at a point from sufficiently small neighbourhood of the set lead back to the set with 

probability one.

2 . All stationary states that do not belong to { l,2 } a£t or {3,4}a££ possess a positive 

eigenvalue, which means that there is an outgoing solution trajectory that leaves the 

state.

3. For any stationary state in the dynamics there exists a small deviation from this state 

such that the solution trajectory leads towards either { l, 2}a£( or {3,4}a££.

(a) This is a remarkable fact, since it means that a population state that consists of 

cooperative or partially cooperative types of behaviour can be reached from a pop­

ulation state that consists of non cooperative types of behaviour. Note that such 

result cannot be obtained in the Iterated Prisoners’ Dilemma. From the analysis 

of Replicator Dynamics for the Iterated Prisoners’ Dilemma game considered in 

section 4.1.3 we can see that, although cooperative populations can evolve, there 

is a barrier (a separatrix line) which does not allow the cooperative behaviour 

to originate in a non-cooperative society. In this instance, it is also true for the 

multi-state model considered that populations consisting of any proportions of non 

cooperative types of behaviour has a possibility to evolve towards a cooperative 

or partially cooperative (allocating tasks) population.

(b) Table 7.2 below shows the changes to the population state resulting from deviations 

from particular stationary states. In the left-hand column a particular stationary
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state is given. These states are the vertices of the simplex A

{1} = (1,0,0,0,0,0) =  {s},

{2} =  (0,1,0,0,0,0) =  {CP},

{3} =  (0,0,1,0,0,0) =  {ATP},

{4} =  (0,0,0,1,0,0) =  {AT},

{5} =  (0,0,0,0,1,0) =  {P},

{6} =  (0.0.0.0,0,1) =  {LFS},

{7} — (0,0,0,0,0,0) =  {U}

and stationary points that belong to the plane of non cooperative behaviours

{5,6} =  (0,0,0,0, $ , , § § )  ={P ,L FS},

{5,7} =  ( 0 ,0 ,0 ,0 ,^ ,0 )  =  {P,U},

{6,7} =  (0,0,0,0,0, =  {LFS, U} ,

{5,6,7} =  (0,0,0,0, J f f f p ,  J j g ®  ) =  {P, LFS, U} .

In the first row of table 7.2 the direction of deviation is shown. This means that 

a small proportion of mutants (who use the corresponding strategy) is introduced 

in to the population. Then the solution trajectory £(a50,£) that originates from 

the new population state x° goes towards the stationary state that is given in the 

body of the table. For example, if a small proportion of CP players is introduced 

into population of P players (which correspond to the point {5} =  (0,0,0,0,1,0) =  

{P}), the population state will evolve towards the population of CP players (which 

correspond to the point {2} — (0,1,0,0,0,0) =  {CP}). If the proportion of U play­

ers has increased slightly (as a result of mutation) in a population that corresponds 

to the stationary point {5,6,7} =  (0,0,0,0, j j f f j n , 2649 m ) =  i p> LFS> u })> the 
new population state evolves back towards the {5,6,7} population.

We can see from table 7.2 that for every non-cooperative stationary state there exists 

a mutation such that the new population will evolve towards stationary state {2} or {3}. 

The only possibility of diverting from these states appears if mutations in direction {S} or 

{AT} occur, respectively. The resulting population will then be changed to some population 

that belongs to the evolutionary attractive sets {Tp}att or {3 A}au , for which the observed 

behaviour is still cooperative or allocating tasks.
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T able 7.2. T he  changes to  th e  p o p u la tio n  s ta te  re su ltin g  from  dev iations

from  s ta tio n a ry  sta tes .

direction of \ deviation
stationary \ 

point \ {S} {CP} {ATP} {AT} {P} {LFS} {U}

{1} =  {S} ■ {4,2}a» {3} {4} {5} {6} {1}
{ 2 } = {CP} {V2 U ■ {2} {2} {2} {2} {2}

{3} =  {ATP} {3} {3} ■ {3,4 {3} {3} {3}
{4} =  {AT} {4} {4} {3,4} m {5} {4} {4}

{5} =  {P} {5} {2} {3} {5} ■ {5,6} {5,7}
{6} =  {LFS} {6} {2} {6} {4} {5,6} ■ {6,7}

Ht- {1} {2} {3} {4} {5,7} {6,7} ■

{5,6} =  {P, LFS} {5,6} {2} {5,6} {5,6} {5,6} {5,6} {5,6,7}

's* II 5? a {5,7} {2} {3} {5,7} {5,7} {5,6,7} {5,7}

{6,7} =  {LFS, U} {6,7} {2} {6,7} {4} {5,6,7} {6,7} {6,7}

{5,6,7} =  {P, LFS, U} {5,6,7} {2} {5,6,7} {5,6,7} {5,6,7} {5,6,7} {5,6,7}

7.4  Sum m ary.

It has been shown in this chapter that, by considering games that allow for the possibility of 

individuals interacting in more than one context, it is possible to demonstrate that apparently 

altruistic and cooperative behaviour can be the outcome of an evolutionary process.

By analysing the Replicator Dynamics corresponding to this model, it is possible to obtain 

the following results:

• Cooperative and “allocating tasks” types of behaviour can be the end points of the evo­

lutionary process for this model and the probability of mutations leading to trajectories 

which diverge from such states is zero.

• A population state that consists of cooperative or “allocating tasks” types of behaviour 

can be reached from a population state that consists of non cooperative types of be­

haviour.
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• A population that consists of any proportions of non cooperative types of behaviour 

can evolve towards either the cooperative or “allocating tasks” population.

This results, of course, depend on the values of parameters of the game. If we change the 

parameters of the model then non-cooperative states may appear which are asymptotically 

stable or, although non cooperative vertices may be all unstable there can exist periodic 

solutions for which there is no mutation that forces them leave the subspace of non cooperative 

populations.



Chapter 8

Conclusions.

interactions in a context of long-term rela­

the apparently altruistic reciprocal and non 

reciprocal behaviour. The common model of social interactions based on Prisoners’ Dilemma 

game was generalised in a few different ways. The idea, used in the Iterated Prisoners’ 

Dilemma model, that considering the interaction of the two players not in isolation but in 

the context of conditions in which such an interaction takes place (for example the long-term 

repeated interaction) allows us to conclude that cooperative behaviour may be rational or 

evolved in this context. In this thesis this idea was taken further to consider different contexts 

of interaction.

For example a three player model was introduced in which the third player interacts with 

two other players engaged in a single interaction Prisoners’ Dilemma. The existence of the 

third player in the interaction changed the payoffs in such a way that the two players were 

induced to cooperate. If the third player had not been taken into account the first two players 

would be considered to be playing the Prisoners’ Dilemma game and cooperative behaviour 

would be inexplicable.

Another way of generalising the standard approach was to introduce additional games 

in the model. The existence of additional states allowed, in particular, for the possibility 

of introducing completely new types of strategies such as allocating tasks strategies. These 

strategies are relevant to the explanations of apparently altruistic behaviour since the ob­

served behaviour for them (in a given state) is such that one player is cooperating while the 

other is defecting.

In this thesis an approach for modelling social 

tionships was developed in order to investigate

161
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A number of techniques were used to analyse the multi-state games. These techniques 

include using competitive Markov decision processes to check that a particular strategy is 

a Nash Equilibrium and to obtain the total payoffs for the strategies. The techniques of 

the qualitative analysis of dynamical systems and the “blowing up” technique (which has 

not been applied before in the context of analysing the Replicator Dynamics) were used to 

investigate the corresponding dynamical system and to find the end points of the evolutionary 

process.

The main results obtained from the analysis of the multi-state games are the following.

1. A strategy “allocating tasks with punishment” can be a Nash Equilibrium and popula­

tions which consist of different mixtures of “allocating tasks without punishment” and 

“allocating tasks with punishment” players can be the end points of the evolutionary 

process. Such a strategy does not have an analogue in the Iterated Prisoners’ Dilemma 

game. Using this strategy one player cooperates in game G\ while the other player 

defects and the first player defects in game G2 while the other cooperates. Therefore, 

considering similar strategies may provide a framework for the explanation of reciprocal 

altruism.

2. There exists a range of parameters in the model for which non-cooperative strategies 

such as “looking for a sucker” , “pathological” or “unsociable” are not Nash Equilibria, 

nor are they evolutionarily or asymptotically stable. For example, this is the case if the 

association game is modeled by Hawk-Dove game and the parameters of the model are 

such that these strategies are indeed non cooperative (this means that Definition 6.2 

holds). This result is also new compared to the Iterated Prisoners’ Dilemma model, 

for which defection is a Nash Equilibrium and is also evolutionarily and asymptotically 

stable.

3. As was obtained for repeated Prisoners’ Dilemma models, it was shown that a co­

operative punishing strategy is a Nash Equilibrium strategy for multi-state models. 

Populations which consist of different mixtures of “cooperating without punishment” 

and “cooperating with punishment” player can be the end points of the evolutionary 

process. If the association game models the sharing context of interaction and payoffs 

in activity games G\ and G2 do not vary significantly then the ranges of parameters 

for which there are stable cooperative populations and stable “allocating tasks” popu­
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lations are quite similar (see sections 5.5 and 7.2.2). If the association game includes 

the cost of association and the payoffs in activity games G\ and G2 are different then 

the ranges depend on the value of the probability p with which the activity games are 

played. In this case cooperative behaviour is stable for a wider range of p than the 

“allocating tasks” behaviour.

Therefore, we can conclude that “cooperative” and “alternating tasks” populations can 

evolve under the influence of the natural selection and it is possible to evolve to “cooperative” 

or “alternating tasks” types of populations from populations initially composed of a majority 

of uncooperative individuals.

There are still questions that can not be answered by using this model. Although it is 

possible to explain the existence of a cooperative population, it is not clear how to explain 

the fact that some cooperative populations can include a proportion of individuals who use a 

non cooperative behaviour. As with Iterated Prisoners’ Dilemma models, it does not seem to 

be possible to obtain a population that contains a mixture of “cooperative” or “alternating 

tasks” and at least one “non-cooperative” type of behaviour as a result of modeled selection 

process. This restriction can be partially overcome by considering models with equal payoffs in 

context-games G\ and G2 which correspond to some activities modeled by Prisoners’ Dilemma 

Games. The Nash Equilibrium conditions then do not depend on value of the probability p 

with which context game G\ is played. The outcome of the evolutionary process obtained as 

a result of the analysis of the Replicator Dynamics also does not depend on the probability p. 

Therefore, if once the “alternating tasks” type of behaviour has appeared and the population 

has been driven towards a stable state that represents such behaviour (the condition 0 < p <  1 

is required at this moment so that the division of labor is possible), then during later times 

the value of p can vary and eventually may become equal zero or one. Then only one of the 

games G1 or G2 will be played. If in this situation the “alternating tasks” type of behaviour 

is the end point of the evolutionary process (as is the case, for example, if the association 

game is modeled by the Hawk-Dove game) then one player engaged in the association will 

always cooperate and the other will always defect. This example seems to be very interesting 

as it models the possible mechanism of an evolutionary process resulting in unreciprocated 

cooperation between unrelated individuals. Although this example is quite important, the 

question of explaining evolutionary mechanisms which can produce a population consisting 

of a mixtures cooperating, conditionally cooperating and defecting individuals still needs to
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be investigated.

There are a few directions for further research in this area. For example, in this thesis I 

have mostly concentrated on the case in which games G\ or G2 are modeled by Prisoners’ 

Dilemmas. It would be interesting to investigate the consequences of changing one or both 

Prisoners Dilemma context-games for another type.

In this work I have only considered seven different strategies for the multi-state model. 

These strategies represented the main types of behaviour and if “punishment” was used by 

a strategy it was to discontinue the association if the other player did not cooperate at some 

particular state in the past. It is possible to consider strategies which use a different type 

of “punishment” . Various possibilities are open here: for example, a strategy may prescribe 

discontinuing an association unless both players cooperate at some particular state in the 

past. These types of strategy are similar to the strategy Grim in the Iterated Prisoners’ 

Dilemma. It is also possible to enlarge the state space of the corresponding Markov process 

to allow the “punishment” to be placed not only on the association game but also on the 

activity games G\ or G2 . This gives the possibility of continuing association while accepting 

the “punishment” in the form of non-cooperation in an activity game.

Another approach may consist of considering a model in which the players are allowed to 

be engaged in an interaction with another player after the first association breaks up. The 

analysis of such a model is quite involved. For example, the Markov decision process approach 

is not applicable in this situation and if a player is allowed to be engaged in association 

with two different players sequentially it is quite hard to calculate the total payoffs for the 

strategies. However such models seem to be very interesting.

Another way of extending the approach developed here is to include the possibility that 

the behaviours adopted by the two individuals may lead to an involuntary termination of 

the association. This may be modelled by allowing the discount factor (3 to depend on the 

behaviours adopted: /^(oq, <72),^ = 1,2. The discount factqrs may, therefore, be different for 

each player in the game.

Hopefully, by considering such models, it will be possible to shed light on the reasons for 

the existence of populations of animals which consist of cooperating, conditionally cooperating 

and defecting individuals (see [5]).



Appendix 1.

This appendix contains all stationary points and sets of the Replicator Dynamics that belong

to the simplex A if the parameters of the model are as follows

p/ii -Mi (1 - p )  =  3; p/i3 + t3 (1 - p )  =  5;

p/i2 +  t2 (1 -  p) =  0 ; p /14 +  U (1 -  p) =  1.

Ci 3) C2 — 0 , c3 — 6 , C4 — 2 j

z = 2; (3 6  (/?0, 1) ;

where

00 = —1 ~  -805 78.

For each point (set) only the nonzero components are given. The exact formulae of the

components are accompanied by a plot (or several plots). Each component is given in the

prescribed colour. The plot helps to visualise the interval for parameter /3 such that the point 

(set) belongs to the simplex A (which means that values of all components are between zero 

and one). The boundary values for the intervals are estimated up to five significant figures.

165
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- ( / 3 - 2 ) ( 2 / 3 - l ) ( 7 + 9 / 3 ) ( / 3 + l ) ( 4 / 3 2  -  2/3 -  3 ) ( 2 / 3 4  -  5/33  -  3/32  +  7 /3 + 2 )

X 1 — /3(360/38 - 3 6 8 /3 7 -  1794/3® +378/3® + 2 7 3 0 /3 4 + 6 6 5 /3 3 - 1320/32 - 8 1 3 /3 - 1 2 6 )  
-  ( 156/37 +450/3®  - 5 /3 5  - 9 8 4 /3 4  -  555/33  + 4 9 2 /3 2 + 4 6 8 /3 + 8 4 )

X 2 — /3(360/38 - 3 6 8 /3 7 -1 7 9 4 /3 ® + 3 7 8 /3 ^ + 2 7 3 0 /3 4 + 6 6 5 /3 3 - 1 3 2 0 /3 2 - 8 1 3 /3 - 1 2 6 )  
2 ( /3 - 2 ) ( 2 / 3 - l ) ( 7 + 9 /3 ) ( /3 + l ) ( / 3 2 - 2 ) ( 4 / 3 2 - 2 / 3 - 3 ) / 3  

X 3 — 360/38 -  368/37 - 1 794/36 + 378 /3® + 2 7 3 0 /3 4 + 6 6 5 /3 3 - 1320/32 -  8 1 3 /3 -1 2 6
XR=     mp-iHP-w + 'rp 2.  _______

°  360/98 — 368/37  —1794/3 +378/3®  + 2 7 3 0 /? 4 + 6 6 5 /3 3 —1320/32 —81 3 /3 —126  
2 (/3 —2 )(2 /3 —l) ( /3 + l )^ 3 6 /3  + 2 2 /3 2  —32/9—21^/3 

X 6 — 360/3® -  368/37 -1 7 9 4 /3 ®  + 3 7 8 /3 5 + 2 7 3 0 /3 4 + 6 6 5 /3 3 - 1320/32 -  8 1 3 /3 -1 2 6

x \ —blue, 
x^—black, 
x^—green, 
x s —grey, 

xq —m agenta

T h is  p o in t b e lo n g s  to  th e  
s im p lex  A  if /3 € (0 .9 5 6 2 9 ,1 )

o.s: r

o.4:r
0.3: -

0.2-:
o r

0,92------ trw 0.960.82 0.84 0.86 0,9 0.98

2(/3 —l ) ( /3 + l ) ( / 3 2 —2 ) ( l6 /3 4  + 2 0 /3 3  —18/32 — 9/3 +  7 )
X 3  — (2 8 8 /3 7 +392/3®  — 956/9® - 1539/34 + 4 9 2 /3 3 + 1455/32 +4 8 3 /3  - 2 l ) / 3

X5 = — ( /3 + l) ( 5 /3 4 + 5 /3 3 —8/32  —7 /3 + 2 )
(288 /37 +392/3®  - 9 5 6 /3 S - 1539/34 + 4 9 2 /3 3 + 1455/32 + 4 8 3 /3 - 2 l ) / 3

X fi= 2 7 -  16/3® — 69/34  — 12/33  +  77/32  + 2 2 /3  — 1 3 _______________
(288 /37 +392/3®  - 9 5 6 /3 5 - 1539/34 + 4 9 2 /3 3 + 1455/32 + 4 8 3 /3  -  21 )/3 

_ o  128/37 +  176/3® —428/3® —698/34 + 2 2 7 /3 3 + 6 7 1 /3 2 + 2 1 4 /3 —17 
288/37 +392/3®  -9 5 6 /3 ®  - 1539/34 + 4 9 2 /3 3 + 1455/32 + 4 8 3 /3 - 2 1

^3 —green  
Xh—grey,  

xq—magenta,  
x j —sienna

T h is  p o in t b e lo n g s  to  th e  
s im p lex  A  if /3e(/30,l)

0.6

0.4

-0.2

0.081

0.06

0.04

0.02
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( / 3 - 2 ) ( 2 / 3 - l ) ( / 9 + l ) ( l 6 / 3 6 + 6 4 /3 5 - 6 9 /3 4 - 9 8 /3 3 + 5 9 ,3 2 + 3 4 /3 - 1 2 )  
X l — /3 (l4 4 /3 7  -1 9 4 /3 ®  - 3 3 0 /9 *  + 3 6 5 /3 4  + 276/33 - 1 9 5 /3 2  - 6 6 /9 + 3 6 )

_  104/37 -1 3 /3 ® -3 3 2 /3 S + 9 5 j3 4 + 2 9 6 /3 3 - 9 4 /3 2 - 6 8 /3 + 2 4
2  /3( 144/37 - 19 4 /j6  —330 /3 ® + 3 6 5 /3 * + 2 7 6 /3 3 - 1 9 5 /3 ^ - 6 6 /3 + 3 6 )

_  -4(4^-2^-3)(02-2)W-2)(2g-l)(^l)
X 4  144/3 7  —194/3® -  330/35 + 3 6 S /3 4 + 2 7 6 /3 3 - 1 95/32 -  6 6 /3 + 3 6

- 2 ( / 3 - 2 ) ( 2 f l - l ) ( / 3 + l ) ( 8 / 3 2 - / 3 - 6 ) / 3 __________
X 6  144/3^ — 194/3® — 330 /3® + 3 6 5 /3 ^ + 2 7 6 /3 2  - 1 9 5 /3 2  - 6 6 /3 + 3 6

x i  —blue, 
x% — black, 
X4 —cyan, 

x q  —m agenta

T h is  p o in t b e lo n g s  to  th e  
s im p lex  A  if  /3 e (0 .9 3 0 7 8 ,1 )

0 .5 "

0.4--

0 .3-:

0.2"
0.1- r

° a.! 
-0.1”

0.920.82 0.84 0.86 0.94 0.96 0.98

- 2 ( / 3  —2 ) ( 2 / 3 - l ) ( / 3 + l ) ( 4 ; 3 2 - 2 / 3 - 3 ) ( 2 / 3 4 - 5 /3 3 - 3 f f 2 + 7 /3 + 2 )  
X l — /3(80/37 —144/3®—291/3® +306/34 + 3 7 3 /3 3  — 138/32 —186/3—3 6 )  

39/36  +  74/35 - 6 3 /3 4 - 1 7 4 /3 3 + 1 2 9 2 +  1 0 0 9 + 2 4 ________
2  /3(80/37 -  144/3e -2 9 1 /3 ®  + 3 0 6 /3 4  + 3 7 3 /3 3  - 138/32 - 1 8 6 / 9 - 3 6 )

4 (4 /3 2 - 2 / 3 - 3 ) ( / 9 2 - 2 ) / 9 ( ^ - 2 ) ( 2 / 3 - 1 ) ( / 3 + 1 )
3  80/3^ —144/3®— 2 9 1 /3 °+ 3 0 6 /3 4 + 3 7 3 /3 3 — 138/32 — 186/3 —36

2 ( /3 - 2 ) ( 2 / 3 - 1 ) ( ^ + 1 ) ( 8 / 9 2 - / 3 - 6 ) / 3 ____________
6  80/37 -1 4 4 /3 ®  —291/35 + 3 0 6 /3 4 + 3 7 3 /3 3  - 138/32 - 1 8 6 / 9 - 3 6

x i —blue ,  
x^—black ,
X3  —green, 

x 6 —m agenta

T h is  p o in t b e lo n g s  to  th e  
s im p lex  A  if  /3g (0 .9 3 0 7 8 ,1 )

0.5-:

0.4-:

0.3-:

0.2"

0.1"

03.; H920.82 0.84 JL86 0 8 8 — ----- 0 9 0.94 0.96 0.98
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( / 3 - 2 ) ( 2 / 3 - l ) ( / 3 + l ) ( 8 / 3 6  +  12 /3 ® -2 2 /3 4 - 5 /3 3  +  14/32 - 4 / 3 - 6 )  
X l — /3(32/3^ —80/36 —36/3® +  110/34  —11/33 —45/32 + 3 0 /3 + 1 8 )

  16/37 - 1 2 /3 6 - 2 /3 5 - / 3 4 - 3 / 3 3 + 1 6 /3 2 - 8 / 3 - 1 2
2  /3(32/37 —8 0 /3 ° —36/3° + 1 10/34  - 1 1/33  - 4 5 /3 2 + 3 0 /3 + 1 8 )

__ - 2 ( / 3 2 - 2 ) ( 4 / 3 2 - 2 / 3 - 3 ) ( / 3 - 2 ) ( 2 / 3 - 1 ) ( / 3 + 1 ) / 9
X 3  32/37 -  80/3® -3 6 /3 ®  + 1 10/34  - 1 1/33  - 4 5 /3 2  + 3 0 /3 + 1 8

—/3(/3—2 )(2 /3 —1 ) ( / 3 + 1 ) ( 8 ^ _ / 3  6 )

5  32/37 - 8 0 /3 6 -3 6 ,9 ®  + 1 10/34  - 1 1/33  - 4 5 /3 2  + 3 0 /3 + 1 8

x \ —blue, 
X2 —black, 
x 3 -g re e n ,  
X5  - g r e y

T h is  p o in t b e lo n g s  to  th e  
s im p lex  A  if /3€ (0 .9 3 0 7 8 ,1 )

0.5-

0.4:;

0.3-;

0.2-:

o.i-;

0.920.82 0.84 0.86 0.88 0.9 0.94 0.96 0.98

X2 =  

X4

x 6

288 /3^ —832/3*
-  Q3 - 1 )  ( 104/36 -  7/3® - 304/34  + 18/33  + 1 72/32 - 2 0 /3 + 4 )  ________

1 - 7 8 8 /3 '  + 1 7 6 5 /3 6  + 2 2 7 7 /3 ® -2 4 0 0 /34  - 1558/33 + 1372/32 -1 2 /3  -  
2 (/3—1)(/3 —2 )(2 /3 —l ) ( ^ + l ) ( / 3 2  —2 ) (8 /3 2 —4/3—5)/3

1 2 /3 -2 8

288/39  -  832/3® -  788/37 +1765/3®  +2277/9®  - 2 4 0 0 /3 4 -1 5 5 8 /3 3 + 1372/32 - 1 2 / 3 - 2 8
_  2 (/3—2)(2 /3  —1)(8/3® — 3/34 —22/33 + 4 /3 2  +  12/3—2 ) ___________
— 288/3® —832/3® -  788/37 +1765/3®  + 22 7 7 /3 ® - 2 4 0 0 /3 4  - 1558/33 + 1372/32 - 1 2 / 9 - 2 8  

2 (  —12 —8/3—744/33  + 6 1 2 /3 2 —1004/34 +  1059/3® +712/36 - 3 6 8 /3 8 - 3 3 6 /3 7  +  128/39 ) 
X 7  — 288/3^ —832/3® —788/37 + 1765/3® +2277/3®  -2 4 0 0 /3 4 -  1558/3a +  1372/32 - 1 2 / 3 - 2 8

X2  —black,
X4  —cyan,

X6 — m agenta, 
x t—sienna

T h is  p o in t b e lo n g s to  th e  
s im p lex  A  if /3e  (0 .8 2 0 6 3 ,0 .8 4 8 5 9 )

0.8':

0.6- '

0.4-;

0.2*;

0; 0.8 A ^ 8 2  0.84 -ftm- tT9T 0.96 0.98
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_  0 3 - l ) ( / 3 2 - 2 ) ( 8 / 3 3 - 3 / ? 2 - 6 ; 3 + 4 )
X 2  0 {  - 6 6 /3 2  +  1 2 6 / 3 - 2 4 - 141/33 + 9 5 /3 4  + 4 /3 5  ) 

- 2 ( / ? - l ) ( /3 - 2 ) ( 2 / 3 - l ) ( ^ 4 - l ) ( / 3 2 - 2 )
3  / 3 ( - 6 6 0 2 +  1 2 6 /3 -2 4 - 1 4 1 /3 3 + 9 5 /3 4 + 4 /3 5 ) 4

X 4 — X 4

2 ( - 1 2 + 6 O /a - 3 4 /3 2 - 6 5 /9 3 + 4 8 /0 4 )

X ? — - 6 6 /3 2 +  1 2 6 / 3 - 2 4 - 1 4 1 0 3 + 9 5 /9 4 + 4 /9 5

0 < X 4 < 1

4 0(^6^5+l26^24^n^I^3+953:l+4̂ 5T ̂  ^
^ - ( 8 ^ 6 - 1 4 9 i9 4 - f8 5 /? S _ 3 6/3 3 —4 4 /3 + 1 2 2 |9 2 + 8 )  , .

X 4  /3 ( - 6 6 /3 2  +  1 2 6 /3 -2 4 - 1 4 1 /3 3 + 9 5 /? 4 + 4 0 5 ) ^  '

X2 —black, 
x j —sienna

T h is  p o in t b e lo n g s  to  th e  
s im p lex  A  if /3e(/30 ,0 .8 2 9 5 8 )

2T

1"

0 }.i 0.82 0.84 0.86 0.92 0.94 0.96 0.98

-1"

 _____ -(/? -1)( 104/36 -  7 0 ^  -304/34 + 1803 +17202- 2 0 0 + 4 )  X 2 ~ b l a c k ,

X2 _  —4—70/33 —392/34 + 159/35 + 148/32 +4/3-116/37 -96/38 +341/38 +32/39 I X4 —cyan ,
<_____ _______ 2/?(/3—1)(;3—2)(2/3—i)(/3-j-i)(8;32—4/?—5)(;32—2) > x 6 -m a g e n ta ,

X4— - 4 -  70/33 -  392/34 + 159/35 + 148/32 +4/3-116/37 -96/38 +341/86 +32/39
 ______  2(^ -2)(2/3- i) (8/35-.3|fl4_22/33+4/?2 + 12|a - 2) This point belongs to the

X6 -4-70/33-392/34 + 159/35 + 148/32+4/3-116/97-96/38+341/36+32/39 /  simplex A if /3€(0.82063,0.84859)

0.2"
O ^  0.82

-0.2-:
-0.4-L

0.84 0.9 0.92 0.94 0.96
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X2  —black 

3 - f
2  /32 (3 + 4 /3 )X3 —X3

X 4 “  ^  (3 + 4 /3 )  X 3

0 < X 3 < 1

T h is  p o in t b e lo n g s to  th e  s im p lex  A  if /3£((30 , l )

0.6;

0.4’

0.2’

-0.2’

-0.4;

X3 —green, x e—m agenta, X7 —sienna  

__ ( f l - l ) ( f l + l ) ( 5 / 3 3 + 2 / 3 2 - 7 /3 + 2 ) ( / 3 2 - 2 )

(/32 - 2 ) ( 5 / 3 3 - 3 /3 2 - 7 /3 + 2 )
X 6  — ( 4 5 /36  + 2 3 /3 5 - 166/34 - 9 1 /3 3 + 163/32 + 8 4 / 3 - 16)/3  

_  - 14S+34 + 1 4 9 /32 + 2 1 f l5 - 8 4 f l 3 + 4 0 /3 6 -1 6 + 7 8 /3  
7  4 5 /3 6 + 2 3 /3 5  _  166/3^ - 9 1 /9 3  + 163/32 + 8 4 /3 - 1 6

T h is  p o in t b e lo n g s to  th e  s im p lex  A  if  (3€((30 ,1)

0.8

0.6

>
0.4

0.2

00.1 0.9 I Oo.

X3 —green ,  x^—g re y ,  x q— m a g e n ta

2 ( /3 - l ) ( / 3 + l ) ( / 3 2 - 2 ) ( l 6 / 3 4 + 2 0 /3 3 - 1 8 /3 2 - 9 /3 + 7 )  
X 3 _  (3 2 /3 7 + 4 0 /3 ® _  1 0 0 /3 6 _  143 /3^ + 38/33  +  1 13/32 + 5 5 /3 + 13)/3

__ -  ( /3 + 1) ( 5/34  + 5 /3 3  -  8/32  ~  7 / 9 + 2 ) ____________
X 5  /3(32/37 + 4 0 /3 6 - 1 0 0 /?5 - l  43/34  + 3 8 /3 3 + 1 1 3/32 + 5 5 /3 + 1 3 )

 o , „ 16 /3 6  -  69/34  - 1 2/33  +  77/32  + 2 2 /3  - 1 3 _________
k 6  (32/3 7  +40/3®  -  io o /3 S _  1 4 3 /?4 + 38/33 + 1 13/32 + 5 5 /3  +  13)/3

T his point belongs to the sim plex A  if /3e(/30 , l )

I 0.6’

0.4-

0.2’

0.9 0.92 0.94 0.96 0.98

X3  —green, x&—m agenta

(/3—l ) ( /3 + l ) ( 5 /3 3 + 2 /3 2  —7 /3 + 2 )
3  /32 ( —7/3—3 + 2 /3 2  + 5 /3 3  )

g . - -  5 /3 3 - 3 /3 2 - 7 ,9 + 2
6  /32  ( - 7 /3 - 3 + 2 / 3 2  + 5 /3 3  )

T h is  p o in t b e lo n g s  to  th e  
s im p lex  A  if  /3e(/30t 1)

0.6’

0.4’

0.2’
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X4

X 4 — c y a n ,  X 5 — m a g e n t a ,  x 7 — s i e n n a

_  ( - 2 + / 3 2 ) ( / 3 - l ) ( / 3 + l ) ( 5 / 3 3 + 2 | f l 2 - 8 / 3 + 2 )
( /3 + 2 ) (4 5 /3 5 -6 7 /3 4 - 1 0 1 /3 3  +  1 8 5 /3 2 + 5 8 /3 -1 0 6 ) /3

____________ - ( - 2 + / 3 2 ) ( 8 /3 3 + 3 /3 2 - 6 /3 - 2 )
X 6 _  ( /3 + 2 ) (4 5 /3 ° -6 7 /3 4 - 1 0 1 /3 3 +  185/32 + 5 8 /3 - 1 0 6 ) /3  

__ 4 0 ffs - 5 9 /3 4 -  86/33 +  162/32 + 4 8 /3  -  92  
7  45/35  —6 7 0 *  -  101/33  +  185/32 + 5 8 /3 - 1 0 6

T his point belongs to the sim plex A  
if ^€(/3 o.0-85021)U (0.89147,1)

0.6:
0.4:

0.2:

0 3.8 0.82 0.84 0.9 0.92 0.94 0.96 0.98

-0.2:

0.8-
0.6
0.4-

0.2-

3.847 0.848 0.849 0.85
-0.2-
-0.4-

0.002

0.001

0
- 0.001

- 0.002

-0.003

JJA i:'. _____

X 4  — c y a n ,  x q  — m a g e n t a

_  (ft —l ) ( / 3 + l )  (5 /3 3 + 2 /3 2 —8 /3 + 2 )  
4  f t ( /3 + 2 )J > /3 ^ -8 ft2 - 5 /3 + 7 )

X 6  =  -
8 0 3 - 2 - 6 0-60+302 

0 ( 0 + 2 ) { 6 0 $ - 8 0 2 - 6 0 + 7 )

T his point belongs to the sim plex A  
if /3€(/30 ,0 .85118)U(0.89147,1)

0.6:
0.4-

0.2:

0 3.8 0.82 0.84

-0.2-

x  5 — g r e y  
x g  — m a g e n t a  

X 7  — s i e n n a

x 5 = Al+J)
i 73 “2 0 3  + 4 0 0 2 + 7 7 0 + 4 9

_  2 ( 3 + 4 0 )
6 320^T^0 \̂^T0+49

^ 2(3+4/3) (4 /32+ 2/3+ 7) 
k. 7 32/33+40/3^+77/3+49 ,

T his point belongs to the 
sim plex A  if /3g (/?0 >1)

x 5  - g r e y  
X 6 — m a g e n t a

Xr-  1+0 
X 5  7 + 9 /3

x,=23+4̂  X6 * 7+9/3

T his point belongs to the  
sim plex A  if /3e(/30 ,1)

0.8

0 7

0.6
0 5

0 4

03
0.2
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X5 —grey  
x y —sienna

TK-± ki.
® 7+ 9/3

as7= 2 2± 4fi  a'7  ̂7+ 9,0

T his point belongs to the  
sim plex A  if f3€(f30 , l )

xq m agenta  
x y —sienna

Xe 6^ 4-2/34-7

X7=§±Mltm1 6 /3^4-2 /34-7

T his point belongs to the  
sim plex A  if /3e(/?0 , l )



Appendix 2.

This appendix contains all stationary points and sets of the Replicator dynamics that belong 

to the simplex A together with their eigenvectors and eigenvalues. The parameters of the 

model satisfy the following equations in the case considered.

p h i+ t i  (1 -

COII ph3 +  i3 (1 - II cn

ph2 +  t 2 (1 ~ p) =  0; pll±+ U {  1 - p) -  1.

c i =

oII<NocoII c3 =  6; C4 = 1.
2 ’

2 =  2; 6  = & r  25

Then the parameters of the payoff matrix A  (6.1) are as follows.

x  = 25. . 
2 >

_  4625. 
— 282 >lb = 225V 94 ; X =. 2425. 

' 282 »
c 2 _  44. 

~  3 > C3 =_  62. 
“ 3 ’ Ca — 85 

6 ‘

The matrix A  in this case is given by

25 25 900
47

900
47

625
47

625
47

44
3

25 25 23 104 
1149

23104
1149

35 633 
1875

35 633 
1875

44
3

4075
141

22873
1149

3250
141

3250
141

21454
1149

16 735 
1149

44
3

A  = 4075
141

22 873 
1149

3250
141

3250
141

2150
141

17098
1149

44
3

4625
141

35171
1875

21223
1149 25 2425

141
28571
1875

44
3

4625
141

35171
1875

20860
1149

25 579 
1149

37283
1875

5569
375

44
3

62 
L 3

62
3

62
3

62
3

62
3

62
3

85
6

(8.1)

173
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25.0 25.0 19.149

25.0 25.0 20.108

28. 901 19.907 23.05

28.901 19. 907 23.05

32.801 18. 758 18.471

32. 801 18. 758 18.155

20. 667 20.667 20.667

19.149 13. 298 13.298

20.108 19.004 19.004

23.05 18. 672 14.565

23.05 15. 248 14.881

25.0 17.199 15.238

22.262 19.884 14.851

20.667 20.667 20.667

point: {7} — {0,0,0,0,0,0}

eigenvectors: eigenvalue:

[1, 0, 0, 0, 0, 0], '

[0, 1, 0, 0, 0, 0],

[0 , 0 , 1, 0, 0, 0],

[0 , 0 , 0 , 1 , 0 , 01 , 

[0 , 0, 0 , 0, 1, 0],

[ [0,0,0,0,0,1] J

point: {6} =  {0,0,0,0,0,1}

eigenvectors: eigenvalues:

[0 ,0, 0, - 1,0 , 1]

[0, 0 , - 1, 0 ,0 , 1]

[0 , 0 , 0 , 0 , 0 , 1]

[0, 1, 0 ,0, 0 , - 1] 

[0, 0,0, 0, - 1, 1] 

[1, 0, 0, 0, 0, - 1]

1441
47875

13 684 
47 875
727
125

2596
625
242
625
27368

'17625

3.009 9 x 10~2 

-.28583  

5.816 

4.1536 

.387 2 

-1 .5528

point: {5} =  {0,0,0,0,1,0}

eigenvectors: eigenvalues:

[0, 0, 0,0, - 1, 1] 
[0, 1, 0, 0, - 1, 0]

[1, 0, 0,0 , - 1, 0]

[0 , 0 , 0 , 0 , 1,01 

[0 , 0 , 0 , - 1, 1, 0]

[0, 0, 1,0, - 1, 0]

78 892 
29 375
53 042 
29 375

550
141

163
47
275
141

26 521 
18 001

2.685 7 

1.805 7 

-3 .900  7 

3.4681 

-1 .9504  

1.473 3

14.667

14.667

14.667

14.667

14.667

14.667 

14.167



Appendix 2 175

interval of points: {3,4} =  {{0,0,1 — a, a, 0,0} : a  € [0,1]}

eigenvectors: eigenvalues:

1rn n 2(a —l)(3619a—4005) -a{7238a-8527) n i] U,U, 6721a—8010 > 6721a:—8010 >U,ij
1573 88110 383 18 001 « 4. 107a—4.894 7

1rn n 3(a—l) (5082a—7493) -a(15 246a-5671) 1 „ [U>U> 32 054a—22 479 » 32 054a-22 479 >1>U
] 7502 82 423 J 1149 18 001 « 6. 529 2a—4. 5788

[ 1,0,11-21,1,0,0] <-> 550 141 -3 .900 7

1
52 954 18 001 » -2 .9417

1[0,0,11̂ 4 ,1,0,0] 11247 « -2 . 383

[0,0,1,—1,0,0] 0

point: {3} =  {0,0,1,0,0,0}

eigenvectors: eigenvalues:

[0 ,0 ,-1 ,0 ,1 ,0 ] - «  -4 .578 8

[0 ,0 ,-1 ,0 ,0 ,1 ] «-> - f f i l f »  -4 .894  7

[-1 ,0 ,1 ,0 ,0 ,01  <-> - f |2 «  -3 .900 7

[0 ,-1 ,1 ,0 ,0 ,0 ] <-> - i f f «  -2 .9417

[0,0,1,0,0,01 <- - W ~  -2 .383

[0 ,0 ,-1 ,1 ,0 ,0 ] ^  0

point: {0,0, ^ , § § § f, 0,0} «  {0,0,. 298 71, .70129,0,0}

eigenvectors: eigenvalues:

[0,0,1.0,2.761 3,0, -3.7613] <-> 2248 323 
1116062 ~ -2.0145

1-3 .3477 ,0 ,1 ,2 .347  7,0,0] <-> 550 ^  
141 ~ -3.9007

[0,-3.347 7,1,2.3477,0,0] <-> 52954 
18001 ~ -2.9417

[0,0,1,2.3477,0,0] 112 ^  
47 ~ -2 .383

[0 ,0 ,1 ,-1 ,0 ,0 ] {0,0}
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point: {4} =  {0,0,0,1,0,0}

eigenvectors: eigenvalues:

[0 ,0 ,0 ,-1 ,1 ,0 ] «■

[0 ,0 ,0 ,-1 ,0 ,1 ] «- 

[-1 ,0 ,0 ,1 ,0 ,0 ] <- 

[0 ,-1 ,0 ,1 ,0 ,0 ] <->

[0,0,0,1,0,0] >

[0 ,0 ,1 ,-1 ,0 ,0 ] ~

275
141
14179
18001

550
141

52 954 
18 001
112
47

1.9504 

-.78768  

-3 .900 7 

-2 .9417  

-2 .383

0

interval of points: {1,2} =  {{a-, 1 — a, 0,0,0,0} : a  G [0,1]}

eigenvectors: eigenvalues:

r - a ( 1 9 7 2 3 c * - 1 0  148) ( c * - l ) ( 1 9  7 2 3 a - 1 2  5 0 2 ) n  n  A] 
[  22  0 7 7 a —12 502 ' 22 0 7 7 a - 1 2  5 02  >i *U>UiUJ

T —a ( 1 9  7 2 3 a  —10 148) ( a - l ) ( 1 9  7 2 3 a - 1 2  5 0 2 ) „  A A1 
[ 22  0 7 7 a  —12 50 2  > 22  0 7 7 a - 1 2  5 02  ,U i i >U.U |

I" —a ( 1 6  6 9 8 a  —1 073) 2 ( a - l ) ( 8 3 4 9 a - 6 2 5 1 )  n A n i l  
[  28  1 2 7 a  —12 5 0 2  ’ 28  1 2 7 a - 1 2  50 2  >u >u >u >i J

f  n 16 6 9 8 a  —1073 2 ( a - l ) ( 8 3 4 9 a - 6 2 5 1 )  n  n  , n ]
I  “  2 8  1 2 7 a - 12 502  ’ 28  1 2 7 a - 1 2 5 0 2

[1 ,-= ^ ,  0,0,0, o]

[ - 1,1,0,0,0,0]

<—> 1 6 1 8 9 8
18 001 ‘

1237 5 88  
88 125 ‘

5 8 5 2
1149

11 70 4  
1875

point: {2} — {0,1,0,0,0,0} 

eigenvectors:

[0, - 1, 0, 1, 0,0]
[0, - 1, 1, 0, 0,0]

[0, - 1, 0, 0, 1, 0]
[0, - 1, 0, 0, 0, 1]

[0,1,0,0,0,0]

[ - 1, 1, 0, 0 , 0 , 0]

eigenvalues:

5852
"1149

11704
1875

13
3

-5 .0931

-6 .2421  

-4 .3333

8.993 8ct—5. 093 1

14. 044a—6. 242 1

-4 .3 3 3  3
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point: { i f f , i f f , 0,0,0,0} «  {.44448,-555 52,0,0,0,0} 

eigenvectors:

[0, 0, 1, - 1, 0, 0]

[0.295 9 ,1 ,0 ,-1 .2 9 5  9,0,0]

[0, 0, 0, 0, - 1, 1]

[1,1.2498,0,0,0,0]

[ - 1, 1, 0, 0, 0, 0]

eigenvalues:

3218600 
2937993

{0,0}
__ 13

3

-1 .095  5

-4.333 3

0

point: { tg jP ,^ p p 0 ,0 ,0 ,0 }  «  {.566 29,-433 71,0,0,0,0}

eigenvectors:

[0, 0, - 1, 1, 0, 0] 

[-1 .3856,-38561,0,0,1,0] 

[-1.385 6,-385 61,0,0,0,1] 

[1.305 7,1.0,0,0,0,0]

[-1 ,1 ,0 ,0 ,0 ,0 ]

eigenvalues:

{0,0}

257488
150525

13
3

1.710 6 

-4 .3333

point: {1} =  {1, 0 , 0 , 0 , 0 , 0} 

eigenvectors:

[ - 1, 0 , 0, 1, 0, 0] 

[ - 1. 0, 1, 0 , 0,01 

[ - 1, 0 , 0, 0 , 0,11 

[ - 1, 0, 0, 0 , 1,01 

[1, 0 , 0 , 0 , 0,01 

[ - 1, 1, 0 , 0 , 0,01

eigenvalues:

550
141

1100
141

13
3

3.900 7

7.8014 

-4.333 3

interval of points: {2,3,4} =  {{0, , a, -  cn, 0,0} : 0 < a  < ^ ^ 3}

{0 .
7221

19 723 > a ’ 19 723
12502 a , 0,0} «  {0,. 366 12, a , . 633 88 -  a , 0,0}

eigenvectors:

rn 12 5 0 2  1 - 1 2  5 0 2 + 1 9  7 2 3 a  n  n]
LU’ 19 7 2 3 a 19 7 2 3 q  ’U’UJ

[ 12 5 02  n  ,  1 - 1 2  5 0 2 + 1 9  7 2 3 a  n  n ]
L 19 7 2 3 a  ’ »■*•> 19 723 a  ,U»UJ

f0  1 1 M 23 .12 5 0 2 _  19 723 q q ]|u,x, ?221 a ,  7221 7221 a,u,uj

ei

62

[0 ,0 ,1, - 1 ,0 ,0]

eigenvalues:

1280  5 2 4  
686 719

113 8 48  
187 287

8 46  275  
'6 8 6  719

1573  
38 3  '

750 2  
' 1149 a+

3 9 4  8 5 0 1 3 4  
'4 2 9 1 9 9  375

1050 182 0 98  
1287  5 9 8 1 2 5

1.864 7 

- .607  88 

-1.2323 

- 4 . 107a-. 919 97 

-6.529 2a+.815 61
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0 

1

19 723 1269  1 7 1 8 0 6  3 26  12 4  1 3 4 + 3 8  6 89  O il  143 6 3 7  0 91 8 7 5 o :+ 7 8  637 6 6 4  141 3 6 4 4 5 3  1 2 5 a 2
59 39 2  7 25  “  (1 7 6 2  74 3  1 2 5 a + 3 9 4  8 50  1 3 4 )(5 4 2 3  825aH -6620 05 6 )

( - 1 2  5 0 2 + 1 9  7 2 3 a )  157 2 75  328 2 82  7 28  9 06  2 5 0 a 2 + 8 8  611 9 7 4  3 0 7  4 6 9  105 6 2 5 o r + 10 155 20 3  9 5 1  2 60  05 7  018  
118 78 5  4 5 0  (1 7 6 2  743 1 2 5 « + 3 9 4  8 50  1 3 4 )(5 4 2 3  8 2 5 a + 6 6 2 0  05 6 )

0

19 7 23  1195  177 6 3 4 + 1 7 6 2  743 1 2 5 a
2 5 2 7  3 5 0  542 3  8 2 5 a + 6 6 2 0  056

0

1

19 723 465 1  2 9 7  8 7 9  2 18  7 2 7  8 1 8  1 2 5 a + 2 3 5 4  6 69  4 1 7  765 5 56  5 0 8  5 1 9 + 1 2  376 3 5 8  5 2 5  63 3  2 05  4 6 8  7 5 0 a 2
118 785 450 u  ( - 5 2 5  091 0 4 9 + 4 2 0 3  4 6 4  3 7 5 a ) (1 7 8  9 86  2 2 5 a + 1 9 7  68 6  98 2 )

( - 1 2  5 0 2 + 1 9  723O:) 37  129 07 5  5 76  8 99  6 16  40 6  250ct2 - 2 6  9 79  170 923 31 2  5 13  4 20  6 2 5 a + 4 8 7  0 0 4  723 43 4  653 120 5 57  
356  35 6  3 50  ( - 5 2 5  091 0 4 9 + 4 2 0 3  4 6 4  3 7 5 a ) (1 7 8  9 86  2 2 5 a + 1 9 7  6 86  98 2 )

926 981 6 75  4 0 0  2 0 1 + 4 2 0 3  4 64  3 7 5 a  
3 7 9 1 0 2 5  178 98 6  2 2 5 a + 1 9 7  686 982

0

point: { 0 , ^ , 0 ,  § § § ,0 ,0 }  «  (0 ,. 36612, 0,. 633 88,0,0}

eigenvectors: eigenvalues:

[0, -1 ,0 ,1 ,0 ,0 ] <—► 1280 524 
686 719 a 1.8647

[-1,0,0,1,0,01 ++ 113 848 
187 287 a -.60788

[0,1,0,1.7313,0,0] ++ 846 275 
686 719 a -1 .232 3

[0,1,0, .408 89,0,-1.4089] ++ 394850134 
429 199 375 s - .91997

[0 ,-1 .197,0 ,.197  02,1,0] ++ 1050182 098 
1287598125 a .815 61

[0 ,0 ,1 ,-1 ,0 ,0 ] ++ 0

point: {0, H iE E > °} ~  {0, • 36612> •12492> ■ 508 96,0,0}
eigenvectors: eigenvalues:

[0 ,-5.0743,1,4.0743,0,0] i—> 1280524
686 719 ~ 1.8647

[-5 .0743,0 ,1 ,4 .074 3,0,0] 113 848
187287 ~ -.60788

[0,1,. 3412,1.3901,0,0] ++ 846 275
686 719 ~ -1 .232  3

[0,14.763,1,6. 581 5,0, -22 . 344] +-» 19 066 537 791 
13 305180 625 ~ -1 .433

[0 ,0 ,1 ,-1 ,0 ,0 ] {0,0}



Appendix 2 179

point: { 0 , ^ ,  § |§ ,  0,0,0} ~  (0 ,. 36612,. 63388,0,0,0}
eigenvectors: eigenvalues:

[0 ,-1 ,1 ,0 ,0 ,0 ] «  «  1.864 7

[-1,0,'1 ,0,0,0] - i l f l f  «  -.60788

[0,1,1.7313,0,0,0] «  - f f f f g  «  -1 .2323

[0,1 .2591,1 ,0 ,0 ,-2 .2591] <-> -3 .5233

[0,1 ,1 .6247,0 ,-2 .6247,0] «  ~ W m M  ~  -3 .3231

[0 , 0, 1, - 1, 0 , 0] <-> 0

fq c a 71 _  /n  n 117644491442 n 188822500000 1213 715 695 625 1
p oint- l u ’ u ’ 16 524 580 055 753 ’ u ’ 16 524 580055 753’ 16 524580055 753 J

«  (0 ,0 ,. 007119,0,. Oil 427,. 073 449}
^ _  1364036124426 _  Qno 

7 ~  1502 234550 523 ~  ' JUO

eigenvectors: eigenvalues:

[0, 0,1,4.451,9.454 7, —1. 644 3]

[2.4946,0,1,0,1.085 7,7.0276]

[0 ,0 ,1 ,0 ,-1 .1324  x 10-2, - . 44485]

[0,0,1,0,8.920 2,-2.405]

[0,175.7,1,0, -6 .753  2, -43.767]

[0,0,1,0,1.605,10.317]

point: {3, 6, 7} =  {0, 0, 2489 494623 ’
-m — 207 868 966 ^  Q18/LR 
X l ~  226 317693 ~  ‘

eigenvectors: eigenvalues:

[0,488.25,1,0,0,-123.77] «  ~ -32869

[3.7783,0,1,0,0,8.8475] <- --^ 30̂ 84%  “  -.1 1 5 1 2

[0,0,-8.42,0,14.349,1] «  2S S H 3 ~  3.124 3 x l0 ~ 2

[0,0,1,0,0,17.125] «  — 226 31769! 153 -.45924

[0 ,0 ,-2 .8644 ,-1 .9126 ,0 ,1 ] «  »  2.4332 x l 0 “ 2

[0 ,0 ,-2 .1826,0 ,0 ,1] «-> w m S i  2.2014 x l 0 “ 2

«  —1. 591 7 X 10-2

<—> »  - .1 8 2  24
<—> ~  .10419

«  - .0  3021
<—> «  .30893
<—> «  - .4 5 4

63 913125 1 „ 
829 831541 J "a {0,0,.004497,0,0,.077019}
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point:
ro K a \  __ / n  n 11-7644491442 n 188 822500000 1213 715 695 6251 
{ o ,u ,u j -  \ u , u ,  1520 182 687 067 ’ ’ 1520182 687067’ 1520182 687067 J

{0,0,. 077 388,0,. 124 21,. 798 4}

eigenvectors:

[24.533,0,1, 0, -3 .502 1, -22.031] 

[0, -20.046,1,0,2.558 6,16.487] 

[0 ,0 ,1 ,0 ,-.082  338,-.91766] 

[0,0,1,0,19.088,-20.088]

[0,0,1, -169. 38, -297.11,465. 48] 

[0,0,1,0,1.605,10.317]

eigenvalues:
38 600281084600 
19 485 978079 677
464 080519300 
138198426 097

27473 522 044 375 
158 789 991585453
682018 062 213 
138 198426 097

-1 .9809 

3.3581 

.373 5 

-.328  38 

- .173  02 

4.9351

point: {3,6} =  {0,0, | H | ,  0,0, § § § §  } «  {0,0,. 055173,0,0,. 944 83}

eigenvectors: eigenvalues:

[0 ,0 ,-1 ,0 ,0 ,1 ] <—>■ 4982 220 
18448 727 «  . 270 06

[0,0,1,. 720 11 ,0 ,-1 .720  1] 4—> 500 625 
1677157 «  .2985

[15.222,0,1,0,0,-16.222] 4—> 3673 718 600 
2601270507 «  -1 .4123

[0,0,1,0,0,17.125] <-> 103 934483 
18448 727 «  5.633 7

[0,-25.476,1,0,0,24.476] <—> 74388 700 
18448 727 «  4.032 2

[0,0,1.586 8 ,0 ,-2 .586  8,1] 642800 
1677157 «  . 383 27

point: {5,6,7} — {0,0,0,0,: 29 375 203 750 1 ^  fn n n fl 1 090 0 7 ^0191
2649 111 ’ 2649 111 J r'“' i ' J , U , U ,U , . U l l  UoJ,  . U (0 J l o j

-  _  2415 986 _  n io  
J'7 ~  2649111 ~

eigenvectors: eigenvalues:

[2.199 9,0,0,0,1,6.936 2] 71 889 862 
373 524651 «  -.19246

[0,0,-2.723 6,0,1.833 9,1] <-> 35 944931 
1014609 513 »  -3 .542 7 x l0 ~ 2

[0,0,0,0,1,6.936 2] 1207993
2649111 w -.4 5 6

[0,-27.549,0,0,1,6.936 2] <r-» 273482 
883 037 «  .309 71

[0 ,0 ,0 ,1 .8831,-2 .816 3,1] 149 428 543 
3043 828 539 «  -4 .9092  X 10-2

[0 ,0 ,0 ,0 ,-4 .7179,1] «—► 78 892 
2649 111 «  -2 .9781  X 10-2
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point: {5,6} -  {0,0,0, 0, §§}  «  {0,0,0,0,. 12601, .87399}

eigenvectors: eigenvalues:

[0,-7 .936 2 ,0,0,1,6.936 2] 820446 
233125 «  3.5193

[0 ,0 ,0 ,1 ,-1 .5001 ,. 500 06] 149428543
267860625 «  -.55786

[0,0, 0 ,0 ,-1 ,1 ] . . 78 892 
233 125 «  -.33841

[0,0 ,-1 .496 5,0,1,-49651] . , 35 944931 
89 286875 »  - .4 0 2  58

[0,0,0,0,1,6.936 2] 1207993 
233 125 «  5.1817

[ 7.936 2,0,0,0,1.0,6.936 2] ~  32370625 «  -2 .1871

point: {5,7} — {0,0,0,0, ^ 5, 0} «  {0,0,0,0,-126 01, 0}

x7 =  p |  «  .873 99

eigenvectors: eigenvalues:

[0 ,0 ,-1 .9441,0 ,1 ,0] 26 521
142 859 ~ .18564

[0,-2.260 7,0,0,1,0] 53 042
233125 ~ .22753

[0,0,0,1,2.369 4,0] 4—> 275 _  
1119 ~ -.245 76

[0 ,0 ,0 ,0 ,1 ,-1 .1148] <r-> 78892
233125 ~ .33841

[0 , 0, 0 , 0 , 1, 0] 163 ^  
373 ~ -.4 3 7

[1,0,0,0,-24.641,0] 4—> 550 ^  
1119 ~ -.49151

point: {6 ,7} =  {0 ,0 ,0 ,0 ,0 , 5̂ 1 } s» {0,0,0,0,0,.079164}

z 7 =  ±§§§«.920 84

eigenvectors: eigenvalues:

[0 ,0 ,0 ,0 ,-5 .1201,1] 242 ^  
7895 ~ .030652

[0,0 ,-2 .010 5,0,0,1] 13 684
604 757 ~ -.022 627

[0 ,-3 .9144,0 ,0 ,0 ,1] <—> 2596 ^  
7895 ~ .32882

[0,0,0,5.81,0,1] <—> 1441
604 757 ~  *002 382 8

[0 , 0 , 0, 0 ,0 , 1] 727 ^  
1579 ~ -.46042

[1,0,0,0,0,2.5419] 27368
222 639 ~ -.1 2 2  93
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This appendix contains the results of computer simulations of the Discrete Replicator Dy­

namics performed to estimate the separatrix surface of the subspace A3t5t6,7 in a small neigh­

bourhood of the stationary points.

The Discrete Replicator Dynamics has been obtain in the following way. Firstly, the 

time substitution t =  2 (l — /32) (2 — /32) t \ has been made, so the dynamical system (6.7) is 

transformed into the system

{ciij Clie) &j T  xA x Â  Xi, % — 1 , . . .  ,6,

Here A — 2 (l — /32) (2 — /32) A, where A  is the payoff matrix (8.1). For the example con­

sidered (3 =  , A = 390525A. Then the time substitution t \ =  -T2_. has been made which

transforms the dynamical system (6.7) into

27̂  ~  x/lxt "I ^  — ai7  ̂x i ai71 ~  Xi} 2 =  1 , . . .  , 6.

Finally, replacing ^  by where A r2 =  h is fixed and A Xi — x^+1 — x f  we obtain

( 5 y  “  |  -  ^ >  i  =  1 ,  • • • 6 .

Choosing /i — 1 in the above formula, the following discrete time analogue of the Replicator 

Dynamics (6.7) is obtained

Xi,k+1   x i J e x . .
cfcA (a;fc)

r  < £  (2 i j  - a i7 )z j?  +  a i7 > , 2 =  1 , . . . 6 .  (8 .2 )
J =i

This procedure represents a one step Euler method for the solution of the continuous Replica­

tor Dynamics. Therefore, analysis of the linearisation of the system (8.2) gives qualitatively 

similar results to those that have been obtained for the dynamics (6.7). Therefore it is possible

182
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to estimate the form of an invariant manifold of the dynamics (6.7) in a small neighbourhood 

of a stationary point using results obtained for the dynamics (8.2).

The separatrix surface that belongs to the subspace A3t5f6,7 has been estimated in a small 

neighbourhood of the stationary points {7} , {3,6,7} and {3,5,6,7} . Different initial points 

x l have been chosen and iterated to obtain x k using the formulae (8.2). As x1500 is calculated, 

the distances |x1500 — {3}| and |:r1500 — {5,6, 7}| are estimated.

•  If |a: 1 5 0 0  — {3} | < 0.01 the initial point x l is shown in green at the plots below.

• If |x1500 — {5,6,7}| < 0.01 the initial point x l is shown in black.

• If neither of the above conditions are satisfied the point x 1 is shown in red.

The following plots represent the results obtained.

o.oiO.Ol

0 .0 0 80 .0 0 8

0 .0 0 60 .0 0 6

0 .0 0 40 .0 0 4

0.002 0.002

0.000 0.000
Vs

0 .0 0 2  0 .0 0 4  0 .0 0 6  0 .0 0 8  0 .0 1 0 .0 0 2  0 .0 0 4  0 .0 0 6  0 .0 0 8  0 .0 1

Point {7}, y.3 =  0. 00 025. Point {7}, y3 =  0. 00 05.

0.01 0.0 1

0 .0 0 8 0 .0 0 8

0 .0 0 6 0 .0 0 6

0 .0 0 0.00.

0 .0 0 2 0.002

0.000 0.000
0 .0 0 2  0 .0 0 4  0 .0 0 6  0 .0 0 8  0 .0 1 0 .0 0 2  0 .0 0 4  0 .0 0 6  0 .0 0 8  0 .0 1

Point {7}, y3 =  0. 00 075. Point {7}, y3 =  0. 00 1.
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0.01 0.01

0 .0 0 8 0 .0 0 8

0 .0 0 6 0 .0 0 6

0.00 0.00

0.002 0.002

0.000 0.000
0 .0 0 2  0 .0 0 4  0 .0 0 6  0 .0 0 8  0 .0 1 0 .0 0 2  0 .0 0 4  0 .0 0 6  0 .0 0 8  0 .0 1

Point {7}, y.3 =  0. 00 125 Point {7}, y3 =  0. 00 15

0.01 0.01

0 .0 0 8 0 .0 0 8

0 .0 0 6 0 .0 0 6

0 .0 0 4 0.00

0 .0 0 2 0.002

0.000 0.000
0 .0 0 2  0 .0 0 4  0 .0 0 6  0 .0 0 8  0 .0 1 0 .0 0 2  0 .0 0 4  0 .0 0 6  0 .0 0 8  0 .0 1

Point {7}, y:» =  0. 00 175 Point {7}, y3 =  0. 00 2

0.010.01

0.0080.008

0.0060 .006

0.0040 .004

0.0020.002

0.000 0.000
0.065 0.07 0.075 0.065 0.07 .0750.08 0.08

Point {3,6,7}, y3 =  (25 * 10"5
Jfc=0,...17.

Point {3,6,7}, y3 =  0. 00 4 5
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0 .0 1 0.01

0.008 0.008

0.006 0.006

0.004 0.004

0.002 0.002

0.000 0.000Ye
0 .065 0.07 0.075 0.08 0.065 0.07 0.075 0.08

Point {3,6,7}, y3 =  0. 00 475.

0.01

0.008

0.006

0.004

0.002

0.000
0.065 0.07 0.075 0.08

Point {3,6,7}, y3 =  0. 00 5.

Point {3,6,7}, y3 =  0. 00 525

1 Ve

Point {3,5,6,7}, ya =  0. 00 55. Point {3,5,6,7}, y3 =  0. 00 575.
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Point {3,5,6,7}, y3 =  0. 00 6 Point {3,5,6,7}, ya =  0. 00 625

V*

Point {3,5,6,7), y3 =  0. 00 65. Point {3,5,6,7}, y3 =  0. 00 675.

V*

Point {3,5,6,7}, ys =  0. Point {3,5,6,7}, y3 =  0. 00 725.
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Point {3,5,6,7}, ys =  0. 00 75.
V*

0.02 — «

0.014 ---

0.0 12 --
O.OI — i
0.000 --
0.000 — -

J J 1 1 J J J J 1 J J J 1 1 J 1 J J---- I l l ifc
0.065 0.0 /  0.075 0.00

Point {3,5,6,7}, ys =  0. 00 775

Point {3,5,6,7}, y3 =  0. 00

h f- H -4-4 j 4--4- H  j i i ■>

Point {3,5,6,7}, ys =  0. 00 825.

Point {3,5,6,7}, ys =  0. 00 85. Point {3,5,6,7}, ys =  0. 00 857.
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