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ABSTRACT

Sketch extraction is of great value for historians to copy and study historical painting styles. However, most of the
existing sketch extraction methods can successfully perform extraction only if the sketches are well preserved, but for
paintings with severe conservation issues, the extraction methods need to be improved. Therefore, we propose a sketch
extraction method using spectral imaging and deep learning. Firstly, the spectral image data is collected and the bands
sensitive to the sketches are extracted by using the prior knowledge of the sketches (e.g. near infrared bands will be
chosen if the sketches are made of carbon ink). A publicly available image dataset of natural scenes is used to pre-train
the bi-directional cascade network (BDCN). The network parameters in the model are then fine-tuned by using the
sketches drawn by experts based on images of painted cultural objects, so as to solve the problem of insufficient sketch
dataset of painted cultural objects and enhance the generalization ability of the model. Finally, the U-Net is used to
further suppress unwanted information, to make the sketch clearer. Experimental results show that the proposed method
can extract clear sketches even with faded paintings and the presence of unwanted information or instrumental noise. It is
superior to the other six advanced extraction methods in visual and objective comparison. The proposed deep learning
method is also compared with an unsupervised clustering method using Self-Organising Map (SOM) which is a ‘shallow
learning’ method where pixels of similar spectra are grouped into clusters without the need for data labeling by experts.

Keywords: Sketch extraction; Relics digital protection and inheritance; Spectral images; Spectral imaging; Edge
detection; Deep learning; Mural

1. INTRODUCTION
As an ancient civilization in the world, China has a large number of painted cultural relics with high artistic value, which
are of great significance for our study and inheritance of history and culture. However, due to environmental changes and
man-made destruction, many existing painted cultural relics have been damaged. Painted cultural objects are some of the
most fragile amongst various other cultural relics. In order to ensure the long-term preservation of painted cultural relics,
obtaining sketches is a key step in protecting and restoring them and it is one of the key information captured in a
traditional conservation and archaeological survey report.

The traditional methods of sketch extraction are mostly manually drawn. These methods are not only time-consuming
and labor-intensive, but also affected by external factors such as the drawing skills of copyists. Its accuracy and
efficiency cannot be guaranteed. Moreover, manual hand-drawing can only be seen with naked eyes, which ignores the
information of many painted cultural relics outside the visible light range. Therefore, they are unreliable methods to
obtain the sketches of painted cultural relics.
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In recent years, a series of sketch extraction methods have been developed based on edge detection1-5. These methods
can be grossly divided into two categories: traditional approaches7-12 and deep learning-based approaches13-20. Traditional
edge operators often make use of the underlying features to detect the edge. In 1963, Lawrence Roberts proposed the
first edge detection operator—Robert. The Robert edge operator is a 2 * 2 template that takes the difference between two
adjacent pixels in the diagonal direction. Later, the Sobel operator3, the Prewitt operator6 and the widely used Canny
operator10 have been proposed successively. Since they are calculated only based on gradient and susceptible to noise,
the lines without obvious gradient change will be lost, making the extracted sketch incoherent. After that, P. Arbelaez et
al. proposed a method of artificially designed features based on information theory - gPbowl-ucm algorithm11, and Dollar
P et al. proposed Fast Edge Detection Using Structured Forests (SE) algorithm12. Although the edge detection methods
using low-level features have made great progress, they still have limitations. Semantic information is difficult to
capture using low-level cues.

With the development of deep learning technology, especially the emergence of Convolutional Neural Network (CNN),
a large number of edge detection methods based on deep learning have emerged. CNN is constructed by imitating the
biological visual perception mechanism. Its convolutional kernel parameter sharing in hidden layers and the sparsity of
interlayer connections enable the network to have a stable effect on lattice features with a small amount of computation.
In 2015, Xie et al.13 proposed Holistically-Nested Edge Detection (HED) to detect and extract edges of natural images in
a nested way. In 2017, Liu et al.14 proposed Richer Convolutional Features for Edge Detection (RCF), which improved
the edge detection effect on the basis of HED method by using a multi-scale strategy. In 2019, Fu et al.15 proposed a
segmentation network for salient target detection. He et al.17 proposed a Bi-Directional Cascade Network (BDCN) and
realized the fusion of multi-scale features. Therefore, the accuracy of the research method for edge detection of natural
images has been significantly improved. However, for the painted cultural relics, due to the limited amount of data and
the imperfect condition of the paintings due to deterioration and other issues, the CNN-based algorithms cannot achieve
the ideal result.

In this work, we have proposed a relic sketch extraction framework based on spectral images and deep learning. Firstly,
the spectral data cubes are preprocessed, and BDCN is used to detect from different scales to perform preliminary sketch
extraction. Then the preliminary extraction results are put into the U-Net for refinement and noise reduction. Finally, a
clear and accurate sketch of painted cultural relics is obtained.

Contributions of this paper can be summarized as follows:

 We propose a new framework for relic sketch extraction based on spectral imaging and deep learning. For spectral
images with damaged, degraded and complex backgrounds, ideal sketches can also be extracted.

 We use a large number of natural images to pre-train the BDCN network, and a small amount of cultural relic data
to fine-tune the model, which solves the problem of insufficient image data of painted cultural relics.

 We use U-Net to refine the sketches extracted, reduce the ambiguity and noise, so that the structural integrity and
accuracy of the extracted sketches are greatly improved.

The structure of this paper is organized as follows. The related works are introduced in Section 2. The structures of our
proposed method are described in Section 3. The experimental results are shown in Section 4. The conclusion of the full
text is summarized in Section 5.

2. RELATEDWORKS
2.1 Spectral imaging

Spectral imaging typically collects reflectance spectra from thousands to millions of spatial pixels within a given field of
view. Compared with ordinary images, spectral images not only contain spectral information but also combine spectral
with spatial information. In recent years, the rapid development of spectral imaging in terrestrial applications has also
influenced the field of cultural heritage restoration32-37.

The analysis and collection of the mural information was obtained by a commercial grating-based hyperspectral imaging
system, which has 128 spectral channels spanning the wavelength range from 377nm to 1037nm. The scanning was
achieved by non-contact ‘push-broom’ scheme. It was non-invasive and non-contact while allowing the extraction of

Proc. of SPIE Vol. 11784  1178407-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Jul 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



information that cannot be observed by the naked eye. Moreover, most paints are more transparent to near-infrared bands,
which means that the hyperspectral imager can reveal the original sketches of the mural.

2.2 Bi-Directional cascade network (BDCN)

BDCN17 designs a new lightweight CNN for edge detection and a Scale Enhancement Module (SEM)21 composed of
multiple parallel convolutions with different dilation rates for multi-scale learning. Compared with the previous deep-
level networks like ResNet5023, or image pyramid methods, BDCN does not significantly increase the parameters, nor
does it cause redundant computing, which makes good use of shallow CNN to mine multi-scale clues. BDCN also
designs a bi-directional cascade structure so that each layer can learn the characteristics of a specific scale, and the
specific layer supervision of each layer is inferred by the bi-directional cascade structure itself. In this way, each layer is
focused on a specific scale, so that training can be carried out more effectively. However, BDCN needs a lot of data
support, which is a great challenge for the limited cultural relic data. BDCN is also vulnerable to unwanted information
or instrumental effects. Therefore, it is difficult to achieve the ideal result for damaged or blurred cultural relic images.

2.3 U-Net

U-Net is a deep learning network for semantic segmentation based on full convolution network, which is widely used in
medical image segmentation22. The network is composed of a group of symmetrical encoders and decoders and does not
contain the full connection layer. It is named U-Net because its structure model is like the letter U, which is an
improvement of fully convolutional network. The encoders use the convolution layers and pooling layers for down-
sampling and feature extraction, while the decoders use the convolution layers and pooling layers for up-sampling. The
down sampled and up sampled feature maps of the same dimension are spliced through skip connections, so that the
high-level and low-level features can be better fused to make multi-scale prediction. Finally, the predictions with the
same size as the original images are obtained. U-Net can be applied to the application scenarios with a small number of
samples. In addition, U-Net is trained fast and has a low cost, so it can be easily applied to more fields, such as image
denoising24 25 or segmentation26-28.

3. METHODOLOGY
The proposed sketch extraction framework is shown in Fig. 1. Firstly, we calculate the average of the far red to near
infrared bands of the spectral images that has the best signal to noise (650nm to 900nm), and pre-train the BDCN with
the publicly available image dataset BSDS50029 of natural scenes. Next, the images of the paintings are used for fine-
tuning of the model. The preliminary results are then fed into the U-Net as input for further refinement and denoising.
The ideal sketches of the painted cultural relics are finally obtained.

Figure 1. The proposed sketch extraction framework.
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3.1 Data preprocessing

The ancient murals are mostly affected by the environmental conditions and man-made destructions, so there are many
problems such as surface mud deposits left over during excavation, natural degradation, conservation intervention and so
on. We first use the prior knowledge of the sketch to select the spectral bands that shows the sketches best. For the
murals painted with carbon-based material, we can choose the far red to near infrared bands (650-900nm) to produce an
image that is the average of these bands, which reveals the sketches with the highest contrast.

3.2 Rough extraction based on BDCN

BDCN often needs a large amount of data as support, which is a big problem for the painted cultural relics with scarce
data. Therefore, we first use the natural image dataset to pre-train the model, and then use the painted cultural relic data
to fine-tune the model, which can not only effectively use the features in the natural images, such as texture and shape,
but also solve the problem of insufficient painted cultural relic dataset.

The network consists of five Incremental Detection Blocks (ID Block). Each ID Block is connected with a pooling layer
to gradually expand the receptive field of the next block. A group of multiple parallel convolutions with different dilation
rates are inserted to complete the multi-scale representation of image features. For an input feature map WHRx  with
a convolution filter whRw  , the output of dilated convolution can be calculated as:

],[

,

,
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nm
nrjmriij wxy   (1)

where r is the dilation rate and represents the step size of the sampled input feature map. The formula shows that the
dilated convolution can expand the receptive field of neurons, but it does not increase the parameters or reduce the
resolution. It completes the multi-scale representation of the image well, and avoids the problems of too many
parameters, high training cost and long training time.

In our work, in order to accelerate the convergence, we use labeled public natural image dataset to pre-train BDCN. First,
the ground truth of objects in natural image dataset is used to guide learning. The loss function of BDCN is designed as
follows:
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is the predicted value of BDCN, edgeY means the ground truth of natural images. We predict each pixel
value. For ground truth, we define the positive samples and negative samples. Positive samples are edge pixels and
negative samples are non-edge pixels. In order to distinguish them better, we also introduce a threshold  , that is
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where  WXPy jj ;


, jX represents the activation value of the pixel j , W represents all the learning parameters in

our architecture.    YYY and    YYY1 represent the number of edge pixels and non-edge
pixels respectively, which are used to control the weight of positive and negative samples.

After pre-training, the painted cultural relic images are used to fine-tune BDCN. We use the ground truth of painted
cultural relics gtY instead of the real edge of natural images edgeY to guide training. gtY contains more cultural relic
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image features, which can help us to extract sketches of painted cultural relics. The ground truth is obtained by manually
tracing the sketches from the averaged far-red to near infrared bands (650-900nm).

3.3 Fine extraction based on U-Net

Due to various degradation and damage in the painted cultural relics, the sketches extracted by BDCN may appear
blurred and incorrect in some places. In order to solve these problems, the U-Net-based method is used to further refine
and denoise the sketches. U-Net is a full convolution network, which is a symmetric U-shaped structure including
compression path and expansion path. The images can be denoised and reconstructed by U-Net.

The structure of the proposed method based on U-Net is shown in Fig. 2. The encoder is displayed on the left side, which
is composed of four blocks. Each block uses three effective convolutions and a maximum pooling layer to down sample
the images. After down sampling, the number of feature maps becomes twice of the original, and finally a feature map
with the size of 32 * 32 is obtained. The decoder is shown on the right side of the network, which is also composed of
four blocks. Each block firstly multiplies the size of the feature map by 2 through deconvolution, and at the same time
reduces its number by half. The left symmetric down-sampling layer is connected with the up-sampling layer by using
skip connection, so that the features obtained by the down-sampling layer can be directly transferred to the up-sampling
layer. The fused feature map contains the information of different receptive fields in the encoder, which makes the
network more accurate. The loss function of U-Net is defined as follows:

,U NetU Net gtL L Y Y



   
 

(4)

where NetUY 



is the prediction result of U-Net and gtY is the ground truth of the painted cultural relics.

Figure 2. The framework of fine extraction based on U-Net.

We can use the multi-scale receptive field in the encoder path to suppress the influence of damage in the cultural relic
images by using U-Net, and finally achieve the effects of denoising, deblurring and thinning sketches.
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4. EXPERIMENTAL RESULTS AND DISCUSSION
4.1 Dataset

In our experiments, two datasets are used. One is the public natural image dataset BSDS500, the other is the painted
cultural relics dataset.

The public natural image dataset BSDS500 is used to pre-train the BDCN model. The BSDS dataset contains 500 natural
images and reference edge labels. The painted cultural relics dataset contains 41 images collected by the Northwest
university team. All the reference edge labels are drawn by experienced experts. We randomly cropped 41 images into
82 sub-images and used the data enhancement strategy to make the training more effective. In order to evaluate the
performance of the model, we collected six spectral image cubes of paintings from the Eighteen Arhats of Fengguo
temple. Some of them are images with clean background and less degradation, while others are images with more
complex background.

4.2 Experimental setups

We implemented the network by using PyTorch. The initial learning rate and weight decay are set to 1e-6 and 2e-4
respectively in the rough extraction based on BDCN, and 1e-4 and 2e-4 respectively in the fine extraction based on U-
Net.

The proposed method is compared with six state-of-the-art edge detection methods, including Canny10, Flow-Based
Difference-of-Gaussians (FDoG)38, SE12, RCF14, BDCN17, U-Net22 and unsupervised self-organizing map clustering
(SOM)6. The root mean square error (RMSE)30, structural similarity index (SSIM)30, and average precision (AP)31 are
used to evaluate the sketches extracted by different methods. RMSE is used to measure the deviation between the
predicted values and the true values. SSIM mainly measures the differences of brightness, contrast and structure between
the extraction results and the reference edge labels. The smaller value of RMSE and the larger value of SSIM indicate
better performance of the model. We use AP to evaluate the accuracy of the model, expecting a higher value.

4.3 Experimental results

4.3.1 Comparison with other image-based methods

The quantitative results of comparison between our method and comparison methods are shown in Table 1, where the
best results are shown in bold. In terms of indicators, the proposed method is superior to the other six methods in RMSE,
SSIM and AP, which are 1~6%, 7~27% and 0.5~38% respectively. The experimental results show that the proposed
method has better performance in structural integrity, accuracy and noise suppression. Qualitative visual inspection also
shows that the sketches produced by the proposed method are more satisfactory. According to the evaluation results of
SSIM, CNN-based methods (RCF, BDCN, Ours) are higher than traditional methods (Canny, FDoG, SE), which
confirms the advantages of deep learning-based methods in sketch extracting. Compared with BDCN, the proposed
method is about 19% higher on SSIM, 6% lower on RMSE and 24% higher on AP, which indicates the effectiveness of
the proposed method and the necessity of the extraction method based on U-Net. Compared with U-Net, the proposed
method achieves 24% improvement on SSIM, 1% improvement on RMSE and 24% improvement on AP, respectively,
confirming the importance of rough extraction step.

Figure 3 shows the sketches extracted by different methods and their reference edge labels. As shown in Fig. 3, Canny, a
method based on gradient calculation (Fig. 3c) failed in cases where the gradient change is not obvious, as broken or
undetectable lines appeared, especially at the ears in the second and fifth images. FDoG (Fig. 3d) is sensitive to ‘noise’
or unwanted information, so there are many unexpected lines in the extraction results. The sketches extracted by SE (Fig.
3e) are blurred, especially when extracting an image with a complex background like the fourth image. Although RCF
(Fig. 3f) can suppress unwanted information due to degradation, the extracted sketches are not clear and many details are
lost. The extraction results of BDCN (Fig. 3g) are relatively complete, but its ‘noise’ suppression is insufficient. For
example, the background part of the first image and the head of the second image are greatly affected by the unwanted
information. Moreover, the sketches are too thick, which makes it easy to have the sketches merged when extracting
dense areas, such as the fourth image. The sketches extracted by U-Net (Fig. 3h) are incomplete, and the results are poor
for the unclear parts of the original images. For example, almost no useful sketch can be extracted in the body part of the
figure in the sixth image. Compared with these edge detection methods, the results of our method are not only more
complete and more detailed, but also contain less unwanted information. These experimental results show our
advantages in detail extraction from real historic paintings with various damages and deterioration. In other words, our
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method achieves better results both in objective indicators and subjective visual inspection than other state-of-the-art
methods.

Table 1. Comparison with other methods.

Method RMSE SSIM AP
Canny10 0.3126 0.6683 0.4138

FDoG38 0.2575 0.7672 0.6362

SE12 0.2648 0.6461 0.2614

RCF14 0.2948 0.8647 0.2923

BDCN17 0.3068 0.7486 0.4030

U-Net22 0.2535 0.6869 0.6186

Ours 0.2451 0.9344 0.6409

Figure 3. Comparison of sketch extraction results using spectral imaging of painted cultural relics, (a) the NIR images
(average of 650-900 nm); (b) ‘ground truth’ (manual sketch by experts based on (a)); (c) Canny; (d) FDoG; (e) SE; (f) RCF;
(g) BDCN; (h) U-Net; (i) Ours;

4.3.2 Comparison with a spectra-based method

The methods discussed above all relied on just one image, that is the averaged image of spectral bands in the far-red and
near infrared wavelength range (650-900 nm) where the sketches appear with the best contrast. The reflectance spectra
collected by the hyperspectral image system has not been fully utilized. In this section, we cluster those pixels with
similar spectral reflectance as a means of segmenting the spatial image into different regions representing different

Proc. of SPIE Vol. 11784  1178407-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Jul 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



painted regions. For example, carbon-based sketches will be clustered together while sketches drawn with other inks or
paints would form different clusters. Here we use an unsupervised clustering algorithm based on artificial neural
networks, self-organising map (SOM), to cluster the pixels6 39. To improve the signal-to-noise ratio of the individual
input spectral bands for clustering, the 128 band image cubes were reduced to 16 bands by averaging every 8 bands. The
9 bands (bands 2-10 in the 16 bands) covering the spectral range from 410 nm to 780 nm were then selected for
clustering analysis (band 1 had very low signal to noise ratio and bands 11-16 were blurred due to chromatic aberration
of the hyperspectral imaging lens and were thus discarded). This reduced spectral image cube has a spectral resolution of
~40nm which is sufficient for discriminating between different painting materials, especially since reflectance spectra of
pigments are smooth and do not have sharp features (only a handful of pigments have absorption features smaller than
10nm in this spectral range). The SOM based algorithm is unsupervised and does not require labeling by experts. It is a
‘shallow learning’ method, where it learns from the data itself and it uses the spectral information for segmentation in
contrast to the methods described above. The results of two of the above cases are shown in Fig. 4 for detailed
comparison. The SOM results using spectra for segmentation of the sketches found not only sketches in carbon-based ink
but also in red paint demonstrating the advantage of using the spectral information (Fig. 4g). On the other hand, SOM
clustering sometimes groups regions affected by surface mud with the black sketches and fails in distinguishing the hair
from the outlines as they were both painted by carbon ink and therefore had the same spectra and segmented together.

As it was shown in Kogou et al.39, Principal Component Analysis (PCA) and Independent Component Analysis (ICA)
can sometimes reveal more than the individual spectral band images, PCA and ICA were performed on the spectral
image cubes, and in some cases, they did show more sketches than the averaged near infrared images (Fig. 3a and Fig.
4b) or the ‘ground truth’ shown in Fig. 3b and Fig. 4c. Fig. 4 first row shows that the PCA and ICA images revealed
more sketches than the ‘ground truth’, which is not surprising because the ‘ground truth’ was based on the visual
inspection of the averaged 650-900nm image (Fig. 4b) which did not show some of the sketches found in the PCA and
ICA images. This also means any technique that revealed more sketches than the so called ‘ground truth’ will be
penalized in the quality indicators, despite revealing the hidden true sketches. This highlights the difficulty of knowing
what the ‘ground truth’ is in the study of real painted cultural objects rather than mockups. It also shows that quality
indicators need to be used with caution.

Figure 4. Two examples corresponding to the second and third row of Fig. 3 showing the colour images, the NIR images
(average of 650-900 nm, same as Fig. 3a), the ‘ground truth’ sketches (same as in Fig. 3b), the sketches extracted using our
proposed method ‘ours’, the ICA and PCA component images from the reduced 9 band spectral image cube that best reveals
the sketches and the SOM cluster maps that extracts the areas of black sketches (black) and red sketches (red).

5. CONCLUSIONS
In this paper, we proposed a new framework for sketch extracting based on spectral imaging and deep learning. The
framework is composed of BDCN and U-Net. For the data with fading or serious protection problems, we use the prior
knowledge of sketch to preprocess them. In the extraction based on BDCN, we adopt the method of pre-training and
fine-tuning to solve the problem of insufficient data of painted cultural relics. Then the results are further optimized
based on U-Net to extract more details and suppress noise. The proposed method can be used not only for natural images,
but also for spectral images of cultural relics with various conservation issues.
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Compared with other methods, we verify the effectiveness and practicability of the proposed method. To sum up, the
proposed method can extract ideal sketches from murals with serious conservation issues and complex background,
which shows that it is an effective and promising method for sketch extracting.

The paper has also shown that a potential future improvement can be made by utilizing the full spectral image cube to
reveal the more of the hidden sketches first (e.g. using PCA or ICA) before applying the proposed method. In addition, it
has also shown the difficulties of knowing what the ‘ground truth’ is in a real painted cultural object and the potential
issues of using quality indices based on the so called ‘ground truth’ to compare algorithms.
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