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Abstract
We propose a universal strategy to realize a broadband control on arbitrary scatterers, through
multiple coherent beams. By engineering the phases and amplitudes of incident beams, one can
suppress the dominant scattering partial waves, making the obstacle lose its intrinsic responses in a
broadband spectrum. The associated coherent beams generate a finite and static region, inside
which the corresponding electric field intensity and Poynting vector vanish. As a solution to go
beyond the sum-rule limit, our methodology is also irrespective of inherent system properties, as
well as extrinsic operating wavelength, providing a non-invasive control on the wave-obstacles
interaction for any kinds of shape.

1. Introduction

Making functional sub-wavelength scatterers has been attractive for a variety of applications, such as
superdirective scatterers [1–3], perfect absorption objects [4, 5], magnetic resonator based devices [6–8],
Kerker effect and beyond [9–11], anapole [12], and superscattered objects [13, 14]. In particular, to have
invisible cloaks, the concepts of transformation optics [15, 16] and scattering cancellation method [17–19]
have been applied not only to electromagnetic waves, but also to acoustic [20–24] and water waves [25, 26],
thermal diffusion science [27–29], quantum matter waves [30–34], and elastic wave in solids [35–37].
However, for these methods and the consequently improved efforts [38], we still suffer from the
superluminal propagation [39, 40], and limited operating bandwidth imposed by Kramers–Kronig relation
[41, 42]. To manipulate light-obstacles interaction in nanoscales, it is still desirable to have a non-invasive
and efficient way to have objects working in a broadband spectrum.

As pointed out by Purcell [43], the integration of the extinction cross section over all the spectra is
related to the static electric and magnetic material parameters, leading to the sum-rule limit. Therefore,
under a plane wave excitation, no scattering systems can remain stationary scattering responses in a
broadband spectrum. In this paper, we demonstrate that it is possible to turn off or amplify the target
scattering partial waves with interferometric coherent waves. With a proper setting on the phases and
intensities, destructive interferometry on the dominant partial waves can be achieved, resulting in an
arbitrary object invisible. At the same time, a finite and static region emerges, inside which the electric field
and the corresponding Poynting vector almost completely vanish. Counter-intuitively, when the system
contains high-order scattering partial waves, the overall scattering would be amplified even its physical size
is much smaller than this zero field region. Moreover, the operating wavelength for such a destructive
removal of excitation exists for a broadband spectrum, overcoming the fundamental sum-rule limit
obtained from a single plane wave excitation. There exist more than one settings for the interferometric
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Figure 1. (a) A schematic of a cylindrical scatterer, which is irradiated by the interferometric signal and control waves. For a
single plane wave (signal) excitation, the scattering strength on each partial wave |in| is shown in (b); while for multiple waves
(single + control) excitation, one can turn off the sequent scattering events, marked by the ×-sign in (c).

field in the excitation, demonstrating the flexibility for experimental implementations. The robustness of
our methodology on invisibility is also verified by introducing the deviations in the scatter displacements,
intensities and illumination angles of incident beams, and different shapes of systems. Our results pave an
alternative route to manipulate waves and obstacles in the extremely small scale.

2. Theoretical analysis

Without loss of generality, we consider the illumination waves composed by a set of plane waves on a
cylindrical scatterer, as illustrated in figure 1(a). Here, the symmetrical axis of the cylindrical axis is chosen
as the z-axis. For a single plane wave of s-polarized electric field propagating in x-axis, it can be described as
E1ẑeik0r cos θ with the signal wave denoted by E1, the environmental wavenumber k0, and the azimuthal angle
θ. By a combination of proper eigenstates νn(�r), which rely on the scatterer structures, we have
E1ẑeik0r cos θ = ẑE1

∑
nφnνn(�r), with a complex coefficient φn. The time dependence for each plane wave has

the form e−iωt. As an example for the cylindrical scatter, we adopt the Bessel and the first kind of Hankel
functions obeying the Helmholtz equation for the eigenstates, i.e., Jn(k0r)einθ and H(1)

n (k0r)einθ , respectively.
Then, the incident wave, denoted as signal, can be expressed as E1ẑeik0r cos θ = E1ẑ

∑∞
n=−∞inJn(k0r)einθ , here

the index, n, represents a series of partial waves [44]. The associated scattering wave generated by the
scatterer has the form �Esc = E1ẑ

∑∞
n=−∞inas

nH(1)
n (k0r)einθ , with the complex scattering coefficient as

n.
For signal plane wave, the resulting excitation strength for this cylinder can be expressed by |in|, i.e.,

excitation of signal wave : |in|, (1)

as shown in figure 1(b).
To describe the total illumination and scattering waves, one has �Ein = ẑ

∑∞
n=−∞inJn(k0r)einθEinf

n and
�Esc = ẑ

∑∞
n=−∞inEinf

n einθH(1)
n (k0r)as

n, with the introduction of an interfering factor Einf
n , which has the form

Einf
n = E1 +

m=s∑
m=2

e−inΦm Em. (2)

Here, the first term in the right-handed side of equation (2) corresponds to the signal wave; while the others
represent s − 1 (s � 2) control waves whose complex wave amplitudes and incident angle are defined as Em

and Φm, respectively.
Now the total excitation strengths from signal and control waves would become |inEinf

n |, i.e.,

excitation of signal + control waves : |inEinf
n |, (3)

as shown in figure 1(c). As we are going to illustrate, our target is to demonstrate that the irradiation from a
proper setting of signal and control waves can turn off the initially excitation sources, as illustrated in
figure 1(c), resulting in scatterers lose their functionality. The corresponding scattering and absorption
powers are Psc = 2/k0 ×

√
ε0/μ0

∑∞
n=−∞|Einf

n |2|as
n|2 and Pabs = −2/k0 ×

√
ε0/μ0

∑∞
n=−∞|Einf

n |2[Re(as
n)

+ |as
n|2], with the environmental permittivity and permeability denoted as ε0 and μ0, respectively [45].

Now, suppose that our scattering system has 2N + 1 dominant partial waves (scattering channels). The
only way to eliminate the scattering of these dominant partial waves is to produce the destructive
interference of these target channels, i.e., Einf

n = 0 from n = [−N, N]. However, employing the results from
reference [45] directly leads to zeros in the excitation waves. New strategy is needed to achieve invisibility.
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To obtain a non-trivial solution, one possibility is to expand the amount of control waves to 2N + 1 in total
at least. Then, we have the following 2N + 1 equations to be satisfied:

E1 +
2N+2∑
m=2

e−inΦm Em = 0, for n = [−2N, 2N]. (4)

Here, in each equation there are three degrees of freedom for the extrinsic control parameters: intensity and
phase of a control wave Ei, and the corresponding incident angle Φi. In general, one should have a variety of
solutions to satisfy the necessary condition in equation (4).

3. Results and discussion

To demonstrate our control on the scattering events, a lossless silicon-embedded system is considered, with
a high refractive index ε1 = 12 and the radius a = 0.18λ. λ is incident wavelength. Here, we tackle the first
five dominant scattering channels, as shown in figure 2(a). These five scattering events correspond to the
electric dipole (n = 0), magnetic dipole (n ± 1), and magnetic quadrupole (n ± 2). The corresponding
far-field scattering distribution and the intensity of the electric field are illustrated in figures 2(b) and (c) for
a single wave excitation (signal only). Details on how to obtain the far-field scattering distribution are
provided in Supplementary Materials. Now, in order to suppress these five dominant scattering partial
waves, we construct an illumination system with another five control waves, denoted as (E2, E3, E4, E5, E6),
with the corresponding incident angles (Φ2,Φ3,Φ4,Φ5,Φ6). Then, we rewrite equation (4) into the
following matrix presentation:

⎡
⎢⎢⎢⎢⎣

−1
−1
−1
−1
−1

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

e−2iΦ2 e−2iΦ3 e−2iΦ4 e−2iΦ5 e−2iΦ6

e−iΦ2 e−iΦ3 e−iΦ4 e−iΦ5 e−iΦ6

1 1 1 1 1
eiΦ2 eiΦ3 eiΦ4 eiΦ5 eiΦ6

e2iΦ2 e2iΦ3 e2iΦ4 e2iΦ5 e2iΦ6

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

E2

E3

E4

E5

E6

⎤
⎥⎥⎥⎥⎦
. (5)

Here, we set E1 = 1. Figure 2(d) shows illumination angles by
[
Φ2 = π/9, Φ3 = π/3, Φ4 = π/2,

Φ5 = 2π/3, Φ6 = 5π/6
]
, with control wave amplitudes [E2 = −2.17, E3 = 3.28, E4 = −3.78, E5 = 2.31,

E6 = −0.64] obtained by solving equation (3). In principle, one can set the incident angles arbitrarily and
find out the corresponding complex amplitudes by equation (3). With these obtained results, we analyze the
interfering factors for each excited scattering events, as shown in figure 2(e). As one can see, a complete
destructive interference condition happens for the target channels n = [−2,−1, 0, 1, 2], with all the zero
values. Meanwhile, non-zero interfering factors emerge on non-target scattering channels, i.e., n = ±3,±4,
and ±5. This result indicates that when the destructive interferometry applies to the dominant scattering
channels, one can completely suppress the scattering events at the price that the originally non-dominant
scattering channels are amplified. In figure 2(f), we show the background fields and Poynting vectors
without our scatterer.

In figure 2(g), we reveal the suppressed scattering on our system when embedding illumination
configurations of figure 2(d). One can easily see that the corresponding far-field scattering pattern shown in
figure 2(h) is significantly suppressed, i.e., at least three orders of magnitude smaller. The resulting electric
field, as well as the time-averaged Poynting vectors, shown in figure 2(i) clearly demonstrate that the energy
bypasses scatterer in the central region. Moreover, a finite and static region emerge within
x = [−0.5λ, 0.5λ] and y = [−0.5λ, 0.5λ], inside which nearly all the intensity and energy Poynting vectors
vanish. With the comparison between figures 2(f) and (i), it is almost indistinguishable both for the field
distribution and Poynting vectors, supporting the realization of invisibility.

At a quick glance, as the existence of a finite and static region induced by the multiple wave excitation,
one may contribute it for the reason to make the scatterer lose its functionality, as the physical size of our
scatterers is smaller than the size of this zero-field region. As shown in figure 2(e), even though the
interfering factors are completely suppressed for n = [−2,−1, 0, 1, 2], other channels still survive and
amplified. To highlight the this effect, we choose a bigger scatterer by changing the radius of our cylinder
from a = 0.18λ to a = 0.4λ. With the same setting in figure 2(d), now, the resulting scattering events are
enhanced for the n = ±3rd scattering channels, as shown in figure 2(j). Nevertheless, far-field scattering
pattern and field intensity (also the Poynting vector) are shown in figures 2(k) and (l), respectively, which
the invisibility is broken.

Instead of using a structured wave to select the multipolar modes [45–48], our goal in this work with
multiple wave excitation is entirely different. The related methods developed in references [45–48] can not
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Figure 2. For a single wave (signal) excitation: (a) The resulting scattering strength |as
n | is revealed for each partial wave. (b) The

corresponding far-field distribution and (c) the intensity of the electric field. For a multiple (signal + control) excitation: (d) The
illumination configuration is depicted for five control waves. Here, k(1)

0 denotes the signal wave; while k(i)
0 , i = 2, . . . , 6 denote the

control waves. The corresponding magnitudes of the interfering factor for each channel are depicted in (e). The electric field
intensity and Poynting vector from the multiple coherent waves are shown in (f), as the background. With the illumination
configuration in (d), for a smaller radius a = 0.18λ, the associated partial scattering powers by the cylindrical scatterer (marked
by the circle in white-color) is depicted in (g); while the corresponding far-field pattern and electric field are revealed in (h) and
(i), respectively. Instead, for a larger radius a = 0.4λ, the associated partial scattering powers, corresponding far-field pattern and
electric field are revealed in (j), (k), and (l), respectively. Note that the values given in (j) are three orders of magnitude large.
Here, only n = ±3rd scattering channels are excited and amplified.

be implemented in designing invisibility. Moreover, these selective modes are highly sensitive to the
distribution of phases and amplitudes in spatial location. Below, we will demonstrate that this invisible
structured waves can allow deviations in scatter displacements, intensities, illumination direction, and
scatter shapes. Furthermore, our methodology can support extreme broadband control through the
interferometric coherent waves. If we keep all the system parameters fixed, including the illumination
angles, intensities and phases of control waves, but only tune the incident wavelength. In figures 3(a) and
(b), we choose the real silicon-based cylinder which its dispersion relation is based on experimental data
[49], with the radius a = 60 nm and scan the incident wavelength from 500 to 800 nm. Interestingly,
compared to the plane wave excitation, depicted in blue-color, by multiple wave excitation, both the
scattering and absorption power spectra give us the zero values in this wavelength range, as depicted in
red-color. Even though it is known that for any invisible cloak illuminated by a single plane wave,
Kramers–Kronig relation and sum-rule limit prevent the realization of a broadband operation. Our results
demonstrate the scenario to go beyond the sum-rule limit, indicating the scatterer system working at this
wavelength window with lowest-orders in the partial scattering waves.

For a larger size silicon cylinder, in figures 3(c) and (d), we choose a = 170 nm as an example. Even
though such a larger size system can support higher-order scattering channels, the target scattering events
can remain suppressed with a multiple wave excitation. As a guideline, one solution to further suppress
these higher-order scattering channels is to introduce more control waves.

As for the influences on the invisibility from the mismatches in intensities and illumination angles of
incident beams, as well as the scatterer displacement (with the help of Graft’s addition theorem [50]), a
detailed analysis is presented in supplementary materials. Our finding reveals that the interferometric
method is robust to allow these mismatching, offering flexibility toward the experimental implementation.
For different kinds of shape, we also studied scatterers in the shape of a square, triangle, hexagon, and a
pentagon, by Comsol, as shown in figure 4. All of our outcomes can support invisibility. Even though the
analysis in this work is demonstrated for the two-dimensional system, but it is readily applied to a
three-dimensional scatterer or clusters. Last but not least, as shown in figures 2(j)–(l), we note that the
crucial role to achieve invisibility is based on the total number of dominant scattering partial waves, but not
on the specific value of scattering coefficients.
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Figure 3. The scattering (a), (c) and absorption power (b), (d) spectra under the excitation of a single plane wave (signal) and
multiple coherent waves (single + control), depicted in blue- and red-colors, respectively. Here, a smaller radius of real
silicon-based cylinder, a = 60 nm is considered in (a) and (b); while a larger radius, a = 170 nm is considered in (c) and (d).

Figure 4. With the same illumination configuration in figure 2(d), when one places the scatterers in different shapes: (a) square,
(b) triangle, (c) pentagon, and (d) hexagon, the resulting electric field distribution and Poynting vectors all remain unchanged.

4. Conclusion

In summary, we have demonstrated a novel way by extrinsically imposing interferometric multiple waves to
manage the excitation of partial waves. Compared to the single plane wave illumination, we reveal the
possibility to support invisibility or to enhance target scattering partial waves, irrespective of internal system
configuration. Unlike the known wave-obstacle interaction, which strongly relies on the material dispersion,
such a multiple wave illumination provides a non-invasion way to avoid this physical constraint. It is the
interferometric coherent waves, to support the existence of stationary scattering response for a broadband
wavelength, beyond the sum-rule limit. The coherent control paves a new and exciting way to manipulate
wave-obstacle interaction in the deep subwavelength scale for a variety of waves physics.
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