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Abstract 

Flying ad-hoc networks enable vast of IoT services while maintaining communication among the 

ground systems and flying drones. The domain research is focusing on flying networks assisted data 

centric IoT applications while integrating the benefits and services of aerial objects such as unmanned 

aerial vehicle and drones. Considering the growing market significance of drone centric flying 

networks, quality of service provisioning is one of the most leading research themes in flying ad-hoc 

networks. The related literature majorly relies on centralized base station monitored communications. 

Towards this end, this paper proposes a drone assisted distributed routing framework focusing on 

quality of service provision in IoT environments (D-IoT). The aerial drone mobility and parameters 

are modeled probabilistically focusing on highly dynamic flying ad-hoc networks environments. 

These drone centric models are utilized to develop a complete distributed routing framework. Neuro-

fuzzy interference system has been employed to assist in reliable and efficient route selection. A 

comparative performance evaluation attests the benefits of the proposed drone assisted routing 

framework. It is evident that D-IoT outperforms the state-of-the-art techniques in terms of number 

of network performance metrics in flying ad-hoc networks environments.  
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1. Introduction 

 

Internet of Things (IoT) is one of the leading research domains in recent years due to the growing 

applicability in different new areas [1, 2]. The novel domains such as smart healthcare, smart 

home/city, intelligent transportation, Unmanned Aerial Vehicles (UAVs) simulation [3], pollution 

monitoring, disaster management, industrial IoT, smart agriculture have emerged as prominent 

themes to revolutionize IoT in day to day life [4-6]. In aeronautical applications, for transmitting and 

viewing data immediately, Internet is utilized to connect actuators and sensors inside the aerial 

objects. After the trip completion, data related to flight would be tracked in real-time with the usage 

of IoT devices and technologies in place for downloading data from sensors [7]. Currently, usage of 

sensors and actuators through novel technologies such as drone assisted Flying Ad-Hoc networks 

(FANET) plays a prominent role in smart agriculture [8]. The application of Drone assisted Flying 

Ad-Hoc networks makes current agriculture smarter by overcoming the various challenges of farmers 

such as sudden climate changes, disease and pest detection of crops and the presence of parasites [9,10]. 

 

Fig.1 illustrates the different aerial communication systems: satellite communication, air-ground and 

air-air communication.  It is highlighted that drone controller is a specific drone with higher 

computing and communication capability which works as coordinator in aerial adhoc network 
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environment. In satellite-based communication system, aerial object such as drone accesses Internet 

and remains in contact with ground while utilizing satellite as a relay node to cover remote, ocean or 

polar areas [11]. But these satellite-based centralized aerial communication systems have higher 

operation and maintenance cost. While comprising multi hop ad hoc networking among the drones, 

extension of network architecture is known as Flying ad hoc network [12]. While permitting and 

maintaining communication between drone and ground, over the region without communication 

infrastructure, flying ad hoc network can be utilized as a complementary communication system. 

Flying ad hoc network facilitates Internet reachability to these drones while traversing via these areas, 

with no usage of costly satellite links and high delay [13]. Therefore, in this paper, we focus only on 

flying ad hoc network and ground communication without involvement of satellite system. However, 

providing reliable and stable communication among drone and ground stations in flying ad hoc 

network assisted flight communication system is a great challenge [14].  
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Fig.1. Aerial communication systems 

 

In High speed mobility of drones in flying ad hoc networks is the key challenge in ad-hoc aerial 

communication. It causes variation in network topology in frequent and unpredictable manner, which 

results in link breakage in multi hop communication [15]. Consequently, the performance of flying 

ad hoc network degrades in terms of reliability. The requirement of drone networks having efficient 

quality of service (QoS) parameters motivates to design a drone assisted distributed routing 

framework focusing on quality of service provision in drone assisted IoT environments (D-IoT). 

Towards this end, in this paper we propose a drone assisted distributed routing framework focusing 

on quality of service provision to maximize network performance inside D-IoT environment. 

Additionally, we compute route availability factor, residual route load capacity and route delay as 

the route selection metric for the purpose of QoS provisioning while selecting the optimized route. 

Neuro-fuzzy inference system has been implemented to find the aggregated output based on QoS 

metrics route availability factor, residual route load capacity and route delay. The advantage of using 

hybrid structure; neural network with fuzzy logic counterbalance each other’s such as generalization 

to environment is done by neural network learning procedure (change the inbuilt rule of fuzzy logic) 

and error is minimized. Whereas simplification of output generated by fuzzy inference system in 

quick time [43]. Hence, a route having stability and properly balance traffic can be selected between 

drone and ground stations. Further, a best advertisement forwarding (BADF) technique is utilized to 

reduce the overhead related to advertisement flooding generated during route selection process. 
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Then, D-IoT and state-of-the-art protocols are evaluated and compared. The key contributions of the 

paper can be summarized as follows: 

1) A network model for drone assisted IoT environment is presented focusing the topological 

aspects of aerial drones and its mobility in flying adhoc networks. 

2) To optimize Drone network centric QoS provisioning parameters are derived focusing on 

relative velocity of drones, expected link availability period, residual route load capacity and 

route delay. 

3) Neuro-fuzzy interference system has been employed to jointly combine three important QoS 

provisioning parameters to assist in reliable and efficient route selection. 

4) A drone assisted distributed routing framework is developed based on the drone mobility 

model and QoS parameters. 

5) The proposed communication framework is tested to comparatively evaluate the 

performance with the state-of-the-art protocols considering metrics related to flying ad-hoc 

networks environments. 

 

The remainder of this paper is structured as follows. Section II introduces related literatures of recent 

QoS- non provisioning and QoS- aware routing techniques for flying ad hoc networks. In Section III, 

the details of the proposed drone assisted distributed routing framework (D-IoT) is presented. Section 

IV discusses the implementation and analysis of simulation results. Conclusion is presented in 

Section V. 

 

2. Related work 

 

In this section, related literature on routing in flying ad-hoc networks has been reviewed while 

focusing on QoS non provisioning routing and QoS aware routing. 

 

2.1 QoS non- provisioning routing 

 

Two novel stability driven clustering schemes have been proposed while establishing stable clusters 

for highly mobile ad hoc networks comprising ships, aircraft, cars and trains as mobile nodes [18]. 

For the scenarios with unknown position information of mobile nodes, first scheme is utilized and 

for the scenarios with known position information (via GPS), second scheme is utilized. This scheme 

lacks data reliability. An automatic dependent surveillance broadcast system based geographical 

routing has been suggested while utilizing aircraft position and velocity to remove beaconing of 

traditional routing [19]. In this scheme, next hop has been selected based on aircraft velocity metric 

while adaptively coping with highly dynamic aircraft and network topology. This scheme does not 

focus on providing optimized load capacity. Reactive greedy reactive routing has been proposed for 

highly mobile and density variable unmanned aerial vehicle communication systems while 

combining the characteristics of reactive routing techniques with geographical routing techniques 

[20]. In this scheme, velocity vector-based mobility prediction technique has been utilized to predict 

the aircraft location and two various scoped flooding techniques have been used while reducing 

message overhead. This scheme lacks the Quality of service metrics such as delay and link lifetime.  

An unmanned aerial vehicle-based communication system while providing connectivity and 

deployment modules for emergency disaster recovery has been proposed [21]. This system comprises 

three prominent sub system such as navigation system, communication sub system and schemes for 

formation management. The parameters such as link availability, jitter, throughput and packet loss 

have not been considered in the communication system. A two-echelon ground vehicle and its 

mounted drone co-operative routing technique (2E-GUCRP) has been proposed for intelligence, 

surveillance, and reconnaissance (ISR) missions while minimizing the overall mission time to meet 

the operational constraints [22]. QoS constraints are not utilized in this routing technique. A 

glowworm swarm optimization and dragonfly approach-based hybrid self-organized clustering 

protocol has been proposed for drone assisted cognitive IoT networks [23]. After introducing cluster 

formation, management and maintenance algorithm, route selection function-based routing 
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technique has been suggested for optimized route selection in drone assisted IoT. This technique 

reduces energy consumption but does not focus on latency and route connectivity.  

An Unmanned Aerial Vehicles based emergency rescue framework has been designed for scanning 

large areas searching through Smartphone signal communication of missing or injured persons [24]. 

This framework lacks mostly QoS parameters and performance in highly dynamic aerial 

environment. A new protocol for providing smart communication has been suggested while 

analyzing sequential patterns of messages with the definition of various fold messages inside UAVs 

[25]. This protocol reduces energy consumption but does not consider QoS parameters such as delay 

and route stability. A swarm intelligence-based localization and clustering techniques have been 

proposed to facilitate communication in emergency inside UAV enabled IoT networks [26]. Firstly 

proposed, swarm intelligence-based localization is a particle swarm optimization (PSO) based three-

dimensional technique while utilizing bounding box algorithm to exploit in 3D search space. 

Secondly proposed, a swarm intelligence-based clustering is PSO based energy efficient technique 

which derive fitness function for residual energy, geographic location, inter cluster and intra cluster 

distance. This technique minimizes computational cost, energy consumption, but does not improve 

link stability.  

2.2 QoS- aware routing 

 

Link availability estimation-based routing has been proposed while utilizing the link availability 

parameter for the selection and updates of a route [27]. Firstly, semi- Markov mobility model has 

been presented to imitate the behavior of airliners, then link availability period, pdf of relative speed 

between two aircrafts and expected link lifetime have been used to select the reliable route. In this 

scheme, relative speed of the derivation for link availability metric and pdf of the link lifetime have 

been utilized to select reliable route. Still metric of load balance has not been comprised. A joint 

internet gateway allocation, scheduling and routing scheme has been suggested to minimize the 

average packet delay in mobile aeronautical ad-hoc networks [28]. Inside it, a mathematical 

programming scheme has been proposed, while comprising two steps: weighted hop count 

minimization for scheduling and average delay reduction for routing. Further a genetic algorithm has 

also been formulated to reduce computational complexity in large mobile network. But this scheme 

does not provide optimized link lifetime. 

A routing and scheduling technique based on hybrid genetic approach has been proposed while 

supporting the communication among ground vehicle and multiple drones for efficient delivery of 

parcels [29]. Further hybrid genetic approach consists of population initialization, low visit cost 

crossover algorithm and three hierarchical education algorithms for fair distribution inside population 

while avoiding premature convergence and minimizing the total delay. But this technique does not 

provide optimized link lifetime. Two multi-trip vehicle routing problems have been suggested for 

drone delivery to minimize the delivery time related to budget constraint [30]. A model for energy 

consumption has been derived and validated while considering payload and battery weight. The other 

QoS parameters such as link availability, jitter etc. have not been considered. A vehicle assisted 

multi-drone scheduling and routing technique has been proposed while optimizing anchor point 

selection, tour assignment and route planning in each iteration [31]. This technique minimizes total 

finish time but does not consider residual route load capacity and route availability. A traffic load 

balancing technique has been suggested to minimize latency for drone-based fog network inside IoT 

[32]. Two algorithms: heuristic and user association have been utilized sequentially, to solve the 

traffic load balancing problem. 

A motion driven packet forwarding scheme has been suggested in micro aerial vehicle networks 

while utilizing two predictive heuristics to integrate delay tolerant routing and location aware end-

to-end routing [33]. This technique focuses on link connectivity and route delay but does not consider 

load balancing and energy efficiency. A multi-UAV routing technique has been proposed to solve 

the multi-UAV coverage task to launch the UAVs while utilizing minimum number of vehicles with 

minimum delay [34]. This technique reduces the mission time but lacks the other QoS matrices. A 

jamming-resilient multipath (JaRM) routing technique has been suggested while considering the 

three major routing matrices: link quality, traffic load and spatial distance in drone based flying ad 
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hoc networks [35]. Enhanced link quality and light traffic load are positive factors of this technique, 

but this technique does not minimize the route latency. A deep reinforcement learning based solution 

for 3D continuous movement control of multiple drones has been suggested to maximize the energy 

efficiency and connectivity of drone network [36]. Furthermore, based on coverage fairness, QoS 

requirements and energy utilization inside drone networks, a reward function has been formulated. 

The penalty for disconnected drone networks has been introduced while reducing the reward function 

value drastically. This technique only works in centralized ad-hoc network not in decentralized 

network [37-40]. A bio-inspired technique based on swarm intelligence has been proposed to control 

the network topology and to support multimedia traffic for emergency inside FANET [41]. This 

technique does minimize the route delay.    

 

Table 1 Notations 

 

Notation Description Notation Description 

𝑣∝ Target velocity 𝑐𝑘 Load capacity of node k 

∅∝ Horizontal direction 𝐶𝑖  Load capacity of route i 

𝒗" Relative velocity 𝐶𝑚𝑎𝑥 Max route load capacity 

𝒗𝒎 Velocity vector of node 𝐷𝑖 Total delay of route i 

𝐸(𝑇) Expected link availability period L Availability factor 

𝐿𝑖 Availability factor of route i 𝐶 Residual load capacity 

X Sender’s X coordinate D Delay 

Y Sender’s Y coordinate 𝑇𝑠 Time stamp 

V Sender’s velocity 𝐵𝑖𝑑  Broadcast ID 

 

 

3. QoS provisioning Drone Communication (D-IoT) 

In this section, the proposed drone assisted distributed routing framework focusing on quality of 

service provision is presented in detail. Firstly, a network model comprising mobility model of drone 

in flying adhoc networks is discussed. Secondly, QoS metrics: route availability factor, residual route 

load capacity and route delay are formulated. Hence, route selection approach based on QoS metrics, 

and broadcast optimization technique have been described. It is highlighted that the mathematical 

modeling presented as network model and metrics derivations for drone centric network environment 

is further realized as a complete information routing framework utilizing neuro fuzzy technique. 

Moreover, it is highlighted that this proposal focuses on drone centric dynamic network environment 

where parameters such as link quality, route availability, delay, residual energy have significant 

impact on network performance modelling. Therefore, we have focused in-depth mathematical 

modelling of the parameters utilizing highly scientific probabilistic modelling approach.   

 

 

3.1 Drone Network mobility model 
 

The network model consists of three components: drone, ground stations and drone controller station. 

Here ground stations work as Internet gateways (IGs). This scenario concerns only about the 

communication between drone and IGs, not satellite based communication. For simplification, some 
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assumptions have been considered. The distribution of all drones is done in a plane. Physical layer, 

transmission power and transmission range related to all drones are uniform.  Automatic dependent 

surveillance-broadcast(ADS-B) system is being equipped for all drones to acquire real-time state 

vector such as position, velocity, ID and other information. 

On the basis of airliner’s mobile trace in the sky, we can categorize a drone node movement in to 

five phases: acceleration phase, steady climb, middle smooth, steady down and deceleration. In the 

acceleration phase, velocity of drone increases until the target velocity 𝑣∝. Drone selects targeted 

horizontal direction ∅∝  in the range [0, 2π]. In the steady climb phase, drone climbs in the target 

vertical direction ∅∝ in the range [0, 𝜋 2⁄ ] and moves with constant velocity 𝑣∝. Here 𝑣∝ is randomly 

considered in the range 20-50 km/hr and is considered as standard velocity in various drone models. 

During the middle smooth phase, movement of drone is steady and smooth according to Gauss 

Markov model [42]. Further in steady down phase, velocity of drone is equal to 𝑣∝. The drone selects 

horizontal direction equals to ∅∝ and vertical direction in the range [𝜋 2⁄ , π]. In the end, in 

deceleration phase, drone uniformly decreases the velocity in one direction until it stops. In the 

starting, in acceleration phase, drone takes 5 min. for takeoff and in the end in deceleration phase, it 

also takes 5 min. for landing.  
     

3.2 Route availability factor 

 

Route availability factor between the non-neighboring drones, is defined as the minimum link 

availability factor between intermediate nodes in the present route. Link availability factor is the 

measure of link reliability based on the expected link availability period. Assuming, drone nodes 𝑀 

and 𝑁 are two intermediate nodes and these drones lie in the transmission range of each other. 

 

3.2.1 Probability density function of relative velocity 

 

Let 𝒗𝒎 and 𝒗𝒏 are velocity vectors of two drone nodes 𝑀 and 𝑁 and 𝒗𝒓 is relative velocity between 

them.  According to fig.2, α is the angle between two nodes and uniformly distributed between [0, 

π]. Let 𝑣𝑚, 𝑣𝑛 and 𝑣𝑟 are modulus of vectors 𝒗𝒎, 𝒗𝒏 and 𝒗𝒓. According to cosine theorem,  

𝑣𝑟 = √𝑣𝑚
2 + 𝑣𝑛

2 − 2𝑣𝑚
2 𝑣𝑛

2 cos 𝛼                                                          (1) 

Since 𝑣𝑚, 𝑣𝑛 and α are independent, therefore joint probability density function 𝑓𝑣𝑚,𝑣𝑛,α(𝑣𝑚, 𝑣𝑛, α) 

can be expressed as  

𝑓𝑣𝑟
(𝑣𝑟) = 𝑓𝑣𝑚

(𝑣𝑚)𝑓𝑣𝑛
(𝑣𝑛)𝑓α(α)                    (2) 

where 𝑓𝑣𝑚
(𝑣𝑚), 𝑓𝑣𝑛

(𝑣𝑛), and 𝑓α(α) are the probability density functions of 𝑣𝑚, 𝑣𝑛 and α respectively 

and 𝑣𝑚
𝑚𝑖𝑛, 𝑣𝑚

𝑚𝑎𝑥 and 𝑣𝑛
𝑚𝑖𝑛and 𝑣𝑛

𝑚𝑎𝑥 are minimum and maximum velocities of two drone nodes 𝑀 

and 𝑁. For simplicity, we assume 𝑣𝑚= 𝑣𝑛=𝑣. The joint pdf 𝑓𝑣𝑚,𝑣𝑛,α(𝑣𝑚, 𝑣𝑛, α) can be written as  

𝑓𝑣𝑟
(𝑣𝑟) = 𝑓𝑣

2(𝑣)𝑓α(α)                     (3) 

Now probability density function 𝑓α(α) can be calculated as  

𝑓α(α) = 𝑘1√2𝑣√1 − cos α                          (4) 

Where 𝑘1√2𝑣 ∫ √1 − cos α 𝑑α
𝜋

0
= 1, on solving, we get 𝑘1 = 1

4𝑣⁄ . Similarly, the 

probability density function 𝑓𝑣(𝑣) can be calculated as  

𝑓𝑣(𝑣) = 𝑘2√2√1 − cos α  𝑣                         (5) 

Where 𝑘2√2√1 − cos α ∫ 𝑣𝑑v
(𝑣𝑚𝑎𝑥)2

(𝑣𝑚𝑖𝑛)2 = 1,  

we get           𝑘2 = √2
√1 − cos α ((𝑣𝑚𝑎𝑥)2 − (𝑣𝑚𝑖𝑛)2)

⁄ .  
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Therefore, the probability density function𝑓𝑣,α(𝑣, α) can be expressed as 

𝑓𝑣𝑟
(𝑣𝑟) = 𝑓𝑣,α(𝑣, α)  =

𝑣2√2−2 cos 𝛼

 ((𝑣𝑚𝑎𝑥)2−(𝑣𝑚𝑖𝑛)2)
2

 
                   (6) 

α 

M N
v

m

vn

vr

 

Fig.2. Analysis for the relative velocity of two drones 

 

It is highlighted that the mathematical derivations presented are highly significant for in-depth 

scientific basis for each of the conceptual idea in the manuscript. This mathematical basis has more 

value in highly dynamic drone framework implementation environment, where network 

communication probability depends on metrics such as link availability, residual energy, delay, etc. 

Therefore, the modeling derivation of these parameters mathematically verifies the validity of our 

conceptual framework for drones. Further, to calculate the probability density function 𝑓𝑣,α(𝑣, α) of 

relative velocity (𝑣𝑟) between two drone nodes, we need to calculate the probability density function 

𝑓α(α) and 𝑓𝑣(𝑣) separately. Therefore, in Eq. (4), probability density function 𝑓α(α) has been 

calculated. Here, α is the angle between two drone nodes and uniformly distributed between [0, π]. 

Therefore, following probability density function 𝑓α(α) is calculated as given in Eq. (4) by following 

uniformly distributed variable formulation.   

 

 

3.2.2 Expected link availability period 
 

Here first derivation for cumulative distribution function for link availability period between 

neighboring drone nodes is estimated. Then expected link availability period is formulated. 

Assuming starting distance vector between drone nodes M and N lies in y-axis direction and 𝑑0 is 

starting distance value. The starting relative velocity vector between nodes M and N is shown in fig.3 

We assume angle between initial distance vector and initial relative velocity vector is ∅ distributed 

in uniform manner ranging from 0 to π. Link distance of two neighboring drone nodes, M and N is 

formulated as follows 

                𝑑𝑚 = 𝑑0 cos ∅ + √𝐾2 − 𝑑0
2𝑠𝑖𝑛2∅                                                                                   (7) 

Then PDF of link distance of two neighboring drone nodes, M and N is formulated as follows 

                𝑓𝑑m
(𝑑m) = 𝑓𝑑0

(𝑑0)𝑓∅(∅)                                                                                                                (8) 

 

 

PDF of ∅ is expressed as 

               𝑓∅(∅) =
1

π
                                                                                                                           (9) 

PDF of 𝑑0 can be calculated as 

              𝑓𝑑0
(𝑑0) = ℎ(𝑑0 cos ∅ + √𝐾2 − 𝑑0

2𝑠𝑖𝑛2∅)                                                                      (10) 
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Where,  ∫ ℎ(𝑑0 cos ∅ + √𝐾2 − 𝑑0
2𝑠𝑖𝑛2∅)d

𝑑max

𝑑min
𝑑0 = 1 

On solving, we get       ℎ =
6𝑑max𝑠𝑖𝑛2∅

3𝑑𝑚𝑎𝑥
2 cos∅−2(𝑘2−𝑑𝑚𝑎𝑥

2 𝑠𝑖𝑛2∅)
3

2⁄
−

6𝑑min𝑠𝑖𝑛2∅

3𝑑𝑚𝑖𝑛
2 cos∅−2(𝑘2−𝑑𝑚𝑖𝑛

2 𝑠𝑖𝑛2∅)
3

2⁄
 

Then PDF 𝑓𝑑m
(𝑑m) can be expressed as 

𝑓𝑑m
(𝑑m) =

𝑑0 cos ∅+√𝐾2−𝑑0
2𝑠𝑖𝑛2∅

π
(

6𝑑max𝑠𝑖𝑛2∅

3𝑑𝑚𝑎𝑥
2 cos∅−2(𝑘2−𝑑𝑚𝑎𝑥

2 𝑠𝑖𝑛2∅)
3

2⁄
−

6𝑑min𝑠𝑖𝑛2∅

3𝑑𝑚𝑖𝑛
2 cos∅−2(𝑘2−𝑑𝑚𝑖𝑛

2 𝑠𝑖𝑛2∅)
3

2⁄
   (11) 

 

Link availability period 𝑡 between nodes 𝑀 and 𝑁 is expressed as 

             t =
𝑑m

𝑣𝑟
                                                                                                                                 (12) 

 

Using Eq. 7 to 12, PDF of link availability period between nodes 𝑀 and 𝑁 is is expressed as 

            𝑓𝑇(𝑡) = ∫ 𝑣𝑟𝑓𝑑m𝑣𝑟
(𝑣𝑟𝑡, 𝑣𝑟)𝑑𝑣𝑟

𝑣𝑚𝑎𝑥

0
  

                      = ∫ 𝑣𝑟[𝑓𝑑m
(𝑑m)]𝑑m=𝑣𝑟𝑡

[
𝑣2√2−2 cos 𝛼

 ((𝑣𝑚𝑎𝑥)2−(𝑣𝑚𝑖𝑛)2)
2

 
]𝑑𝑣𝑟

𝑣𝑚𝑎𝑥

0
                                              (13) 

Then expected link availability period is estimated as 

                   𝐸(𝑇) = ∫ 𝑡𝑓𝑇(𝑡)dt
∞

0
                                                                                                    (14) 

 

 

Fig.3. Link availability period between drone nodes M and N 

 

 

3.2.3 Route availability factor calculation 

 

Link availability period between nodes 𝑀 and 𝑁 is expressed as follows from fig.3 

                    𝑇𝑀𝑁 =
𝑑0 cos ∅+√𝐾2−𝑑0

2𝑠𝑖𝑛2∅

𝑣"                                                                                        (15) 

Link availability factor between nodes 𝑀 and 𝑁 is formulated as 

                   𝐿𝑀𝑁 = 𝑚𝑖𝑛 (
𝑇𝑀𝑁

𝐸(𝑇)
, 1)                                                                                                   (16) 

Let 𝐿𝑖 is the route availability factor of route 𝑖, then 𝐿𝑖 is estimated as 

                   𝐿𝑖 = min {𝐿𝑀𝑁}                                                                                                           (17) 
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Fig.4. Route availability factor calculation 

According to fig.4, link availability factor which is minimum in this route has been considered as the 

route availability factor of the route AD. That is to say  

𝐿𝐴𝐷 = 𝐿𝐵𝐶 = 0.7 . 

 

3.3 Residual Route load capacity 

 

In In this section, residual load capacity of route between two nodes is formulated.  Residual route 

load capacity is defined as the minimum residual load capacity amongst all node’s residual load 

capacity along the route. Assuming, 𝑐𝑘 is the residual load capacity for drone node 𝑘. Hence 𝑐𝑘 is 

expressed as 

                        𝑐𝑘 = 𝛿 − ∑ 𝜔𝑘𝑙𝑘
𝑚
𝑘=1                                                                                                

(18) 

Where, 𝛿 is the maximum load capacity for drone node 𝑘, while 𝑙𝑘 and 𝜔𝑘 are the average packet 

size related to traffic and average packet arrival rate of 𝑚 sources, respectively. Let 𝐶𝑖 be the residual 

load capacity for route 𝑖, the 𝐶𝑖 is formulated as 

                        𝐶𝑖 = min {𝑐𝑘}                                                                                                         

(19) 

A B C D

CA = 4 CB = 3 CC = 4 CD = 5

Route 

AD

 

Fig.5. Residual route load capacity calculation 

In this protocol, route having minimum residual load capacity is prefer in route finding process. Fig.5 

shows the calculation process for residual load capacity for route AD, where residual load capacity 

of node B  having minimum residual load capacity equals to 3 is the residual load capacity of route 

AD. 

 

3.4 Route Delay  
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Route delay is defined as the time required to send a data packet from source drone node to 

destination drone node. Usually route delay mainly comprises queuing delay, propagation delay and 

transmission delay based on scheduling techniques, traffic control schemes of nodes, residual link 

bandwidth, processing power of ports and traffic characteristics. Here leaky bucket control strategy 

as illustrates in fig.6 is utilized to control communication volume of drones. Assuming λ is the bucket 

capacity, 𝜇𝑖𝑛 is the input flow rate and 𝜇𝑜𝑢𝑡 is the service rate. As service rate at each drone varies, 

so highest data flow of link is dependent on the drone node which has least service rate, therefore 

𝜇𝑜𝑢𝑡 = min {𝜇𝑜𝑢𝑡
1 , 𝜇𝑜𝑢𝑡

2 , 𝜇𝑜𝑢𝑡
3 , … … , 𝜇𝑜𝑢𝑡

𝑛  }  

If 𝑑 is the queuing delay then according to the leaky bucket strategy, 

                       λ + 𝜇𝑖𝑛𝑑 < 𝜇𝑜𝑢𝑡𝑑                                                                                                       (20) 

hence  

                       𝑑 =
 λ

𝜇𝑜𝑢𝑡−𝜇𝑖𝑛
                                                                                                              (21) 

For the links, λ = ρ − 𝑛𝑆𝑚𝑎𝑥 where ρ is sudden traffic depended on the network and 𝑆𝑚𝑎𝑥 represents 

maximum packet size, then queuing delay is expressed as 

                       𝑑 =
 ρ−𝑛𝑆𝑚𝑎𝑥

𝜇𝑜𝑢𝑡−𝜇𝑖𝑛
                                                                                                             (22) 

Let 𝐷𝑖 is the total delay of route 𝑖, and 𝐵𝑗 and 𝑝𝑗 are bandwidth and propagation delay of link j 

respectively. The route delay can be expressed as  

                      𝐷𝑖 =
 ρ−𝑛𝑆𝑚𝑎𝑥

𝜇𝑜𝑢𝑡−𝜇𝑖𝑛
+ ∑

𝑆𝑚𝑎𝑥

𝐵𝑗

𝑛
𝑗=1 + ∑ 𝑝𝑗

𝑛
𝑗=1                                                                         (23) 

µin

µout

λ 

 

Fig.6. Leaky bucket strategy 

 

 

3.5 Single metric 

 

Initially, In D-IoT, all the QoS metrics: route availability factor, residual route load capacity, and 

route delay are jointly considered for the purpose of finding the optimized route. Let 𝑃𝑘 is considered 

as the single metric for route  𝑘. The metric 𝑃𝑘 is evaluated by employing a neuro-fuzzy inference 

system (NFIS). It is far better than fuzzy logic inference system because of unlike another artificial 

neural network, NFIS have higher capability to adapt an environment’s requirement in the learning 

process and adjust the weight of membership function of fuzzy logic inference system and reduces 

the error rate in determining the rules in fuzzy logic [43]. It is a feed-forward adaptive neural network 

which uses supervised learning algorithm for learning process. NFIS follows the learning process of 

Takagi-Sugeno fuzzy inference system [44]. The basic architecture of NFIS with three input 

parameter route availability factor (L), residual route load capacity (C), route delay (D) and one 

output single metric (P) are shown in fig 7.  

Each of these three input parameters have three membership functions, according to Takagi- Sugeno 

fuzzy inference model that contains 27 rules. NFIS consists of five layers architecture; Fuzzy layer, 

T-norm layer, normalized layer, de-fuzzy layer and aggregated layer. The first fuzzy layer (as known 
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as membership/antecedent layer) and fourth de-fuzzy layer (consequent layer) are adaptive in nature 

because they are updated according to results obtained and rest of the layers are non-adaptive in 

nature.  
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Fig. 7. NFIS with 3-input, 27 rules and one output 

Table 2 Fuzzy rules database 

 
Rule 

IF THEN   
Rule 

IF THEN 

L C D P  L C D P 

1. 𝐿1 𝐶1 𝐷1 𝑃3  15. 𝐿2 𝐶2 𝐷3 𝑃3 
2. 𝐿1 𝐶1 𝐷2 𝑃3  16. 𝐿2 𝐶3 𝐷1 𝑃2 
3. 𝐿1 𝐶1 𝐷3 𝑃1  17. 𝐿2 𝐶3 𝐷2 𝑃1 
4. 𝐿1 𝐶2 𝐷1 𝑃2  18. 𝐿2 𝐶3 𝐷3 𝑃1 
5. 𝐿1 𝐶2 𝐷2 𝑃3  19. 𝐿3 𝐶1 𝐷1 𝑃7 
6. 𝐿1 𝐶2 𝐷3 𝑃1  20. 𝐿3 𝐶1 𝐷2 𝑃6 
7. 𝐿1 𝐶3 𝐷1 𝑃2  21. 𝐿3 𝐶1 𝐷3 𝑃5 
8. 𝐿1 𝐶3 𝐷2 𝑃2  22. 𝐿3 𝐶2 𝐷1 𝑃5 
9. 𝐿1 𝐶3 𝐷3 𝑃1  23. 𝐿3 𝐶2 𝐷2 𝑃3 
10. 𝐿2 𝐶1 𝐷1 𝑃4  24. 𝐿3 𝐶2 𝐷3 𝑃3 
11. 𝐿2 𝐶1 𝐷2 𝑃3  25. 𝐿3 𝐶3 𝐷1 𝑃2 
12. 𝐿2 𝐶1 𝐷3 𝑃2  26. 𝐿3 𝐶3 𝐷2 𝑃1 
13. 𝐿2 𝐶2 𝐷1 𝑃4  27. 𝐿3 𝐶3 𝐷3 𝑃1 
14. 𝐿2 𝐶2 𝐷2 𝑃3       

 

The linguistic variables for three input parameters are given as follows: route availability factor (L) 

= {below, good, top} and is denoted by {𝐿1, 𝐿2, 𝐿3}, residual route load capacity (C) = {min, avg, 

max} that is denoted by {𝐶1, 𝐶2, 𝐶3}, route delay (D) = {low, medium, high} as {𝐷1, 𝐷2, 𝐷3}and 

output single metric (𝑃𝑘) = {weakest, weaker, weak, medium, strong, stronger, strongest} as 

{𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6, 𝑃7}. The first layer’s membership nodes follow the rules influenced by If-Then 

rules as shown in table -2. The antecedent parts of rules in the table-1 represent the input fuzzy 

subspace and consequent part of rule in the table shows the output inside the fuzzy subspace. We 
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developed for three input parameters with three linguistic variables (33) 27 If-Then rules for the 

proposed NFIS architecture governed by Takagi-Sugeno fuzzy inference system. The rules can be 

expressed as   

Rule 1 = If L is 𝐿1, C is 𝐶1 and D is 𝐷1  Then 𝑃1 = 𝑞1𝐿 + 𝑟1𝐶 + 𝑠1𝐷 + 𝑡1 

Rule 2 = If L is 𝐿1, C is 𝐶1 and D is 𝐷2  Then𝑃2 = 𝑞2𝐿 + 𝑟2𝐶 + 𝑠2𝐷 + 𝑡2 

Rule 3 = If L is 𝐿1, C is 𝐶1 and D is 𝐷3  Then𝑃3 = 𝑞3𝐿 + 𝑟3𝐶 + 𝑠3𝐷 + 𝑡3 

Rule 4 = If L is 𝐿1, C is 𝐶2 and D is 𝐷1  Then 𝑃4 = 𝑞4𝐿 + 𝑟4𝐶 + 𝑠4𝐷 + 𝑡4 

. 

. 

Rule 25 = If L is 𝐿3, C is 𝐶3 and D is 𝐷1 Then𝑃25 = 𝑞25𝐿 + 𝑟25𝐶 + 𝑠25𝐷 + 𝑡25 

Rule 26 = If L is 𝐿3, C is 𝐶3 and D is 𝐷2Then 𝑃26 = 𝑞26𝐿 + 𝑟26𝐶 + 𝑠26𝐷 + 𝑡26 

Rule 27 = If L is 𝐿3, C is 𝐶3 and D is 𝐷3Then 𝑃27 = 𝑞27𝐿 + 𝑟27𝐶 + 𝑠27𝐷 + 𝑡27 

 

Where 𝐿1, 𝐶1, 𝐷1  are membership function of input parameter antecedent (If) part, while 

 𝑞1, 𝑟1, 𝑠1 𝑎𝑛𝑑 𝑡1 are linear parameters of consequent (then) part of Takagi-Sugeno model. The 

operation of NFIS to select single metric output 𝑃𝑘 describe by layer wise as follows. 

1) Fuzzy Layer- the nodes in this layer are represented by square, which are adaptable in nature 

during backward pass. Each node resembles to membership function of input parameters. The 

output of this layer is degree of membership govern by input membership function in the range 

of 0 and 1. The membership function can be triangular, trapezoidal, Gaussian, and generalized 

bell membership function. In this work, we considered Gaussian (Eq. 24) and generalized bell 

membership function (Eq .25). 

     𝜇𝐿𝛼(𝐿) = 𝑒𝑥𝑝 [− (
𝐿−𝑧𝛼

2𝑥𝛼
)

2
]                                                                               (24) 

𝜇𝐿𝛼(𝐿) =
1

1+|
𝑚−𝑧𝛼

𝑥𝛼
|
2𝑦                                                                                      (25) 

The output of first layer is given by 

𝑂1,𝛼 = 𝜇𝐿𝛼(𝐿),      𝛼 = 1,2,3      

𝑂1,𝛼 = 𝜇𝐶𝛼(𝐶),     𝛼 = 1,2,3     

𝑂1,𝛼 = 𝜇𝐷𝛼(𝐷),     𝛼 = 1,2,3   

Where 𝜇𝑀𝛼  , 𝜇𝑁𝛼  and 𝜇𝑂𝛼 are membership functions of adaptive node 𝐿, 𝐶  and  𝐷 respectively 

and 𝑥𝛼  , 𝑦𝛼 and 𝑧𝛼 are premises parameters of membership functions that are responsible for 

customize the shape of membership functions. The membership function 𝑂1,𝛼 represents the 

degree to which L satisfies the input parameter 𝐿𝛼.  

2) T-Norm Layer- this layer determines the firing strength of each rule associated with input 

signals. All the nodes in this layer are non-adaptive in nature and are depicted by circle with 

labeled 𝜋. The output of T-norm (rule) layer evaluated as multiplying all the incoming signals to 

node and delivered output to the next layer nodes. The T-Norm layer applies generic AND 

operator to multiply all the input signals to evaluate the firing strength of rules and generates 

output 𝑂2𝛼( 𝑇𝛼) as follows. 

                    𝑂2𝛼 =  𝑇𝛼 = 𝜇𝐿𝛼(𝐿) ∗ 𝜇𝐶𝛼(𝐶) ∗ 𝜇𝐷𝛼(𝐷),   𝛼 = 1,2,3  

                  𝑂2𝛼 =  𝑇𝛼 = 𝜇𝐿𝛼(𝐿)˄ 𝜇𝐶𝛼(𝐶)˄ 𝜇𝐷𝛼(𝐷),   𝛼 = 1,2,3                                                 (26)  

3) Normalized layer- The firing strength of each rule is normalized corresponding to summation 

of all rules firing strength. The nature of node in this layer is also non-adaptive and labeled with 

N within circle.  The normalized firing strength of rule can be expressed the output 𝑂3𝛼 as 

follows.    

𝑂3𝛼 = 𝑇𝒏𝛼 =
𝑇𝛼

∑ 𝑇𝛼𝛼
,     𝛼 = 1,2,3                                                                             (27) 

4) Defuzzy Layer- Nodes in this layer are adaptive in nature and labeled with R within square. The 

output of adaptive node is the multiplication of normalized firing strength of rule and premises 
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parameter of input parameter. The output is also known as consequent parameter and can be 

expressed as     

𝑂4𝛼 = 𝑇𝒏𝛼  𝑃𝛼 = 𝑇𝒏𝛼  (𝑞𝛼𝐿 + 𝑟𝛼𝐶 + 𝑠𝛼𝐷 + 𝑡𝛼)                                                           (28) 

Where 𝑇𝑛𝛼  normalized firing strength of rule is obtained from previous (third layer) and 𝑃𝛼 is 

premises parameter of the node. 

5) Aggregated Output layer- Non-adaptive nature of single node is used to estimate the output, 

which measures the overall system performance.  The output is the summation of all the 

incoming signals to this layer, labeled as ∑ inside the circle to represent the aggregated output. 

𝑂5𝛼 = 𝑃𝑘 = ∑ 𝑇𝒏𝛼  𝑃𝛼 =
∑ 𝑇𝛼𝑓𝛼𝛼

∑ 𝑇𝛼𝛼
𝛼                                                                               (29) 

A neuro-fuzzy selection algorithm (Algorithm-I) is presented to describe the process of NFIS. NFIS 

uses hybrid learning algorithm based on gradient descent and least mean square to train the 

membership function of input parameter worked on two passes: forward pass and backward pass. 

The first layer and fourth layer node are updated over time. In forward pass (training dataset), the 

input signals (premise parameter {L, D, C}) are fixed in nature and propagated from first layer (as 

step-6) till to fourth layer (step 11) of proposed Algorithm-1. In the step -7 Gaussian and bell-shaped 

membership function for each input parameter {L, D, C} are obtained using Eq. (24) and Eq. (25). 

After that in step -8 using if-then rules and minimum operator AND is applied to customize the firing 

strength (it defined how much powerful the signal) of each input parameter. Further, firing strength 

of each input node regarding membership function is normalized with respect to the total firing 

strength. The output of fourth layer is obtained as aggregated output 𝑃𝑘 using Eq. (29) in step-11 

term as consequent parameter. The obtained output is compared with actual output and error is 

recorded. The primary goal of the ANFIS algorithm is to minimized mean square error 

(|obtained output – actual ouput|2) recursively. While in the backward pass, error occurred in 

forward pass is sent back to input (first) layer and at the same time membership function of input 

premises are updated using learning process of gradient descent method. The hybrid learning process 

(combination of forward pass and backward pass) of one level is known as epoch. The algorithm 

runs for until convergence (error between actual output and calculated output is infinitesimal small) 

or maximum number of epochs (𝐸𝑚𝑎𝑥). 

Algorithm 1: Neuro-fuzzy Selection Algorithm (NFSA)     

Input:  L, D, C and 𝐸𝑚𝑎𝑥; 

Process: 

1. For E=1 to 𝐸𝑚𝑎𝑥.  

2. Input the nonlinear premises into first layer of Takagi- Sugeno inference engine.  

3. Produce the parameter Membership function 𝜇𝐿𝛼(𝐿) for each node according to Eq. (24) and 

(25) in adaptive Fuzzy layer. 

4. Customize the firing strength of each node (𝑇𝛼) according to Eq. (26) in T-norm layer 

5. Normalize the firing strength of each node (𝑇𝒏𝛼) according to Eq. (27) in normalized layer.    

6. Update the consequent parameter of each node using Eq. (28) in Adaptive Defuzzification 

layer. 

7. Produce the aggregated output 𝑃𝑘 for overall system according to Eq. (29). 

8.       Output: 𝑃𝑘 
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Fig. 8. Structure of IG advertisements (IGAD) message 

 

3.6 Best advertisement-based forwarding (BADF) technique 
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In this section, best advertisement-based forwarding (BADF) technique is discussed, with the 

involvement of three aspects for controlling the overhead related to advertisement flooding. Firstly, 

the IP address of originator, and broadcast ID of previously received IG advertisements (IGADs), 

and newly received IGADs are checked by a drone. If drone finds duplicate IGADs, having similar 

IP address of originator, broadcast ID of previously received and newly received IGAD, then the 

duplicate IGADs are discarded by this drone. Hence, the congestion caused by duplicate IGADs is 

avoided based on the advertisement flooding in the network.  

Secondly, the drones not yet taken off or already landed (having zero velocity) discard all the 

received IG advertisements. These drones are not involved during routing table computation. 

Therefore, this results in the form of limited broadcasting and reduction in network congestion. 

In the last, a drone rebroadcasts the IGADs with route availability factor and residual route load 

capacity, higher as compared to threshold value and route delay lower than threshold value. Hop 

count between drone node and IG should be lower as compared to maximum hop count. Hence, this 

minimizes the traffic overhead caused by broadcasting advertisement. 
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Fig.9. Optimal route and IG selection process of D-IoT 

 

3.7 QoS provisioning Drone assisted routing 

 

The In this protocol, IGs broadcast IGADs for advertising their QoS metrics (𝐿. 𝐶, 𝐷) periodically 

inside the network. Further, drone node knows their information on the basis of IGADs. In this 

protocol, we assume all IGs have the same IGAD interval. Let IGADs for 𝐿, 𝐶 and 𝐷 are 𝐿𝐺𝐴𝐷,  𝐶𝐺𝐴𝐷 

and 𝐷𝐺𝐴𝐷.  𝑇𝑠 is timestamp or time at which packet is sent. The format for IGAD message is 

illustrated in fig.8. 

 

  

Algorithm 2: QoS provisioning Drone assisted routing 

Input: Loc, V, 𝐿𝐺𝐴𝐷 = 0, 𝐶𝐺𝐴𝐷, 𝐷𝐺𝐴𝐷 = 0, 𝐵𝑖𝑑; 

Process:  

1. IGAD (Loc, V, 𝐿𝐺𝐴𝐷 = 0, 𝐶𝐺𝐴𝐷, 𝐷𝐺𝐴𝐷 = 0, 𝐵𝑖𝑑) 

2. IG sends IGADs periodically. 

3. Drone node 𝑘 receives IGAD packet. 

4. if received packet based on BADF scheme condition then 

5. Node 𝑘 computes 𝐿𝑘, 𝐶𝑘 and 𝐷𝑘according to Eq. (16) and (18) and (23). 

6. if(𝐿𝐺𝐴𝐷 = 0 || 𝐿𝑘 < 𝐿𝐺𝐴𝐷)then 

7. 𝐿𝐺𝐴𝐷 = 𝐿𝑘. 
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8. end if 

9. if(𝐶𝑘 < 𝐶𝐺𝐴𝐷)then  

10. 𝐶𝐺𝐴𝐷 = 𝐶𝑘. 

11. end if 

12. 𝐷𝐺𝐴𝐷 = 𝐷𝐺𝐴𝐷 + 𝐷𝑘. 

13. Update IGAD packet while replacing, Loc and 𝑉 with 𝐿𝑜𝑐𝑘and 𝑉𝑘, and updating  𝑇𝑠. 

14. Update route QoS metrics (𝐿. 𝐶, 𝐷) in routing table of node 𝑘.  

15. Forward IGAD packet based on BADF scheme 

16. else discard IGAD packet; 

17. end if 

18. Compute 𝑃𝑘 for each route 𝑘 using NFSA  

19. 𝑃𝑟 = max {𝑃𝑘} 

20. Select the route with 𝑃𝑟 

21. Select the IG with 𝑃𝑟 

22. Output: Optimized route and IG 

 

After receiving IGAD packet, drone node estimates the values of 𝐿𝑘, 𝐶𝑘 and 𝐷𝑘 on the basis of eq. 

(16), (18) and (23). If the values of 𝐿𝑘 or/and 𝐶𝑘 are lower than the values of 𝐿𝐺𝐴𝐷 or/ and 𝐶𝐺𝐴𝐷 , 

then QoS metrics (𝐿. 𝐶, 𝐷)are updated in drone’s routing table and location (𝑋, 𝑌), velocity 𝑉 and 

𝑇𝑠 are updated in IGAD packet. Otherwise current 𝐿𝐺𝐴𝐷 or/and 𝐶𝐺𝐴𝐷 are utilized in the routing table 

and IGAD also. Further, the value of 𝐷𝐺𝐴𝐷  is updated by adding the value of 𝐷𝑘. Then, on the basis 

of best advertisement-based forwarding technique IGAD packet is further forwarded inside the 

network. The basic procedure for route selection is presented by algorithm-II. The message for route 

updates is sent to the source drone node by the intermediate drone node, if there is possibility of 

novel link establishment or current link breakage along the route. 

In this way, based on updated route parameters, source drone node decides a potential route to 

transmit packet. The drone node preserves the records of QoS parameters for each route to IGs in the 

routing table. The optimal route and IG selection process of D-IoT is also presented in Fig.9. 

 

 

4. Experimental Results and Discussion 

 

In this section, simulation experiments are performed to carried out performance analysis of the 

of the proposed Drone assisted distributed routing framework focusing on QoS in IoT environment 

(D-IoT). Simulations carried out to assess the performance related to the proposed D-IoT framework 

in drone assisted IoT environment is presented focusing on simulation settings, parameters, and 

comparative analysis. The implementation of proposal and some state-of-the-art techniques is done 

using network simulator (ns-2) environment [45]. The major simulation setting includes 200 drones 

wireless nodes enabled by 802.11b version of Wi-Fi in the simulation area of 2𝑘𝑚 × 2𝑘𝑚. The 

wireless transmission range of 200m was considered for Drone-to-Drone and Drone-to-Ground 

communication with most of computing performed in the ground station server and drones active as 

service enables in drone assisted IoT environment. The communication link bandwidth between 

Drone-to-Drone was considered 5Mbps and between Drone-to-Ground server was considered 

10Mbps. A total simulation time of 50 minutes was considered for each experiment performed in the 

simulator. Each data point considered in the experimental results is an average of 10 simulation 

experiments performed under similar parameter setting to avoid objectivity and bring normalization 

in result analysis.        

 

Further, it is also clarified that in the simulation 802.11b Wi-Fi was utilized considering its suitability 

and availability in ns2 network simulation environment. It supports approximately 11Mbps network 

speed which was enough for the considered network settings in our implementation. For comparative 

performance analysis, few traditional ad hoc networking framework and a recent drone framework 

were considered including AODV [16], GPSR [17], and JaRM [35]. Further, range of metrics 
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considered in the performance analysis incudes packet delivery ratio, number of handoffs among 

Drones assisted Flying ad hoc networks, overhead and route delay. It is clarified that mathematical 

modeling derivation in Section 3 are the basis of considering these metrics in the analysis of results. 

Similar metrics were also considered in recent development in literature on drone assisted FANET 

environments. However, we have carried out the simulation in ns-2 considering various benefits of 

the simulation such as basic adhoc protocol support, signal level setting in nodes, freedom of using 

range of wireless access techniques. We do agree that new simulator support much realistic network 

environment, and therefore we will plan to work in future in these new simulators. The different 

color of the protocols represents the level of value of the measure metric. For example, in Fig. 10, 

the color means the different values of packet deliver ratio. Similarly, in Fig. 12, the color means the 

different levels of network overhead. A summarized list of major simulation configuration settings 

is in Table 3. 

 

Table 3 Simulation setup 

Parameters Values Parameters Values 

Simulation area 2km ×2km MAC protocol TDMA 

Simulation time 50 min CBR packet size 512 bytes 

Trans/Receiv antenna Omnidirectional CBR interval 0.01 𝑠𝑒𝑐 

IGAD interval Uniform(3.5,4.5) s Drone-Drone link bandwidth 5 𝑚𝑏𝑝𝑠 

Drone-Drone trans range 200m Drone-Ground link bandwidth 10 mbps 

Drone-Ground trans range 200m Packet Type 𝑈𝐷𝑃 

Number of drone 200 Channel Type 𝑊𝑖𝑟𝑒𝑙𝑒𝑠𝑠 

Propagation model Free space   

 

4.1 Analysis of Results 

 

Two scenarios: experimental results with same weight factors and experimental results with varying 

weight factors are considered to analyze the performance of proposed D-IoT with the state-of-the-art 

protocols. 

 

4.1.1 Analysis of results (with same weight factors) 

 

In this section, experimental results have been described while assigning equal weightage for all the 

metrics: route availability factor, residual route load capacity, and route delay.  

Packet delivery ratio (PDR) is described as the ratio of the number of successfully transmitted packets 

to the number of total transmitted packets. Fig 10 shows the variation in packet delivery ratio as 

departure gap of drones and number of drones increase for all the compared protocol: AODV, GPSR, 

JaRM and D-IoT. According to fig.10, in the starting till threshold value of departure gap (40 min), 

packet delivery ratio enhances gradually in case of all the compared protocols.  But when departure 

gap increases more than 40 min, then packet delivery ratio reduces for each protocol. D-IoT performs 

better than the state-of-the-art protocols, for higher departure gap (having > 30 min). In case of 

AODV and GPSR, overhead increases rapidly, therefore packet delivery ratio reduces quickly after 

a threshold. While for D-IoT, unstable routes are discarded, therefore packet delivery ratio is higher 

as compared to AODV, GPSR and JaRM. In case of AODV, GPSR and JaRM, packet delivery ratio 

decreases gradually when number of drones are 40 or more than 40, but for D-IoT, packet delivery 

ratio starts decreasing when number of drones are 100.  From the fig.10, it is clearly illustrated that 
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packet delivery ratio for D-IoT is far higher as compared to state-of-the-art protocols, because D-IoT 

could select next hop with the shortest queue of packets among all the possible nodes. Thus, this 

results the avoidance of local blocking. 

 
Fig.10.Behavior of PDR with Number of drones and Departure gap 

Fig.11 illustrates the impact on packet delivery ratio as traffic load and number of drones vary, while 

keeping departure gap equals to 25 min. As shown in fig.11, packet delivery ratio decreases as traffic 

load increases for all the compared protocols. It is clearly enunciated that packet delivery ratio in 

case of proposed D-IoT is higher than AODV and GPSR because of consideration of route load 

balancing factor in the proposed D-IoT but not in the state of the arts protocols. In case of D-IoT, 

packet delivery ratio is higher than packet delivery ratio in case of GPSR, AODV and JaRM, when 

traffic load varies from 100 kb/s to 500 kb/s.  

Overhead is defined as the amount of excess packets generated for the successful delivery of actual 

number of packets between the source and the destination. Fig.12 illustrates the variation in the 

overhead as departure gap and quantity of drones increase. As departure gap increases overhead 

decreases, but when number of drones increase then overhead also increases. Due to utilization of 

best advertisement-based forwarding scheme to minimize overhead, in case of D-IoT is far lower 

than AODV and JaRM. But GPSR results less overhead as compared to both D-IoT, JaRM and 

AODV, because GPSR utilizes smaller periodic hello packet for neighbor discovery as compared to 

IGAD packet of D-IoT. 

 

 
Fig.11.Variation in PDR with Number of drones and Traffic load 
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Fig.12.Variation in Overhead with Number of drone and Departure gap 

 
  

Stability is defined in terms of number of the handoffs, and is inversely proportional to number of 

handoffs. Fig.13 illustrates the impact of departure gap and number of drones on the average handoffs 

per hour for all four routing protocols. The performance of D-IoT is better than the state-of-the-art 

protocols in terms of number of handoffs (stability) because D-IoT comprises better path duration 

for new route selection. Whereas no path stability metric is considered in case of AODV and GPSR. 

In terms of average handoffs per hour, JaRM performs better than AODV and GPSR, because path 

stability metric is utilized in case of JaRM.  Still handoff per hour in D-IoT is less than JaRM. The 

results in fig.13 also show the variation in stability in terms of average number of handoffs when 

number of drones is considered as 40, 80, 120, 160 and 200. It is clearly enunciated that stability 

decreases as number of drones increases in case of all the compared protocols. Further with the 

increment in number of drones, there is slow and less increment in the number of handoffs in case of 

D-IoT as compared to state-of-the-art protocol. This is because, the more the drones, the larger air 

communication traffic, and then, D-IoT is more likely to find the next hop more stable with less node 

delay. As AODV utilizes the hop count as the only metric, and AODV and GPSR both always find 

the shortest path, which do not comprise link stability. Consequently, drones reach their maximum 

range in more frequent manner, hence, it is prone to cause handoff. 

Route delay is defined as the time required to transmit a data packet from source node to destination 

node. Fig.14 shows the impact on route delay with the variation in number of drone and CBR traffic 

load. Route delay in case of D-IoT is lower than GPSR and JaRM because route delay is considered 

as one of the route selection metrics in D-IoT, but not in GPSR and JaRM. D-IoT also considers local 

dynamic queue delay for node which avoids the congestion. Whereas, D-IoT has slightly higher route 

delay as compared to AODV because packets are forwarded through shortest path in case of AODV, 

but is unstable. 
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Fig.13. Variation in Handoffs with Number of drones and Departure gap 

 

Fig.14.Variation in Route delay with Number of drones and CBR trafficload 

 

4.1.2 Analysis of results (with varying weight factors) 

 

The performance of the proposed D-IoT is optimized while performing the simulation with the 

consideration of varying weightage corresponding to route metrics according to Neuro-fuzzy system. 

Three scenarios are presented in simulation for this purpose. In first scenario, the highest priority is 

given to route availability factor metric, while assigning weight factor: 0.6 for route availability factor 

metric and weight factor: 0.2 for other metrics equally. The protocol in this scenario is expressed as 

D-IoT1. In second scenario, the metric: residual route load capacity is prioritized while assigning 

weight factor: 0.6 for residual route load capacity metric and weight factor: 0.2 for other metrics 

equally and this scenario is denoted as D-IoT2. In third scenario, the metric: route delay is preferred 

while assigning weight factor: 0.6 for route delay metric and weight factor: 0.2 for other metrics equally 

The protocol in third scenario is expressed as D-IoT3. Further the performance of D-IoT1, D-IoT2 

and D-IoT3 are compared with D-IoT0 (without weights), AODV, GPSR and JaRM protocols. 

A comparison of packet delivery ratio between D-IoT in all scenarios, and the state-of-the-art 

protocols with varying traffic load and quantity of drones is shown in fig.15. Fig 15(a), 15(b), 15(c) 
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and 15(d) shows the comparison between packet delivery ratio and traffic load, when number of 

drones are considered as 40,80,120 and 200. As shown in all scenarios of fig 15, packet delivery ratio 

is increasing until number of drones are 80 and then decreasing when number of drones are increased 

in case of all protocols.  It is also illustrated that packet delivery ratio is lesser and decreasing rapidly 

in case of AODV and GPSR, as compared to packet delivery ratio in D-IoT0, D-IoT1, D-IoT2 and 

D-I0T3. But in case of JaRM, packet delivery ratio is higher and decreasing slowly as compared to 

packet delivery ratio for AODV and GPSR, but lesser than packet delivery ratio in case of all 

scenarios of D-IoT. packet delivery ratio in case of D-IoT3 is lesser than rest scenarios of D-IoT, 

because of more consideration of route delay as compared to route availability factor and residual 

route load capacity. D-IoT0, D-IoT1, D-IoT2 and D-IoT3 perform almost same in terms of packet 

delivery ratio, while perform better as compared to the state-of-the-art protocols because of 

consideration of route load balancing factor. It is clearly illustrated that stability and load balancing 

must be prioritize for heavy traffic in order to improve packet delivery ratio.  

    

(a)                                                                                         (b) 

 

      

           (c)                                                                                     (d) 

Fig.15.Variation in PDR and Traffic load when Number of drones are (a) 40, (b) 80, (c) 120 and (d) 200 

 

Fig.16 shows the behavior of D-IoT in all scenarios in terms of number of handoffs (stability) while 

varying the departure gap of drones and number of drones. In fig. 16(a), 16(b), 16(c) and 16(d) 

performance metrics: number of handoffs and departure gap between drones are compared, when 
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number of drones are considered as 40, 80, 120 and 200 respectively. As shown in all scenarios of 

figure 16, average handoffs per hour increase (stability decreases) with the increment in number of 

drones in case of all protocols. It is also illustrated from fig.16 that handoffs/hour is inversely 

proportion to departure gap because handoffs/hour reduce when departure gap increases in case of 

all protocols. In case of D-IoT1, number of handoffs are slightly lesser as compared to D-IoT0, but 

in case of D-IoT2 and D-IoT3, are slightly higher than D-IoT0. But D-IoT in all scenarios performs 

much better than AODV and GPSR in terms of number of handoffs because no path stability metric 

is considered in case of GPSR and AODV. But JaRM performs better than AODV and GPSR in 

terms of average handoffs per hour, because path stability metric is utilized in case of JaRM.  Still 

D-IoT in all scenarios performs better than JaRM. 

 

   

(a)                                                                                              (b) 

     
                               (c)                                                                                             (d) 

Fig.16.Variation in Handoffs and Departure gap when Number of drones are (a) 40, (b) 80, (c) 120 and (d) 200 

  

The results in fig.16 illustrates the variation in route delay with the increment in number of drones 

and CBR traffic load for all the scenarios of D-IoT. In fig. 17(a), 17(b), 17(c) and 17(d) performance 

metrics: route delay and traffic load are compared, when number of drones are considered as 40, 80, 

120 and 200 respectively. As shown in all scenarios of figure 16, route delay is proportional to 

number of drones because route delay increases when number of drones increase in case of all 
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protocols. It is also illustrated from fig.17 that for particular number of drones, route delay increases 

with the increment in traffic load. From all scenarios of fig.17, it is clearly enunciated that D-IoT3 

outperforms D-IoT0, D-IoT1, D-IoT2, JaRM and GPSR, because in D-IoT3 highest priority is given 

to route delay. But D-IoT3 has slightly higher route delay as compared to AODV because packets 

are forwarded through shortest path in case of AODV, but is unstable. Still, D-IoT0, D-IoT1, D-IoT2 

has better performance than GPSR and JaRM in terms of route delay because of consideration of 

local dynamic queue delay for node which avoids the congestion. 

The results considering different weight factors show the enhancement in route stability, route delay 

and packet delivery ratio considering various scenarios inside the network. 

 

  

(a)                                                                                  (b) 

  

(c)                                                                                     (d) 

Fig.17. Variation in Route delay and Traffic load when Number of drones are (a) 40, (b) 80, (c) 120 and (d) 

200 
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4.1.2 Summary of Observations 
 

The following lessons are learned from the design, implementation and analysis of the results. To 

provide efficient communication between drones and ground stations while having higher Quality of 

service parameters in highly mobile drone assisted Flying ad-hoc networks is a great challenge. 

Hence, the proposed drone assisted distributed routing framework focusing on quality of service 

provision in drone assisted IoT environments (D-IoT) enhances the network performance. Neuro-

fuzzy interference system provides the reliable, balanced and efficient route selection by combining 

three important QoS provisioning parameters: route availability factor, residual route load capacity 

and route delay. 

For comparative performance analysis, few traditional ad hoc networking framework and a recent 

drone framework were considered including AODV, GPSR, and JaRM. Further, metrics considered 

in the experimental results analysis incudes packet delivery ratio, number of handoffs among Drones 

assisted Flying ad hoc networks, overhead and route delay. It is clarified that mathematical modeling 

derivation in Section 3 are the basis of considering these metrics in the analysis of results. Similar 

metrics were also considered in recent development in literature on drone assisted FANET 

environments. The analysis of experimental results is done firstly, based on equal weight assignment 

for QoS metrics and secondly, varying weight assignment for QoS metrics. As departure gap 

increases packet delivery ratio increases till departure gap threshold, after that packet delivery ratio 

starts decreasing. D-IoT outperforms the state-of-the-art protocols in terms of packet delivery ratio, 

because D-IoT could select next hop with the shortest queue of packets among all the possible nodes. 

Thus, this results the avoidance of local blocking.  

The impact of traffic load is negative on packet delivery ratio. Packet delivery ratio with varying 

traffic load and number of drones is higher in case of proposed D-IoT than state-of-the-art protocols 

because of consideration of route load balancing factor in the proposed D-IoT. As departure gap 

increases overhead decreases, but when number of drones increase then overhead also increases. Best 

advertisement-based forwarding scheme used in D-IoT reduces overhead in case of D-IoT as 

compared to AODV and JaRM. But GPSR results less overhead as compared to D-IoT, because of 

utilization of smaller periodic hello packet for neighbor discovery in GPSRas compared to IGAD 

packet of D-IoT. Average number of handoffs increases as number of drones increases. Further with 

the increment in number of drones, there is slow and less increment in the number of handoffs in 

case of D-IoT as compared to state-of-the-art protocol. This is because, the more the drones, the 

larger air communication traffic, and then, D-IoT is more likely to find the next hop more stable with 

less node delay.  

Route delay is proportional to both number of drones and traffic load in all compared protocols. 

Route delay in case of D-IoT is lower than GPSR and JaRM because route delay is considered as 

one of the route selection metrics in D-IoT, but not in GPSR and JaRM. D-IoT also considers local 

dynamic queue delay for node which avoids the congestion. Whereas, D-IoT has slightly higher route 

delay as compared to AODV because packets are forwarded through shortest path in case of AODV, 

but is unstable. 

 

  

5. Conclusion 

 

In this paper, a drone assisted distributed routing framework focusing on QoS provision (D-IoT) is 

presented for the enhancement of the network performance in IoT environment. A network model 

for drone assisted IoT environment is presented focusing the topological aspects of aerial drones and 

its mobility in flying ad hoc networks. To optimize Drone network centric QoS provisioning 

parameters are derived focusing on relative velocity of drones, expected link availability period, 

residual route load capacity and route delay. Neuro-fuzzy interference system has been employed to 

jointly combine three important QoS provisioning parameters to assist in reliable and efficient route 

selection. A drone assisted distributed routing framework is developed based on the drone mobility 

model and QoS parameters. The proposed communication framework is tested to comparatively 
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evaluate the performance with the state-of-the-art protocols considering metrics related to flying ad-

hoc networks environments. The simulation results show that D-IoT outperforms the state-of-the-

arts protocols. It is highlighted that the proposal can be utilized for any applications of drone assisted 

adhoc networking such as enabling agriculture and traffic related services using drones. Further, the 

framework can be also utilized in drone assisted border monitoring. However, reliability centric 

development needs to be added before using it for security-oriented drone monitoring applications. 

In the future research, the authors will focus on consideration of energy utilization as performance 

metric including the design modification. The authors will also explore the work in diverse scenarios, 

and applications. 
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