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5 ABSTRACT: Covalent organic frameworks (COFs) have attracted surging interest lately due to
6 their wide potential in several frontline application areas like gas storage, sensing, photovoltaics,
7 fuel cells, active catalyst supports, and so on. However, only very few reports are available for the
8 metal-free electrocatalysis over COFs. Herein, we developed a new thiadiazole-based COF, C4-
9 SHz COF, through the reaction between 1,3,5-tris(4-formylphenyl)benzene and 2,5-dihydrazinyl-
10 1,3,4-thiadiazole that possesses a very high specific surface area of 1224 m2 g−1, unique molecular
11 architecture, high porosity, and abundant active sites. The as-synthesized C4-SHz COF displayed
12 superior electrocatalytic oxygen evolution reaction (OER) activity and excellent long-term
13 durability. The electrocatalytic performance of the C4-SHz COF achieved a current density of 10 mA/cm2 at an overpotential of 320
14 mV. The higher activity of the C4-SHz COF could be attributed to the high Brunauer−Emmett−Teller surface area, porosity, and
15 network structure of the π-conjugated organic building blocks, which allowed fast charge and mass transport processes. This work
16 validates the promising potential of a metal-free COF electrocatalyst toward the OER and its capability to replace carbon-based
17 electrocatalysts.

18 KEYWORDS: covalent organic frameworks (COFs), thiadiazole moiety, metal-free electrocatalyst, oxygen evolution reaction (OER),
19 water splitting

20 ■ INTRODUCTION

21 Rapid decay of fossil fuels combined with environmental crises
22 associated with carbon emissions significantly affected the
23 economy and ecology of the whole world. Thus, the demand
24 for renewable energy is surging over the years, and electro-
25 chemical water splitting can be considered as a green and
26 promising technology1 to overcome this problem. The
27 electrochemical water splitting plays a crucial role in advanced
28 energy technologies, such as solar fuel production, super-
29 capacitor, metal−air batteries, etc.2−5 Still, water oxidation
30 (oxygen evolution reaction, OER) requires a higher energy
31 input due to the involvement of the multi-electron transfer
32 reaction pathway and its low efficiency. Hence, the
33 commercialization of water splitting technology requires stable,
34 highly active, and low-cost water oxidation electrocatalysts.
35 Currently, precious transition metal oxide-based electro-
36 catalysts such as RuO2 and IrO2 are highly active toward the
37 OER from alkaline water. However, high cost, scarcity, and low
38 stability hamper the utilization of clean and sustainable energy
39 technologies6,7 in this context. Thus, for the past couple of
40 years, extensive efforts have been devoted for the development
41 of earth-abundant, low-cost, and efficient transition metal-
42 based electrocatalysts such as oxides, chalcogenides, phos-
43 phides, nitride, metal-free catalysts, etc., for the OER.8−14

44 However, most of the transition metal-based catalysts still
45 suffer from lower catalytic activity, inferior conductivity, and
46 poor operational durability.

47Simultaneously, over the past few years, intensive research
48has been carried out for developing efficient metal-free
49catalysts.2,3 Metal-free electrocatalysts have several unique
50advantages, such as their environment-friendly nature, earth-
51abundant, cost-effective, and resistance to a wide pH range.
52For electrochemical OER applications, several metal-free
53catalysts have been developed in recent times.15−17 Among
54different metal-free porous nanomaterials, covalent organic
55frameworks (COFs)18,19 are the emerging class of porous
56organic polymers with precisely controllable structural motifs
57linked through covalent bonds. COFs possess extraordinary
58properties like large surface area, high crystallinity, tunable
59pore size, and unique molecular architecture.20−24 Due to these
60unique properties, COFs have been used in a wide range of
61applications.25−27 High surface area, tunable structures with
62appropriate building blocks, and porous nature of the COFs
63made them ideal for electrocatalysis.28 Accordingly, substantial
64progress has been made for the design and synthesis of COFs
65from low-cost monomer precursors. Till now, COFs have been
66explored as a support material of graphene, conductive carbon,
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67 carbon nanotubes (CNTs), etc., for electrocatalytic applica-

68 tions. For example, Kamiya et al. have reported covalent

69 triazine frameworks as support materials for Pt nanoparticle

70 and studied its ORR activity.29 Mullangi et al. used flexible

71 COFs as support materials for electrocatalytic OER

72 applications.
28 Similarly, Aiyappa et al. designed Co-COF

73 and studied its OER activity,30 whereas Fe and Co NPs

74 supported over COFs have been employed in electrochemical

75 oxygen reduction reaction (ORR).31 Although there are very

76 few reports on the usage of COFs as photocathodes for light-

77 induced hydrogen evolution reaction (HER) via water

78 splitting,
32 the use of a crystalline COF as a metal-free OER

79 electrocatalyst has been rarely explored till date.33

80 In this article, we have introduced an unprecedented imine-

81 linked thiadiazole-based crystalline COF (C4-SHz COF) and

82 explored its catalytic activity in the electrochemical water

83 oxidation reaction. Through the general solvothermal protocol

84 (Schiff base condensation using acetic acid),26,27,30 a nitrogen-

85 rich thiadiazole moiety has been incorporated in the polymeric

86 backbone of the C4-SHz COF, which exhibited superior

87 activity toward OER. The relevant characterization data

88 suggested that the C4-SHz COF possesses a high specific

89 surface area and crystalline metal-free organic framework

90 structure. The newly developed COF displayed an excellent

91 electrocatalytic activity and durability under alkaline pH

92 conditions, which is comparable to the other metal-free
93 electrocatalysts reported so far.

94■ RESULTS AND DISCUSSION

95The thiadiazole-based imine-linked COF (C4-SHz COF) was
96synthesized through the general Schiff base condensation
97polymerization between 1,3,5-tris(4-formylphenyl)benzene
98(C4-CHO) and 2,5-dihydrazinyl-1,3,4-thiadiazole (SHz)
99 f1under the solvothermal condition for 36 h (Figure 1a and
100Figures S1−S3, Supporting Information). The resultant as-
101synthesized imine-linked framework has shown a low sign of
102crystallinity (Figure 1d), and this could often occur due to the
103self-assembly through weak π−π stacking interaction of
104individual COF layers. To get the well-defined molecular
105stacked framework, the as-synthesized C4-SHz COF material
106was activated using supercritical carbon dioxide treatment
107following the reported protocol by Medina et al.34 The more
108prominent desired peaks in X-ray diffraction for the post-
109activated material is observed (Figure 1d), suggesting the well-
110defined structure of pores. Surprisingly, the measured SBET
111values are also mirroring this trend by narrowing the pore size
112(Figure S4, Supporting Information).
113The crystalline structure of the C4-SHz COF is resolved
114through the experimental powder X-ray diffraction measure-
115ment in combination with theoretical simulations and Pawley
116refinement (Figure S5 and Tables S1 and S2, Supporting
117Information). As seen in Figure 1c, a distinct peak at 2θ = 3.3°
118is assigned to the 100 crystal plane of the COF. Additionally,
119relatively weak peaks at 2θ = 5.8 and 9.9° correspond to the
120reflection from 110, and 300 planes are also observed. The
121weak broad peak centered at 2θ = 20−26° (002 plane) is
122possibly due to the interlayer π−π stacking of the COF, and
123distances between the individual 002 planes are ca. 3.85 Å

Figure 1. Schematic presentation of the COF (a) proposed structure and (b) packing diagram. (c) Comparison of experimental PXRD pattern of
the crystalline C4-SHz COF with simulated PXRD patterns of the C4-SHz COF. (d) Graphical representation of switching shortly to long-range
periodicity. (e) Solid-state 13C MAS NMR spectrum of the COF; the spinning sidebands are represented by asterisks.
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124 (Figure 1b). A probable 2D model structure was constructed
125 using Materials Studio 7 in the P1 space group. An asymmetric
126 unit in the crystal structure and graphical representation of the
127 2D layered COF is shown in Figure S6 (Supporting
128 Information). The simulated PXRD pattern of the eclipsed
129 AA stacking model is well fitted with the experimental
130 diffraction data (Figure 1c). In contrast, the PXRD pattern
131 obtained from the AB stacking model deviates from the
132 experimentally observed data, especially in terms of peak
133 intensity ratios. The perfect agreement in favor of the
134 experimental X-ray pattern was further confirmed by Pawley
135 refinement [Rwp = 7.23%, Rp = 5.32%] (Figure S5). The unit
136 cell parameters were as follows: a = 31.00 Å, b = 31.46 Å, c =
137 7.70 Å; α = 99.26°, β = 87.67°, and γ = 120.51°.
138 The specific surface area and porous nature of the C4-SHz
139 COF were examined by conducting N2 adsorption−desorption

f2 140 analysis at 77 K. As shown in Figure 2a, the C4-SHz COF

141 exhibits a combination of type I and IV isotherms. A significant
142 nitrogen uptake at low relative pressures (P/P0 < 0.03)
143 followed by a gradual increase in adsorption at a higher P/P0
144 value suggested the distinctive features for the coexistence of
145 micropores and mesopores along with interparticle pores.35−38

146 The corresponding pore size distribution plot (Figure 2b), as
147 determined from the adsorption branch of the isotherm based
148 on nonlocal density functional theory (NLDFT), revealed the
149 presence of micropores and mesopores in our C4-SHz COF
150 material. The calculated BET (Brunauer−Emmett−Teller,
151 SBET) surface area from this isotherm was 1224 m2 g−1, and
152 the total pore volume was 1.12 cc g−1. The simulated BET
153 surface area of the AA stacked model of the C4-SHz COF has
154 been computed using the DFTB calculations. The correspond-
155 ing simulated specific surface area was found to be 2339 m2 g−1

156 (Figure S7, Supporting Information). The noticeable dis-
157 tinction in BET surface area from the experimental data is
158 related to the crystallinity of the COF material, and such
159 deviations were also reported for other imine-based
160 COFs.39−42

161 The structural growth and imine linkage formation of the
162 COF are confirmed by FTIR and 13C MAS NMR analyses. In

f3 163 the FTIR spectrum of the C4-SHz COF (Figure 3a), the
164 absorption band at 1693 cm−1 corresponded to CN
165 absorption, which is also confirmed by the resonance signal
166 at 160.2 ppm in 13C NMR. The peak at 3416 cm−1 could be
167 attributed to N−H stretching vibration. The complete
168 utilization of the aldehyde sources was confirmed by the
169 missing peak at 1698 cm−1 in the IR spectrum and the absence
170 of aldehydic resonance peak at 190 ppm in 13C NMR. In the

171spectrum in Figure 1e, the resonance signal at 160.2 ppm is
172ascribed to the carbon atom adjacent to the S atom of the SHz
173moiety. The peak at 140.2 ppm is indicative of substituted
174quaternary carbons of the polymeric network. The resonance
175peak at 132.3 ppm is attributed to the carbon atom of the
176aldehyde moiety that connected to the imine carbon of the
177organic framework. The additional peak at 126.2 ppm
178appeared due to the sp2-hybridized aromatic carbons.
179To gain further information about the surface chemistry and
180chemical composition, we have carried out the XPS analysis of
181the C4-SHz COF. As shown in Figure 3c, the N 1s spectrum
182can be deconvoluted into three component peaks ascribed to
183secondary amine (−NH) of the SHz moiety (398.5 eV),
184imine−N (399.1 eV) of the newly formed COF networks, and
185imine−N (401.7 eV) of the SHz moiety.41 The C nuclei with
186different environments were investigated by a deconvoluted
187high-resolution C 1s XPS scan (Figure 3b). The major
188component at 284.7 eV is attributed to the aromatic sp2 C
189atom. Another component at 285.2 eV can be assigned to the
190N atom associated with imine linkage. The peak at a higher
191binding energy (287.8 eV) is probably due to thiadiazolic C of
192the COF. Strong characteristic S 2p doublet peaks (Figure 3d)
193were observed at 163.8 (S 2p3/2) and 168.6 eV (S 2p1/2).43

194The thermal stability of the covalent framework was
195estimated by using thermogravimetric analysis (TGA) under
196the aerobic environment. As seen from Figure S8 (Supporting
197Information), an initial weight loss could be assigned to the
198trapped guest molecule in the porous framework. Then, with
199the continuous increase in temperature, the organic framework
200is stable up to 350 °C. With a further increase in temperature, a
201continuous weight loss is associated with the burning of
202organics present in the material. The representative FESEM
203 f4(Figure 4a) and HRTEM (Figure 4b) images of the as-
204synthesized thiadiazole COF have clearly shown regularly their
205spherical morphology with diameters of 0.5−0.8 μm. After the
206supercritical CO2 activation, it was observed that the smooth
207spherical surface of the as-synthesized COF material trans-
208formed to the microflower-shaped structure (Figure 4c−f)
209with the size distribution of 1.2−1.8 μm. This is also reflected
210by the nitrogen sorption isotherm with enhancing the BET
211surface area (Figure S4).

Figure 2. (a) N2 adsorption−desorption analysis of the C4-SHz COF
and (b) NLDFT pore size distribution plots.

Figure 3. (a) IR spectrum of the C4-SHz COF along with the spectra
of SHz and C4-CHO. (b) C 1s X-ray photoelectron spectroscopy
(XPS). Deconvoluted high-resolution (c) N 1s XPS spectra and (d) S
2p XPS spectra of the thiadiazole-based COF.
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212 To determine the electrocatalytic OER activity of the as-
213 synthesized catalyst, linear sweep voltammetry (LSV) was
214 recorded. The OER activity of the C4-SHz COF was
215 compared with the state-of-the-art catalyst IrO2/C and bare
216 GCE under similar conditions. Before the LSV measurement,

217the C4-SHz COF catalyst was electrochemically precondi-
218tioned to reach a stable state (Figure S9, Supporting
219Information). All the LSV plots are presented after iR
220compensation. The iR compensation process is explained in
221 f5the Supporting Information (Figure S10). Figure 5a presents
222the iR-compensated LSV polarization plots. As expected, the
223bare glassy carbon electrode (GCE) exhibits a very low anodic
224current density with higher overpotential values, suggesting its
225negligible OER activity. The C4-SHz COF-modified GCE
226shows a sharp increase in the anodic current density, which
227indicates its intrinsic OER activity. For electrocatalytic activity,
228the overpotential (η) gives an idea about the extent of
229polarization upon passage of the faradic current and reflects the
230efficiency of the catalysts. The catalyst C4-SHz COF possesses
231the higher activity with a lower onset overpotential of 250 mV,
232which is higher than that of benchmark catalyst IrO2/C. The
233current density of 10 mA/cm2 is the critical value for driving
234solar fuel conversion and used as a benchmark for comparing
235electrocatalytic performance. The as-synthesized C4-SHz COF
236achieved a current density of 10 mA/cm2 at a lower
237overpotential of 320 mV, which is lower than benchmark
238catalyst IrO2/C. The overpotential of the C4-SHz COF is
239comparable with most of the reported metal-free OER
240electrocatalysis (Table S3, Supporting Information). This
241result suggests the promising electrocatalytic activity of the
242highly crystalline C4-SHz COF toward the OER. The OER
243activity is also compared with a moderately crystalline C4-SHz
244COF. The highly crystalline C4-SHz COF exhibits a lower
245overpotential with enhanced current density in comparison to
246moderately crystalline C4-SHz COF (Figure S11, Supporting
247Information). Further, the OER activity of the highly
248crystalline C4-SHz COF is checked in different conditions,
249i.e., acidic (0.5 M H2SO4) and neutral (1 M PBS) solutions.
250The C4-SHz COF exhibits the higher OER activity in 1 M
251KOH (Figure S12, Supporting Information).
252The reaction dynamics and mechanism of the as-synthesized
253catalysts toward the OER were investigated by measuring the

Figure 4. FESEM micrographs of the (a) as-synthesized and (c, d)
crystalline C4-SHz COF. Representative TEM images of the (b) as-
synthesized and (e, f) crystalline C4-SHz COF material.

Figure 5. OER performance of the catalysts in 1 M KOH with a scan rate of 5 mV/s. (a) LSV polarization plots of the C4-SHz COF, IrO2/C, and
GCE. (b) Tafel plots of the C4-SHz COF and IrO2/C. (c) Faradic efficiency calculation of the C4-SHz COF by using the RRDE technique. (d)
LSV polarization plot of the C4-SHz COF before and after the addition of 10 mM KSCN. (e) EIS Nyquist plot for the C4-SHz COF. (f)
Chronopotentiometry measurement shows the stability of C4-SHz COF.
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254 Tafel slope from Tafel plots. The Tafel plots are obtained from
255 the LSV measurements and reflect the relationship between
256 the overpotential (η) and the log of current density. The Tafel
257 slope is derived from the linear part of the Tafel plot, and lower
258 the Tafel slope value indicates the higher electrocatalytic
259 activity. The C4-SHz COF exhibits the lower Tafel slope of 39
260 mV/dec, which is lower than that for IrO2/C (57 mV/dec)
261 (Figure 5b). The Tafel slope of the C4-SHz COF is lower than
262 that of other reported metal-free catalysts. The exchange
263 current density (j0) of the C4-SHz COF is calculated from the
264 Tafel plot by the extrapolation method (Figure S13,
265 Supporting Information). The exchange current density (j0)
266 of the C4-SHz COF is estimated to be 3.95 × 10−4 mA/cm2.
267 The value of j0 is also proportional to the electrochemically
268 active surface area. The small Tafel slope and large exchange
269 current density indicate that the C4-SHz COF can produce
270 superior metal-free OER performance. The faradic efficiency
271 (FE) of the catalysts is measured by the rotating ring-disk
272 electrode (RRDE) experiment.44,45 The RRDE experimental
273 details are discussed in the Supporting Information. The FE is
274 calculated from the ratio of the ring current to the disk current
275 (eq S3, Supporting Information). A constant current of 100 μA
276 is applied to the disk electrode, and a 19.6 μA current was
277 generated at the ring electrode (Figure 5c), which corresponds
278 to the promising FE of the C4-SHz COF (98%). The
279 formation of the oxygen bubble during the OER was supported
280 by the polarization curve of the oxygen reduction reaction
281 (ORR) collected from the ring electrode at a constant disk
282 potential of 1.50 V (Figure S14a, Supporting Information).
283 The number of electron transfer during the OER was also
284 calculated from the RRDE measurement. During OER
285 polarization, a very negligible current density was observed
286 in the ring electrode that is assigned to the electro-oxidation of
287 generated H2O2 (Figure S14b). This observation validates the
288 four-electron pathway for the OER.
289 Generally, the precursor used for the synthesis of the COF
290 or the electrolyte used for testing the electrocatalytic activity
291 contains some metal catalysts (i.e., Fe3+), and it may contribute
292 toward the OER activity of the as-synthesized materials. To
293 rule out the contribution of metal ions (i.e., Fe3+), SCN− tests
294 were carried out. The LSV data of the C4-SHz COF is
295 collected before and after the addition of the SCN− ions, and it
296 suggests that SCN− ions did not affect the OER activity, i.e.,
297 the OER activity is due to the metal-free C4-SHz COF catalyst
298 (Figure 5d). This suggests that both the C4-SHz COF and
299 electrolyte (KOH) are free from metal impurities.14 The
300 enhanced catalytic activity of the C4-SHz COF was further
301 accessed by calculating active sites and the intrinsic catalytic
302 activity. Therefore, we explored the mass activity, specific
303 activity, electrochemically active surface area (ECSA), and
304 roughness factor (Rf) of C4-SHz COF catalysts. At η = 320
305 mV, the mass activity and specific activity for the C4-SHz COF
306 catalyst were found to be 286 A g−1 and 0.011 mA/cm2,
307 respectively. To measure the electrochemically active surface
308 area (ECSA) and roughness factor, electrical double layer
309 capacitance (Cdl) of the C4-SHz COF was evaluated by
310 measuring the CV in the non-faradic region at scan rates of
311 10−100 mV/s in 1 M KOH at a potential ranging from 0 to
312 0.1 V (Ag/AgCl) and is shown in Figure S15a, Supporting
313 Information. The value of Cdl is estimated from the linear
314 slope and found to be 2.75 mF cm−2 (Figure S15b, Supporting
315 Information). The ECSA and Rf values of the C4-SHz COF
316 were estimated to be 68.75 cm2 and 968.30, respectively. Thus,

317the C4-SHz COF shows a high electrochemical catalytic
318surface area that may be due to the exposed excess nitrogen
319atom on the surface, which plays as the active sites for the OER
320activity. The high surface area and the porous structure can
321facilitate the diffusion of the electrolyte to access more number
322of reactant species on the electrode surface that resulted in an
323enhanced performance during the OER. The high mass and
324specific activity of the C4-SHz COF may also be associated
325with fast charge transfer during the OER process. The
326electrochemical impedance spectroscopic (EIS) Nyquist plot
327of the C4-SHz COF is also presented in Figure 5e. The smaller
328polarization resistance of the C4-SHz COF indicates the higher
329charge transfer kinetics and faster electron transfer process that
330supports the OER activity.46 The durability is another key
331factor to evaluate the catalytic activity in practical application.
332The long-term durability of the C4-SHz COF has been studied
333by chronopotentiometry measurements. The time-dependent
334chronopotentiometry measurements demonstrate that the C4-
335SHz COF is a stable material and can work efficiently for more
336than 11 h at a current density of 10 mA/cm2 (Figure 5f).
337Further, the stability of the C4-SHz COF at higher current
338densities (20 and 50 mA/cm2) has been checked with time-
339dependent chronopotentiometry measurement (Figure S16,
340Supporting Information). The as-synthesized material shows a
341quite stable response at higher current densities as well. The
342above measurements demonstrate the enhanced efficiency and
343robustness of the C4-SHz COF toward the OER and validate
344its promising application in future energy devices. It is quite
345essential to understand the structure, morphology, and any
346alternation of the bonding connectivity of the C4-SHz COF
347after the durability test. The post-OER analysis validates the
348robust properties of the electrocatalyst for practical application.
349Therefore, PXRD and FTIR analyses have been carried out
350after the stability test. In the PXRD patterns, no change in the
351crystal phase was observed (Figure S17, Supporting
352Information). This result suggested the stability of the
353crystalline COF structure in the electrocatalyst. FTIR spectra
354confirm the retention of the bonding connectivity within the
355organic framework (Figure S18, Supporting Information) after
356the OER stability test, suggesting the C4-SHz COF as a robust
357material.
358The mechanism of the OER process and the efficiency of the
359C4-SHz COF material toward the electrochemical OER are
360rationalized through a density functional theory study based on
361first-principle calculations using the VASP simulation package.
362We have constructed a periodic monolayer model of C4-SHz o
363(cell size: 31.09 × 27.22 Å2) consisting of 123 atoms, as shown
364 f6in Figure 6a. The efficiency of the OER can be determined by
365calculating the reaction free energies of the individual
366elementary steps.47 Therefore, the free-energy change for the
367adsorption of the intermediates (i.e., OH*, O*, and OOH*)
368on the C4-SHz surface has been calculated, and free-energy
369profiles for OER pathways at U = 0 and 1.23 V are given in
370Figure 6c. For OH− adsorption on the C4-SHz surface, there
371are seven possible sites, including the S atom (Figure 6b and
372Figure S19, Supporting Information). However, adsorption of
373OH− is more favorable on the C2 site with the highest OH−

374adsorption energy of −1.61 eV (Figure 6b and Table S4).
375However, there are very weak interactions between OH− and
376either the N3 or S site (Figure S19e,f). Therefore, the active
377site for OH− adsorption is predominantly the C2 site. From
378the free-energy profile diagram (Figure 6c), it is evident that
379OOH* adsorption with the highest (most positive) free-energy
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380 value is the rate-determining step during the OER process for
381 the C4-SHz COF.47

382 The free-energy values of OOH* adsorption on the C4-SHz
383 surface are 4.13 and 0.44 eV at U = 0 and 1.23 V. This finding
384 is consistent with the earlier reported COF material as the
385 metal-free OER electrocatalyst.33 To get further insight about
386 the excellent electrocatalytic activity of the C4-SHz COF, we
387 have performed density of states (DOS) analysis. Total and
388 projected density of states (TDOS and PDOS) analysis clearly
389 demonstrates that the VBM is mainly composed of the 2p
390 orbital of C atoms, whereas the 2p orbitals of heteroatoms, i.e.,
391 N and S atoms, contribute to the CBM (Figure S20,
392 Supporting Information). Among various C sites, as evident
393 from Figure S20b, the major contribution to the VBM comes
394 from the C2 sites. Therefore, upon adsorption of energy, holes
395 will be generated mainly on C atoms (especially on the C2
396 atom), and heteroatom sites will be electron-rich. For the OER
397 process in alkaline medium, OH− is oxidized to O2 after
398 absorbing holes from the active C2 sites, which is consistent
399 with previously reported COFs and heteroatom-doped
400 graphene systems.33,48,49 Besides, we have determined the
401 free-energy profile for the OER pathway at an applied bias of
402 1.48 V (Figure 6d), which is the experimentally determined
403 onset potential. Interestingly, the energy profile diagram
404 exhibits the downhill OER pathway at U = 1.48 V, validating
405 the experimental findings of the OER onset overpotential.
406 Moreover, the downhill OER pathway at U = 1.48 V also
407 indicates that the lower overpotential (merely 250 mV) arises
408 due to the C2 active site on the surface.33

409■ CONCLUSIONS

410In summary, we have fabricated a novel thiadiazole-based
411covalent organic framework, C4-SHz COF, through the Schiff
412base condensation polymerization reaction between 1,3,5-
413tris(4-formylphenyl)benzene and 2,5-dihydrazinyl-1,3,4-thia-
414diazole under vacuum in a sealed tube. The resultant material
415displayed a unique molecular architecture, high porosity, BET
416surface area, and accessible active sites, which could enable this
417COF as a superior self-supported metal-free OER electro-
418catalyst. In the alkaline system, the material showed a low
419onset potential of 270 mV, and the material achieved a current
420density of 10 mA/cm2 with a lower overpotential of 320 mV.
421The accomplished OER activity is comparable to other best
422reported metal-free catalysts with excellent durability. There-
423fore, the catalytic performance exhibited by C4-SHz COF
424suggests that it may replace metal-free carbon-based nanoma-
425terials and could be a promising electrocatalyst for future
426energy conversion from abundant water resources.
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632 Segura, J. L.; Muñoz-Olivas, R.; Mancheño, M. J. Thiol grafted imine-
633 based covalent organic frameworks for water re-mediation through
634 selective removal of Hg(II). J. Mater. Chem. A 2017, 5, 17973−17981.

(41)635 Gao, Q.; Li, X.; Ning, G.-H.; Leng, K.; Tian, B.; Liu, C.; Tang,
636 W.; Xu, H.-S.; Loh, K. P. Highly photoluminescent two-dimensional
637 imine-based covalent organic frameworks for chemical sensing. Chem.
638 Commun. 2018, 54, 2349−2352.
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