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Abstract—Fuzzy logic systems are customarily related to spe-
cific hardware or software systems. Nevertheless, it has been ob-
served that distributed and cloud-based architectures of various
intelligent systems are pouring intensifying attention. While the
distributed architectures can potentially add values in developing
fuzzy systems, a lack of standard methods and practices may
limit their public use. This study aims to provide a standard
solution for developing cloud-based service-oriented architectures
for fuzzy logic systems, based on extending IEEE-1855 (2016) in
the defining system and exchanging data. Experiments were per-
formed employing simulation concerning collection, processing
and monitoring of data in a distributed manner over the web. A
real-time human activity recognition simulated scenario is also
demonstrated through a cloud-based fuzzy system.

Index Terms—Fuzzy logic, Fuzzy Markup Language, Cloud
Computing

I. INTRODUCTION

Fuzzy logic plays a crucial role in the fields of com-
puter science, AI, control theory and mathematics. It is also
used in businesses, medicinal and behavioural sciences and
engineering. Utilising fuzzy logic has resulted in immense
changes. The beginning of fuzzy logic has made several things
uncomplicated, and this has led to the saving of not only time
and cost but also energy. Moreover, fuzzy logic is used in
intelligent problem-solving systems and applications. Fuzzy
systems normally require large data to be processed, and this
may not be possible by a single, small standalone system
or sensors. Hence, such data relies on cloud computing for
processing. The use of fuzzy logic with cloud for processing
leads to the betterment of fuzzy logic systems in terms of their
applications.

Due to a vast number of users gradually linked to the
internet, cloud computing has lately drawn the interest of
professionals, and academic communities [1]. Cloud users
can access cloud resources from all over the world via web
browsers and the internet if and when necessary. On-demand
and in a modular manner, it delivers computational power [2].
This study makes use of the cloud for handling the processing
power so that the state-of-the-art architecture can be developed
and used in real-time with minimal use of hardware, which
includes fuzzy logic. There are several problems in cloud

computing that can be overcome with the aid of fuzzy logic
[3]. The fuzzy markup language is a web communication
language that is evolving as a basic method for the human-
understandable and hardware-independent modelling of fuzzy
logic controllers [4]. Fuzzy markup language enables fuzzy
logic control designers to describe their structures indepen-
dently of their legacy representations by means of these
characteristics and provide them with with a set of facilities
that speed up the entire process of creating a fuzzy structure
[5], [6]. Nevertheless, the XML nature of the fuzzy markup
language, in addition to the hardware independence function,
makes it possible to incorporate fuzzy logic in computational
scenarios marked by high degrees of omnipresence. [7].

The idea of developing fuzzy systems as a service on
the cloud has been recently introduced in [8], [9]. A study
on cloud-based service-oriented architecture for fuzzy logic
systems for human activity recognition was conducted by
[10]–[12]. This study aims to introduce a general standardised
framework for fuzzy systems as-a-service (called FaaS).

Fuzzy logic systems (FLSs) have made known their com-
petence in Ambient Intelligence (AmI) applications. Nonethe-
less, FLS deployment needs committed hardware/software sys-
tems. Sharing FLSs ability as web services permit flexibility,
openness, load balancing, efficient resource distribution and
value for money. Distributed architecture development for
FLSs is a fairly new area with not much progress. FML
is one of the standards that could be used to carry out
communication between cloud and fuzzy systems. In other
words, an internet-based language for FLS characterizations
is the key pre-requisite for implementation/communication.
Thus, the current standard is IEEE-1855 (2016) (FML), an
XML-based markup language that facilitates an FLS to be
construed as human comprehensible and hardware independent
[1]. The use of fuzzy logic, cloud computing and fuzzy markup
language will result in an appropriate AmI environment, and a
suitable service-oriented architecture can be developed using
fuzzy logic systems.

The main contribution of this paper is that for the first time,
a distributed architecture or fuzzy logic system is proposed
that includes the use of FML and cloud for developing an
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SOA-based fuzzy system (i.e. fuzzy-as-a-service (FaaS)).
The rest of the paper is organised as follows; Sections II and

III focus on background and literature review for performing
this study, respectively. Section IV explains the methodology
that has been used in this study. The experimental setup has
been discussed in Section V. Section VI discusses the results
and discussion based on the performed experiments. Section
VII concludes the study with future scope.

II. BACKGROUND

The intention behind developing a cloud-based service-
oriented architecture for fuzzy logic systems using FML is
partly based on the probable and increasing curiosity of the
distributed use of fuzzy logic systems in an atmosphere of
AmI environment [12].

Some of the aspects are specified below:

A. Need for distributed fuzzy system:

Fuzzy logic system components need to be substantially
distributed in an AmI environment so that sensors can collect
input data; processors can execute the system and actuators
(i.e. output devices) can be distributed in the environment
[11]. Nonetheless, in order to achieve both reliability and
flexibility, it is necessary not only to distribute input and output
equipment but also to distribute computing power between
servers. Dynamic balancing of tasks between fuzzy logic
device elements involves a need for an open system, which
is difficult when permanent hardware and software designs
are taken into account.

B. Open system:

This is a general motive not limited to AmI for some
form of fuzzy logic system applications. Note that the tools
available for computing fuzzy logic systems, e.g., some li-
braries/tools in MATLAB and R software tools are generated
for fuzzy logic computation are typically fitted for a single
purpose. When an independent architecture is developed,
network connectivity to cloud service providers removes any
need to install certain tools/libraries for fuzzy logic system
computations [13], [14]. For academic and educational pur-
poses, the platform-independent design is advantageous, where
usability and dissemination of both resources and outcomes
are essential. Moreover, such an architecture leads to the
development of systems that can work in a cross-platform
environment. The other benefits of developing a platform-
independent architecture is that FLS computation accessible
from any web-connected devices present at any geographical
location.

C. Configuring the fuzzy systems from anywhere:

Cloud computing can be regarded as a valuable extension
of the client–server architecture because it makes allocation
of system resources more flexible based on required compu-
tational power for a specific FLS. The fuzzy systems can be
configured remotely and independently from their working en-
vironment. For example, the system rule-base can be updated
from any place.

D. Reuse of computational results:

To circumvent recurrent computations, a server can record
inputs and produce output. For instance, if a specific device’s
inputs have been handled in the past, then the stored outputs
can be used as a reply by means of a lookup table. A single
FLS’s definition for a specific application may be combined
and reprocessed by several applications in dissimilar surround-
ings. This is possible only if FLS servers can be inquired for
FLSs’ definitions and their past input/output description.

E. Scalability of fuzzy logic system:

Fuzzy logic systems can be extended further and can be
merged with artificial intelligence so that a smart system
can be developed in an AmI environment with the help of
a cloud-based service-oriented architecture. This possibility
arises from the well-known Zadeh’s Incompatibility Principle
stating that when the complexity of a specific system rises,
precise categorical statements about that system lose meaning
and meaningful statements cease to be precise and categor-
ical. The linguistic approach used by fuzzy logic allows to
overcome this limitation and make fuzzy systems extremely
scalable to be embedded in complex frameworks such as
AmI environments [15]. In these scenarios, fuzzy rule bases
semantically related to different aspects of the environment to
control will be designed as standalone systems and plugged
into the artificial intelligence ecosystem without any effort.

F. IEEE 1855: a standard language for fuzzy logic

Scalability is an important concept, but it could lose all
its potential if not accompanied by a technology for data
abstraction that allows to model computing with word in
human-readable and hardware independent manner [16]. IEEE
1855-2016 also known as Fuzzy Markup Language(FML)
is an XML based language achieving the above goal. This
abstraction language, originally introduced as a tool for mod-
elling the behaviour of devices in smart homes, has been
used in different applications domains and, in 2016, it has
been made an IEEE standard technology. The main benefits
provided by IEEE 1855 are related to the advantage of being
directly convertible to programming logic when it comes to
server-side programming, so as to strongly minimising the
development time of this kind of architectures. This aspect
is particularly useful in AmI environments, where collection
of heterogeneous devices need to be opportunely programmed
and communicate among them [17].

III. LITERATURE REVIEW

There have been successful utilisation of fuzzy systems in
countless fields like decision-making and image recognition,
which has enthused the beginning of various tools for devel-
oping fuzzy systems. Moreover, fuzzy system development
has been conducted using several programming languages,
platforms, and libraries that are both commercial and open
source.



The work reported in [18], developed an interoperability
module specifically for Arduino boards to build and oper-
ate fuzzy logic systems for embedded systems in the Java
fuzzy markup language. A communication protocol also was
established between the Java fuzzy markup language and Ar-
duino, which helped to eliminate the restricted computational
capabilities provided by embedded systems. To demonstrate
the interoperability module’s capability, the authors considered
a study of a wall-following fuzzy controller as per IEEE
Std 1855TM-2016, which controls a mobile robot in two
environments.

Java fuzzy markup language (JFML) presented in [19],
which is an open-source GPLv3 certified Java library that
is ready to not only build but also use fuzzy logic systems
as per IEEE Std 1855-2016, was introduced by the authors.
Note that JFML has proposed to fully incorporate four fuzzy
inference systems (i.e. Mamdani, TSK, Tsukamoto and AnYa)
used in the basic specification of the W3C XML schema. To
demonstrate the potential of JFML and its benefits for the
sharing of fuzzy logic structures through various software, the
authors put forth three case studies. For the well-known tipper
regression dilemma, the first case study was to develop a fuzzy
logic system. The second case study focussed on designing
a fuzzy logic system for controlling a robot’s wall-following
behaviour. The third case study focused on designing a pre-
liminary fuzzy logic system for classification with MATLAB
fuzzy logic toolbox. Later on, JFML was used to improve the
design and estimate unidentified input values.

Pourabdollah et al. [8] used structured FML (IEEE-1855)
and recommended extensions to design web servers for
computing the fuzzy logic system. They adopted the novel
approach to combine multiple elements of the fuzzy logic
paradigm into a single web server framework using a well-
specified language via HTTP requests/responses for commu-
nication over the web. Due to the design of fuzzy logic
structures in AmI settings, the effectiveness of this method
was demonstrated.

How the native extensibility functionality of IEEE Std
1855 allowed Arduino architectures to build fuzzy rule-based
systems in an interoperable manner was shown in [20], [21].
In addition, this feature helped programmers to concentrate on
fuzzy ideas without considering the specifics of hardware and
software belonging to a particular Arduino device.

A proposal on developing a fuzzy-as-a-service system. Their
proposal consisted of three major objectives: a description of
cloud services for fuzzy systems using semantic technologies,
the composition of services, and the exploitation of cloud
computing model in cloud platforms for integration with other
services [9].

A new open-source fuzzy system software was implemented
by the authors of [22] that could allow the modelling of fuzzy
systems as per IEEE Std 1855, which improved Java Fuzzy
Markup Language via a GUI-based visual framework. Accord-
ing to their analysis, VisualJFML provided considerable feed-
back as it allowed designers without programming expertise
to model shareable fuzzy structures. Through a case study that

dealt with the iris classification issue, they demonstrated their
user-friendly interface supported by VisualJFML.

A new Java fuzzy markup language module in their analysis
that helped developers design and deploy fuzzy ruled-based
frameworks for open embedded hardware systems developed
in [23]. For Arduino and Raspberry Pi, the new module
was ready, but it was easily extendable to other hardware
architectures. The new module was able to generate running
files on Arduino or Raspberry Pi automatically to assist non-
expert users (i.e. those who do not possess any programming
skills). The authors explained their new module by means of
two case studies.

Using the wearable accelerometer and gyroscope sensors
with the aid of fuzzy logic web providers, a study was
carried out real-time dropping detection. Wearable sensors
were used to demonstrate human behaviour tracking using
a rule-dependent fuzzy logic system in their research. They
proposed an algorithm to determine the occurrence of a fall
and non-fall and attained an accuracy of 90% along with the
sensitivity of 88.89% and specificity of 91.67% [11].

A fuzzy-as-a-service architecture based on IEEE Std 1855-
2016, Java fuzzy markup language and service-oriented ar-
chitecture was proposed in [12]. Simulation experiments were
performed over the web that involved steps like data collection,
processing and monitoring. Therefore, with the aid of the rule-
based fuzzy logic system, the authors were able to show a
simulated scenario of real-time human activity detection.

A comparative study of real-time fall detection using fuzzy
logic web services and machine learning techniques was
performed in [10] and determined which one is better for
real-time fall detection. Their study showed that the proposed
fuzzy-as-a service in a real-time setting with a precision of
90% was in a better position to distinguish between fall and
non-fall occurrences. In comparison, the authors attained a
precision of 99.19% when the random forest machine-learning
algorithm was used.

This study aims to develop a cloud-based SOA for fuzzy
logic systems. Herein, fuzzy logic, FML and cloud are used,
thereby creating a distributed architecture wherein processing
will be carried on cloud and FML will be used to carry out
communication between the devices from where data is ob-
tained (i.e. smart watches, mobile phones and web connected
devices) and FaaS. The main advantage of this system is that
any system that is connected to such type of service will be
able to access data, which implies openness and accessibility.

IV. PROPOSED ARCHITECTURE

In a decentralized AmI context, the inspiration behind a
service-oriented approach to FLSs is focused on the possibility
of using FLSs. In the first section, a Hardware architecture
is discussed, then a brief description of the specific software
components used and the features implemented to address the
described attributes is presented.

A. Hardware architecture
Web connected devices are used in our proposed system to

develop a cloud-based service-oriented architecture for fuzzy



Fig. 1. The deployment diagram of client-server communication through the API.

logic systems. The significant benefit of using such sensors is
that they can be connected to any device such as IoT devices
[24], [25]. The other benefit is that real-time data can be
obtained from these sensors, which can be used for prediction
purposes. On the other hand, for server-side architecture, we
made use of Amazon web services. The advantage of using
Amazon web services is that real-time data is obtained from
the sensors and processed using a cloud service, which gives
the desired results instantaneously.

B. Fuzzy logic processing

A fuzzy logic system defined in IEEE-1855 can be con-
verted into numerous programming languages such as Java
[26] without any delay using an extensible stylesheet language
translator, and so, minimal attempts from the server are
required to encode a fuzzy logic system’s description into a
local program logic. IEEE-1855 also authorises various agents
to monitor the same fuzzy logic system that communicates
with the environment from dissimilar locations as illustrated in
Fig.1. This study aimed to focus on fuzzy mark-up language’s
known capabilities in defining a fuzzy logic system by consid-
ering essential parameters such as input fuzzy sets, rule base,
inference method, output fuzzy sets and defuzzification [27].

An open-source library for fuzzy logic computations based
on FML (IEEE 1588-2016) data format is JFML [19]. JFML
is developed using Java and can work as a cross-platform
backend application server for the developed fuzzy-as-a-
service. JFML adheres to an object-oriented technique and a
modular architecture based on a similar tree structure that is
used by FMLs to describe FLSs. This enables developers to

extend JFML without changing the grammar of the language.
JFML facilitates the use of standard fuzzy inference systems
that are present in XML schema definition which includes
membership functions and fuzzy operators. Other components
could be needed for further use by researchers; however, those
components are not included in XSD’s current definition.
Therefore, JFML makes available custom methods for all
elements specified in XSD offering a method to expand the
library in fulfilment with this standard devoid of any changes
in the grammar of the language.

C. Fuzzy system management tool

Web interface is a software that people can design FLS
as per their requirements. People can add/remove the system
and anybody can use it at anytime from anywhere using http
request and response. We developed a special web version to
promote web services in a a homogeneous manner or medium
to propagate communication between clients and server appli-
cations (via FML) on the world wide web to make it simpler
for people by means of cloud computing. SOAP, WSDL, and
REST are examples of web service applications. The best way
to use RESTful web resources is through the cloud. When
a web service uses REST, it identifies limitations such as a
single interface that give rise to desired characteristics that
allow services to work effectively on the web. In the REST ar-
chitectural style, data and features are referred to as resources
and can be accessed via URIs, which are typically web links.
Using numerous well-defined operations, the resources will be
used. An API consisting of an HTTP request and response is
used to configure a web service invocation for each feature.



The functionalities of the API that have been established are
described later in this paper.

D. Extending IEEE-1855 Schema

Note that the request and response of the XML schema
are different from that of the IEEE-1855 schema. From the
schema, it is evident that the recently added XML elements
lie within two major elements, i.e. FLSRequest and FLSRe-
sponse. This has been done intentionally and placed within
the IEEE-1855’s root element (FuzzyController) [1]. In other
words, FLSRequest, FLSResponse and their sub-elements are
candidate extensions of the original IEEE-1855 schema. The
other interpretation here would be that all responses and
requests from or to the server can be substantiated through
a single schema. There could be a possibility of producing
an extended schema when the schema for the newly required
elements and the standard IEEE-1855 schema are combined.
The extended schema would have the same root element from
the original schema. Moreover, the original sub-elements, i.e.
KnowledgeBase and RuleBase, [23], [20] would be added
along with two additional complex-type elements for handling
FLS requests and responses under the root element. The
standard IEEE-1855 has been opportunely designed to enable
a simple and direct extension to allow the original language
to be adapted to different application scenarios.

In the next subsection, the schema of the extension and the
API design are explained using examples.

E. API design.

1) createFLS: The client machines generate a request that
includes the FLS definition in IEEE 1855-2016 standard for-
mat which contains information and values for fuzzy variables
with a unique URI ID.

Create an FLS request consists of URI and fuzzy system
tags as input parameters and “createFLS” as a service attribute.
The fuzzy system consists of two major elements, i.e. knowl-
edge base and rule base. The knowledge base consists of fuzzy
variables such as pulse and SpO2 with values such as critical,
alert, low and normal. There are sixteen rules in the rule base
(considered as per the selected example), depending on which
we can decide if a patient is COVID-19 critical or not.

Request:

<fuzzyController type="request" service="createFLS">
<URI>Covid_FLS</URI>
<fuzzySystem>...</fuzzySystem>

</fuzzyController>

Response:

<fuzzyController type="response" service="createFLS">
<URI>Covid_FLS</URI>
<message>System created successfully.</message>

</fuzzyController>

The above response’s XML schema (as well as the re-
sponses in the following functions) varies from the IEEE-1855
schema. The schema extension mentioned in the following
subsection would explain how the newly introduced features
are dealt.

2) setInput: After the backend server has created the FLS
file, values need to be set by the client in that fuzzy system for
different variables, so that the system can provide the desired
output. The service “setInput” is used for this reason. Herein,
the XML request service attribute is “setInput”, and the input
parameter is a variable name. These crisp values are saved at
the backend server so that the fuzzy system can evaluate the
end result. The sample code are as follows:

Request:

<fuzzyController type="request" service="setInput">
<URI>Covid_FLS</URI>
<variable name="pulse">

<value>50</value>
</variable>
<variable name="spo2">

<value>80</value>
</variable>

</fuzzyController>

Response:

<fuzzyController
type="response" service="setInput">
<URI>Covid_FLS</URI>
<message>Input(s) set successfully.</message>

</fuzzyController>

The Client can set data repeatedly into the database but the
latest data can be used for evaluating the result.

3) getInput: This service is used to retrieve the latest
information about variables. Values are retrieved for variable
names provided in the request under the fuzzy controller type.
A specific URI file is searched at the backend server and tried
to match with the variable names passed in the request by
iterating the entire file.

Request:

<fuzzyController type="request" service="getInput">
<URI>Covid_FLS</URI>
<variable name="pulse" />
<variable name="spo2" />

</fuzzyController>

As shown in the sample code, the XML request service
attribute is “getInput”, and in the request, the unique “URI”
is passed, and only those variable names whose latest infor-
mation is required is taken into account. Values for matched
variable names are sent as a response back to the client or else
the error response sent is “Input variables does not exist”.

Response:

<fuzzyController type="response" service="getInput">
<URI>Covid_FLS</URI>
<variable name="pulse">

<value>50</value>
</variable>
<variable name="spo2">

<value>80</value>
</variable>
<message>Input retrieved successfully</message>

</fuzzyController>

4) getOutput: In getOutput service, the result/output of
data provided in the createFLS and setInput operation is
determined. The system evaluates all input values for the
unique URI, and based on the rule base; it decides the final



outcome. The service attribute used is “getOutput”, and in a
request, the “variable name” and “URI” are passed. The output
acquired is COVID-19 critical, alert, low or normal. In case
the variable values are unsent using the “setInput” service, the
output is “Input fields not set”. Also, if the variable does not
exist at the fuzzy backend system, then the output is “Output
variable does not exist”.

Request:
<fuzzyController type="request" service="getOutput">

<URI>Covid_FLS</URI>
<variable name="covid" />

</fuzzyController>

Response:
<fuzzyController type="response" service="getOutput">

<URI>Covid_FLS</URI>
<variable name="covid">

<value>critical</value>
</variable>
<message>Output calculated successfully</message>

</fuzzyController>

5) queryFLS: Various clients may need access to informa-
tion about the status of a FLS that is stored on the server. The
stored FLS will be retrieved from backend server based on the
URI passed in the request. The requested URI is searched in
the system, and if found, the XML is converted to a Java object
and sent as a response, which includes the complete fuzzy
system object (i.e. variable names, rule base and knowledge
base).

Request:
<fuzzyController type="request" service="getFLS">

<URI>Covid_FLS</URI>
</fuzzyController>

The service attribute used is “queryFLS”, and in a request,
only the “URI” is passed. If the client requested FLS with a
unique URI is not present, then the response will be displayed
as “System does not exist” and if the URI is found in the
database then the server response will be “System URI ID
retrieved successfully”. The server response includes the FLS
definitions as mentioned earlier in IEEE-1855 schema as
createFLS and latest value which is set by using setInput.

Response:
<fuzzyController type="response" service="getFLS">

<URI>FS1</URI>
<fuzzySystem>...</fuzzySystem>
<message>System retrieved successfully</message>

</fuzzyController>

6) deleteFLS: Finally, clients should be able to request that
a FLS be deleted from the database’s list of specified FLSs if
the FLS description or past input/output history are no longer
required. This service is used to delete the FLS that was
generated using the “createFLS” service. In deleteFLS service,
the file at the backend with the given URI is searched. If the
file is found, then it is deleted, and a successful response is
sent. However, if the file is not found, then the error response
“System does not exist” is sent back to the client. The service
attribute used is “deleteFLS”, and client need to pass ”URI”
with type of request to get response from the server.

Request:

<fuzzyController type="request" service="deleteFLS">
<URI>Covid_FLS</URI>

</fuzzyController>

Response:

<fuzzyController type="response" service="deleteFLS">
<URI>Covid_FLS</URI>
<message>System deleted successfully</message>

</fuzzyController>

V. EXPERIMENTS

As shown in Fig. 2, three devices were used on client-side
hardware architecture for developing a fuzzy logic system,
namely smartwatch, mobile and oximeter.

A. Fuzzy-as-a-Service for Real-Time Human Activity Recog-
nition Using IEEE 1855-2016 Standard [12].

A new approach to a web-based FLS service-oriented
architecture was presented by this study. It was shown that
the proposed service-oriented architecture was able to perform
instantaneous data processing via a dynamic fuzzy rule-based
framework by experiments with human behaviour tracking
data sets. The accuracy of the developed system and the
response time were found to be relatively high. Although the
architecture was presented in the context of AmI environment,
it can be expanded further, i.e. wherever a fuzzy logic system’s
storage logic needs to be conceptualised from its logic of
presentation. The key purpose was to facilitate the flexible
distribution of theoretically complex computation necessary
for fuzzy logic systems from clients to dedicated servers.
The use of virtualized cloud resources unambiguously gave
the device elasticity and made the fuzzy-as-a-service widely
accessible efficiently. Network sharing, hardware/software au-
tonomy, reuse of existing files, load balancing between fuzzy
logic machine computers, and cost-efficiency were the other
advantages.

B. Fuzzy logic web services for real-time fall detection using
wearable accelerometer and gyroscope sensors [11].

A new fuzzy logic algorithm was applied to detect a fall
based on wearable sensors and controlled noise sensor data
to monitor human behaviours for their everyday tasks. This
approach was one of a kind where it implemented a web-based
fuzzy logic framework. Three major parameters were derived
in this system, i.e. SVMA, DA, and SVMG, using wearable
sensors to classify hand movements during a crash event.
Using a real-time algorithm with fuzzy logic to treat sensor
information with noise was the specific aspect of the analysis.
Fuzzy-as-a-service and real-time tracking operations that were
not traditionally carried out on wearable devices were also
used. Experiments showed that the proposed algorithm could
effectively discern between instances of decline and non-fall.



Fig. 2. The components of the conducted human activity monitoring experiment.

C. A cloud-based pervasive application for monitoring oxygen
saturation and heart rate using fuzzy-as-a-service.

A novel fuzzy logic algorithm was used to determine a
human’s medical condition with a real-time wearable sen-
sor and cloud-based web services. The sensor tracked noisy
information to detect the day-to-day behaviours or tasks of
a person. SpO2 and pulse rate were the two major factors
that were considered from wearable sensors. For the control
of sensor knowledge with noise, the analysis used a real-
time algorithm and fuzzy logic. The research also involved
fuzzy-as-a-service and real-time tracking of operations not
traditionally undertaken on wearable sensors. Better sensitivity
and above average precision values could be obtained by the
analysis.

VI. RESULTS AND DISCUSSION

Managing data in an intense FLS on top of developed web
services with more sampling rate is essential in real-world
situations. Experiment 1 showed a sample state execution of
the system where it served parallelly both client requests.
The developed fuzzy logic web service system attained an
accuracy of 97.23% and 97.42% for training and testing,
respectively. This showed an outstandingly high accuracy
processed in real time. Experiment 2 comprised wearable
sensors (i.e. accelerometers and gyroscopes) that promoted
human monitoring of activities using a rule-dependent FLS.
Re- search findings exhibited that the proposed method could
effortlessly differentiate between fall and non-fall occurrences
with an accuracy, sensitivity and specificity of 90%, 88.89%
and 91.67%, respectively. Experiment 3 included the use of
the wearable sensor BM2000A wrist pulse oximeter to gather
real-time data. The data was passed to the server through an
Android application that evaluated the results based on fuzzy

rule set. The health status was considered to be critical when
SpO2 value was 88% and heart rate was 55 bpm, which is
very low as per fuzzy calculation. The health status was treated
normal when SpO2 value was 98% and heart rate was 90 bpm
as per fuzzy calculation. An alert was displayed for a health
status when SpO2 value was 91% and heart rate was 108 bpm,
which was obtained as per fuzzy calculation. Even though
the classification performance of FLS is mentioned here, the
idea of conducting this experiment is to expedite whether the
designed FLSs are relatively accurate than other classifiers.
The performed experiment is just a proof-of concept that
aims to achieve an instantaneous FLS execution via web
services. Note that, to the best of out knowledge, the performed
experiment does not have any similar implementation. A
comparative study between the performance of the developed
system against that of a non-web system would be the future
scope.

VII. CONCLUSION AND FUTURE WORK

This research presents a novel approach towards a web-
based service-oriented FLS architecture as an example of
the implementation of the recently agreed IEEE 1855-2016
standard. Based on the above experiments, it can be concluded
that the proposed SOA can perform real-time data processing
by means of cloud computing with human activity monitoring
datasets using a complex fuzzy rule-based framework through
FML. The efficiency and response time of the developed
system were considered to be comparatively high. Even though
the architecture is specified in terms of AmI environments, it
can be expanded to a wider area. This study aimed to facilitate
the flexible delivery of the relatively complex computing
required for FLS from clients to dedicated servers. The use
of virtualized cloud services provided distinctive elasticity



to the device. Fundamentally allowing universally accessible
FaaS, other advantages of such architecture included network
sharing, hardware/software control, data reuse, load balancing
amongst FLS devices and cost-efficiency.

The unique feature of the study was the use of an IEEE
1855-2016 algorithm in real-time, in addition to fuzzy logic,
for data sensor management. The examination also required
the usage of FaaS and real-time activity tracking, which pre-
viously were impossible with wearable sensors. The practical
perspective of the proposed system has many aspects of ex-
pansion. The FLS Group is motivated to take part in the design
process as well as to provide feedback on feature prioritisation
and collaborative growth activities in deployable applications.
This reinforces the proposed API schema and/or invocation
formats as well as offering more advanced input for other ar-
chitecture implementations. The study only looked at one type
of FLS (i.e. rule-based systems). Other fuzzy services, such as
fuzzy querying of fuzzy databases or fuzzy ontologies, may
be estimated in the future. Furthermore, caused by the close
relationship between FML and fuzzy ontologies, expanding
web services to semantic web services (e.g. developing cloud-
based searchable FLS repositories) will make a significant
choice. In the future, the proposed architecture will be also
used as a main framework to design an artificial intelligence
system for the analysis of crime scenes and the automatic
reconstruction of crime dynamics, so as to highlight the role
of fuzzy logic and IEEE-1855 in a critical real world scenario,
such as that of forensic sciences.
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